JP2003204946A - Microminiature biological electrode used for measurement of neuro-activity or the like - Google Patents

Microminiature biological electrode used for measurement of neuro-activity or the like

Info

Publication number
JP2003204946A
JP2003204946A JP2002176883A JP2002176883A JP2003204946A JP 2003204946 A JP2003204946 A JP 2003204946A JP 2002176883 A JP2002176883 A JP 2002176883A JP 2002176883 A JP2002176883 A JP 2002176883A JP 2003204946 A JP2003204946 A JP 2003204946A
Authority
JP
Japan
Prior art keywords
conductor
electrode
conductors
slit
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002176883A
Other languages
Japanese (ja)
Other versions
JP2003204946A5 (en
JP3889321B2 (en
Inventor
Kanji Matsukawa
寛二 松川
Takako Kawabata
貴子 川畑
Kazuhiko Kondo
和彦 近藤
Yasuo Seki
康夫 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Cable System Inc
Original Assignee
Nippon Cable System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Cable System Inc filed Critical Nippon Cable System Inc
Priority to JP2002176883A priority Critical patent/JP3889321B2/en
Priority to US10/431,508 priority patent/US7113816B2/en
Publication of JP2003204946A publication Critical patent/JP2003204946A/en
Publication of JP2003204946A5 publication Critical patent/JP2003204946A5/ja
Application granted granted Critical
Publication of JP3889321B2 publication Critical patent/JP3889321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microminiature biological electrode for measuring the neuro- activity or the like of a biological body, wherein the volume is small, burden to the biological body is small, the insulating property is high, and therefore, a stable measurement extending for a long period of time becomes possible. <P>SOLUTION: This microminiature biological electrode 10 has a pair of conductive bodies 13 and 14 made of a polymeric material having a through-hole in which a measurement object 18 is passed at the center, an inserting member 15 made of a non-conductive polymeric material, end surface members 16 and 17 which are provided on the external end surfaces of the conductive bodies, a cylindrical covering body 17 made of an insulating material which surrounds the outer periphery of them, and electric wires 21 and 22 for the measurement which are led to the outside from respective conductive bodies 13 and 14. In this case, the inserting member 15 electrically insulates the peripheries of the conductive bodies, and is inserted in a space between the conductive bodies. Then, a slit 26 which reaches the outer peripheral surface from the through-hole 19 is provided on all of the conductive bodies, the inserting member, the end surface members and the covering body for the microminiature biological electrode 10. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は生体の神経束などの
微小電位差ないし微小電流を測定するための超小型の生
体電極に関する。さらに詳しくは、生体に埋め込んだ状
態で使用することができ、生体に負担をかけずに長期間
測定を継続できる生体電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microminiature biological electrode for measuring a minute potential difference or a minute current in a nerve bundle of a living body. More specifically, the present invention relates to a biological electrode that can be used in a state of being embedded in a living body and can continue measurement for a long period of time without burdening the living body.

【0002】[0002]

【従来の技術】従来、生体の神経活動を測定する場合
は、神経束に生体高分子であるコラーゲンや銀線などの
金属材料を用いた電極を接触させ、その電極に連結した
絶縁電線を測定回路に連結して、神経を流れる微小な電
流を測定している。これらの電極はミリメートルのオー
ダーの末梢神経や数百マイクロメートルオーダーの心臓
や腎臓などの交感神経に応用され、神経活動の測定が行
われている。しかしながら副腎、脾臓、消化器などの内
臓諸器官、あるいは骨格筋、皮膚および脳・脊髄などに
分布する交感神経は、100μm以下と極めて細く、容
易に機械的損傷を受ける。そのため、とくに自由行動を
とる意識動物の場合は測定が困難である。また、生体内
では絶縁性の長期の維持が困難であるため、1週間程度
の短期間しか測定を継続することができない。さらに測
定しようとする信号がマイクロボルトレベルの微小な信
号であることから、信頼できる信号処理が困難である。
2. Description of the Related Art Conventionally, when measuring the nerve activity of a living body, an electrode made of a metal material such as collagen or silver wire which is a biopolymer is brought into contact with the nerve bundle, and an insulated wire connected to the electrode is measured. It connects to the circuit and measures the minute electric current that flows through the nerve. These electrodes have been applied to peripheral nerves on the order of millimeters and sympathetic nerves on the heart and kidneys on the order of hundreds of micrometers to measure nerve activity. However, the visceral organs such as the adrenal gland, spleen, and digestive organs, or the sympathetic nerves distributed in skeletal muscle, skin, brain, spinal cord, and the like are extremely thin, 100 μm or less, and are easily mechanically damaged. Therefore, it is difficult to measure especially in the case of conscious animals that take free actions. In addition, since it is difficult to maintain the insulating property for a long time in the living body, the measurement can be continued only for a short period of about one week. Furthermore, since the signal to be measured is a minute signal of the microvolt level, reliable signal processing is difficult.

【0003】信号処理の信頼性を高めるような生体電極
としては、たとえば特開2000−157669号公報
に記載されているマイクロ電極がある。このマイクロ電
極は、S/Nが高い信号処理を行うことができるよう
に、図10a〜cなどに示す電極を備えたマイクロ電極
体と、そのマイクロ電極体の近傍に配線部を介して電気
的に連結した信号処理回路体とを備えている。その公報
では、図10aに示すような、コ字状の形態を備え、そ
の間に神経軸索100を通して接触させるようにしたク
ランプ型電極101を開示している。さらに神経軸索1
00に突き刺すようにしたフォーク型電極(図10bの
102参照)およびニードル型電極(図10cの103
参照)をそれぞれ開示している。
As a biological electrode for improving the reliability of signal processing, for example, there is a microelectrode described in Japanese Patent Laid-Open No. 2000-157669. This microelectrode is a microelectrode body including electrodes shown in FIGS. 10A to 10C and the like, so that signal processing with high S / N can be performed, and electrical contact is provided near the microelectrode body via a wiring portion. And a signal processing circuit body connected to. The publication discloses a clamp-type electrode 101 having a U-shaped configuration as shown in FIG. 10a, between which a contact is made through a nerve axon 100. Further nerve axon 1
Fork electrode (see 102 in FIG. 10b) and needle electrode (103 in FIG. 10c) adapted to be pierced at 00.
(See each) are disclosed.

【0004】[0004]

【発明が解決しようとする課題】前記クランプ型、フォ
ーク型あるいはニードル型のマイクロ電極体は、いずれ
も太い神経軸索にしか応用できないものであり、神経軸
索に対する脱着が容易であるが、安定した神経活動の計
測には限界がある。また測定対象が微細な神経束や生体
であるので、神経や生体に対する侵襲が生じ易い。さら
に絶縁状態の長期の維持が困難であり、細い神経に対す
る長期間の安定した装着が困難である。とくに前述の諸
臓器を支配する自律神経活動を計測して脳・自律神経系
が行う生体システムの統合調節機能を解明するには、多
数個所の同時測定および長期的変化の測定をする必要が
ある。本発明は体積が小さく、そのため生体への負担が
少なく、多元的に測定しうる超小型の生体電極を提供す
ることを課題としている。さらに本発明は、絶縁性が高
く、それにより長期間の安定した測定が可能な超小型生
体電極を提供することを技術課題としている。
The clamp-type, fork-type, or needle-type microelectrode bodies described above can be applied only to thick nerve axons, and can be easily attached to and detached from nerve axons, but stable. There is a limit to how much neural activity can be measured. Further, since the measurement target is a fine nerve bundle or a living body, invasion of the nerve or the living body is likely to occur. Furthermore, it is difficult to maintain the insulation state for a long period of time, and it is difficult to stably attach a thin nerve for a long period of time. Especially, in order to elucidate the integrated regulatory function of the biological system performed by the brain and autonomic nervous system by measuring the autonomic nerve activity that governs the above-mentioned various organs, it is necessary to measure multiple points simultaneously and measure long-term changes. . An object of the present invention is to provide a microminiature biomedical electrode which has a small volume and therefore has a small burden on a living body and which can be multidimensionally measured. Further, it is a technical object of the present invention to provide a microminiature biomedical electrode having a high insulating property, which enables stable measurement for a long period of time.

【0005】[0005]

【課題を解決するための手段】本発明の超小型の生体電
極(請求項1)は、それぞれ中心に測定対象を通すため
の貫通孔を有する一対の高分子材料製の導電体と、それ
らの導電体の周囲を電気絶縁し、導電体同士を、貫通孔
が直線上に間隔をあけて並ぶように支持する高分子材料
製の非導電体と、各導電体に連結され、非導電体を貫通
して外部に延び、かつ、外部では表面が絶縁されている
2本の電線とを備えていることを特徴としている。
The microminiature biomedical electrode of the present invention (claim 1) comprises a pair of conductors made of a polymer material, each of which has a through hole for passing a measurement object in the center thereof, and a pair of them. A non-conductor made of a polymer material that electrically insulates the periphery of the conductor and supports the conductors so that the through holes are arranged in a straight line at intervals, and is connected to each conductor to It is characterized in that it is provided with two electric wires penetrating and extending to the outside and having a surface insulated on the outside.

【0006】このような生体電極においては、前記導電
体および非導電体がそれぞれゴム状弾性体からなり、か
つ、全体として表面から貫通孔に達する、測定対象を貫
通孔に導くためのスリットが形成され、そのスリットが
弾力によって常時閉じているものが好ましい(請求項
2)。その場合はさらに前記スリットを閉じた状態に維
持するべく、非導電体の周囲を縛るための糸を備えてい
るものが好ましい(請求項3)。
In such a biological electrode, the conductor and the non-conductor are each made of a rubber-like elastic body, and a slit for guiding the object to be measured to the through hole is formed so as to reach the through hole from the surface as a whole. It is preferable that the slit is always closed by elasticity (claim 2). In that case, it is preferable to further include a thread for binding the periphery of the non-conductive body in order to keep the slit closed.

【0007】また、前記非導電体の表面に設けられるア
ース電極と、そのアース電極に連結され、表面が絶縁さ
れているアース線とをさらに備えているものが好ましい
(請求項4)。さらに前記非導電体が、導電体の間に介
在される介在部材と、各導電体の端面を覆う端面部材
と、導電体、介在部材および端面部材の全体の周囲を囲
む筒状部材とからなるものが好ましい。
Further, it is preferable that a ground electrode provided on the surface of the non-conductor and a ground wire connected to the ground electrode and having a surface insulated are further provided (claim 4). Further, the non-conductor comprises an interposition member interposed between the conductors, an end face member covering the end faces of the respective conductors, and a tubular member surrounding the entire periphery of the conductor, the interposition member and the end face member. Those are preferable.

【0008】[0008]

【作用および発明の効果】本発明の生体電極(請求項
1)は、一対の導電体の貫通孔に1本の測定対象を通す
ことにより、測定対象の離れた部位の周囲を一対の導電
体で囲むことができる。そして導電体にはそれぞれ電線
が連結されているため、電線の他端同士の電位差を測定
することにより、測定対象の離れた部位間の電位差を容
易に測定することができる。また、導電体は測定対象の
周囲全体を囲むので、従来のクランプ型、フォーク型、
ニードル型のような電極に比して、測定対象に対する密
着状態を安定して維持することができる。それにより細
い末梢神経などにも安定して装着しうる。また、高分子
材料であるので、細く短い電極の成形も可能である。そ
れにより多数個所に装着して多元的な測定を継続して
も、生体への負担が少ない。また、導電体は非導電体に
より周囲から絶縁され、電線の外部に出ている部位も絶
縁されているので、生体内に埋め込んで測定しうる。そ
のため長期間でも安定して測定を継続しうる。
According to the biological electrode (Claim 1) of the present invention, one measuring object is passed through the through-holes of the pair of electric conductors, and the pair of electric conductors is provided around the distant portion of the measuring object. Can be surrounded by. Since the electric wires are respectively connected to the conductors, by measuring the potential difference between the other ends of the electric wires, the potential difference between the distant portions of the measurement target can be easily measured. Moreover, since the conductor surrounds the entire circumference of the object to be measured, the conventional clamp type, fork type,
As compared with an electrode such as a needle type, it is possible to stably maintain a close contact state with a measurement target. As a result, it can be stably attached even to a thin peripheral nerve. Further, since it is a polymer material, thin and short electrodes can be formed. As a result, the burden on the living body is small even if the device is attached to a large number of places to continue multidimensional measurement. In addition, the conductor is insulated from the surroundings by the non-conductor, and the portion of the electric wire exposed to the outside is also insulated, so that the conductor can be embedded in the living body for measurement. Therefore, the measurement can be stably continued even for a long period of time.

【0009】導電体および非導電体がそれぞれゴム状弾
性体からなり、かつ、全体として表面から貫通孔に達す
る、測定対象を貫通孔に導くためのスリットが形成さ
れ、そのスリットが弾力によって常時閉じている生体電
極(請求項2)では、弾力性を利用してスリットを拡げ
ると、貫通孔が外部に露出する。そのため拡げたスリッ
トから、神経束などの測定対象を容易に貫通孔に入れる
ことができる。そしてスリットを拡げている力を緩める
と、弾力性でスリットが自然に閉じ、測定対象を囲むこ
とができる。したがって、細い神経などの測定対象への
装着および取り外しが容易である。すなわちこの生体電
極は、測定対象への安定した装着状態の維持が可能であ
るだけでなく、脱着も容易である点ですぐれている。
The conductor and the non-conductor are each made of a rubber-like elastic body, and a slit for guiding the object to be measured to the through hole, which reaches the through hole from the surface as a whole, is formed, and the slit is always closed by elasticity. In the living body electrode (claim 2), when the slit is expanded by utilizing elasticity, the through hole is exposed to the outside. Therefore, an object to be measured such as a nerve bundle can be easily inserted into the through hole from the widened slit. Then, when the force for expanding the slit is loosened, the slit naturally closes due to its elasticity, and the object to be measured can be surrounded. Therefore, it is easy to attach and detach the measurement target such as a thin nerve. That is, the biomedical electrode is excellent in that it can be stably attached to the object to be measured and that it can be easily attached and detached.

【0010】前記スリットを備えている生体電極におい
て、非導電体の表面に設けられるアース電極と、そのア
ース電極に連結され、表面が絶縁されているアース線と
をさらに備えている場合(請求項3)は、糸で非伝導体
の周囲を縛ることにより、スリットの密着がしっかりと
するので、スリットから体液などが侵入して絶縁が破れ
るおそれが少ない。
In the case where the living body electrode provided with the slit is further provided with a ground electrode provided on the surface of the non-conductive body and a ground wire connected to the ground electrode and having a surface insulated (claim) In 3), since the slit is firmly adhered by binding the periphery of the non-conductor with a thread, there is little possibility that the body fluid or the like enters through the slit to break the insulation.

【0011】非導電体の表面に設けられるアース電極
と、そのアース電極に連結され、表面が絶縁されている
アース線とをさらに備えている生体電極(請求項4)の
場合は、全体を生体に埋め込むことにより、アース線の
先端を生体内に安定して電気的に連結させておくことが
できる。そのため電位の基準をとるアース線を別個に生
体に連結する手間、および取り外す手間が不要である。
また、導電体に連結されている電線と束ねることによ
り、一緒に体外に導くことができる。
In the case of a living body electrode (claim 4), further comprising a grounding electrode provided on the surface of the non-conductive body and a grounding wire connected to the grounding electrode and having an insulated surface (claim 4). By embedding it in, the tip of the ground wire can be stably and electrically connected to the inside of the living body. Therefore, it is not necessary to separately connect the ground wire, which is used as a reference for the electric potential, to the living body and to remove it.
In addition, by bundling with the electric wire connected to the conductor, the wires can be guided together outside the body.

【0012】さらに前記非導電体が、導電体の間に介在
される介在部材と、各導電体の端面を覆う端面部材と、
導電体、介在部材および端面部材の全体の周囲を囲む筒
状部材とからなる生体電極(請求項5)では、筒状部材
の一端の開口から、一方の導電体、介在部材および他方
の導電体を押し込み、両端に端面部材を装着することに
より、容易に組み立てることができる。
Further, the non-conductor is an intervening member interposed between the conductors, and an end face member covering the end face of each conductor.
In the biological electrode including a conductor, an intervening member, and a tubular member that surrounds the entire periphery of the end face member (claim 5), one conductor, the intervening member, and the other conductor from the opening at one end of the tubular member. Can be easily assembled by pushing in and attaching end face members to both ends.

【0013】[0013]

【発明の実施の形態】つぎに図面を参照しながら本発明
の生体電極の実施の形態を説明する。図1は本発明の生
体電極の一実施形態を示す一部切り欠き斜視図、図2は
その生体電極の一部断面平面図、図3aおよび図3bは
それぞれその生体電極に用いられている導電体および端
面部材の側面図、図4は本発明の生体電極の他の実施形
態を示す斜視図、図5は図2の生体電極の使用方法を示
す工程図、図6は本発明の生体電極のさらに他の実施形
態を示す一部断面平面図、図7a、図7bおよび図7c
はそれぞれ本発明の生体電極のさらに他の実施形態を示
す側面図、図8aは本発明の生体電極のさらに他の実施
形態を示す側面図、図8bは図8aのVIII-VIII線断面
図、図9aおよび図9bはそれぞれ本発明の生体電極を
用いて測定した神経活動と動脈血圧の関係を示すオシロ
グラフである。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the bioelectrode of the present invention will be described with reference to the drawings. FIG. 1 is a partially cutaway perspective view showing an embodiment of the bioelectrode of the present invention, FIG. 2 is a partial cross-sectional plan view of the bioelectrode, and FIGS. 3a and 3b are the conductive materials used for the bioelectrode. FIG. 4 is a side view of the body and the end face member, FIG. 4 is a perspective view showing another embodiment of the bioelectrode of the present invention, FIG. 5 is a process diagram showing a method of using the bioelectrode of FIG. 2, and FIG. 6 is a bioelectrode of the present invention. FIG. 7a, FIG. 7b and FIG. 7c are partial sectional plan views showing still another embodiment of the present invention.
Is a side view showing yet another embodiment of the bioelectrode of the present invention, FIG. 8a is a side view showing yet another embodiment of the bioelectrode of the present invention, and FIG. 8b is a sectional view taken along line VIII-VIII of FIG. 8a. 9a and 9b are oscillographs showing the relationship between nerve activity and arterial blood pressure measured using the bioelectrode of the present invention.

【0014】図1の生体電極10は、円柱状の芯体11
と、その周囲に設けられる筒状の被覆体12とからな
る。芯体11はさらに円柱状の一対の導電体13、14
と、その間に介在される介在部材15と、各導電体1
3、14の両側の端面を覆う端面部材16、17とから
なる。導電体13、14、介在部材15および端面部材
16、17の直径は同じであり、それぞれの中心には測
定対象18を通すための貫通孔19が形成されている。
被覆体12、介在部材15および端面部材16、17は
非導電材料ないし絶縁材料から形成されており、特許請
求の範囲における非導電体を構成する。一対の導電体1
3、14には測定用電線21、22が連結されている。
また、被覆体12の外面には導電材料製のアース電極2
3が設けられ、そのアース電極23にはアース線24が
連結されている。アース電極23は神経束などの測定対
象の外側の生体組織と接触させて、その電位を基準電位
(アース)として使用するためのものである。したがっ
て別個に生体にアース線を接続する場合など、不要な場
合には、省略することもできる。芯体11および被覆体
12には、貫通孔19から外周面に達するスリット26
が形成されている。
The biomedical electrode 10 of FIG. 1 has a cylindrical core body 11.
And a cylindrical covering body 12 provided around it. The core body 11 further includes a pair of cylindrical conductors 13 and 14
And the intervening member 15 interposed therebetween and each conductor 1
The end surface members 16 and 17 cover the end surfaces on both sides of the parts 3 and 14. The conductors 13 and 14, the interposition member 15 and the end surface members 16 and 17 have the same diameter, and a through hole 19 for passing the measurement object 18 is formed at the center of each of them.
The covering body 12, the interposition member 15, and the end surface members 16 and 17 are made of a non-conductive material or an insulating material, and form the non-conductive material in the claims. A pair of conductors 1
Measuring wires 21 and 22 are connected to 3 and 14.
Further, the ground electrode 2 made of a conductive material is provided on the outer surface of the cover 12.
3 is provided, and a ground wire 24 is connected to the ground electrode 23. The ground electrode 23 is for contacting a living tissue outside the measurement target such as a nerve bundle and using the potential thereof as a reference potential (ground). Therefore, it can be omitted if unnecessary, such as when the ground wire is separately connected to the living body. The core body 11 and the covering body 12 have slits 26 extending from the through holes 19 to the outer peripheral surface.
Are formed.

【0015】前記導電体13、14には、導電ゴムなど
のゴム状の弾力性を有する導電性高分子材料が用いられ
る。また介在部材15、端面部材16、17は、シリコ
ーンゴムなどのゴム状の弾性を有する絶縁性高分子材料
が好ましい。導電体13、14、介在部材15、端面部
材16、17はいずれもシリコーン系などの生体適合性
が高い高分子材料が好ましい。しかしポリウレタン、ナ
イロンエラストマー、フッ素樹脂などの他の合成樹脂材
料あるいはゴムも用いられる。また、材料表面に抗血栓
剤(ヘパリン、ウロキナーゼ固定剤など)をコートした
ものが好ましい。さらにタンパク質、コラーゲンなどの
生体高分子などの高分子材料も用いられる。それらの各
円柱状部材の外径はたとえば0.5〜1.5mm程度で
あり、成形が可能であれば、できるだけ小さくするのが
好ましい。また導電体13、14の厚さは0.4〜0.
5mm程度であり、0.4mm前後が好ましい。厚くす
ると測定対象を包む範囲が長くなり、それによって測定
が安定する。他方、よりコンパクトな生体電極が所望さ
れる場合は、測定が可能な範囲、成形が可能な範囲でで
きるだけ薄くする。端面部材16、17の軸方向の厚さ
は、絶縁性を維持しうる範囲で出来るだけ薄くするのが
好ましい。通常は0.01〜2.0mm程度、とくに
0.01〜0.05mm程度である。また、場合によ
り、0.05〜2.0mmとすることもある。介在部材
15の軸方向の厚さは導電体13、14の間隔を規定す
るものであるので、測定対象に応じて適宜定めるが、通
常は0.4〜0.5mm程度とする。貫通孔19の径は
測定対象18の種類にもよるが、たとえば交感神経の場
合は0.15mm程度とする。なお、末梢神経などの測
定対象の径に応じて、貫通孔19や生体電極の形状を段
階別にいくつか作製し、対象に応じて選択して使用する
ようにするのが好ましい。
For the conductors 13 and 14, a rubber-like conductive polymer material having elasticity such as conductive rubber is used. The intervening member 15 and the end surface members 16 and 17 are preferably made of an insulating polymer material having rubber-like elasticity such as silicone rubber. The conductors 13 and 14, the interposition member 15, and the end surface members 16 and 17 are preferably made of a polymer material having high biocompatibility such as silicone. However, other synthetic resin materials such as polyurethane, nylon elastomer, and fluororesin, or rubber may also be used. Further, it is preferable that the surface of the material is coated with an antithrombotic agent (heparin, urokinase fixing agent, etc.). Further, polymeric materials such as proteins and biopolymers such as collagen are also used. The outer diameter of each of these columnar members is, for example, about 0.5 to 1.5 mm, and if molding is possible, it is preferable to make it as small as possible. The thickness of the conductors 13 and 14 is 0.4-0.
It is about 5 mm, preferably about 0.4 mm. The thicker the longer the area surrounding the object to be measured, the more stable the measurement becomes. On the other hand, when a more compact bioelectrode is desired, it should be as thin as possible within the measurable range and the moldable range. The axial thickness of the end surface members 16 and 17 is preferably as thin as possible within the range where the insulating property can be maintained. Usually, it is about 0.01 to 2.0 mm, especially about 0.01 to 0.05 mm. Moreover, it may be 0.05 to 2.0 mm depending on the case. The thickness of the intervening member 15 in the axial direction regulates the distance between the conductors 13 and 14, and therefore is appropriately determined according to the object of measurement, but is usually about 0.4 to 0.5 mm. The diameter of the through hole 19 depends on the type of the measurement target 18, but is about 0.15 mm in the case of a sympathetic nerve, for example. In addition, it is preferable that several shapes of the through-hole 19 and the bioelectrode are prepared in stages according to the diameter of a measurement target such as a peripheral nerve, and the shapes are selected and used according to the target.

【0016】前記被覆体12はシリコーンゴムなどのゴ
ム状の弾性を有する生体適合性がよい高分子材料が好ま
しい。被覆体12の外径は、たとえば1〜2mm程度
で、1.5mm前後のものが用いられ、長さは通常は1
〜3mm程度である。ただし成形が可能であれば、さら
に小さくするほうが好ましい。被覆体12および各導電
体13、14、介在部材15、端面部材16、17に形
成されているスリット26は、通常は部品の段階で成形
するのが容易であるが、たとえば組み立てた後に、たと
えばメスなどで切り込むことにより形成してもよい。さ
らにレーザー光などで切断する場合は、より正確に切断
できる。組み立て後に切り込む場合は、組立時に各部品
のスリット同士を合わせる手間が省ける。スリット26
は各円柱状部材の弾力性で常時は閉じる方向に付勢され
て、自然に開かないものとするのが好ましい。なお導電
体13、14、介在部材15および端面部材16、17
はあらかじめ接着剤で接着して芯体11としておくこと
もできる。さらに芯体11に被覆体12を接着しておく
こともできる。
The coating 12 is preferably a polymer material having a rubber-like elasticity and good biocompatibility, such as silicone rubber. The outer diameter of the cover 12 is, for example, about 1 to 2 mm, and the outer diameter of about 1.5 mm is used, and the length is usually 1
It is about 3 mm. However, if molding is possible, it is preferable to make it smaller. The slits 26 formed in the cover 12 and each of the conductors 13 and 14, the intervening member 15, and the end surface members 16 and 17 are usually easy to mold at the stage of parts, but after assembly, for example, It may be formed by cutting with a knife or the like. Furthermore, when cutting with a laser beam or the like, more accurate cutting is possible. In the case of cutting after assembling, it is possible to save the trouble of aligning the slits of the respective parts at the time of assembling. Slit 26
It is preferable that the columnar members are always urged in the closing direction by the elasticity of the columnar members and do not open naturally. The conductors 13, 14, the interposition member 15, and the end surface members 16, 17
Alternatively, the core 11 can be prepared by previously bonding with an adhesive. Further, the cover 12 may be adhered to the core 11.

【0017】図2および図3aに示すように、測定用電
線21、22の一端21a、22aは、貫通孔19に達
しない深さで導電体13、14の内部に半径方向に埋め
込まれ、さらに径方向に折り曲げられた上で外側に延び
出している。延び出した部位は、さらに導電体13、1
4の表面に沿って軸心と平行に折り曲げられ、生体電極
10の長さ方向の中心近辺で再び半径方向外向きに折り
曲げられ、被覆体12を貫通して外部に延び出してい
る。
As shown in FIGS. 2 and 3a, one ends 21a and 22a of the measuring wires 21 and 22 are embedded in the conductors 13 and 14 in a radial direction at a depth that does not reach the through hole 19, and It is bent in the radial direction and extends outward. The extended portions are further provided with conductors 13 and 1
4 is bent parallel to the axis along the surface of the electrode 4, and is bent outward again in the radial direction near the center of the biological electrode 10 in the longitudinal direction, and penetrates the covering 12 to extend to the outside.

【0018】前記アース線(図3bの符号24)の一端
は、アース電極23に対して裏側から接合され、被覆体
12の内部を通って生体電極10の長さ方向の中心位置
で半径方向に折り曲げられ、外部に延び出している。ア
ース線24の外側に延び出している部分は、前記測定用
電線21、22と平行に配列され、それらの3本の電線
は所定の間隔を開けるようにして束ねた後、全体にポリ
ウレタン、ナイロン、フッ素樹脂などの生体適合性が高
い合成樹脂あるいはシリコーンなどのゴムでコーティン
グし、絶縁すると共に補強している。測定用電線21、
22およびアース電線24の各電線は、たとえばポリ四
弗化エチレン(テフロン:米国デユポン社の登録商標)
などのフッ素樹脂でコーティングした銀線など、生体適
合性がよく、耐久性が高い金属線が好適に用いられる。
しかしエナメルコーティングあるいはカシューコーティ
ングしたステンレス線、またはニクロム線を用いること
もできる。各電線の直径は0.1mm以下が好ましい。
たとえばステンレス線の場合は、0.05mm程度であ
る。3本の電線の他端側には、IC用のターミナルピン
27が連結されている。そのターミナルピン27は、多
チャンネルの交感神経活動活動群を遠隔計測できるよう
に、体内埋め込み型テレメーターに接続するのが好まし
い。
One end of the ground wire (reference numeral 24 in FIG. 3b) is joined to the ground electrode 23 from the back side, passes through the inside of the covering 12, and is radially located at the center position of the biological electrode 10 in the longitudinal direction. It is bent and extends to the outside. A portion of the ground wire 24 extending outside is arranged in parallel with the measuring electric wires 21 and 22, and these three electric wires are bundled with a predetermined space therebetween, and then the whole is made of polyurethane or nylon. It is coated with synthetic resin with high biocompatibility such as fluororesin or rubber such as silicone for insulation and reinforcement. Measuring wire 21,
Each of the electric wires 22 and the ground electric wire 24 is, for example, polytetrafluoroethylene (Teflon: a registered trademark of Dyupon Corporation in the United States).
A metal wire having good biocompatibility and high durability, such as a silver wire coated with a fluororesin, is preferably used.
However, it is also possible to use enamel-coated or cashew-coated stainless steel wire or nichrome wire. The diameter of each electric wire is preferably 0.1 mm or less.
For example, in the case of a stainless wire, it is about 0.05 mm. Terminal pins 27 for IC are connected to the other ends of the three electric wires. The terminal pin 27 is preferably connected to an implantable telemeter so that a multi-channel sympathetic nerve activity group can be remotely measured.

【0019】図4に示す生体電極30では、図1の生体
電極と実質的に同じ本体31と、その本体のスリット2
6とは反対側の部位に接着された左右一対の糸32とを
備えている。糸32は絹糸など、生体適合性が高い糸が
好ましい。それらの糸32は、図5に示すように、本体
のスリット26を開いた状態で神経束などの測定対象1
8を貫通孔19に入れた後、両端を結び合わせてスリッ
ト26が開かないように本体31を締め付けるために使
用する。それによりスリット26で分けた面同士の密着
性が強くなり、スリット26からの体液などの染み込み
を防止し、導電体の長期間にわたる外部からの絶縁状態
を維持するのに役立つ。
In the bioelectrode 30 shown in FIG. 4, a body 31 which is substantially the same as the bioelectrode of FIG. 1 and a slit 2 of the body 31 are provided.
A pair of left and right threads 32 adhered to the portion opposite to 6 are provided. The thread 32 is preferably a thread having high biocompatibility such as silk thread. As shown in FIG. 5, those threads 32 are to be measured 1 such as nerve bundles with the slit 26 of the main body opened.
After inserting 8 into the through hole 19, it is used to tie the ends together and tighten the body 31 so that the slit 26 does not open. This strengthens the adhesion between the surfaces divided by the slit 26, prevents penetration of bodily fluid or the like from the slit 26, and helps maintain the insulation state of the conductor from the outside for a long period of time.

【0020】図6に示す生体電極35では、被覆体12
の内面の導電体13、14と当接する部位に、導電性樹
脂などの電極板36を埋め込んでおり、測定用電線2
1、22の一端21a、22aはそれらの電極板36に
連結している。このものは導電体13、14に電線を埋
め込まなくてもよいので、製造が容易である。さらに組
立時に導電体13、14などを被覆体12の端部から押
し込むことができるので、組立作業が容易になる。
In the biomedical electrode 35 shown in FIG.
An electrode plate 36 made of a conductive resin or the like is embedded in a portion of the inner surface of the electrode that contacts the conductors 13 and 14.
One ends 21a and 22a of the Nos. 1 and 22 are connected to those electrode plates 36, respectively. Since it is not necessary to embed electric wires in the conductors 13 and 14, this product is easy to manufacture. Furthermore, since the conductors 13, 14 and the like can be pushed in from the end portions of the cover 12 during assembly, the assembly work is facilitated.

【0021】図7aに示す生体電極40では、導電体1
3などに形成するスリット26を、中心の貫通孔19を
超えて、他方の側まで延ばしている。このものはスリッ
ト26を大きく開くことができる利点がある。ただし図
5のようにスリット26が貫通孔19で止まっている場
合は、測定対象18が貫通孔19の位置で止まるので、
位置決めが容易であるというメリットがある。
In the biological electrode 40 shown in FIG. 7a, the conductor 1
The slit 26 formed in 3 or the like extends to the other side beyond the central through hole 19. This has the advantage that the slit 26 can be opened wide. However, when the slit 26 stops at the through hole 19 as shown in FIG. 5, the measurement target 18 stops at the position of the through hole 19, so
There is a merit that positioning is easy.

【0022】図7bに示す生体電極42では、想像線で
示すように、被覆体12の自然な状態での内径d1を、
芯体11の外径d2よりも小さくしている。そのため被
覆体12を芯体11の周囲に装着したとき、復元しよう
とする弾力による付勢力が強く働き、スリット26で分
ける面同士の密着性が高くなる利点がある。ただし図5
aのようにスリット26を開く場合に、余分な力が必要
になる。
In the biomedical electrode 42 shown in FIG. 7b, the inner diameter d1 of the covering 12 in its natural state is
It is smaller than the outer diameter d2 of the core 11. Therefore, when the covering body 12 is attached around the core body 11, there is an advantage that the biasing force due to the elastic force for restoring works strongly, and the adhesion between the surfaces divided by the slit 26 becomes high. However, Figure 5
When the slit 26 is opened like a, extra force is required.

【0023】図7cに示す生体電極44では、芯体11
と被覆体12がそれぞれ直径方向の面で二分割して半体
45、46とされており、それらを結びつけるための糸
32が用意されている。このものは神経などへの装着が
容易である。ただし取り外した被覆体12や芯体11の
半体を紛失するおそれがある。
In the biological electrode 44 shown in FIG. 7c, the core 11
The cover 12 and the cover 12 are each divided into two halves in the diametrical direction to form halves 45 and 46, and a thread 32 for connecting them is prepared. This is easy to attach to nerves. However, there is a possibility that the removed cover 12 or half of the core 11 may be lost.

【0024】図8aに示す生体電極47は、自然な状態
でスリット26が開いている。そのため、貫通孔19に
神経などを挿入するとき、スリット26を開く手間を省
くことができる。したがって取り扱いが容易である。こ
の生体電極47は貫通孔19に神経などを挿入した後
は、図5に示す手順と同様に使用することができる。な
お、図8bに示すように、この生体電極47では被覆体
12の厚さが薄く、それにより全体が柔軟である。さら
に被覆体12は端面部材16、17の外面も一体的に被
覆しており、それにより部品が分かれにくいという効果
がある。他の部分の構成および効果は図1の生体電極1
0の場合と同じである。
The bioelectrode 47 shown in FIG. 8a has the slit 26 opened in a natural state. Therefore, when inserting a nerve or the like into the through hole 19, it is possible to save the trouble of opening the slit 26. Therefore, it is easy to handle. After inserting a nerve or the like into the through hole 19, the biomedical electrode 47 can be used in the same manner as the procedure shown in FIG. It should be noted that, as shown in FIG. 8b, in this biomedical electrode 47, the covering body 12 has a small thickness, so that the entire body is flexible. Further, the cover 12 also integrally covers the outer surfaces of the end face members 16 and 17, which has the effect of making it difficult to separate the parts. The structure and effects of the other parts are the same as those of the bioelectrode 1 shown in FIG.
It is the same as the case of 0.

【0025】図9aは本発明の生体電極を用いて測定し
た腎交感神経の神経活動51と動脈血圧52とを一緒に
示したオシログラフである。このような連続測定によ
り、神経作用と血圧の相関関係を調べることができる。
また図9bは、図9aの測定後に被測定動物に対して交
感神経節ブロック処理(ヘキサメソニウムC6 の投与)
を行い、それによって腎交感神経の神経活動51は消失
し、動脈血圧52が低下したことが分かる。この結果か
ら、本電極で記録された電極信号は交感神経活動である
と言える。
FIG. 9a is an oscillograph showing together neural activity 51 of the renal sympathetic nerve and arterial blood pressure 52 measured using the bioelectrode of the present invention. By such continuous measurement, the correlation between nerve action and blood pressure can be investigated.
Further, FIG. 9b shows a sympathetic ganglion block treatment (administration of hexamesonium C6) on the animal to be measured after the measurement of FIG. 9a.
It can be seen that the nerve activity 51 of the renal sympathetic nerve disappeared and the arterial blood pressure 52 decreased. From this result, it can be said that the electrode signal recorded by this electrode is sympathetic nerve activity.

【0026】上記の生体電極は、運動神経、感覚神経、
自律神経(交感神経と副交感神経)などの末梢神経にお
ける神経放電を測定することができる。また、神経以外
でも、生体電極の貫通孔に挟むことができるものであれ
ば、他の生体組織(骨格筋や平滑筋など)の興奮性活動
を測定・記録することができる。
The above bioelectrodes are used for motor nerves, sensory nerves,
It is possible to measure nerve discharge in peripheral nerves such as autonomic nerves (sympathetic nerve and parasympathetic nerve). In addition to nerves, excitatory activities of other living tissues (skeletal muscles, smooth muscles, etc.) can be measured and recorded as long as they can be inserted into the through holes of the living body electrodes.

【0027】前記実施形態では、いずれの生体電極も円
柱状に構成しているが、角柱状であってもよい。また図
7cのように分割して構成する場合は、可撓性はなくて
もよく、たとえばセラミックスなどの生体適合性のよい
剛性材料なども使用することもできる。しかし神経など
の生体組織を保護するため、可撓性・生体適合性を有す
る高分子材料が好ましい。また前記実施形態では、ノイ
ズ対策の上、一対の導電体を用いて一対の差分電位差を
記録するようにしているが(双極誘導)、一方の電極だ
けを記録装置に配線して単極から記録することもできる
(単極誘導)。
In the above-mentioned embodiment, each of the biomedical electrodes has a cylindrical shape, but it may have a prismatic shape. In the case of the divided structure as shown in FIG. 7c, it is not necessary to have flexibility, and a rigid material having good biocompatibility such as ceramics can be used. However, a polymeric material having flexibility and biocompatibility is preferable in order to protect living tissues such as nerves. In addition, in the above-described embodiment, a pair of conductors are used to record a pair of differential potential differences as a countermeasure against noise (bipolar induction), but only one electrode is wired to a recording device to record from a single pole. It can also be done (unipolar induction).

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の生体電極の一実施形態を示す一部切
り欠き斜視図である。
FIG. 1 is a partially cutaway perspective view showing an embodiment of a bioelectrode of the present invention.

【図2】 その生体電極の一部断面平面図である。FIG. 2 is a partial cross-sectional plan view of the biomedical electrode.

【図3】 図3aおよび図3bはそれぞれその生体電極
に用いられている導電体および非導電体の側面図であ
る。
3a and 3b are side views of a conductor and a non-conductor used in the bioelectrode, respectively.

【図4】 本発明の生体電極の他の実施形態を示す斜視
図である。
FIG. 4 is a perspective view showing another embodiment of the bioelectrode of the present invention.

【図5】 図2の生体電極の使用方法を示す工程図であ
る。
FIG. 5 is a process drawing showing the method of using the biomedical electrode of FIG.

【図6】 本発明の生体電極のさらに他の実施形態を示
す一部断面平面図である。
FIG. 6 is a partial cross-sectional plan view showing still another embodiment of the bioelectrode of the present invention.

【図7】 図7a、図7bおよび図7cはそれぞれ本発
明の生体電極のさらに他の実施形態を示す側面図であ
る。
7a, 7b and 7c are side views showing yet another embodiment of the bioelectrode of the present invention.

【図8】 図8aは本発明の生体電極のさらに他の実施
形態を示す側面図、図8bは図8aのVIII-VIII線断面
図である。
8a is a side view showing still another embodiment of the bioelectrode of the present invention, and FIG. 8b is a sectional view taken along line VIII-VIII of FIG. 8a.

【図9】 図9aおよび図9bはそれぞれ本発明の生体
電極を用いて測定した神経活動と動脈血圧の関係を示す
オシログラフである。
9a and 9b are oscillographs showing the relationship between nerve activity and arterial blood pressure measured using the bioelectrode of the present invention.

【図10】 図10a、図10bおよび図10cはそれ
ぞれ従来のマイクロ電極体の一例を示す概略説明図であ
る。
10a, 10b and 10c are schematic explanatory views each showing an example of a conventional microelectrode body.

【符号の説明】[Explanation of symbols]

10 生体電極 11 芯体 12 被覆体 13、14 導電体 15 介在部材 16、17 端面部材 18 測定対象 19 貫通孔 21、22 測定用電線 23 アース電極 24 アース線 21a、22a 測定用電線の一端 26 スリット 27 ターミナルピン 30 生体電極 31 本体 32 糸 35 生体電極 36 電極板 40 生体電極 42 生体電極 d1 内径 d2 外径 44 生体電極 45、46 半体 47 生体電極 51 神経活動 52 動脈血圧 10 bioelectrode 11 core 12 Cover 13, 14 Conductor 15 Intervening member 16, 17 End member 18 measurement target 19 through holes 21,22 Measuring wire 23 Earth electrode 24 ground wire 21a, 22a One end of the measuring wire 26 slits 27 terminal pins 30 bioelectrode 31 body 32 threads 35 bioelectrode 36 electrode plate 40 bioelectrode 42 bioelectrode d1 inner diameter d2 outer diameter 44 bioelectrode 45,46 half body 47 bioelectrode 51 Nervous activity 52 Arterial blood pressure

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川畑 貴子 兵庫県宝塚市栄町1丁目12番28号 日本ケ ーブル・システム株式会社内 (72)発明者 近藤 和彦 兵庫県宝塚市栄町1丁目12番28号 日本ケ ーブル・システム株式会社内 (72)発明者 関 康夫 兵庫県宝塚市栄町1丁目12番28号 日本ケ ーブル・システム株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takako Kawabata             12-12 Sakaemachi, Takarazuka-shi, Hyogo Nihonke             Cable System Co., Ltd. (72) Inventor Kazuhiko Kondo             12-12 Sakaemachi, Takarazuka-shi, Hyogo Nihonke             Cable System Co., Ltd. (72) Inventor Yasuo Seki             12-12 Sakaemachi, Takarazuka-shi, Hyogo Nihonke             Cable System Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ中心に測定対象を通すための貫
通孔を有する一対の高分子材料製の導電体と、それらの
導電体の周囲を電気絶縁し、導電体同士を、貫通孔が直
線上に間隔をあけて並ぶように支持する高分子材料製の
非導電体と、各導電体に連結され、非導電体を貫通して
外部に延び、かつ、外部では表面が絶縁されている2本
の電線とを備えている、神経活動などの計測に用いる超
小型の生体電極。
1. A pair of conductors made of a polymer material, each of which has a through hole for passing an object to be measured in the center, and the surroundings of these conductors are electrically insulated, and the conductors are formed such that the through holes are linear. A non-conductor made of a polymer material that is supported in parallel with each other at intervals, and two that are connected to each conductor and extend to the outside through the non-conductor, and the surface is insulated outside Ultra-compact bio-electrode for measuring nerve activity etc.
【請求項2】 前記導電体および非導電体がそれぞれゴ
ム状弾性体からなり、かつ、全体として表面から貫通孔
に達する、測定対象を貫通孔に導くためのスリットが形
成され、そのスリットが弾力によって常時閉じている請
求項1記載の生体電極。
2. The conductor and the non-conductor are each made of a rubber-like elastic body, and a slit for guiding a measurement object to the through hole, which reaches the through hole from the surface as a whole, is formed, and the slit is elastic. The biological electrode according to claim 1, which is always closed by.
【請求項3】 前記スリットを閉じた状態に維持するべ
く、非導電体の周囲を縛るための糸を備えている請求項
2記載の生体電極。
3. The bioelectrode according to claim 2, further comprising a thread for binding the periphery of the non-conductor so as to keep the slit closed.
【請求項4】 前記非導電体の表面に設けられるアース
電極と、そのアース電極に連結され、表面が絶縁されて
いるアース線とをさらに備えている請求項1記載の生体
電極。
4. The biological electrode according to claim 1, further comprising a ground electrode provided on the surface of the non-conductive body, and a ground wire connected to the ground electrode and having an insulated surface.
【請求項5】 前記非導電体が、導電体の間に介在され
る介在部材と、各導電体の端面を覆う端面部材と、導電
体、介在部材および端面部材の全体の周囲を囲む筒状部
材とからなる請求項1記載の生体電極。
5. The non-conductor is a tubular member that surrounds the interposition member interposed between the conductors, the end face member that covers the end face of each conductor, and the entire periphery of the conductor, the interposition member, and the end face member. The biological electrode according to claim 1, which comprises a member.
JP2002176883A 2001-11-08 2002-06-18 Ultra-small bioelectrode used for measuring nerve activity Expired - Fee Related JP3889321B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002176883A JP3889321B2 (en) 2001-11-08 2002-06-18 Ultra-small bioelectrode used for measuring nerve activity
US10/431,508 US7113816B2 (en) 2002-06-18 2003-05-08 Ultra-miniature in-vivo electrode used for measuring bioelectrical neural activity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001343065 2001-11-08
JP2001-343065 2001-11-08
JP2002176883A JP3889321B2 (en) 2001-11-08 2002-06-18 Ultra-small bioelectrode used for measuring nerve activity

Publications (3)

Publication Number Publication Date
JP2003204946A true JP2003204946A (en) 2003-07-22
JP2003204946A5 JP2003204946A5 (en) 2005-10-13
JP3889321B2 JP3889321B2 (en) 2007-03-07

Family

ID=27666995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176883A Expired - Fee Related JP3889321B2 (en) 2001-11-08 2002-06-18 Ultra-small bioelectrode used for measuring nerve activity

Country Status (1)

Country Link
JP (1) JP3889321B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180052194A (en) * 2016-11-10 2018-05-18 한국과학기술연구원 Neural Probe Structure and Neural Probe Assembly having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180052194A (en) * 2016-11-10 2018-05-18 한국과학기술연구원 Neural Probe Structure and Neural Probe Assembly having the same
KR101887024B1 (en) * 2016-11-10 2018-08-09 한국과학기술연구원 Neural Probe Structure and Neural Probe Assembly having the same
US10653329B2 (en) 2016-11-10 2020-05-19 Korea Institute Of Science And Technology Planar neural probe structure and its assembly structure for chronic implantation

Also Published As

Publication number Publication date
JP3889321B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
US5458629A (en) Implantable lead ring electrode and method of making
CN107041744B (en) Catheter spine assembly with closely spaced micro bipolar electrodes
US7650184B2 (en) Cylindrical multi-contact electrode lead for neural stimulation and method of making same
US6912423B2 (en) Terminal connector assembly for a medical device and method therefor
US6418332B1 (en) Test plug and cable for a glucose monitor
Hetke et al. Silicon ribbon cables for chronically implantable microelectrode arrays
US3957036A (en) Method and apparatus for recording activity in intact nerves
US5560358A (en) Connector design for multi-contact medical electrode
EP1370322B1 (en) Lead with adjustable angular and spatial relationships between electrodes
US6185463B1 (en) Implantable short resistant lead
AU2019283933A1 (en) Apparatus and methods for assisted breathing by transvascular nerve stimulation
US7113816B2 (en) Ultra-miniature in-vivo electrode used for measuring bioelectrical neural activity
CA2078647A1 (en) Break-apart needle electrode system
CN103721342B (en) Implantable detection/miniature the guide body of stimulation multipole
US20070219551A1 (en) Medical device with flexible printed circuit
JPH11504543A (en) Medical lead having a compression lumen
CN105246543A (en) Systems and methods for making tip electrodes for leads of electrical stimulation systems
JPH06510209A (en) Double helix FES electrode
JPH11512636A (en) Split tip electrode catheter
US8874184B1 (en) MR Conditional needle and surface electrodes
US11547849B2 (en) Systems and methods for ruggedized penetrating medical electrode arrays
KR20170139082A (en) Detection of activity in peripheral nerves
US9731114B2 (en) Multichannel brain probe
KR101261746B1 (en) Intracardiac defibrillation catheter
JP2003204946A (en) Microminiature biological electrode used for measurement of neuro-activity or the like

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees