JP2003205238A - Exhaust gas treatment catalyst and exhaust gas treatment method - Google Patents

Exhaust gas treatment catalyst and exhaust gas treatment method

Info

Publication number
JP2003205238A
JP2003205238A JP2002006712A JP2002006712A JP2003205238A JP 2003205238 A JP2003205238 A JP 2003205238A JP 2002006712 A JP2002006712 A JP 2002006712A JP 2002006712 A JP2002006712 A JP 2002006712A JP 2003205238 A JP2003205238 A JP 2003205238A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
catalyst component
gas treatment
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002006712A
Other languages
Japanese (ja)
Other versions
JP4362023B2 (en
Inventor
Atsushi Morita
敦 森田
Atsushi Okamura
淳志 岡村
Nobuyuki Masaki
信之 正木
Noboru Sugishima
昇 杉島
Motonobu Kobayashi
基伸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2002006712A priority Critical patent/JP4362023B2/en
Priority to US10/247,376 priority patent/US7150861B2/en
Priority to DE60219405T priority patent/DE60219405T2/en
Priority to KR1020020058136A priority patent/KR100587240B1/en
Priority to EP02021487A priority patent/EP1297886B1/en
Publication of JP2003205238A publication Critical patent/JP2003205238A/en
Application granted granted Critical
Publication of JP4362023B2 publication Critical patent/JP4362023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To improve the treating efficiency of a metal oxide catalyst as a catalyst component for a low concentration CO-containing gas and to achieve high treating efficiency without increasing an amount of the catalyst component and also to stably maintain the efficiency over a long period of time. <P>SOLUTION: In the catalyst for treating the low concentration CO-containing gas, titanium based oxide is used as a carrier and a catalyst component A consisting of at least one kind element selected among Pt, Pd, Rh, Ru, Ir and Au, and a catalyst component B consisting of at least one kind element included in group 1-3 in the periodic table are contained. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス処理触媒お
よび排ガス処理方法に関し、詳しくは、ボイラー、ガス
タービン、ディーゼルエンジン、ガスエンジン等の各種
燃焼装置から排出される燃焼排ガスに含まれる、100
ppm以下の低濃度CO、またあるいは、100ppm
以下の低濃度COおよび揮発性有機化合物を効率的に処
理する触媒と、このような触媒を利用した排ガス処理方
法とを対象にしている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas treatment catalyst and an exhaust gas treatment method, and more specifically, it is contained in combustion exhaust gas discharged from various combustion devices such as boilers, gas turbines, diesel engines, gas engines, etc.
Low concentration CO below ppm, or 100ppm
The target is a catalyst for efficiently treating low-concentration CO and volatile organic compounds, and an exhaust gas treatment method using such a catalyst.

【0002】[0002]

【従来の技術】ボイラー、ガスタービン、ディーゼルエ
ンジン、ガスエンジンなど各種燃焼装置から排出される
燃焼排ガス中には、燃焼装置、運転条件などによりそれ
ぞれ異なるが、一般的に未燃燃料由来の揮発性有機化合
物、COやNOX、SOXが有害成分として含有されてい
る。これら燃焼装置では、燃焼効率あるいは熱効率を高
めるために、また燃焼排ガス中の揮発性有機化合物、C
O、NOXを減じることを目的として、燃焼時における
供給空気量を、燃料ガスを完全燃焼させるに必要な理論
空気量より多くして燃焼をおこなうことが多い。このよ
うな燃焼状態の制御などにより燃焼排ガス中の揮発性有
機化合物、CO、NOXは減少されてきているが、それ
でもなお、揮発性有機化合物や微量のCOが残存してお
り、このためこれら有害成分を処理する必要があるが、
これら燃焼排ガス中には、余剰空気量に対応した多量の
酸素および燃焼の結果生成する水蒸気が含まれており、
このためその中の揮発性有機化合物や微量COを酸化し
て処理するには、これらが含まれていてもなお有効に適
用し得る処理触媒および処理方法の開発が必要となる。
2. Description of the Related Art In the combustion exhaust gas discharged from various combustion devices such as a boiler, a gas turbine, a diesel engine, and a gas engine, volatility derived from unburned fuel is generally generated, although it varies depending on the combustion device and operating conditions. organic compounds, CO and NO X, SO X is contained as harmful components. In these combustion devices, in order to improve the combustion efficiency or the thermal efficiency, the volatile organic compound, C
O, for the purpose of reducing the NO X, the supply air amount at the time of combustion, often causing combustion by more than the theoretical amount of air required to completely combust the fuel gas. Although the volatile organic compounds, CO, and NO x in the combustion exhaust gas have been reduced by such control of the combustion state, the volatile organic compounds and a trace amount of CO still remain. It is necessary to treat harmful ingredients,
These combustion exhaust gases contain a large amount of oxygen corresponding to the excess air and steam generated as a result of combustion,
Therefore, in order to oxidize and treat volatile organic compounds and trace amounts of CO therein, it is necessary to develop a treatment catalyst and a treatment method that can be effectively applied even if they are contained.

【0003】これまで、燃料に対して理論空気比に近い
条件で燃焼を行う燃焼装置から排出される燃焼排ガスの
浄化用としては、この排ガスには酸素はほとんど含まれ
ず、NOX、COおよび未燃の揮発性有機化合物が含ま
れているため、例えばPt,Rh/アルミナ触媒等の三
元触媒が用いられ、現に実用化されている。この使用形
態としては上記排ガスを約500〜700℃の条件下に
おいてPt,Rh/アルミナ触媒(ハニカム触媒)を通す
ことにより実施され、これにより排ガス中のNO X、C
Oおよび未燃の揮発性有機化合物を同時に除去するもの
である。しかし、この方法で対象とする被処理排ガス
は、その由来からして、その中に酸素がほとんど含まれ
ず、しかも処理温度として約500〜700℃の条件下
において実施することを前提とするため、このCO酸化
除去法は、多量の酸素および水蒸気が含まれ、また通常
300〜500℃程度で排出され、しかも低濃度のCO
を含有する排ガス中におけるCOの酸化処理方法として
は直ちに有効に適応することはできない。
Until now, it has been close to the theoretical air ratio for fuel.
Of the combustion exhaust gas emitted from the combustion device that burns under the specified conditions
For purification purposes, this exhaust gas contains almost no oxygen.
No, NOX, CO and unburned volatile organic compounds included
For example, Pt, Rh / alumina catalyst, etc.
The original catalyst is used and is currently in practical use. This usage
As a condition, the above exhaust gas is under the condition of about 500 to 700 ° C.
Pass Pt, Rh / alumina catalyst (honeycomb catalyst)
NO in the exhaust gas X, C
Simultaneous removal of O and unburned volatile organic compounds
Is. However, the target exhaust gas to be treated by this method
Because of its origin, it contains almost all oxygen.
And at a processing temperature of about 500-700 ° C
This CO oxidation is assumed to be carried out in
Removal methods involve large amounts of oxygen and water vapor and are usually
CO is emitted at a temperature of 300-500 ℃
As a method for oxidizing CO in exhaust gas containing carbon
Cannot be applied immediately and effectively.

【0004】一方、温度300〜500℃程度で排出さ
れ、酸素や水蒸気を多量に含有する排ガス中の低濃度C
Oを酸化して無害化する方法としては、例えば、特開平
7−241467、特開平7−241468号公報に希
薄燃焼ガスエンジン排ガス中の低濃度CO酸化除去方法
が記載されている。特開平7−241467号公報で
は、希薄燃焼ガスエンジン排ガス中の低濃度COを酸化
して無害化する触媒および方法に係るものであるが、こ
の触媒はハニカム担体に担持した白金/アルミナ触媒で
あって、かつ白金担持量を1.2〜2.5g/リットル
とすることを特徴とするというものである。他方、特開
平7−241468号公報は、希薄燃焼ガスエンジン排
ガス中の低濃度COを酸化して無害化する触媒および方
法に係るものであるが、触媒としてハニカム担体に担持
した白金-パラジウム/アルミナあるいは白金−ロジウ
ム/アルミナ触媒を使用することを特徴とするというも
のである。
On the other hand, low concentration C in exhaust gas discharged at a temperature of about 300 to 500 ° C. and containing a large amount of oxygen and water vapor.
As a method of oxidizing O to render it harmless, for example, JP-A-7-241467 and JP-A-7-241468 describe a method for removing low-concentration CO oxidation in lean exhaust gas engine exhaust gas. Japanese Unexamined Patent Publication No. 7-241467 relates to a catalyst and a method for detoxifying low concentration CO in lean exhaust gas engine exhaust gas by deoxidizing it, but this catalyst is a platinum / alumina catalyst supported on a honeycomb carrier. In addition, the amount of platinum supported is 1.2 to 2.5 g / liter. On the other hand, Japanese Patent Laid-Open No. 7-241468 relates to a catalyst and a method for detoxifying low-concentration CO in lean exhaust gas engine exhaust gas by deoxidizing it, but platinum-palladium / alumina supported on a honeycomb carrier as a catalyst. Alternatively, it is characterized by using a platinum-rhodium / alumina catalyst.

【0005】特開平7−241467号公報記載の技術
では、希薄燃焼ガスエンジンから排出される排ガス中の
低濃度COを長期にわたり安定して有効に酸化、除去す
るためにはハニカム担体にアルミナとともに担持される
白金の担持量を1.2〜2.5g/リットルの範囲とす
ることが必要であり、白金担持量を1g/リットル以下
へと低減させた場合、排ガス中の低濃度COを長期にわ
たり安定して有効に酸化、除去することができなかっ
た。また、特開平7−241468号公報記載の技術で
は、ハニカム担体に担持した白金/アルミナ触媒を白金
−パラジウム/アルミナあるいは白金-ロジウム/アル
ミナ触媒とすることで特開平7−241467号公報技
術にみられた問題点、すなわち、排ガス中の低濃度CO
を長期にわたり安定して有効に酸化、除去するために白
金担持量を増加させ、ある特定範囲としなければならな
いという制限を受けることなく白金担持量を選択できる
としている。しかし、そのためには白金と同類の高価な
貴金属であるパラジウムおよびロジウムを白金と同量程
度担持させる必要があった。
In the technique described in Japanese Patent Laid-Open No. 7-241467, in order to stably and effectively oxidize and remove low-concentration CO in exhaust gas discharged from a lean burn gas engine over a long period of time, it is supported on a honeycomb carrier together with alumina. It is necessary to set the supported amount of platinum to be in the range of 1.2 to 2.5 g / liter, and when the supported amount of platinum is reduced to 1 g / liter or less, low concentration CO in exhaust gas is kept for a long period of time. It could not be stably and effectively oxidized and removed. Further, in the technique described in JP-A-7-241468, the platinum / alumina catalyst supported on the honeycomb carrier is changed to platinum-palladium / alumina or platinum-rhodium / alumina catalyst, and the technique disclosed in JP-A-7-241467 is used. Problem, that is, low concentration CO in exhaust gas
It is stated that the platinum loading amount can be selected without being restricted by increasing the platinum loading amount in order to stably and effectively oxidize and remove it over a long period of time and to set it to a certain specific range. However, for that purpose, it was necessary to support palladium and rhodium, which are expensive precious metals similar to platinum, in the same amount as platinum.

【0006】貴金属を担持した低濃度CO除去触媒で
は、貴金属の担持量を増やせば、触媒機能が向上するこ
とが予想されるが、担持量を増やす分だけ貴金属の材料
コストが増大し、経済性の劣るものとなる。しかも、排
ガス中にSOXが含まれる場合には、SO2→SO3転化
率が高くなって、SO3による配管腐食などの問題が発
生する。また、排ガス中のSOXは触媒性能自体へ影響
を及ぼすことが考えられ、低濃度CO含有排ガスを処理
する触媒には排ガス中のSOXに対する耐性も有してい
る必要がある。しかし、特開平7−241467号公
報、特開平7−241468号公報では排ガス中の低濃
度COを酸化・無害化する際のSOXの影響に関しては
まったく触れられていない。
In the low concentration CO removal catalyst supporting a noble metal, it is expected that the catalytic function will be improved by increasing the supported amount of the noble metal, but the material cost of the noble metal is increased by the increased supported amount, resulting in economical efficiency. Will be inferior to. Moreover, in the case that contains the SO X in the exhaust gas, it becomes high SO 2 → SO 3 conversion rate, problems such as pipe corrosion by SO 3 is generated. Further, SO X in the exhaust gas may affect the catalyst performance itself, and the catalyst for treating the exhaust gas containing low concentration of CO needs to have resistance to SO X in the exhaust gas. However, in JP-A-7-241467 and JP-A-7-241468, there is no mention of the effect of SO X when oxidizing and detoxifying low-concentration CO in exhaust gas.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、前記
した触媒成分担持金属酸化物触媒の低濃度CO含有排ガ
スに対する処理効率を一層向上させることである。特
に、触媒成分の担持量を増やすことなく、高い処理効率
を達成し、かつ、長期にわたり安定して高い処理効率を
維持することができるようにすることである。
An object of the present invention is to further improve the treatment efficiency of the above-mentioned catalyst component-supporting metal oxide catalyst for exhaust gas containing low concentration CO. In particular, it is possible to achieve high treatment efficiency and to stably maintain high treatment efficiency for a long period of time without increasing the supported amount of the catalyst component.

【0008】[0008]

【課題を解決するための手段】本発明者らの研究によれ
ば、排ガス中に含まれている低濃度COを処理するに際
し、Ti系酸化物を担体とし、Pt、Pd、Rh、R
u、IrおよびAuからなる群から選ばれる少なくとも
1種の元素からなる触媒成分Aと、周期律表第I〜III
族に含まれる少なくとも1種の元素からなる触媒成分B
とを含有する触媒を用いれば、触媒成分Aのみを担持し
た場合よりも処理性能が向上し、触媒成分Aの使用量を
低減できることを見出した。また同時に触媒成分Bが触
媒に共存することによってSO2酸化が抑制され、SOx
に対する耐性および耐熱性が向上して触媒成分A担持量
が少ない場合であっても長期間にわたり安定した処理効
率を維持することが可能となることがわかった。
According to the research conducted by the present inventors, when treating low-concentration CO contained in exhaust gas, Pt, Pd, Rh, R using Ti-based oxide as a carrier.
a catalyst component A consisting of at least one element selected from the group consisting of u, Ir and Au, and I to III of the periodic table
Catalyst component B consisting of at least one element contained in the group
It has been found that the use of the catalyst containing and improves the treatment performance as compared with the case where only the catalyst component A is supported, and the amount of the catalyst component A used can be reduced. At the same time, the presence of the catalyst component B in the catalyst suppresses SO 2 oxidation, resulting in SO x
It has been found that resistance to heat resistance and heat resistance are improved, and stable treatment efficiency can be maintained for a long period of time even when the amount of catalyst component A supported is small.

【0009】すなわち、本発明にかかる排ガス処理触媒
は、低濃度CO含有排ガスを処理する触媒であって、T
i系酸化物を担体とし、Pt、Pd、Rh、Ru、Ir
およびAuからなる群から選ばれる少なくとも1種の元
素からなる触媒成分Aと、周期律表第I〜III族に含ま
れる少なくとも1種の元素からなる触媒成分Bとを含有
する。本発明にかかる排ガス処理方法は、CO濃度10
0ppm以下の排ガスを、請求項1〜4の何れかに記載
の排ガス処理触媒に接触させる工程(a)を含む。 〔低濃度CO含有排ガス〕通常の各種産業装置や設備か
ら排出される低濃度CO含有排ガスに適用できる。具体
的には、ボイラー、ガスタービン、ディーゼルエンジ
ン、ガスエンジン、加熱炉、その他各種工業プロセスの
燃焼排ガスが挙げられる。
That is, the exhaust gas treatment catalyst according to the present invention is a catalyst for treating exhaust gas containing low concentration CO,
Using an i-based oxide as a carrier, Pt, Pd, Rh, Ru, Ir
And a catalyst component A composed of at least one element selected from the group consisting of Au and Au, and a catalyst component B composed of at least one element contained in Groups I to III of the periodic table. The exhaust gas treatment method according to the present invention has a CO concentration of 10
A step (a) of contacting exhaust gas of 0 ppm or less with the exhaust gas treatment catalyst according to any one of claims 1 to 4 is included. [Low Concentration CO-Containing Exhaust Gas] It can be applied to low-concentration CO-containing exhaust gas discharged from various ordinary industrial equipment and facilities. Specific examples include combustion exhaust gas from boilers, gas turbines, diesel engines, gas engines, heating furnaces, and various other industrial processes.

【0010】燃焼排ガスの場合には、燃料由来の成分で
あるが燃焼されなかった未燃の揮発性化合物が含まれ、
環境への悪影響が問題とされている。本発明の排ガス処
理触媒は、低濃度COに加え揮発性化合物を含む排ガス
の処理にも有効である。排ガスは、本発明の排ガス処理
触媒による処理工程を行なう前に、各種の排ガス処理が
施されている場合がある。したがって、前記供給源から
排出された段階の排ガスと、本発明の排ガス処理触媒で
排ガス処理する段階の排ガスとは、その成分が異なって
いる場合がある。本発明は、従来の排ガス処理触媒では
効率的な処理が行ない難い低濃度CO含有排ガスに有効
である。具体的にはCO濃度が100ppm以下の排ガ
スに適している。
In the case of combustion exhaust gas, unburned volatile compounds which are components derived from fuel but which have not been burned are contained,
The negative impact on the environment is a problem. The exhaust gas treatment catalyst of the present invention is also effective for treating exhaust gas containing a volatile compound in addition to low-concentration CO. Exhaust gas may be subjected to various kinds of exhaust gas treatment before being subjected to the treatment process by the catalyst for treating exhaust gas of the present invention. Therefore, the exhaust gas discharged from the supply source and the exhaust gas processed at the exhaust gas treatment catalyst of the present invention may have different components. INDUSTRIAL APPLICABILITY The present invention is effective for low-concentration CO-containing exhaust gas that is difficult to be efficiently treated by the conventional exhaust gas treatment catalyst. Specifically, it is suitable for exhaust gas having a CO concentration of 100 ppm or less.

【0011】排ガスは、供給源からの排出条件や排ガス
処理を行うまでの履歴によって、温度条件や速度が変わ
る。 〔触媒材料〕触媒材料としては、基本的には、通常の排
ガス処理触媒と共通する材料の中から選択して使用する
ことができる。 <担体>担体としては、Ti系酸化物を使用する。Ti
のみからなる酸化物であってもよいし、Tiを主体にし
て、Si、Zr、Alなどの他の元素成分を組み合わせ
たものも使用できる。Tiと他の成分を組み合わせる場
合、Tiの含有量は、担体全体の5〜95モル%である
ことが好ましい。さらに好ましくは、20〜95モル%
である。
The temperature conditions and speed of the exhaust gas change depending on the discharge conditions from the supply source and the history of exhaust gas treatment. [Catalyst Material] As the catalyst material, basically, a material common to the ordinary exhaust gas treatment catalysts can be selected and used. <Carrier> A Ti-based oxide is used as a carrier. Ti
It may be an oxide made of only Ti, or a mixture containing Ti as a main component and other elemental components such as Si, Zr, and Al may be used. When Ti and other components are combined, the Ti content is preferably 5 to 95 mol% of the entire carrier. More preferably, 20 to 95 mol%
Is.

【0012】Ti−Si複合酸化物は、SO2酸化率が
低く、固体酸性が強く、貴金属からなる触媒成分Aを化
学吸着によって担持させるのに有利である。担体の製造
は、通常の触媒材料となる金属酸化物からなる担体の製
造技術が適用される。Ti−Si複合酸化物の調製も、
通常のTi−Si複合酸化物と同様の手段が採用でき、
前記した特開昭53−146991号公報などに開示さ
れた技術が挙げられる。特に、本願特許出願人が先に特
許出願している特願2000−99593号に開示され
た技術が、好ましい技術として挙げられる。担体となる
金属酸化物を供給する原料として、予め用意された金属
酸化物をそのまま使用するほかに、焼成によって酸化物
を生成する材料が使用できる。具体的には、無機および
有機のいずれの化合物でもよく、例えば、所定の金属を
含む水酸化物、アンモニウム塩、アンミン錯体、シュウ
酸塩、ハロゲン化物、硫酸塩、硝酸塩、炭酸塩などを用
いることができる。
The Ti-Si composite oxide has a low SO 2 oxidation rate and a strong solid acidity, and is advantageous for supporting the catalyst component A composed of a noble metal by chemisorption. For the production of the carrier, a usual technique for producing a carrier composed of a metal oxide serving as a catalyst material is applied. Preparation of Ti-Si composite oxide
The same means as for ordinary Ti-Si composite oxide can be adopted,
The techniques disclosed in the above-mentioned JP-A-53-146991 are mentioned. In particular, the technique disclosed in Japanese Patent Application No. 2000-99593, which the applicant of the present application has previously filed, is mentioned as a preferable technique. As a raw material for supplying the metal oxide as the carrier, a metal oxide prepared in advance can be used as it is, or a material that produces an oxide by firing can be used. Specifically, it may be either an inorganic compound or an organic compound, and for example, a hydroxide containing a predetermined metal, an ammonium salt, an ammine complex, an oxalate salt, a halide, a sulfate salt, a nitrate salt, a carbonate salt or the like is used. You can

【0013】<触媒成分A>触媒成分Aとして、Pt、
Pd、Rh、Ru、Ir、Auが使用できる。これらの
元素を複数組み合わせることもできる。これらの元素を
使用することで、排ガスに含まれる低濃度COと同時に
未燃の揮発性有機化合物を効率的に処理することができ
る。 <触媒成分B>触媒成分Bとして、周期律表第I〜III
族に含まれる少なくとも1種の元素が使用できる。具体
的には、Na、Li、Mg、Ca、Y、Laなどが挙げ
られる。
<Catalyst component A> As the catalyst component A, Pt,
Pd, Rh, Ru, Ir, Au can be used. It is also possible to combine a plurality of these elements. By using these elements, unburned volatile organic compounds can be efficiently treated at the same time as low-concentration CO contained in exhaust gas. <Catalyst component B> As catalyst component B, I
At least one element from the group can be used. Specifically, Na, Li, Mg, Ca, Y, La and the like can be mentioned.

【0014】前記触媒成分Aに触媒成分Bが加わること
で、低濃度CO含有排ガスに対する処理効率が格段に向
上し、かつ、SO2酸化の抑制、耐SOx性および耐熱性
が向上して、長期にわたり安定して高い処理効率を維持
することが可能となる。 <触媒成分C>触媒成分A、Bに加え、触媒成分Cとし
て、V、W、Mo、Cu、Mn、Ni、CO、Crおよ
びFeからなる群から選ばれる少なくとも1種の元素
を、さらに含有させることができる。触媒成分Cが加わ
ることで、低濃度CO含有排ガスに対する処理効率がさ
らに向上したり、脱硝機能を付与させることができる。
By adding the catalyst component B to the catalyst component A, the treatment efficiency for low concentration CO-containing exhaust gas is remarkably improved, and SO 2 oxidation suppression, SO x resistance and heat resistance are improved, It is possible to stably maintain high processing efficiency for a long period of time. <Catalyst component C> In addition to the catalyst components A and B, the catalyst component C further contains at least one element selected from the group consisting of V, W, Mo, Cu, Mn, Ni, CO, Cr and Fe. Can be made. By adding the catalyst component C, it is possible to further improve the treatment efficiency for the exhaust gas containing low-concentration CO and to add the denitration function.

【0015】〔触媒成分の担持〕触媒成分のうち、触媒
成分Aは、通常、粒子の形態で担体に担持される。粒子
の形状は、球形その他の形状が採用できる。粒径とし
て、平均粒子径30nm以下のものが好ましい。さらに
好ましくは、平均粒径20nm以下である。触媒成分A
の粒子径が小さく、高分散化された状態であるほど、活
性が高くなる。担体に触媒成分Aを担持させる手段とし
ては、基本的には通常の貴金属担持金属酸化物触媒と共
通する手段が採用できる。担体に触媒成分Aの粒子を担
持させる処理工程では、触媒成分粒子を触媒の表面に出
来るだけ偏在させることができるように、担持手段およ
び担持条件を選択する。
[Support of Catalyst Component] Of the catalyst components, the catalyst component A is usually supported on the carrier in the form of particles. The shape of the particles may be spherical or any other shape. The average particle size is preferably 30 nm or less. More preferably, the average particle size is 20 nm or less. Catalyst component A
The smaller the particle size and the higher the dispersion state, the higher the activity. As a means for supporting the catalyst component A on the carrier, basically, a means common to the usual noble metal-supported metal oxide catalyst can be adopted. In the treatment step of supporting the particles of the catalyst component A on the carrier, the supporting means and the supporting conditions are selected so that the catalyst component particles can be unevenly distributed on the surface of the catalyst as much as possible.

【0016】具体的には、予め用意された担体の成形体
に、触媒成分Aを化学吸着によって担持させる技術が好
ましく適用できる。化学吸着によれば、物理吸着などの
他の担持技術に比べて、担体の表層に集中的かつ強固に
触媒成分粒子を担持させることができる。触媒成分Aを
微粒子状で高分散化状態にして、触媒表面に偏在させ得
る。物理吸着の場合、少しのエネルギー(加熱等)が加
わるだけで、担体上での触媒成分粒子の移動や、それに
伴なう触媒成分粒子の凝集や分散性の悪化などが起こり
易くなり、排ガスの処理が十分に行なえなくなる場合が
ある。
[0016] Specifically, the technique of supporting the catalyst component A by chemisorption on a prepared support molded body can be preferably applied. According to the chemical adsorption, the catalyst component particles can be more intensively and firmly supported on the surface layer of the carrier, as compared with other supporting techniques such as physical adsorption. The catalyst component A may be in the form of fine particles in a highly dispersed state and may be unevenly distributed on the catalyst surface. In the case of physical adsorption, even if a small amount of energy (heating etc.) is applied, the movement of the catalyst component particles on the carrier, the accompanying aggregation of the catalyst component particles and the deterioration of the dispersibility are likely to occur. In some cases, processing cannot be performed sufficiently.

【0017】化学吸着の場合には、担体の表面に化学結
合で触媒成分粒子が担持されることになるので、物理吸
着に比べて格段に、担体からの触媒成分粒子の移動が起
こり難くなる。その結果、触媒表面での排ガス処理能が
安定し、かつ、処理効率が向上するので、本発明におい
て好ましい触媒成分Aの担持手段となる。化学吸着の具
体的手段として、触媒成分Aを含む溶液を加熱した状態
で担体に含浸させると、化学吸着が効率的に行なわれ、
担体の表層に触媒成分粒子を偏在させて担持させ易い。
具体的には、触媒成分Aを含む溶液の温度を、40℃以
上に加熱しておくことが好ましく、50℃以上、60℃
以上、70℃以上、80℃以上あるいは90℃以上がよ
り好ましい。溶液の温度が低すぎると、化学吸着が起こ
り難く、本発明の目的が達成できない。
In the case of chemical adsorption, the catalyst component particles are supported on the surface of the carrier by a chemical bond, so that the movement of the catalyst component particles from the carrier is much less likely to occur than in physical adsorption. As a result, the exhaust gas treating ability on the surface of the catalyst becomes stable and the treating efficiency is improved, which is a preferable means for supporting the catalyst component A in the present invention. As a specific means of chemisorption, when a solution containing the catalyst component A is impregnated into a support in a heated state, chemisorption is efficiently performed,
It is easy to unevenly distribute the catalyst component particles on the surface layer of the carrier.
Specifically, the temperature of the solution containing the catalyst component A is preferably heated to 40 ° C. or higher, and 50 ° C. or higher, 60 ° C.
As described above, 70 ° C or higher, 80 ° C or higher, or 90 ° C or higher is more preferable. If the temperature of the solution is too low, chemisorption does not occur easily and the object of the present invention cannot be achieved.

【0018】触媒成分Aの供給源としては、通常の触媒
などに利用されている材料が使用できる。具体的には、
硝酸塩、ハロゲン化物、アンモニウム塩、アンミン錯
体、水酸化物などが挙げられる。アンミン錯体、水酸化
物などの塩基性錯体を用いると、効率良く化学吸着させ
ることができる。触媒成分Aの粒子は、担体に対する全
担持量のうち70質量%以上を、触媒の表面から深さ1
00μmまでの領域に偏在させておくことが好ましい。
好ましくは、全担持量の80質量%以上を触媒の表面か
ら深さ100μmまでの領域に偏在させておく。より好
ましくは、全担持量の90質量%以上を触媒の表面から
深さ100μmまでの領域に偏在させておく。さらに好
ましくは、全担持量の95質量%以上を触媒の表面から
深さ100μmまでの領域に偏在させておく。
As the supply source of the catalyst component A, the materials used for ordinary catalysts can be used. In particular,
Examples thereof include nitrates, halides, ammonium salts, ammine complexes, hydroxides and the like. If a basic complex such as an ammine complex or a hydroxide is used, chemisorption can be efficiently performed. The particles of the catalyst component A account for 70% by mass or more of the total amount supported on the carrier at a depth of 1 from the surface of the catalyst.
It is preferable to make it unevenly distributed in the region of up to 00 μm.
Preferably, 80% by mass or more of the total supported amount is unevenly distributed in the region from the surface of the catalyst to a depth of 100 μm. More preferably, 90% by mass or more of the total supported amount is unevenly distributed in the region from the surface of the catalyst to a depth of 100 μm. More preferably, 95% by mass or more of the total supported amount is unevenly distributed in the region from the surface of the catalyst to a depth of 100 μm.

【0019】触媒反応は、触媒の表層部分で起こってい
ると考えられる。触媒成分の担持量が同じであっても、
表層部分の触媒成分濃度を高めることで、触媒による排
ガスの処理効率が高まる。触媒成分を表層部分に偏在さ
せて担持させることができれば、高効率を維持したまま
触媒成分の担持量が低減できる。コストが低減でき、S
2酸化率も低くなる。担体に対する触媒成分粒子の担
持量は、材料の組み合わせや担持処理の処理条件などに
よっても異なるが、通常は、触媒の全体量に対して触媒
成分Aを0.005〜2.0質量%の範囲、好ましくは
0.01〜1質量%の範囲で用いる。触媒成分Aの担持
量が少な過ぎると触媒活性が低くなる。触媒成分Aの担
持量が多過ぎても、触媒活性の向上はそれほど望めず材
料コストが高くつく。触媒成分Aの担持量が多過ぎる
と、SO2酸化率が高くなり過ぎたり、触媒成分粒子の
分散性が悪くなって触媒活性が却って低下したりするこ
ともある。
The catalytic reaction is considered to occur in the surface layer portion of the catalyst. Even if the supported amount of the catalyst component is the same,
By increasing the concentration of the catalyst component in the surface layer, the efficiency of exhaust gas treatment by the catalyst is increased. If the catalyst component can be unevenly distributed and carried on the surface layer portion, the carried amount of the catalyst component can be reduced while maintaining high efficiency. Cost can be reduced and S
The O 2 oxidation rate is also low. The amount of the catalyst component particles supported on the carrier varies depending on the combination of materials and the treatment conditions of the supporting treatment, but is usually in the range of 0.005 to 2.0 mass% of the catalyst component A relative to the total amount of the catalyst. , Preferably 0.01 to 1% by mass. If the supported amount of the catalyst component A is too small, the catalytic activity will be low. Even if the amount of the catalyst component A carried is too large, the catalytic activity cannot be improved so much and the material cost becomes high. If the supported amount of the catalyst component A is too large, the SO 2 oxidation rate may become too high, or the dispersibility of the catalyst component particles may deteriorate and the catalyst activity may rather decrease.

【0020】触媒成分Aの粒子を担持させた担体からな
る触媒は、微細な細孔を有する多孔質構造である。細孔
の量によって、排ガスの流通や触媒成分粒子の担持に影
響を与える。通常は、全細孔容積が0.2〜0.8cm
3/g(水銀圧入法)の範囲が適切である。細孔容積が
少な過ぎると、触媒活性が低くなる。細孔容積が多過ぎ
ると、触媒の機械的強度が低くなる。触媒の比表面積
も、性能に影響を与える。通常、比表面積30〜250
2/g(BET法)の範囲が採用され、40〜200
2/gが好ましい。比表面積が小さ過ぎると、触媒活
性が十分でなくなる。比表面積が大き過ぎると、触媒活
性はそれほど向上しないのに、触媒被毒成分の蓄積が増
加したり触媒寿命が低下したりするなどの弊害が生じ
る。
The catalyst comprising a carrier carrying particles of the catalyst component A has a porous structure having fine pores. The amount of pores affects the flow of exhaust gas and the loading of catalyst component particles. Usually the total pore volume is 0.2-0.8 cm
A range of 3 / g (mercury porosimetry) is appropriate. If the pore volume is too small, the catalytic activity will be low. If the pore volume is too large, the mechanical strength of the catalyst will be low. The specific surface area of the catalyst also affects performance. Usually a specific surface area of 30 to 250
The range of m 2 / g (BET method) is adopted, and it is 40 to 200.
m 2 / g is preferred. If the specific surface area is too small, the catalytic activity becomes insufficient. If the specific surface area is too large, the catalyst activity is not improved so much, but the harmful effects such as an increase in the accumulation of catalyst poisoning components and a decrease in the catalyst life occur.

【0021】触媒成分Bの供給原料としては特に限定さ
れず、通常の触媒製造に利用されている材料を使用する
ことができるが、好ましくは有機酸塩、アルコキシド、
有機金属錯体など分子中に有機酸などの有機成分を含ん
でいるものを例示することができる。触媒成分Bの触媒
への担持方法も特に限定されず、通常の触媒製造に利用
されている方法にて触媒へ担持させることができる。担
持順序に関しても特に限定されないが、触媒成分Aと触
媒成分Bを同時に担持するのが好ましい。触媒成分Cの
供給原料としては特に限定されず、通常の触媒製造に利
用されている材料を使用することができる。担持方法に
関しても特に限定されず、通常の触媒製造に利用されて
いる方法にて触媒へ担持させることができる。触媒成分
Aと触媒成分Bとの担持順序に関しても特に限定されな
いが、触媒成分A、触媒成分Bおよび触媒成分Cを同時
に担持する、または、触媒成分Aと触媒成分Bとを担持
した後に触媒成分Cを担持することが好ましい。なお、
触媒成分B、Cは触媒成分Aと同様に触媒の表面に偏在
させてもよいし、偏在させなくてもよい。
There are no particular restrictions on the feedstock for the catalyst component B, and any of the materials commonly used in the production of catalysts can be used, but organic acid salts, alkoxides,
Examples thereof include those containing an organic component such as an organic acid in the molecule such as an organometallic complex. The method for supporting the catalyst component B on the catalyst is not particularly limited, and the catalyst component B can be supported on the catalyst by a method generally used for catalyst production. The order of loading is not particularly limited, but it is preferable to load the catalyst component A and the catalyst component B at the same time. The feedstock for the catalyst component C is not particularly limited, and materials used in ordinary catalyst production can be used. The method for supporting the catalyst is not particularly limited, and it can be supported on the catalyst by a method used in ordinary catalyst production. The order of loading the catalyst component A and the catalyst component B is not particularly limited, either, but the catalyst component A, the catalyst component B and the catalyst component C are loaded at the same time, or the catalyst component A and the catalyst component B are loaded and then the catalyst component is loaded. It is preferable to carry C. In addition,
Like the catalyst component A, the catalyst components B and C may be unevenly distributed on the surface of the catalyst, or may not be unevenly distributed.

【0022】触媒成分Bの担持量は、触媒の全体量に対
して0.01〜20質量%の範囲、好ましくは0.1〜
10質量%の範囲である。触媒成分Cの担持量は、触媒
の全体量に対して0.01〜20質量%の範囲、好まし
くは0.1〜10質量%の範囲である。 〔触媒の使用形態〕触媒形状については特に制限はな
く、板状、波板状、網状、ハニカム状、円柱状、円筒状
などのうちから選んだ所望の形状が採用できる。粒状や
棒状、球状、リング状、円柱状などをなす微小な触媒
を、容器に充填したり堆積させたりした状態で使用する
こともできる。
The supported amount of the catalyst component B is in the range of 0.01 to 20% by weight, preferably 0.1 to 20% by weight based on the total amount of the catalyst.
It is in the range of 10% by mass. The supported amount of the catalyst component C is in the range of 0.01 to 20% by mass, preferably 0.1 to 10% by mass, based on the total amount of the catalyst. [Catalyst Usage Mode] The catalyst shape is not particularly limited, and a desired shape selected from a plate shape, a corrugated plate shape, a net shape, a honeycomb shape, a columnar shape, a cylindrical shape, and the like can be adopted. It is also possible to use a minute catalyst having a granular shape, a rod shape, a spherical shape, a ring shape, a columnar shape, or the like, which is filled in a container or deposited.

【0023】触媒は、通常、金属などで構成された容器
状の触媒反応器に収容して使用される。触媒反応器に
は、排ガスの導入口と排出口が設けられ、内部に収容さ
れた触媒に排ガスが効率的に接触できるような構造を備
えておく。 〔排ガス処理方法〕基本的には、通常の貴金属担持金属
酸化物触媒を用いた排ガス処理技術が適用される。通常
は、触媒が収容された触媒反応器を、排ガスなどの排出
経路の途中に設置しておく。排ガスが触媒反応器を通過
する際に、触媒の表面と接触することで、所定の触媒作
用を受ける。
The catalyst is usually used by being housed in a container-shaped catalytic reactor made of metal or the like. The catalytic reactor is provided with an exhaust gas inlet and an exhaust port, and is provided with a structure that allows the exhaust gas to efficiently contact the catalyst housed inside. [Exhaust gas treatment method] Basically, an exhaust gas treatment technique using a normal noble metal-supported metal oxide catalyst is applied. Usually, a catalytic reactor in which a catalyst is stored is installed in the middle of an exhaust path for exhaust gas and the like. When the exhaust gas passes through the catalytic reactor, it comes into contact with the surface of the catalyst to undergo a predetermined catalytic action.

【0024】本発明の触媒は、排ガスに含まれる低濃度
COと未燃の揮発性有機化合物とを同時に処理すること
ができる。燃焼排ガスの温度や空間速度などの条件を適
切に設定することで、触媒による排ガス処理の効率が向
上する。例えば、ガス温度250℃〜500℃、空間速
度30,000H-1〜1,000,000H-1の燃焼排
ガスを処理することが好ましい。より好ましくは、ガス
温度300℃〜450℃が採用でき、空間速度50,0
00H-1〜500,000H-1が採用できる。さらに、
LV=0.1m/s(Normal)以上、あるいは、
ダスト10mg/m3(Normal)以下の処理条件
が好ましい。
The catalyst of the present invention can simultaneously treat low concentration CO contained in exhaust gas and unburned volatile organic compounds. By appropriately setting the conditions such as the temperature and space velocity of the combustion exhaust gas, the efficiency of exhaust gas treatment by the catalyst is improved. For example, it is preferable to treat a combustion exhaust gas having a gas temperature of 250 ° C. to 500 ° C. and a space velocity of 30,000 H −1 to 1,000,000 H −1 . More preferably, a gas temperature of 300 ° C to 450 ° C can be adopted, and the space velocity is 50,0.
00H -1 to 500,000H -1 can be adopted. further,
LV = 0.1 m / s (Normal) or more, or
A processing condition of less than 10 mg / m 3 (Normal) of dust is preferable.

【0025】本発明の触媒による排ガス処理工程の、前
や後に、別の排ガス処理工程を組み合わせることもでき
る。別の排ガス処理工程としては、本発明の触媒では処
理し難い成分を効率的に処理できる工程が好ましい。例
えば、脱硝触媒による排ガス処理工程を、本発明の触媒
による排ガス処理工程と組み合わせれば、脱硝触媒で窒
素酸化物を効率的に処理することができる。一方、本発
明の触媒による排ガス処理工程で、さらに低濃度COお
よび未燃の揮発性有機化合物をも効率的に処理すること
が可能になる。上記の脱硝触媒による排ガス処理技術と
して、本件特許出願人が先に特許出願している特開平1
0−235206号公報に開示された技術が適用でき
る。この技術で使用する脱硝触媒は、触媒成分a(チタ
ン酸化物)と、触媒成分b(バナジウムまたはタングス
テンからなる金属の酸化物)とを組み合わせ、触媒成分
aに触媒成分bを担持させた構造を有する。
Another exhaust gas treatment step may be combined before or after the exhaust gas treatment step using the catalyst of the present invention. As another exhaust gas treatment step, a step capable of efficiently treating components that are difficult to treat with the catalyst of the present invention is preferable. For example, if the exhaust gas treatment step with a denitration catalyst is combined with the exhaust gas treatment step with a catalyst of the present invention, nitrogen oxides can be efficiently treated with the denitration catalyst. On the other hand, in the exhaust gas treatment step using the catalyst of the present invention, it becomes possible to efficiently treat even low concentration CO and unburned volatile organic compounds. As the exhaust gas treatment technology using the above-mentioned denitration catalyst, the applicant of the present patent has previously filed a patent application.
The technology disclosed in Japanese Unexamined Patent Publication No. 0-235206 can be applied. The denitration catalyst used in this technique has a structure in which a catalyst component a (titanium oxide) and a catalyst component b (an oxide of a metal composed of vanadium or tungsten) are combined to support the catalyst component b on the catalyst component a. Have.

【0026】特公昭63−146991号公報、特開昭
62−65721号公報、特公平6−4126号公報な
どに記載された公知の排ガス処理方法を、本発明の排ガ
ス処理方法と組み合わせることもできる。本発明では、
排ガス中に含まれる低濃度COを処理する触媒として、
Ti系酸化物からなる担体に、Pt、Pd、Rh、R
u、IrおよびAuからなる群より選ばれる少なくとも
1種の元素からなる触媒成分Aと、周期律表第I〜III
族に含まれる少なくとも1種の元素からなる触媒成分B
とを含有し、必要に応じてさらにV、W、Mo、Cu、
Mn、Ni、CO、CrおよびFeからなる群より選ば
れる少なくとも1種の元素からなる触媒成分Cを含有し
てなる触媒を用いているので、非常に高い触媒活性が得
られ、かつSO2酸化の抑制、耐SOx性および耐熱性の
向上が図られ長期間にわたり安定した処理効率を維持で
きる。その結果、ガスタービンなどから排出される大風
量の低濃度CO含有排ガスを処理する方法として、非常
に有効な方法となる。
The known exhaust gas treatment methods described in JP-B-63-146991, JP-A-62-65721, JP-B-6-4126 and the like can be combined with the exhaust gas treatment method of the present invention. . In the present invention,
As a catalyst for treating low concentration CO contained in exhaust gas,
Pt, Pd, Rh, R
a catalyst component A composed of at least one element selected from the group consisting of u, Ir and Au, and I to III of the periodic table.
Catalyst component B consisting of at least one element contained in the group
And V, W, Mo, Cu, and
Since a catalyst containing a catalyst component C composed of at least one element selected from the group consisting of Mn, Ni, CO, Cr and Fe is used, a very high catalytic activity is obtained and SO 2 oxidation is performed. Is suppressed, and SO x resistance and heat resistance are improved, and stable treatment efficiency can be maintained for a long period of time. As a result, it is a very effective method for treating a large amount of low-concentration CO-containing exhaust gas discharged from a gas turbine or the like.

【0027】[0027]

【発明の実施の形態】図1(a)に示す排ガス処理触媒
10は、断面が格子状をなすハニカム構造をなしてい
る。触媒10は、Ti−Si複合酸化物などで構成され
た担体11に、Ptなどの貴金属粒子からなる触媒成分
Aと、Na、Caなどからなる触媒成分Bと、V、Wな
どからなる触媒成分Cとを担持させてなる。格子状をな
す担体11に設けられた多数の貫通する矩形状通路13
に、処理対象となる排ガスを流通させて排ガス処理を行
う。
BEST MODE FOR CARRYING OUT THE INVENTION The exhaust gas treatment catalyst 10 shown in FIG. 1 (a) has a honeycomb structure having a lattice-shaped cross section. The catalyst 10 includes a carrier 11 composed of a Ti—Si composite oxide or the like, a catalyst component A made of noble metal particles such as Pt, a catalyst component B made of Na or Ca, and a catalyst component made of V or W. C and C are carried. A large number of penetrating rectangular passages 13 provided in a lattice-shaped carrier 11.
Then, the exhaust gas to be treated is circulated to perform the exhaust gas treatment.

【0028】図1(b)に示すように、触媒10のう
ち、触媒成分Aの担持領域12は、排ガス通路13に面
する表面から担体11内部の一定距離の深さ部分に偏在
している。触媒成分B、Cは、前記触媒成分Aの担持領
域12よりも中央側にも存在している。図1(c)に示
すグラフは、図1(b)の横断方向で担体11に担持さ
れた触媒成分Aの各位置における濃度の分布を模式的に
示している。触媒成分Aの濃度は、担体11の壁体にお
いて、両側の表面位置から内部へ向かって急激に増加
し、担持領域12の途中で最高濃度に達したあと急激に
減少し、担持領域12の内縁位置では、ほとんどゼロに
近い極めて低い濃度まで下がる。担持領域12よりも内
側になる担体11の中央領域は、ごく少量の触媒成分A
が含まれるだけで、実質的に触媒成分Aは存在しない状
態である。担持領域12の内縁位置は、担体11の表面
から深さ100μmの位置よりも表面側に配置される。
濃度グラフの下側の面積が、触媒成分Aの担持量を表
す。したがって、濃度グラフ全体の下側面積に対する、
両側表面から内側100μmの位置までの範囲における
濃度グラフの下側面積の割合を算出すれば、表面から1
00μmの位置までの間に存在する触媒成分Aの割合が
求められる。
As shown in FIG. 1 (b), in the catalyst 10, the support region 12 for the catalyst component A is unevenly distributed at a certain depth within the carrier 11 from the surface facing the exhaust gas passage 13. . The catalyst components B and C are also present on the center side of the carrying region 12 of the catalyst component A. The graph shown in FIG. 1 (c) schematically shows the distribution of the concentration of the catalyst component A carried on the carrier 11 at each position in the transverse direction of FIG. 1 (b). In the wall of the carrier 11, the concentration of the catalyst component A sharply increases from the surface positions on both sides toward the inside, reaches the maximum concentration in the middle of the carrying region 12, and then sharply decreases to the inner edge of the carrying region 12. At the position, it drops to a very low concentration near zero. The central area of the carrier 11 which is inside the supporting area 12 has a very small amount of the catalyst component A.
Is contained, but the catalyst component A is substantially absent. The inner edge position of the carrying region 12 is arranged on the surface side with respect to the position of 100 μm in depth from the surface of the carrier 11.
The area under the concentration graph represents the amount of catalyst component A supported. Therefore, for the lower area of the whole concentration graph,
If the ratio of the lower area of the concentration graph in the range from the both side surfaces to the position of 100 μm inside is calculated, it is 1 from the surface.
The ratio of the catalyst component A existing up to the position of 00 μm is obtained.

【0029】図1(c)では、担体11に担持された触
媒成分Aの粒子のうち、全担持量の90質量%以上は、
表面から深さ100μmまでの領域に存在する。本発明
における触媒成分Aの濃度は、図1(c)のような濃度
グラフが得られるEPMA断面線分析で求められた濃度
である。上記のような構造の排ガス触媒10は、ガスタ
ービンなどにおける低濃度CO含有排ガスの排出経路の
途中に配置される。比較的に高温で速度の大きな排ガス
が、触媒10の排ガス通路13を通過し、排ガス通路1
3の内壁面で触媒10と接触する。
In FIG. 1 (c), of the particles of the catalyst component A supported on the carrier 11, 90% by mass or more of the total supported amount is
It exists in a region from the surface to a depth of 100 μm. The concentration of the catalyst component A in the present invention is the concentration obtained by the EPMA cross section line analysis that gives a concentration graph as shown in FIG. 1 (c). The exhaust gas catalyst 10 having the above structure is arranged in the middle of the exhaust path of the low concentration CO-containing exhaust gas in a gas turbine or the like. Exhaust gas having a relatively high temperature and a high velocity passes through the exhaust gas passage 13 of the catalyst 10, and the exhaust gas passage 1
The inner wall surface of 3 contacts the catalyst 10.

【0030】触媒10のうち、排ガス通路13の内壁面
は、触媒成分Aの濃度が高い担持領域12であるため、
排ガスは効率的に触媒作用を受けて、排ガス処理が行わ
れる。高速の排ガスは、触媒10に対する接触時間が短
くなるが、前記した効率的な触媒作用によって、排ガス
は確実に処理される。ガスタービンなどの燃焼排ガスに
は、処理対象成分として、低濃度COとともに未燃の揮
発性有機化合物、例えばアルデヒドなどが含まれてい
る。触媒10では、これらの低濃度COおよび揮発性有
機化合物を同時に処理して、何れの成分をも除去するこ
とができる。
Since the inner wall surface of the exhaust gas passage 13 of the catalyst 10 is the loading region 12 in which the concentration of the catalyst component A is high,
The exhaust gas is efficiently subjected to the catalytic action, and the exhaust gas is processed. Although the contact time of the high-speed exhaust gas with the catalyst 10 is short, the exhaust gas is surely treated by the efficient catalytic action described above. Combustion exhaust gas from a gas turbine or the like contains low-concentration CO and unburned volatile organic compounds such as aldehydes as components to be treated. The catalyst 10 can simultaneously treat these low-concentration CO and volatile organic compounds to remove any components.

【0031】次に、本発明の排ガス処理触媒を具体的に
製造し、その性能を評価した結果について説明する。
Next, the results of the evaluation of the performance of the exhaust gas treatment catalyst of the present invention will be described.

【0032】[0032]

【実施例】〔触媒の製造〕 <実施例1> 担体となるTi−Si複合酸化物の調製:10質量%ア
ンモニア水700リットルにスノーテックス−20(日
産化学(株)製シリカゾル、約20質量%のSiO2
有)21.3kgを加え、攪拌、混合した後、硫酸チタ
ニルの硫酸溶液(TiO2として125g/リットル、
硫酸濃度550g/リットル)340リットルを攪拌し
ながら徐々に滴下した。得られたゲルを3時間放置した
後、ろ過、水洗し、続いて150℃で10時間乾燥し
た。これを500℃で焼成し、更にハンマーミルを用い
て粉砕し、粉体を得た。得られた粉体の組成はTi
2:SiO2=8.5:1.5(モル比)であり、粉体
のX線回折チャートではTiO2やSiO2の明らかな固
有ピークは認められず、ブロードな回折ピークによって
非晶質な微細構造を有するチタンとケイ素との複合酸化
物(Ti−Si複合酸化物)であることが確認された。
Example [Production of catalyst] <Example 1> Preparation of Ti-Si composite oxide as a carrier: 700 liters of 10 mass% ammonia water, Snowtex-20 (manufactured by Nissan Kagaku KK, silica sol, about 20 mass%) % Of SiO 2 ) was added, stirred and mixed, and then a sulfuric acid solution of titanyl sulfate (125 g / liter as TiO 2 ;
Sulfuric acid concentration (550 g / liter) (340 liters) was gradually added dropwise with stirring. The obtained gel was left for 3 hours, then filtered, washed with water, and then dried at 150 ° C. for 10 hours. This was fired at 500 ° C. and further pulverized using a hammer mill to obtain a powder. The composition of the obtained powder is Ti
O 2 : SiO 2 = 8.5: 1.5 (molar ratio), and no clear intrinsic peaks of TiO 2 and SiO 2 were observed in the X-ray diffraction chart of the powder, and a broad diffraction peak made it amorphous. It was confirmed to be a composite oxide of titanium and silicon having a fine microstructure (Ti-Si composite oxide).

【0033】ハニカム成形体の製造:上記Ti−Si複
合酸化物を、外形80mm角、目開き2.1mm、肉厚
0.4mm、長さ500mmのハニカム状に成形した。
次いで、80℃で乾燥した後、450℃で5時間空気雰
囲気下で焼成し、ハニカム成形体を得た。ハニカム成形
体は、前記図1(a)に示すような格子状構造を有し、
個々の排ガス通路の目開きが2.1mm、格子壁の肉厚
が0.4mmである。 触媒成分の担持による触媒の製造:ハニカム成形体を、
ヘキサアンミン白金水酸塩溶液と酢酸マグネシウムとの
混合溶液に含浸したあと、乾燥させた。次いで、450
℃で2時間、空気雰囲気下で焼成して、ハニカム成形体
からなる担体に、触媒成分AとしてPt、触媒成分Bと
してMgが担持された触媒Aを得た。
Manufacture of honeycomb formed body: The above Ti-Si composite oxide was formed into a honeycomb shape having an outer shape of 80 mm square, an opening of 2.1 mm, a wall thickness of 0.4 mm and a length of 500 mm.
Then, after drying at 80 ° C., it was fired at 450 ° C. for 5 hours in an air atmosphere to obtain a honeycomb formed body. The honeycomb formed body has a lattice structure as shown in FIG.
The opening of each exhaust gas passage is 2.1 mm, and the wall thickness of the lattice wall is 0.4 mm. Production of catalyst by supporting catalyst components: honeycomb formed body,
The mixture was impregnated with a mixed solution of hexaammineplatinum hydrate solution and magnesium acetate and then dried. Then 450
The mixture was fired at 2 ° C. for 2 hours in an air atmosphere to obtain a catalyst A in which Pt as a catalyst component A and Mg as a catalyst component B were supported on a carrier formed of a honeycomb formed body.

【0034】得られた触媒Aの組成を分析したところ、
Ti−Si複合酸化物:Mg:Pt=98.9:1:
0.1(質量比)であった。触媒Aについて、PtのE
PMA断面線分析を行った。その結果から、担持したP
tの90質量%以上は、触媒Aの表面から深さ100μ
mまでの領域に存在することが確認された。透過型電子
顕微鏡を用いて測定されたPtの平均粒子径は5nm未
満であった。 <実施例2>実施例1において、ヘキサアンミン白金水
酸塩と酢酸マグネシウムとの混合溶液の代わりに、ヘキ
サアンミン白金水酸塩と酢酸カルシウムとの混合溶液を
用いた以外は、実施例1と同様の工程で、触媒Bを得
た。
When the composition of the obtained catalyst A was analyzed,
Ti-Si composite oxide: Mg: Pt = 98.9: 1:
It was 0.1 (mass ratio). For catalyst A, Pt E
PMA cross-section line analysis was performed. From the result, it is possible to carry P
90 mass% or more of t is 100 μm deep from the surface of the catalyst A.
It was confirmed that it exists in the region up to m. The average particle size of Pt measured using a transmission electron microscope was less than 5 nm. <Example 2> Example 1 was repeated except that a mixed solution of hexaammineplatinum hydrate and calcium acetate was used in place of the mixed solution of hexaammineplatinum hydrate and magnesium acetate. Catalyst B was obtained in the same process.

【0035】触媒Bの組成は、Ti−Si複合酸化物:
Ca:Pt=98.9:1:0.1(質量比)であっ
た。PtのEPMA断面線分析の結果、触媒Bに担持し
たPtの90質量%以上は、表面から深さ100μmま
での領域に存在することが確認された。透過型電子顕微
鏡の測定結果から、Ptの平均粒子径は5nm未満であ
った。 <実施例3>実施例1において、ヘキサアンミン白金水
酸塩と酢酸マグネシウムとの混合溶液の代わりに、ヘキ
サアンミン白金水酸塩と酢酸ナトリウムとの混合溶液を
用いた以外は、実施例1と同様の工程で、触媒Cを得
た。
The composition of catalyst B is as follows: Ti-Si composite oxide:
It was Ca: Pt = 98.9: 1: 0.1 (mass ratio). As a result of EPMA sectional line analysis of Pt, it was confirmed that 90% by mass or more of Pt supported on the catalyst B existed in a region from the surface to a depth of 100 μm. From the measurement result of the transmission electron microscope, the average particle diameter of Pt was less than 5 nm. <Example 3> Example 1 was the same as Example 1 except that a mixed solution of hexaammine platinum hydrochloride and sodium acetate was used in place of the mixed solution of hexaammine platinum hydrochloride and magnesium acetate. Catalyst C was obtained in the same step.

【0036】触媒Cの組成は、Ti−Si複合酸化物:
Na:Pt=98.9:1:0.1(質量比)であっ
た。PtのEPMA断面線分析の結果、触媒Bに担持し
たPtの90質量%以上は、表面から深さ100μmま
での領域に存在することが確認された。透過型電子顕微
鏡の測定結果から、Ptの平均粒子径は5nm未満であ
った。 <実施例4>実施例1において、ヘキサアンミン白金水
酸塩と酢酸マグネシウムとの混合溶液の代わりに、ヘキ
サアンミン白金水酸塩と酢酸リチウムとの混合溶液を用
いた以外は、実施例1と同様の工程で、触媒Dを得た。
The composition of catalyst C is as follows: Ti-Si composite oxide:
It was Na: Pt = 98.9: 1: 0.1 (mass ratio). As a result of EPMA sectional line analysis of Pt, it was confirmed that 90% by mass or more of Pt supported on the catalyst B existed in a region from the surface to a depth of 100 μm. From the measurement result of the transmission electron microscope, the average particle diameter of Pt was less than 5 nm. <Example 4> Example 1 was repeated except that a mixed solution of hexaammineplatinum hydrate and lithium acetate was used in place of the mixed solution of hexaammineplatinum hydrate and magnesium acetate. Catalyst D was obtained in the same process.

【0037】触媒Dの組成は、Ti−Si複合酸化物:
Li:Pt=98.9:1:0.1(質量比)であっ
た。PtのEPMA断面線分析の結果、触媒Bに担持し
たPtの90質量%以上は、表面から深さ100μmま
での領域に存在することが確認された。透過型電子顕微
鏡の測定結果から、Ptの平均粒子径は5nm未満であ
った。 <実施例5>実施例1において、ヘキサアンミン白金水
酸塩と酢酸マグネシウムとの混合溶液の代わりに、ヘキ
サアンミン白金水酸塩と酢酸イットリウムとの混合溶液
を用いた以外は、実施例1と同様の工程で、触媒Eを得
た。
The composition of catalyst D is as follows: Ti-Si composite oxide:
Li: Pt = 98.9: 1: 0.1 (mass ratio). As a result of EPMA sectional line analysis of Pt, it was confirmed that 90% by mass or more of Pt supported on the catalyst B existed in a region from the surface to a depth of 100 μm. From the measurement result of the transmission electron microscope, the average particle diameter of Pt was less than 5 nm. <Example 5> Example 1 is the same as Example 1 except that a mixed solution of hexaammine platinum hydrochloride and yttrium acetate was used in place of the mixed solution of hexaammine platinum hydrochloride and magnesium acetate. Catalyst E was obtained in the same process.

【0038】触媒Eの組成は、Ti−Si複合酸化物:
Y:Pt=98.9:1:0.1(質量比)であった。
PtのEPMA断面線分析の結果、触媒Bに担持したP
tの90質量%以上は、表面から深さ100μmまでの
領域に存在することが確認された。透過型電子顕微鏡の
測定結果から、Ptの平均粒子径は5nm未満であっ
た。 <実施例6>実施例1において、ヘキサアンミン白金水
酸塩と酢酸マグネシウムとの混合溶液の代わりに、ヘキ
サアンミン白金水酸塩と酢酸ランタンとの混合溶液を用
いた以外は、実施例1と同様の工程で、触媒Fを得た。
The composition of the catalyst E is as follows: Ti-Si composite oxide:
It was Y: Pt = 98.9: 1: 0.1 (mass ratio).
As a result of EPMA sectional line analysis of Pt, P supported on catalyst B
It was confirmed that 90 mass% or more of t exists in the region from the surface to a depth of 100 μm. From the measurement result of the transmission electron microscope, the average particle diameter of Pt was less than 5 nm. <Example 6> Example 1 was the same as Example 1 except that a mixed solution of hexaammineplatinum hydrochloride and lanthanum acetate was used in place of the mixed solution of hexaammineplatinum hydrochloride and magnesium acetate. Catalyst F was obtained in the same process.

【0039】触媒Fの組成は、Ti−Si複合酸化物:
La:Pt=98.9:1:0.1(質量比)であっ
た。PtのEPMA断面線分析の結果、触媒Bに担持し
たPtの90質量%以上は、表面から深さ100μmま
での領域に存在することが確認された。透過型電子顕微
鏡の測定結果から、Ptの平均粒子径は5nm未満であ
った。 <比較例1>実施例1において、ヘキサアンミン白金水
酸塩と酢酸マグネシウムとの混合溶液の代わりに、ヘキ
サアンミン白金水酸塩の単独溶液を用いた以外は、実施
例1と同様の工程で、触媒Gを得た。
The composition of catalyst F is as follows: Ti-Si composite oxide:
It was La: Pt = 98.9: 1: 0.1 (mass ratio). As a result of EPMA sectional line analysis of Pt, it was confirmed that 90% by mass or more of Pt supported on the catalyst B existed in a region from the surface to a depth of 100 μm. From the measurement result of the transmission electron microscope, the average particle diameter of Pt was less than 5 nm. <Comparative Example 1> The same steps as in Example 1 were repeated except that a single solution of hexaammineplatinum hydrate was used in place of the mixed solution of hexaammineplatinum hydrate and magnesium acetate. , Catalyst G was obtained.

【0040】触媒Gの組成は、Ti−Si複合酸化物:
Pt=99.9:0.1(質量比)であった。PtのE
PMA断面線分析の結果、触媒Bに担持したPtの90
質量%以上は、表面から深さ100μmまでの領域に存
在することが確認された。透過型電子顕微鏡の測定結果
から、Ptの平均粒子径は7nmであった。 〔性能評価〕各実施例および比較例で得られた触媒を用
いて、以下の性能評価試験を行なった。 <CO除去試験> 試験条件: 排ガス組成=CO:20ppm、O2:10%、H2O:
8%、N2:バランス ガス温度=340℃ 空間速度(STP)=75000Hr-1 CO除去率算出式: CO除去率(%)=〔(反応器入口CO濃度)−(反応
器出口CO濃度)〕/(反応器入口CO濃度)×100 暴露試験:製造された触媒が新品状態で、CO除去試験
を行なったあと、以下の条件で暴露試験を行ない、暴露
後の触媒について、同様のCO除去試験を行なった。
The composition of catalyst G is as follows: Ti-Si composite oxide:
It was Pt = 99.9: 0.1 (mass ratio). E of Pt
As a result of PMA sectional line analysis, 90% of Pt supported on the catalyst B was detected.
It was confirmed that the mass% or more exists in the region from the surface to a depth of 100 μm. From the measurement result of the transmission electron microscope, the average particle diameter of Pt was 7 nm. [Performance Evaluation] The following performance evaluation tests were conducted using the catalysts obtained in the respective examples and comparative examples. <CO removal test> Test conditions: Exhaust gas composition = CO: 20 ppm, O 2 : 10%, H 2 O:
8%, N 2 : Balance gas temperature = 340 ° C. Space velocity (STP) = 75000 Hr −1 CO removal rate calculation formula: CO removal rate (%) = [(reactor inlet CO concentration) − (reactor outlet CO concentration) ] / (CO concentration at reactor inlet) × 100 Exposure test: After the CO removal test was performed on the manufactured catalyst in a new state, the exposure test was performed under the following conditions, and the same CO removal was performed on the catalyst after exposure. The test was conducted.

【0041】暴露ガス組成=SO2:100ppm、
2:10%、H2O:8%、N2:バランス ガス温度=340℃ 空間速度(STP)=75000Hr-1 暴露時間=500時間 <アセトアルデヒド除去試験> 試験条件: 排ガス組成=CH3CHO:20ppm、CO:20p
pm、O2:12%、 H2O:8%、N2:バランス ガス温度=350℃ 空間速度(STP)=80000Hr-1 アセトアルデヒド除去率算出式: アセトアルデヒド除去率(%)=〔(反応器入口アセト
アルデヒド濃度)−(反応器出口アセトアルデヒド濃
度)〕/(反応器入口アセトアルデヒド濃度)×100 <SO2酸化能評価試験> 試験条件: 排ガス組成=SO2:30ppm、CO:20ppm、
2:12%、H2O:8%、 N2:バランス ガス温度=350℃ 空間速度(STP)=80000Hr-1 SO2酸化率算出式: SO2酸化率(%)=反応器出口SO3濃度/反応器入口
SO2濃度×100 <試験結果>上記性能評価試験の結果を、下表に示す。
なお、暴露後CO除去率試験、アセトアルデヒド除去試
験およびSO2酸化能評価試験は、実施例1と比較例1
について行った。
Exposure gas composition = SO 2 : 100 ppm,
O 2: 10%, H 2 O: 8%, N 2: Balance Gas temperature = 340 ° C. The space velocity (STP) = 75000Hr -1 exposure time = 500 hours <acetaldehyde removal test> Test conditions: exhaust gas composition = CH 3 CHO : 20ppm, CO: 20p
pm, O 2 : 12%, H 2 O: 8%, N 2 : balance gas temperature = 350 ° C space velocity (STP) = 80000Hr -1 Acetaldehyde removal rate calculation formula: acetaldehyde removal rate (%) = [(reactor inlet concentration of acetaldehyde) - (reactor outlet concentration of acetaldehyde)] / (reactor inlet concentration of acetaldehyde) × 100 <SO 2 oxidation ability evaluation test> test conditions: exhaust gas composition = SO 2: 30ppm, CO: 20ppm,
O 2 : 12%, H 2 O: 8%, N 2 : Balance gas temperature = 350 ° C Space velocity (STP) = 80000Hr -1 SO 2 Oxidation rate calculation formula: SO 2 Oxidation rate (%) = Reactor outlet SO 3 concentration / reactor inlet SO 2 concentration × 100 <Test Results> The results of the above performance evaluation test are shown in the table below.
The post-exposure CO removal rate test, acetaldehyde removal test, and SO 2 oxidation capacity evaluation test were carried out in Example 1 and Comparative Example 1.
I went about.

【0042】[0042]

【表1】 [Table 1]

【0043】以上の結果、各実施例では、比較例1に比
べて、CO除去率について優れた性能が発揮できること
が確認された。アセトアルデヒド除去率についても、実
施例1は比較例1に比べて優れていることが判る。ま
た、SO2酸化率は、実施例1のほうが比較例1よりも
少なく、SO2酸化が抑制されている。実施例1は比較
例1に比べて、SO2含有ガスに長時間暴露した後で
も、CO除去率がせず、耐SOx性に優れていることも
確認された。
As a result of the above, it was confirmed that, in each of the examples, superior performance to the CO removal rate can be exhibited as compared with the comparative example 1. As for the acetaldehyde removal rate, it is understood that Example 1 is superior to Comparative Example 1. Further, the SO 2 oxidation rate was smaller in Example 1 than in Comparative Example 1, and SO 2 oxidation was suppressed. It was also confirmed that Example 1 was superior in SO x resistance to Comparative Example 1 even after being exposed to the SO 2 -containing gas for a long time without having a CO removal rate.

【0044】[0044]

【発明の効果】本発明の排ガス処理触媒を用いれば、多
量の酸素や水蒸気の存在下でも低濃度のCOや揮発性有
機化合物を効率よく除去することができる。具体的に
は、本発明の排ガス処理触媒は、触媒成分として、前記
触媒成分Aに加えて前記触媒成分Bを含有していること
によって、触媒成分A単独の場合に比べてCO除去性能
が向上し、触媒成分Aの使用量の低減が可能になる。ま
た、触媒成分Bを加えることによって、運転時に問題と
なるSO2→SO3酸化率を抑制することができ、触媒の
耐SOx性および熱耐久性も向上する。
By using the exhaust gas treatment catalyst of the present invention, low concentrations of CO and volatile organic compounds can be efficiently removed even in the presence of a large amount of oxygen and water vapor. Specifically, the exhaust gas treatment catalyst of the present invention contains the catalyst component B in addition to the catalyst component A as a catalyst component, so that the CO removal performance is improved as compared with the case of the catalyst component A alone. However, the amount of the catalyst component A used can be reduced. Further, by adding the catalyst component B, the SO 2 → SO 3 oxidation rate, which is a problem during operation, can be suppressed, and the SO x resistance and heat durability of the catalyst are also improved.

【0045】また、触媒成分としてさらに前記触媒成分
Cを添加することによって、触媒に脱硝性能を付与する
こと等もできる。触媒成分Aを触媒の表面に偏在させて
おくことで、排ガスの処理効率を格段に向上させること
もできる。
Further, by adding the above-mentioned catalyst component C as a catalyst component, it is possible to impart denitration performance to the catalyst. By making the catalyst component A unevenly distributed on the surface of the catalyst, it is possible to significantly improve the treatment efficiency of the exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態を表す触媒の断面図
(a)、拡大断面図(b)および触媒成分A濃度グラフ
(c)
FIG. 1 is a cross-sectional view (a), an enlarged cross-sectional view (b) and a catalyst component A concentration graph (c) of a catalyst that represents an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 排ガス触媒 11 担体 12 担持領域 13 排ガス通路 10 Exhaust gas catalyst 11 Carrier 12 carrying area 13 Exhaust gas passage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 正木 信之 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 杉島 昇 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 小林 基伸 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 Fターム(参考) 3G091 AA06 AA18 AA19 AB02 BA19 GA06 GB05W GB06W GB07W GB10X 4D048 AA13 AA17 AB01 BA01X BA02X BA06X BA07X BA14X BA18X BA30X BA41X BB02 4G069 AA03 AA08 BA03B BC02B BC04B BC09A BC09B BC10A BC10B BC31A BC33A BC40B BC42B BC54A BC58A BC59A BC60A BC62A BC66A BC67A BC68A BC69A BC75B CA02 CA03 CA07 CA14 CA15 EA19 EB19 FB14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nobuyuki Masaki             Hyogo prefecture Himeji city             1 Within Nippon Shokubai Co., Ltd. (72) Inventor Noboru Sugishima             Hyogo prefecture Himeji city             1 Within Nippon Shokubai Co., Ltd. (72) Inventor Motonobu Kobayashi             Hyogo prefecture Himeji city             1 Within Nippon Shokubai Co., Ltd. F-term (reference) 3G091 AA06 AA18 AA19 AB02 BA19                       GA06 GB05W GB06W GB07W                       GB10X                 4D048 AA13 AA17 AB01 BA01X                       BA02X BA06X BA07X BA14X                       BA18X BA30X BA41X BB02                 4G069 AA03 AA08 BA03B BC02B                       BC04B BC09A BC09B BC10A                       BC10B BC31A BC33A BC40B                       BC42B BC54A BC58A BC59A                       BC60A BC62A BC66A BC67A                       BC68A BC69A BC75B CA02                       CA03 CA07 CA14 CA15 EA19                       EB19 FB14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】低濃度CO含有排ガスを処理する触媒であ
って、 Ti系酸化物を担体とし、 Pt、Pd、Rh、Ru、IrおよびAuからなる群か
ら選ばれる少なくとも1種の元素からなる触媒成分A
と、 周期律表第I〜III族に含まれる少なくとも1種の元素
からなる触媒成分Bとを含有する排ガス処理触媒。
1. A catalyst for treating exhaust gas containing low concentration CO, which comprises a Ti-based oxide as a carrier and comprises at least one element selected from the group consisting of Pt, Pd, Rh, Ru, Ir and Au. Catalyst component A
And an exhaust gas treatment catalyst containing a catalyst component B comprising at least one element contained in Groups I to III of the periodic table.
【請求項2】V、W、Mo、Cu、Mn、Ni、CO、
CrおよびFeからなる群から選ばれる少なくとも1種
の元素からなる触媒成分Cをさらに含有する請求項1に
記載の排ガス処理触媒。
2. V, W, Mo, Cu, Mn, Ni, CO,
The exhaust gas treatment catalyst according to claim 1, further comprising a catalyst component C composed of at least one element selected from the group consisting of Cr and Fe.
【請求項3】前記触媒成分Aが、平均粒子径30nm以
下の微粒子である請求項1または2に記載の排ガス処理
触媒。
3. The exhaust gas treatment catalyst according to claim 1, wherein the catalyst component A is fine particles having an average particle diameter of 30 nm or less.
【請求項4】前記担体に対する前記触媒成分Aの全担持
量のうち70質量%以上が、触媒の表面から深さ100
μmまでの領域に偏在している請求項1〜3の何れかに
記載の排ガス処理触媒。
4. 70% by mass or more of the total amount of the catalyst component A supported on the carrier is at a depth of 100 from the surface of the catalyst.
The exhaust gas treatment catalyst according to any one of claims 1 to 3, which is unevenly distributed in a region up to µm.
【請求項5】前記低濃度CO含有排ガスが、CO濃度1
00ppm以下の排ガスである請求項1〜4の何れかに
記載の排ガス処理触媒。
5. The exhaust gas containing low concentration CO has a CO concentration of 1
The exhaust gas treatment catalyst according to any one of claims 1 to 4, which has an exhaust gas content of 00 ppm or less.
【請求項6】低濃度CO含有排ガスを処理する方法であ
って、 CO濃度100ppm以下の排ガスを、請求項1〜4の
何れかに記載の排ガス処理触媒に接触させる工程(a)を
含む排ガス処理方法。
6. A method for treating an exhaust gas containing low concentration CO, comprising the step (a) of contacting the exhaust gas having a CO concentration of 100 ppm or less with the exhaust gas treatment catalyst according to any one of claims 1 to 4. Processing method.
【請求項7】前記工程(a)が、前記排ガスとして、揮発
性有機化合物をさらに含有する排ガスを用いる請求項6
に記載の排ガス処理方法。
7. The exhaust gas further containing a volatile organic compound is used as the exhaust gas in the step (a).
The method for treating exhaust gas according to.
JP2002006712A 2001-09-28 2002-01-15 Exhaust gas treatment catalyst and exhaust gas treatment method Expired - Fee Related JP4362023B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002006712A JP4362023B2 (en) 2002-01-15 2002-01-15 Exhaust gas treatment catalyst and exhaust gas treatment method
US10/247,376 US7150861B2 (en) 2001-09-28 2002-09-20 Catalyst for purification of exhaust gases and process for purification of exhaust gases
DE60219405T DE60219405T2 (en) 2001-09-28 2002-09-25 Catalyst for purifying exhaust gases and process for purifying exhaust gases
KR1020020058136A KR100587240B1 (en) 2001-09-28 2002-09-25 Catalyst for purification of exhaust gases and process for purification of exhaust gases
EP02021487A EP1297886B1 (en) 2001-09-28 2002-09-25 Catalyst for purification of exhaust gases and process for purification of exhaust gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002006712A JP4362023B2 (en) 2002-01-15 2002-01-15 Exhaust gas treatment catalyst and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2003205238A true JP2003205238A (en) 2003-07-22
JP4362023B2 JP4362023B2 (en) 2009-11-11

Family

ID=27645407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002006712A Expired - Fee Related JP4362023B2 (en) 2001-09-28 2002-01-15 Exhaust gas treatment catalyst and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP4362023B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885682B1 (en) * 2007-07-10 2009-02-26 주식회사 이엔드디 Preparation Method of Carbon Monoxide, Hydrocarbon and Particualte Matter Reduction Catalyst for High-Sulfur Fuel Engine
KR100903289B1 (en) 2008-12-09 2009-06-17 주식회사 이엔드디 Carbon Monoxide, Hydrocarbon and Particualte Matter Reduction Catalyst for High-Sulfur Fuel Engine
KR100931521B1 (en) * 2008-04-21 2010-01-12 이엔에프씨 주식회사 The Catalyst and The Making Method of Biodiesel
JP4913727B2 (en) * 2005-03-18 2012-04-11 株式会社日本触媒 Oxygen removal catalyst and oxygen removal method using the catalyst
CN102600840A (en) * 2007-08-09 2012-07-25 宜安德株式会社 Catalyst for removing carbon monoxide, hydrocarbons and particulate matters in engine
JP2013194572A (en) * 2012-03-16 2013-09-30 Osaka Gas Co Ltd Exhaust emission control device for engine
JP2013194571A (en) * 2012-03-16 2013-09-30 Osaka Gas Co Ltd Exhaust emission control device for engine
JP2014510218A (en) * 2011-07-01 2014-04-24 トヨタ自動車株式会社 How to remove ash from particulate filters

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913727B2 (en) * 2005-03-18 2012-04-11 株式会社日本触媒 Oxygen removal catalyst and oxygen removal method using the catalyst
KR100885682B1 (en) * 2007-07-10 2009-02-26 주식회사 이엔드디 Preparation Method of Carbon Monoxide, Hydrocarbon and Particualte Matter Reduction Catalyst for High-Sulfur Fuel Engine
CN102600840A (en) * 2007-08-09 2012-07-25 宜安德株式会社 Catalyst for removing carbon monoxide, hydrocarbons and particulate matters in engine
KR100931521B1 (en) * 2008-04-21 2010-01-12 이엔에프씨 주식회사 The Catalyst and The Making Method of Biodiesel
KR100903289B1 (en) 2008-12-09 2009-06-17 주식회사 이엔드디 Carbon Monoxide, Hydrocarbon and Particualte Matter Reduction Catalyst for High-Sulfur Fuel Engine
JP2014510218A (en) * 2011-07-01 2014-04-24 トヨタ自動車株式会社 How to remove ash from particulate filters
JP2013194572A (en) * 2012-03-16 2013-09-30 Osaka Gas Co Ltd Exhaust emission control device for engine
JP2013194571A (en) * 2012-03-16 2013-09-30 Osaka Gas Co Ltd Exhaust emission control device for engine

Also Published As

Publication number Publication date
JP4362023B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP4317345B2 (en) Low concentration CO-containing exhaust gas treatment method
JP4429950B2 (en) Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method
KR20030026903A (en) Catalyst for purification of exhaust gases and process for purification of exhaust gases
JPWO2006103781A1 (en) Exhaust gas purification device and exhaust gas purification catalyst
US20050137079A1 (en) Catalyst formulation, exhaust system, and gas treatment device
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP2009018287A (en) Oxidation catalyst for cleaning exhaust gas
JP4362023B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2009112912A (en) Catalyst for oxidizing and removing methane in exhaust gas, and method for cleaning exhaust gas
EP0722767A1 (en) Catalyst for purifying exhaust gases
JP4730947B2 (en) Method for regenerating exhaust gas purification catalyst
EP1205236A2 (en) Exhaust gas purifying catalyst and method of producing same
JP2002210368A (en) Molten salt type catalyst
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP4112933B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
WO2021166382A1 (en) Exhaust gas purification catalyst
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP4012456B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2007144285A (en) Exhaust gas-purifying catalyst and its manufacturing method, and exhaust gas purifier
JP4068858B2 (en) Low concentration CO-containing exhaust gas treatment catalyst
JP2003305365A (en) Aqueous gas treatment catalyst and waste gas treatment method
JP4071516B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3969577B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2009233602A (en) Catalyst for particulate material purification, and purification method of particulate material using the same
JPH05138026A (en) Catalyst for purifying exhaust gas of diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070509

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees