JP2003205385A - Method and device of repairing structural member - Google Patents

Method and device of repairing structural member

Info

Publication number
JP2003205385A
JP2003205385A JP2002002538A JP2002002538A JP2003205385A JP 2003205385 A JP2003205385 A JP 2003205385A JP 2002002538 A JP2002002538 A JP 2002002538A JP 2002002538 A JP2002002538 A JP 2002002538A JP 2003205385 A JP2003205385 A JP 2003205385A
Authority
JP
Japan
Prior art keywords
welding
structural member
repair
output
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002002538A
Other languages
Japanese (ja)
Other versions
JP4184667B2 (en
Inventor
Atsushi Watanabe
敦志 渡辺
Naoto Uetake
直人 植竹
Hideya Anzai
英哉 安斉
Hiroto Yokoi
浩人 横井
Eiji Nishioka
映二 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002002538A priority Critical patent/JP4184667B2/en
Publication of JP2003205385A publication Critical patent/JP2003205385A/en
Application granted granted Critical
Publication of JP4184667B2 publication Critical patent/JP4184667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a stress generation and a structural variation due to a input heat to a structural member in a repairing work. <P>SOLUTION: A repairing welding method selected on the basis of running environment data of a part to be repaired is used, a welding power is adjusted on the basis of an output and working data, a welding for repairing work is performed within an allowable heat input range. The running environment data are the quality of water, temperature, irradiated amount of neutrons, material and helium content of the part to be repaired, the working data are the relations or the like between the welding condition and the aspect of the part to be repaired including the relation between the welding power and the heat input in the welding method or the relation between the welding output and the material, and the welding output is decided on the basis of factors including geometrical values decided by the dimension of an electrode which varies the output according to values including a voltage, a current and time, and the gap between the electrode and the structural member. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、構造部材補修方法
および構造部材補修装置に関する。
TECHNICAL FIELD The present invention relates to a structural member repairing method and a structural member repairing apparatus.

【0002】[0002]

【従来の技術】金属材料は供用される環境において様々
な経年変化を起こす。通常、強度や肉厚等を考慮して構
造物の仕様が決定されるが、大きな応力が負荷される部
分はき裂を起こす可能性があり、酸化性の環境では腐食
による減肉が進行する可能性がある。
2. Description of the Related Art Metallic materials undergo various aging changes in the environment in which they are used. Normally, the specifications of the structure are determined in consideration of strength, wall thickness, etc., but there is a possibility that cracks will occur in parts where large stress is applied, and in an oxidative environment, wall thinning due to corrosion will progress. there is a possibility.

【0003】これらの経年変化に対して、き裂や減肉を
補修する補修加工を実施することにより、構造部材を当
初の設計仕様を満足する形態に復元することが可能とな
る。また、経年変化を予測し、き裂や減肉が進行する前
に該部に同様の補修加工を行うことにより、構造物の安
全性を向上することも可能となる。更に、構造物の強度
仕様を満足することができる補修方法があれば、新規部
材に交換する方法に比べて、廃棄物減量、コスト低減、
工期短縮の観点で有利である。
By carrying out repair work for repairing cracks and wall thinning against these changes over time, it becomes possible to restore the structural member to a form that satisfies the original design specifications. In addition, it is possible to improve the safety of the structure by predicting the secular change and performing the same repair work on the portion before the progress of cracks and wall thinning. Furthermore, if there is a repair method that can satisfy the strength specifications of the structure, waste reduction, cost reduction, and
It is advantageous from the viewpoint of shortening the construction period.

【0004】一般的な補修方法には、金属材料を熱的に
溶解して補修対象部に肉盛りする溶接補修がある。しか
し、この方法は、肉盛りする材料および補修対象構造部
材を融点以上に加熱するために、補修対象構造部材に熱
的な影響が残留する。
As a general repair method, there is welding repair in which a metallic material is thermally melted to build up on a repair target portion. However, in this method, since the material to be built up and the structural member to be repaired are heated to the melting point or higher, thermal influence remains on the structural member to be repaired.

【0005】[0005]

【発明が解決しようとする課題】熱的に電極材料を溶か
して構造部材に肉盛り溶接すると、溶けた電極材料の熱
が構造部材に伝導するために、補修部および補修部近傍
に熱影響組織が発生する。また、電極材料による肉盛り
部が冷えるときの熱収縮によって構造部材に引張応力が
発生する。従って、このような組織の変化や応力の発生
を軽減するために、補修溶接時の入熱量の管理は補修後
の強度を確保する上で非常に重要である。特に、原子炉
の炉内構造部材は、中性子照射を受けることによって部
材中にヘリウムが発生するために、そこに熱を加えると
ヘリウムが集合して金属結晶粒界に移動することで強度
の低下が起る。
When the electrode material is thermally melted and build-up welded to the structural member, the heat of the melted electrode material is conducted to the structural member, so that the heat-affected tissue exists near the repaired portion and the repaired portion. Occurs. Further, tensile stress is generated in the structural member due to thermal contraction when the built-up portion of the electrode material cools. Therefore, in order to reduce such changes in the structure and the generation of stress, it is very important to control the heat input during repair welding in order to secure the strength after repair. In particular, in the reactor internal structural member, helium is generated in the member by receiving neutron irradiation, so when heat is applied to it, helium aggregates and moves to the metal grain boundaries, resulting in a decrease in strength. Occurs.

【0006】また、入熱に対する感受性(熱影響の程
度)は、使用時の構造部材に負荷される応力や歪み、酸
素濃度や不純物濃度等の水質環境、使用温度、放射線
量、使用開始からの稼動期間、材質等の運転環境によっ
て異なることを考慮する必要がある。
The sensitivity to heat input (degree of thermal influence) depends on the stress and strain applied to the structural member during use, the water quality environment such as oxygen concentration and impurity concentration, the use temperature, the radiation dose, and the start of use. It is necessary to consider that it depends on the operating environment such as operating period and material.

【0007】更に、補修溶接の入熱による応力や組織変
化に対して、補修後に熱処理や応力緩和等の二次的な作
業を行う場合があり、補修部の信頼性を向上するために
は入熱量をコントロールした構造部材の補修方法が必要
である。
Further, in order to improve the reliability of the repaired part, a secondary work such as heat treatment or stress relaxation may be carried out after the repair for the stress and the structure change due to the heat input of the repair welding. A method of repairing structural members that controls the amount of heat is required.

【0008】本発明の目的は、補修溶接による入熱によ
る補修対象の構造部材の応力発生や組織変化を抑制する
ことができる構造部材補修方法を提案することにある。
An object of the present invention is to propose a method for repairing a structural member capable of suppressing stress generation and structural change of a structural member to be repaired due to heat input by repair welding.

【0009】[0009]

【課題を解決するための手段】本発明は、前記構造部材
の補修部位の運転環境データに基づいて補修施工時の入
熱量が補修対象構造部材の許容値以下になるように溶接
方法を選定して該溶接方法の施工データに基づいて溶接
施工出力を調整して補修溶接を実施することにより、補
修による構造部材への入熱による応力発生や組織変化を
抑制することを特徴とする。
According to the present invention, a welding method is selected based on the operating environment data of the repaired portion of the structural member such that the heat input during the repairing work is equal to or less than the allowable value of the structural member to be repaired. By adjusting the welding work output based on the work data of the welding method and carrying out repair welding, it is possible to suppress the stress generation and the microstructure change due to heat input to the structural member due to the repair.

【0010】具体的には、第1の手段は、補修対象の構
造部材を溶接によって補修する構造部材補修方法におい
て、前記構造部材の補修部位の運転環境データに基づい
て補修施工時の入熱量が補修対象構造部材の許容値以下
になるように溶接方法を選定して該溶接方法の施工デー
タに基づいて溶接施工出力を調整して補修溶接を実施す
ることを特徴とする。
Specifically, the first means is a structural member repairing method for repairing a structural member to be repaired by welding, wherein the heat input amount at the time of repairing is based on the operating environment data of the repaired portion of the structural member. It is characterized in that a welding method is selected so as to be equal to or less than the allowable value of the structural member to be repaired, and the welding work output is adjusted based on the work data of the welding method to carry out repair welding.

【0011】この場合、前記運転環境データには、補修
部位の水質、温度、中性子照射量、材質、ヘリウム含有
量の少なくとも1つを含み、前記施工データは、溶接方
法の溶接施工出力と入熱量の関係または溶接施工出力と
材質の関係を含む溶接施工条件と補修部性状の関係を示
す。また、前記溶接施工出力は、電圧値、電流値、時間
を含む値によって出力を変化させ得る電極の大きさや電
極と構造部材の間隔による幾何学的な数値を含む要素に
基づいて設定される。
In this case, the operating environment data includes at least one of water quality, temperature, neutron irradiation amount, material, and helium content of the repaired portion, and the work data is welding work output and heat input amount of the welding method. The relationship between the welding condition and the property of the repaired part including the relation between the relationship or the relationship between the welding output and the material. The welding work output is set on the basis of factors including the size of the electrode and the geometrical numerical value depending on the distance between the electrode and the structural member, the output of which can be changed depending on the value including the voltage value, the current value, and the time.

【0012】第2の手段は、補修対象の構造部材を溶接
によって補修する構造部材補修方法において、電極に電
圧を印加して前記構造部材と電極間に短時間放電を発生
させることによって放電熱で蒸発した電極成分を構造部
材に溶接する溶接方法を用い、補修部の運転環境データ
に基づいて補修時の入熱量が許容値以下となる溶接施工
出力を設定して補修溶接を実施することを特徴とする。
A second means is a structural member repairing method for repairing a structural member to be repaired by welding, in which a voltage is applied to an electrode to generate a short-time discharge between the structural member and the electrode to generate a discharge heat. Using the welding method of welding the evaporated electrode components to the structural members, the repair welding is performed based on the operating environment data of the repair section and setting the welding work output so that the heat input during repair is below the allowable value. And

【0013】第3の手段は、補修対象の構造部材を溶接
によって補修する構造部材補修方法において、電極に電
圧を印加して構造部材と電極間に短時間放電を発生させ
ることによって放電熱で蒸発した電極成分を構造部材に
溶接する溶接方法を用い、補修部位表面の酸化皮膜を予
め測定した施工出力と破壊データまたは電極極性と破壊
データに基づいて施工出力を調整して前記皮膜を破壊除
去し、その後、補修部位の運転環境データに基づいて溶
接施工時の該補修部位への入熱量が許容値以下となるよ
うに施工データを参照して求めた溶接施工出力で補修溶
接を行うことを特徴とする。
A third means is a structural member repairing method for repairing a structural member to be repaired by welding, in which a voltage is applied to the electrodes to generate a short-time discharge between the structural member and the electrodes to evaporate by discharge heat. Using the welding method of welding the electrode component to the structural member, the oxide film on the surface of the repair site is measured in advance and the work output is adjusted based on the electrode polarity and the damage data to destroy and remove the film. After that, based on the operating environment data of the repaired part, repair welding is performed with the welding work output obtained by referring to the work data so that the heat input to the repaired part during welding work will be below the allowable value. And

【0014】これらの場合、前記運転環境データは、補
修部の水質、温度、中性子照射量、材質、ヘリウム含有
量の少なくとも1つを含み、前記施工データは、放電出
力と入熱量の閑係、放電出力と材質の関係を含む溶接条
件と補修部性状の関係を含む。また、放電出力は、電
圧、電流、放電パルス形状、パルス周期、パルス幅およ
び放電出力を変化させ得る電極の大きさや電極と構造部
材の間隔による幾何学的な数値などの要素に基づいて設
定される。
In these cases, the operating environment data includes at least one of water quality, temperature, neutron irradiation amount, material, and helium content of the repair section, and the construction data is a correlation between discharge output and heat input, Includes the relationship between welding conditions, including the relationship between discharge output and material, and the properties of repaired parts. The discharge output is set based on factors such as voltage, current, discharge pulse shape, pulse period, pulse width, and the size of the electrode that can change the discharge output and a geometrical value depending on the distance between the electrode and the structural member. It

【0015】第4の手段は、補修対象の構造部材を溶接
によって補修する構造部材補修装置において、電極と、
施工出力調節部と、前記電極を補修部位に対向させて移
動走査する走査アームと、駆動機構と、補修部の運転履
歴データ、施工データ、皮膜破壊データを格納する記憶
部を備えたことを特徴とする。
A fourth means is, in a structural member repairing apparatus for repairing a structural member to be repaired by welding, an electrode,
It is equipped with a construction output control unit, a scanning arm for moving and scanning the electrode facing the repair site, a drive mechanism, and a storage unit for storing the operation history data of the repair unit, construction data, and film destruction data. And

【0016】[0016]

【発明の実施の形態】以下、図面を参照し、本発明の実
施形態について説明する。
DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明の構造部材補修方法の第1
の実施の形態を示すフローチャート、図2は、運転環境
データベースである。
FIG. 1 shows a first structural member repairing method according to the present invention.
2 is a driving environment database, which is a flowchart showing the embodiment of FIG.

【0018】図1において、まず、ステップ1におい
て、運転環境データを参照して補修部の状態を把握す
る。この運転環境データは、図2に示すように、補修部
の材質(M1、M2・・・)や中性子照射量(N1、N
2・・・)を格納した運転環境データベースから取得す
る。この運転環境データベースは、補修部の材料が記さ
れたミルシート、製作時における溶接や加工の作業記録
および運転記録による運転期間の積算値や温度計、溶存
酸素計、導電率、溶存酸素計の指示値から作成する。図
2に示した運転環境データベースでは、部位A(例えば
原子炉シュラウド)を補修する場合は、材質がMl、中
性子照射量がNlであることがわかる。また、部位B
(例えば原子炉圧力容器)の場合には、材質がM2、中
性子照射量がN2である。なお、図2におけるAないし
D、材質M、中性子照射量N、温度T、雰囲気C、稼働
期間TMは具体的には図2に示す通りである。なお、応
力については、各対象物について測定しておき、その測
定結果がそれぞれ使用される。
In FIG. 1, first, in step 1, the state of the repair section is grasped by referring to the operating environment data. As shown in FIG. 2, the operating environment data includes the material (M1, M2 ...) Of the repair portion and the neutron irradiation amount (N1, N).
2 ...) is stored in the driving environment database. This operating environment database is a mill sheet on which materials for repair parts are written, work records of welding and processing at the time of production, and integrated values of operating periods based on operation records, thermometers, dissolved oxygen meters, conductivity, and dissolved oxygen meter instructions. Create from value. In the operating environment database shown in FIG. 2, when repairing the part A (for example, the reactor shroud), it is found that the material is Ml and the neutron irradiation dose is Nl. Also, part B
In the case of (for example, a reactor pressure vessel), the material is M2 and the neutron irradiation dose is N2. Note that A to D, material M, neutron irradiation amount N, temperature T, atmosphere C, and operating period TM in FIG. 2 are specifically as shown in FIG. The stress is measured for each object and the measurement result is used.

【0019】次に、ステップ2において、許容入熱量を
判定する。許容入熱量は、文献(例えばWeldability of
neutron irradiated austenitic stainless steels、Jo
urnal of Nuclear Materials 264、P8(1999))に示され
るように、ヘリウム濃度と相関がある。一方、構造部材
中では、合金元素や不純物が中性子照射で核変換する際
に、ヘリウムが核反応式(1)および(2)によって生
成し、ステンレス鋼の場合には、ヘリウムの生成量は1
×1022n/cm当り、5.5ppmであることが
日刊工業新聞社発行ステンレス鋼便覧P143に示され
ている。
Next, in step 2, the allowable heat input amount is determined. The allowable heat input can be found in the literature (for example, Weldability of
neutron irradiated austenitic stainless steels, Jo
As shown in urnal of Nuclear Materials 264, P8 (1999)), there is a correlation with the helium concentration. On the other hand, in the structural member, helium is generated by the nuclear reaction equations (1) and (2) when the alloy elements and impurities are transmuted by neutron irradiation, and in the case of stainless steel, the amount of helium generated is 1
It is shown in the Stainless Steel Handbook P143 issued by Nikkan Kogyo Shimbun that the concentration is 5.5 ppm per × 10 22 n / cm 2 .

【0020】 58Ni(n,γ)59Ni(n,α56Fe …(反応式1) 10B(n,αLi …(反応式2) これらのことから、許容入熱量とヘリウム濃度の相関関
係とヘリウム濃度と中性子照射量の相関関係から、許容
入熱量は、中性子照射量に依存して変化し、中性子照射
量と許容入熱量は、相関関係を持つことがわかる。この
中性子照射量と許容入熱量の相関関係を図3に模式的に
示す。
58 Ni (n, γ) 59 Ni (n, α ) 56 Fe ... (Reaction Formula 1) 10 B (n, α ) 7 Li ... (Reaction Formula 2) From the above, the allowable heat input amount and helium are shown. From the correlation of the concentration and the correlation of the helium concentration and the neutron irradiation dose, it is understood that the allowable heat input changes depending on the neutron irradiation dose, and the neutron irradiation dose and the allowable heat input have a correlation. The correlation between the neutron irradiation dose and the allowable heat input amount is schematically shown in FIG.

【0021】図3に示した中性子照射量と許容入熱量の
相関関係から、補修部が部位Aの場合は、材質Mlの中
性子照射量Nlに対する入熱量がHl以下、部位Bの場
合には、材質M2の中性子照射量N2に対する入熱量が
H2以下であれば許容できることがわかる。
From the correlation between the neutron irradiation dose and the allowable heat input amount shown in FIG. 3, in the case where the repair portion is the site A, the heat input amount with respect to the neutron irradiation amount Nl of the material Ml is Hl or less, and in the case of the site B, It can be seen that the amount of heat input to the material M2 with respect to the neutron irradiation amount N2 is H2 or less.

【0022】ステップ3において、補修する部位に応じ
た許容入熱量HlやH2を満足できる補修方法を選定す
る。補修方法は、図4に示した施工データのように、補
修施工出力に応じて入熱量が大きくなる特徴がある。R
l、R2、R3は、補修方法の補修施工出力と入熱量を
模式的に示したものである。例えば、Rlは放電溶接方
法、R2はレーザ溶接方法、R3はガス溶接やアーク溶
接方法が相当する。ステップ2において判定した許容入
熱量Hl、H2の場合には、許容入熱量Hlの補修では
放電溶接方法Rlを選定し、許容入熱量H2の補修では
レーザ溶接方法R2を選定することにより、許容入熱量
以下の条件を満足する補修を実施することができる。
In step 3, a repairing method that can satisfy the allowable heat input amounts Hl and H2 according to the repaired portion is selected. The repair method is characterized in that the heat input amount increases according to the repair work output, as in the work data shown in FIG. R
l, R2, and R3 schematically show the repair work output and heat input amount of the repair method. For example, Rl corresponds to a discharge welding method, R2 corresponds to a laser welding method, and R3 corresponds to a gas welding or arc welding method. In the case of the allowable heat input amounts Hl and H2 determined in step 2, the discharge welding method Rl is selected for repairing the allowable heat input amount Hl, and the laser welding method R2 is selected for repairing the allowable heat input amount H2. It is possible to carry out repairs that satisfy the conditions below the amount of heat.

【0023】ステップ4において、補修施工出力を初期
条件として設定する際に、許容入熱量Hl以下、H2以
下を満足することができる補修施工出力は、図4に示し
た施工データからWlまたはW2となる。この補修施工
出力は、電圧値や電流値を制御することで変化させるこ
とができる。
In step 4, when the repair work output is set as the initial condition, the repair work output that can satisfy the allowable heat input amounts Hl or less and H2 or less is Wl or W2 from the work data shown in FIG. Become. This repair work output can be changed by controlling the voltage value and the current value.

【0024】以上のステップ1からステップ4におい
て、補修部位に応じた入熱量を満足することができる補
修方法および補修施工出力を決定して設定する。
In the above steps 1 to 4, a repair method and a repair work output capable of satisfying the heat input amount according to the repair site are determined and set.

【0025】ステップ5において、補修施工範囲をX、
Y軸座標で入力して設定する。
In step 5, the repair construction range is X,
Input and set in Y-axis coordinates.

【0026】ステップ6において、補修施工出力を施工
ヘッドに印加して補修を開始する。
In step 6, the repair work output is applied to the work head to start the repair.

【0027】ステップ7において、駆動機構を制御して
施工ヘッドをX、Y軸座標で設定された補修範囲を移動
走査しながら補修を行う。
In step 7, the drive mechanism is controlled to perform the repair while moving and scanning the construction head in the repair range set by the X and Y axis coordinates.

【0028】ステップ8において、設定された補修範囲
内の補修の終了を確認する。
At step 8, it is confirmed that the repair is completed within the set repair range.

【0029】ステップ9において、補修を停止する。In step 9, the repair is stopped.

【0030】図5は、本発明の構造部材補修方法の第2
の実施形態を示すフローチャート、図6は、放電施工デ
ータ、図7は、放電施工出力制御特性図である。この第
2の実施形態は、電極に電圧をパルス状に印加すること
で構造部材と前記電極間に短時間放電を発生させ、放電
熱で蒸発させた電極成分を構造部材に溶着させる放電パ
ルス溶接方法を設定した補修方法の例である。
FIG. 5 shows a second structural member repairing method according to the present invention.
6 is a discharge execution data, and FIG. 7 is a discharge execution output control characteristic diagram. The second embodiment is a discharge pulse welding in which a voltage is applied to electrodes in a pulsed manner to generate a short-time discharge between a structural member and the electrode, and an electrode component evaporated by discharge heat is welded to the structural member. It is an example of the repair method which set the method.

【0031】図5において、第1の実施形態と同様なス
テップ1〜3における補修方法の選定ステップで、補修
方法として放電溶接方法を決定する。
In FIG. 5, the discharge welding method is determined as the repair method in the repair method selection step in steps 1 to 3 similar to the first embodiment.

【0032】ステップ4において、初期放電条件を設定
する。この初期放電条件の設定は、図6に示した放電施
工データに示すように、初期放電出力を入熱量Hl、H
2に応じてWl、W2と設定する。また、放電出力は、
電圧値や電流値を変えることで変化させることができる
が、ここでは、放電パルスの時間幅を調整することで放
電出力を変化させる方法を採用している。
In step 4, initial discharge conditions are set. This initial discharge condition is set by setting the initial discharge output to the heat input amounts Hl and H as shown in the discharge construction data shown in FIG.
According to 2, W1 and W2 are set. Also, the discharge output is
It can be changed by changing the voltage value or the current value, but here, the method of changing the discharge output by adjusting the time width of the discharge pulse is adopted.

【0033】放電パルス溶接では、図7に示すように、
電圧一定のパルス電圧を時間幅τlだけ印加するとこの
間は電流iが流れ、パルス電圧が休止すると電流値はゼ
ロとなる。パルス電圧をτ2の間隔で繰り返して印加す
ると、電流iの積算値に応じて徐々に施工出力が増加
し、施工時間Tを経過したときに設定値Wlに達するよ
うになる。
In discharge pulse welding, as shown in FIG.
When a pulse voltage having a constant voltage is applied for a time width τl, a current i flows during this period, and when the pulse voltage is stopped, the current value becomes zero. When the pulse voltage is repeatedly applied at intervals of τ2, the construction output gradually increases according to the integrated value of the current i, and reaches the set value Wl when the construction time T has elapsed.

【0034】ステップ5において、補修範囲をX、Y座
標で入力して設定する。
In step 5, the repair range is input and set by the X and Y coordinates.

【0035】ステップ6において、放電パルスを施工ヘ
ッド(電極)に印加して補修を開始する。
In step 6, a discharge pulse is applied to the construction head (electrode) to start repair.

【0036】ステップ7〜9は、第1の実施形態と同じ
であるので、説明を省略する。
Since steps 7 to 9 are the same as those in the first embodiment, their description will be omitted.

【0037】図8は、本発明の構造部材補修方法の第3
の実施形態を示すフローチャート、図9は、構造部材の
稼働時間と該構造部材に形成される皮膜の厚さの関係を
示す特性図、図10は、皮膜除去施工出力と皮膜除去量
(厚さ)の関係を示す特性図である。
FIG. 8 shows a third structural member repairing method according to the present invention.
9 is a characteristic diagram showing the relationship between the operating time of the structural member and the thickness of the film formed on the structural member, and FIG. 10 is a film removal execution output and film removal amount (thickness). 3] FIG.

【0038】この第3の実施形態は、補修対象の構造部
材に形成された皮膜を破壊して除去した後に該構造部材
に補修用の肉盛り溶接を実施する補修方法である。
The third embodiment is a repairing method in which the coating formed on the structural member to be repaired is destroyed and removed, and then the overlay welding for repairing is performed on the structural member.

【0039】ステップAからステップDの皮膜を除去す
る手順を追加したことに特徴がある実施形態である。ス
テップ1からステップ8は前述した第2の実施形態と同
じであるので、説明を省略する。
This embodiment is characterized in that a procedure for removing the film in steps A to D is added. Since steps 1 to 8 are the same as those in the second embodiment described above, the description thereof will be omitted.

【0040】ステップAにおいて、図2に示した運転環
境データの材質や水質、稼動期間に基づいて補修部位の
皮膜厚さを判定する。皮膜厚さは、図9に示すように、
主に水質と稼動期間で厚さD1と判定することができ
る。また、気中で使用されている部位であれば、雰囲気
ガス濃度と稼動期間で判定することができる。
In step A, the film thickness of the repaired portion is determined based on the material, water quality, and operating period of the operating environment data shown in FIG. The film thickness is, as shown in FIG.
The thickness D1 can be determined mainly by the water quality and the operating period. In addition, if the part is used in the air, it can be determined by the atmospheric gas concentration and the operating period.

【0041】ステップBにおいて、図10に示す破壊デ
ータに基づいて、皮膜厚さD1を破壊除去するために必
要な破壊出力をB1に設定する。
In step B, the destruction output required to destroy and remove the film thickness D1 is set to B1 based on the destruction data shown in FIG.

【0042】ステップCにおいて、皮膜除去範囲をX、
Y座標で入力して設定する。
In step C, the film removal range is X,
Input by Y coordinate and set.

【0043】ステップDにおいて、破壊出力B1によっ
て補修部位の皮膜除去を実施する。
In step D, the coating of the repaired portion is removed by the destruction output B1.

【0044】ステップEにおいて、終了を判定する。At step E, the end is determined.

【0045】この皮膜除去の終了後のステップ5以降は
第1の実施形態と同じである。
The steps after step 5 after the removal of the film are the same as those in the first embodiment.

【0046】図11は、本発明の構造部材補修方法を実
施する第4の実施形態を示す構造部材補修装置の斜視図
である。この構造部材補修装置は、第1〜第3の実施形
態で説明した構造部材補修方法を実施するために好適な
装置である。
FIG. 11 is a perspective view of a structural member repairing apparatus showing a fourth embodiment for carrying out the structural member repairing method of the present invention. This structural member repairing device is a device suitable for carrying out the structural member repairing method described in the first to third embodiments.

【0047】この構造部材補修装置は、構造部材1を補
修する補修電極2と、運転環境データ、施工データ、皮
膜破壊データなどのデータベースを格納する記憶部3
と、判定処理を行う演算装置4と、補修電極2を保持す
る走査アーム5を駆動する駆動機構6と、補修電極2を
補修部位に対向させて走査する制御を行う駆動機構操作
盤7と、補修施工出力を設定された値に調整して補修電
極2に印加する出力調節部8と、データや判定処理の結
果等を表示する表示装置9と、補修範囲等を入力して設
定する入力装置10を備える。
This structural member repairing apparatus has a repairing electrode 2 for repairing the structural member 1 and a storage section 3 for storing a database of operating environment data, construction data, film destruction data and the like.
An arithmetic unit 4 for performing the determination process, a drive mechanism 6 for driving the scanning arm 5 holding the repair electrode 2, a drive mechanism operation panel 7 for controlling the scan of the repair electrode 2 facing the repair site, An output control unit 8 that adjusts the repair work output to a set value and applies the repair work output to the repair electrode 2, a display device 9 that displays data and results of determination processing, and an input device that inputs and sets the repair range and the like. 10 is provided.

【0048】出力調節部8は、電圧や電流値、放電パル
スの周期やパルス幅を変化させることにより補修施工出
力を変化させる構成であり、記憶部3に格納しているデ
ータベースを用いて調整した補修施工出力を出力する。
補修施工範囲は、補修対象部11を覆うように、入力装
置10からX軸、Y軸の座標で駆動機構操作盤5に入力
し、駆動機構6を制御して走査アーム5を駆動すること
により補修電極2を移動走査して補修施工する。酸化皮
膜の除去も同様の手順で所定位置に電極2を移動して施
工する。
The output control unit 8 is configured to change the repair work output by changing the voltage or current value, the discharge pulse cycle or the pulse width, and is adjusted using the database stored in the storage unit 3. Output the repair work output.
The repair construction range is input from the input device 10 to the drive mechanism operation panel 5 with the coordinates of the X axis and the Y axis so as to cover the repair target portion 11, and the drive mechanism 6 is controlled to drive the scanning arm 5. The repair electrode 2 is moved and scanned to perform repair work. The removal of the oxide film is carried out by moving the electrode 2 to a predetermined position in the same procedure.

【0049】図12は、電極2の移動走査軌跡の一例を
示している。この移動走査軌跡は、構造部材1上をX軸
およびY軸に矩形にジグザグ移動する走査軌跡である。
FIG. 12 shows an example of the movement scanning locus of the electrode 2. This moving scanning locus is a scanning locus that moves in a rectangular zigzag pattern on the structural member 1 along the X axis and the Y axis.

【0050】なお、本発明は、あらゆる構造部材に適用
できるが、特に原子力施設や発電施設などの構造部材に
対する補修などの予防保全に最適である。
Although the present invention can be applied to all structural members, it is particularly suitable for preventive maintenance such as repair of structural members such as nuclear facilities and power generation facilities.

【0051】[0051]

【発明の効果】本発明は、補修対象部材の入熱量の許容
値を考慮した溶接方法を選定し、許容入熱量の制約を満
足する施工出力により補修溶接を実施することができる
ために、補修後の応力発生や組織変化を防止することが
できる。更には、補修後の熱処理等の2次的な作業を省
略することができ、復旧までの工期の短縮を図ることが
できる。
EFFECTS OF THE INVENTION The present invention selects a welding method in consideration of the allowable heat input amount of a repair target member, and can perform repair welding with a construction output satisfying the constraint of the allowable heat input amount. It is possible to prevent subsequent stress generation and structural change. Furthermore, secondary work such as heat treatment after repair can be omitted, and the work period until restoration can be shortened.

【0052】また、低入熱量の肉盛り補修は勿論のこ
と、効率を考慮して、高入熱量の肉盛り補修も可能であ
る。
In addition to the overlay repair with a low heat input, the overlay repair with a high heat input is also possible in consideration of efficiency.

【0053】更に、補修対象部に皮膜が形成された構造
部材に対しても該皮膜を除去した上で前述したような肉
盛り補修を実施することができる。
Furthermore, the above-mentioned build-up repair can be carried out on the structural member having the coating formed on the repair target portion after the coating is removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構造部材補修方法の第1の実施形態を
示すフローチャートである。
FIG. 1 is a flowchart showing a first embodiment of a structural member repairing method of the present invention.

【図2】本発明の構造部材補修方法で参照する運転環境
データベースの一例を示す図である。
FIG. 2 is a diagram showing an example of an operating environment database referred to in the structural member repairing method of the present invention.

【図3】構造部材の中性子照射量と許容入熱量の関係を
示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a neutron irradiation amount of a structural member and an allowable heat input amount.

【図4】補修施工出力と入熱量の関係を示す特性図であ
る。
FIG. 4 is a characteristic diagram showing the relationship between repair work output and heat input.

【図5】本発明の構造部材補修方法の第2の実施形態を
示すフローチャートである。
FIG. 5 is a flowchart showing a second embodiment of the structural member repairing method of the present invention.

【図6】放電施工出力と入熱量の関係を示す特性図であ
る。
FIG. 6 is a characteristic diagram showing a relationship between a discharge execution output and a heat input amount.

【図7】放電施工出力制御特性図である。FIG. 7 is a characteristic diagram of discharge execution output control.

【図8】本発明の構造部材補修方法の第3の実施形態を
示すフローチャートである。
FIG. 8 is a flowchart showing a third embodiment of the structural member repairing method of the present invention.

【図9】構造部材の稼働時間と皮膜厚さの関係を示す特
性図である。
FIG. 9 is a characteristic diagram showing a relationship between an operating time of a structural member and a film thickness.

【図10】皮膜除去施工出力と破壊皮膜厚さの関係を示
す特性図である。
FIG. 10 is a characteristic diagram showing the relationship between the coating removal work output and the breakdown coating thickness.

【図11】本発明の第4の実施形態を構造部材補修装置
の斜視図である。
FIG. 11 is a perspective view of a structural member repair device according to a fourth embodiment of the present invention.

【図12】本発明の第4の実施形態を構造部材補修装置
における電極の走査軌跡の一例である。
FIG. 12 is an example of an electrode scanning locus in the structural member repair device according to the fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 構造部材 2 補修電極 3 記憶部 4 演算装置 5 走査アーム 6 駆動機構 7 駆動機構操作盤 8 出力調節部 9 表示装置 10 入力装置 1 Structural member 2 repair electrodes 3 storage 4 arithmetic unit 5 scanning arm 6 Drive mechanism 7 Drive mechanism operation panel 8 Output control section 9 Display device 10 Input device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安斉 英哉 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 (72)発明者 横井 浩人 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 西岡 映二 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideya Anzai             3-1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Stock Association             Hitachi, Ltd. Nuclear Business Division (72) Inventor Hiroto Yokoi             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd. (72) Inventor Eiji Nishioka             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 補修対象の構造部材を溶接によって補修
する構造部材補修方法において、 前記構造部材の補修部位の運転環境データに基づいて補
修施工時の入熱量が補修対象構造部材の許容値以下にな
るように溶接方法を選定して該溶接方法の施工データに
基づいて溶接施工出力を調整して補修溶接を実施するこ
とを特徴とする構造部材補修方法。
1. A structural member repair method for repairing a structural member to be repaired by welding, wherein the heat input during repairing is less than or equal to an allowable value of the structural member to be repaired based on the operating environment data of the repaired portion of the structural member. A welding method is selected so that the welding operation output is adjusted based on the operation data of the welding method, and the repair welding is performed.
【請求項2】 前記運転環境データは、補修部位の水
質、温度、中性子照射量、材質、ヘリウム含有量の少な
くとも1つを含むことを特徴とする請求項1記載の構造
部材補修方法。
2. The method for repairing a structural member according to claim 1, wherein the operating environment data includes at least one of water quality, temperature, neutron irradiation dose, material, and helium content of a repair site.
【請求項3】 前記施工データは、溶接方法の溶接施工
出力と入熱量の関係または溶接施工出力と材質の関係を
含む溶接施工条件と補修部性状の関係を含むことを特徴
とする請求項1記載の構造部材補修方法。
3. The welding data includes a welding operation condition including a relationship between a welding operation output of a welding method and a heat input amount, or a relationship between a welding operation output and a material, and a relationship between repair part properties. The method for repairing a structural member described.
【請求項4】 前記溶接施工出力は、電圧値、電流値、
時間を含む値によって出力を変化させ得る電極の大きさ
や電極と構造部材の間隔による幾何学的な数値を含む要
素に基づいて設定することを特徴とする請求項1記載の
構造部材補修方法。
4. The welding process output includes a voltage value, a current value,
The method for repairing a structural member according to claim 1, wherein the setting is performed based on an element including a geometrical numerical value depending on a size of the electrode and an interval between the electrode and the structural member, the output of which can be changed by a value including time.
【請求項5】 補修対象の構造部材を溶接によって補修
する構造部材補修方法において、 電極に電圧を印加して前記構造部材と電極間に短時間放
電を発生させることによって放電熱で蒸発した電極成分
を構造部材に溶接する溶接方法を用い、補修部の運転環
境データに基づいて補修時の入熱量が許容値以下となる
溶接施工出力を設定して補修溶接を実施することを特徴
とする構造部材補修方法。
5. A structural member repair method for repairing a structural member to be repaired by welding, wherein an electrode component evaporated by discharge heat by applying a voltage to an electrode to generate a short-time discharge between the structural member and the electrode. Is used to weld structural members to a structural member, and based on the operating environment data of the repair section, the welding work output is set so that the heat input during repair is below the allowable value, and the structural welding is performed. Repair method.
【請求項6】 補修対象の構造部材を溶接によって補修
する構造部材補修方法において、 電極に電圧を印加して構造部材と電極間に短時間放電を
発生させることによって放電熱で蒸発した電極成分を構
造部材に溶接する溶接方法を用い、補修部位表面の酸化
皮膜を予め測定した施工出力と破壊データまたは電極極
性と破壊データに基づいて施工出力を調整して前記皮膜
を破壊除去し、その後、補修部位の運転環境データに基
づいて溶接施工時の該補修部位への入熱量が許容値以下
となるように施工データを参照して求めた溶接施工出力
で補修溶接を行うことを特徴とする構造部材補修方法。
6. A structural member repair method for repairing a structural member to be repaired by welding, wherein a voltage is applied to an electrode to generate a short-time discharge between the structural member and the electrode, thereby removing an electrode component vaporized by discharge heat. Using the welding method of welding to structural members, the oxide film on the surface of the repaired part is measured in advance to adjust the work output based on the work output and the destruction data or the electrode polarity and the damage data to destroy and remove the film, and then the repair. A structural member characterized by performing repair welding with a welding work output obtained by referring to the work data so that the heat input to the repaired part during welding work will be below an allowable value based on the operating environment data of the part Repair method.
【請求項7】 前記運転環境データは、補修部の水質、
温度、中性子照射量、材質、ヘリウム含有量の少なくと
も1つを含むことを特徴とする請求項5または6記載の
構造部材補修方法。
7. The operating environment data is the water quality of the repair section,
7. The method for repairing a structural member according to claim 5, further comprising at least one of temperature, neutron irradiation dose, material quality, and helium content.
【請求項8】 前記施工データは、放電出力と入熱量の
閑係、放電出力と材質の関係を含む溶接条件と補修部性
状の関係を含むことを特徴とする請求項5または6記載
の構造部材補修方法。
8. The structure according to claim 5, wherein the construction data includes a relationship between a discharge output and a heat input amount, a welding condition including a relationship between the discharge output and a material, and a property of a repair portion. Material repair method.
【請求項9】 放電出力は、電圧、電流、放電パルス形
状、パルス周期、パルス幅および放電出力を変化させ得
る電極の大きさや電極と構造部材の間隔による幾何学的
な数値などの要素に基づいて設定することを特徴とする
請求項5または6記載の構造部材補修方法。
9. The discharge output is based on factors such as a voltage, a current, a discharge pulse shape, a pulse period, a pulse width, a size of an electrode capable of changing the discharge output, and a geometrical value depending on an interval between the electrode and a structural member. 7. The method for repairing a structural member according to claim 5, wherein the repair is performed by setting.
【請求項10】 補修対象の構造部材を溶接によって補
修する構造部材補修装置において、 電極と、施工出力調節部と、前記電極を補修部位に対向
させて移動走査する走査アームと、駆動機構と、補修部
の運転履歴データ、施工データ、皮膜破壊データを格納
する記憶部を備えたことを特徴とする構造部材補修装
置。
10. A structural member repairing device for repairing a structural member to be repaired by welding, comprising: an electrode, a construction output adjusting part, a scanning arm for moving and scanning the electrode so as to face the repaired part, and a driving mechanism. A structural member repair device comprising a storage unit for storing operation history data, construction data, and film destruction data of the repair unit.
JP2002002538A 2002-01-09 2002-01-09 Structural member repair method and structural member repair device Expired - Fee Related JP4184667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002002538A JP4184667B2 (en) 2002-01-09 2002-01-09 Structural member repair method and structural member repair device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002002538A JP4184667B2 (en) 2002-01-09 2002-01-09 Structural member repair method and structural member repair device

Publications (2)

Publication Number Publication Date
JP2003205385A true JP2003205385A (en) 2003-07-22
JP4184667B2 JP4184667B2 (en) 2008-11-19

Family

ID=27642368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002002538A Expired - Fee Related JP4184667B2 (en) 2002-01-09 2002-01-09 Structural member repair method and structural member repair device

Country Status (1)

Country Link
JP (1) JP4184667B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036682A (en) * 2006-08-08 2008-02-21 Toshiba Corp Method of repairing nuclear reactor structure
JP2014028373A (en) * 2012-07-31 2014-02-13 Toshiba Corp Shroud installation device and method
CN105321588A (en) * 2014-08-05 2016-02-10 北京广利核系统工程有限公司 Tuning method for verification criterion of periodic test of overtemperature and overpower circuit protection channel of nuclear power plant
US10926349B2 (en) 2017-06-09 2021-02-23 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11014185B2 (en) 2018-09-27 2021-05-25 Illinois Tool Works Inc. Systems, methods, and apparatus for control of wire preheating in welding-type systems
US11020813B2 (en) 2017-09-13 2021-06-01 Illinois Tool Works Inc. Systems, methods, and apparatus to reduce cast in a welding wire
US11040410B2 (en) 2013-02-05 2021-06-22 Illinois Tool Works Inc. Welding wire preheating systems and methods
US11247290B2 (en) 2017-06-09 2022-02-15 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11344964B2 (en) 2017-06-09 2022-05-31 Illinois Tool Works Inc. Systems, methods, and apparatus to control welding electrode preheating
US11524354B2 (en) 2017-06-09 2022-12-13 Illinois Tool Works Inc. Systems, methods, and apparatus to control weld current in a preheating system
US11590597B2 (en) 2017-06-09 2023-02-28 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11590598B2 (en) 2017-06-09 2023-02-28 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11654503B2 (en) 2018-08-31 2023-05-23 Illinois Tool Works Inc. Submerged arc welding systems and submerged arc welding torches to resistively preheat electrode wire
US11772182B2 (en) 2019-12-20 2023-10-03 Illinois Tool Works Inc. Systems and methods for gas control during welding wire pretreatments
US11897062B2 (en) 2018-12-19 2024-02-13 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036682A (en) * 2006-08-08 2008-02-21 Toshiba Corp Method of repairing nuclear reactor structure
JP2014028373A (en) * 2012-07-31 2014-02-13 Toshiba Corp Shroud installation device and method
US11040410B2 (en) 2013-02-05 2021-06-22 Illinois Tool Works Inc. Welding wire preheating systems and methods
US11878376B2 (en) 2013-02-05 2024-01-23 Illinois Tool Works Inc. Welding wire preheating systems and methods
CN105321588A (en) * 2014-08-05 2016-02-10 北京广利核系统工程有限公司 Tuning method for verification criterion of periodic test of overtemperature and overpower circuit protection channel of nuclear power plant
CN105321588B (en) * 2014-08-05 2017-09-01 北京广利核系统工程有限公司 The setting method of criterion is verified in a kind of nuclear power plant's overtemperature overpower loop protection passage routine test
US11247290B2 (en) 2017-06-09 2022-02-15 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11344964B2 (en) 2017-06-09 2022-05-31 Illinois Tool Works Inc. Systems, methods, and apparatus to control welding electrode preheating
US11524354B2 (en) 2017-06-09 2022-12-13 Illinois Tool Works Inc. Systems, methods, and apparatus to control weld current in a preheating system
US11590597B2 (en) 2017-06-09 2023-02-28 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11590598B2 (en) 2017-06-09 2023-02-28 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US10926349B2 (en) 2017-06-09 2021-02-23 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11020813B2 (en) 2017-09-13 2021-06-01 Illinois Tool Works Inc. Systems, methods, and apparatus to reduce cast in a welding wire
US11654503B2 (en) 2018-08-31 2023-05-23 Illinois Tool Works Inc. Submerged arc welding systems and submerged arc welding torches to resistively preheat electrode wire
US11014185B2 (en) 2018-09-27 2021-05-25 Illinois Tool Works Inc. Systems, methods, and apparatus for control of wire preheating in welding-type systems
US11897062B2 (en) 2018-12-19 2024-02-13 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
US11772182B2 (en) 2019-12-20 2023-10-03 Illinois Tool Works Inc. Systems and methods for gas control during welding wire pretreatments

Also Published As

Publication number Publication date
JP4184667B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP2003205385A (en) Method and device of repairing structural member
Blondeau Metallurgy and mechanics of welding: processes and industrial applications
Slobodyan High-energy surface processing of zirconium alloys for fuel claddings of water-cooled nuclear reactors
JP3079902B2 (en) Welding repair method for reactor internals
Yan et al. Effect of laser mode on microstructure and corrosion resistance of 316L stainless steel weld joint
JP2008055461A (en) Welding method for nuclear power generation plant structural material
Zhang et al. Temperature evolution, phase ratio and corrosion resistance of duplex stainless steels treated by laser surface heat treatment
Slobodyan et al. Effect of energy parameters of pulsed laser welding of Zr-1% Nb alloy on metal contamination with gases and properties of welds
JPH0775893A (en) Method for repairing structure and preventive maintenance method
Yang et al. Intragranular irradiation-assisted stress corrosion cracking (IASCC) of 316L stainless steel made by laser direct energy deposition additive manufacturing: Delta ferrite-dislocation channel interaction
Fabbro et al. Physics and applications of laser shock processing of materials
JP3428175B2 (en) Structure having surface treatment layer and method for forming surface treatment layer
Li et al. The effect of helium on welding irradiated materials
Meng et al. Relationship between corrosion resistance and microstructure characteristic of single-pass laser-arc hybrid welded stainless clad steel plate
JP2010138474A (en) Method for producing corrosion-resistant member
JP4304913B2 (en) How to repair cracked defects
Zhang et al. Novel hybrid laser forging and arc additive repairing process for improving component performances
Du et al. Laser micro-welding of stainless steel foil: Welding mode, microstructure and corrosion properties
John et al. Understanding the mechanism of stress corrosion cracking resistance in stainless steel welds subjected to laser shock peening without coating for nuclear canister applications
Xu et al. Effects of Laser Shock Peening (LSP) on the Microhardness, Residual Stress and Microstructure in the Weld Joint of a Stainless Steel Tube.
JP2002273586A (en) Laser beam welding method
JP4528936B2 (en) Method for preventing stress corrosion cracking of stainless steel surface using ultrashort pulse laser beam
Yadav et al. Studies on impact of welding parameters on angular distortion and mechanical properties of structural steel welded by SMAW
Gupta et al. Study on laser-assisted rejuvenation of inter-granular corrosion damaged type 304 stainless steel
Wan et al. Impact of yttrium ion implantation on corrosion behavior of laser beam welded zircaloy-4 in sulfuric acid solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees