JP2003203808A - Composite bonded magnet and rotating machine using the same - Google Patents

Composite bonded magnet and rotating machine using the same

Info

Publication number
JP2003203808A
JP2003203808A JP2002000717A JP2002000717A JP2003203808A JP 2003203808 A JP2003203808 A JP 2003203808A JP 2002000717 A JP2002000717 A JP 2002000717A JP 2002000717 A JP2002000717 A JP 2002000717A JP 2003203808 A JP2003203808 A JP 2003203808A
Authority
JP
Japan
Prior art keywords
fine powder
composite
bonded magnet
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002000717A
Other languages
Japanese (ja)
Inventor
Masahiro Tobise
飛世  正博
Yoshitsugu Fujimoto
義継 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002000717A priority Critical patent/JP2003203808A/en
Publication of JP2003203808A publication Critical patent/JP2003203808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an SmFeN-based bonded magnet, having small surface roughness and improving magnetization and irreversible demagnetizing factor. <P>SOLUTION: The composite bonded magnet, having a main component composition expressed by R<SB>α</SB>T<SB>100-(α+β+γ+δ)</SB>M<SB>β</SB>B<SB>γ</SB>N<SB>δ</SB>in atom.% (R is at least one kind of rare earth element, containing Y and necessarily contains Sm; T is Fe or Fe and Co; M is at least one kind among Al, Ti, V, Cr, Mn, Cu, Ga, Zr, Nb, Mo, Hf, Ta and W; and 5≤α≤18, 0≤β≤10, 0≤γ≤4 and 4≤δ≤30) comprises R-T-N based anisotropic fine powder, whose average particle diameter d1 is 1 μm<d1≤10 μm and R-T-N based isotropic fine powder, whose average particle diameter d2 is 1-10 μm, and a binder binding the two kinds of magnetic powder. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、従来の等方性Sm
FeNボンド磁石の着磁性を改善した複合型ボンド磁
石、および異方性SmFeNボンド磁石の不可逆減磁率
(耐熱性)を改善し、かつ寸法精度が非常に高い複合型
ボンド磁石に関する。また本発明は、前記複合型ボンド
磁石を用いて構成した高性能の回転機に関する。
TECHNICAL FIELD The present invention relates to a conventional isotropic Sm.
The present invention relates to a composite bond magnet in which the magnetism of an FeN bond magnet is improved, and a composite bond magnet in which the irreversible demagnetization rate (heat resistance) of an anisotropic SmFeN bond magnet is improved and the dimensional accuracy is extremely high. The present invention also relates to a high-performance rotating machine configured by using the composite bond magnet.

【0002】[0002]

【従来の技術】最近開発されたSmFeN系ボンド磁石
用磁粉はその製造プロセスによって等方性ボンド磁石用
と異方性ボンド磁石用の磁粉に分けられる。等方性磁粉
は例えば超急冷法やHDDR法によって作製される。異
方性磁粉はその磁粉の粒径が10μm以下に調整された
微粉であり、磁界を印加して配向させることにより異方
性ボンド磁石となる。10μm以下に調整する方法とし
ては粉砕の他に還元拡散法を利用して粉砕を行わないで
微粉を得る法等がある。これらの磁粉は圧縮成形はもと
より、射出成形、押出成形、あるいはシート成形等によ
ってボンド磁石化される。
2. Description of the Related Art Recently developed magnetic powders for SmFeN-based bonded magnets are classified into magnetic powders for isotropic bonded magnets and anisotropic bonded magnets depending on the manufacturing process. The isotropic magnetic powder is produced by, for example, a superquenching method or an HDDR method. The anisotropic magnetic powder is fine powder in which the particle size of the magnetic powder is adjusted to 10 μm or less, and becomes an anisotropic bonded magnet by applying a magnetic field to orient it. As a method for adjusting the particle size to 10 μm or less, there is a method other than pulverization, such as a method of obtaining fine powder without pulverization using a reduction diffusion method. These magnetic powders are made into bond magnets by compression molding, injection molding, extrusion molding, sheet molding, or the like.

【0003】従来、等方性SmFeNボンド磁石は着磁
がしずらくエネルギー積は比較的低いが、熱安定性が良
好である。一方、異方性SmFeNボンド磁石は、着磁
が容易で高いエネルギー積が得られるが、熱安定性が低
いというそれぞれ相反する特徴を有している。
Conventionally, isotropic SmFeN bonded magnets are difficult to magnetize and have a relatively low energy product, but have good thermal stability. On the other hand, an anisotropic SmFeN bonded magnet has the contradictory characteristics of being easily magnetized and obtaining a high energy product, but having low thermal stability.

【0004】実用上、希土類ボンド磁石固有の磁気特性
を引き出すための十分な着磁磁場強度を確保することが
困難な場合が多い。磁気特性が飽和する着磁磁場強度で
着磁した希土類ボンド磁石固有のiHcと、実用上多用さ
れる室温の1989.5kA/m(25kOe)以下の弱い着磁磁場強
度との差が大きいほど、磁気特性のばらつきが大きくな
り、磁石応用製品の出力ばらつきを増大させることにな
る。また不可逆減磁率で評価される耐熱性は、異方性S
mFeNボンド磁石の場合、実用に必要とされる100℃
における不可逆減磁率:5%以下を満足することができ
ず、信頼性に問題がある。また、回転機に組み込む際に
は通常接着剤を用いてロータコアやステータに接着する
が、表面粗さが大きいと接着剤の層の厚さも大きくな
る。そのため密着強度は接着強度ではなく、接着剤の樹
脂強度となってしまうため、組込みした際の磁石剥離が
問題となる。そのためこの表面粗さが小さいものが望ま
れていた。また出力向上および小型化のため磁気回路の
ギャップは年々狭くなる傾向にあり、表面粗さが大きい
と十分な信頼性を得るに足る寸法精度が得られないとい
う問題があった。
In practice, it is often difficult to secure a sufficient magnetizing magnetic field strength to bring out the magnetic characteristics peculiar to the rare earth bonded magnet. The larger the difference between the iHc peculiar to the rare earth bonded magnet magnetized with a magnetic field strength at which the magnetic characteristics are saturated and the weak magnetic field strength of 1989.5 kA / m (25 kOe) or less at room temperature, which is often used practically, The variation in the characteristics becomes large, and the variation in the output of the magnet application product increases. In addition, the heat resistance evaluated by the irreversible demagnetization factor is anisotropic S
In case of mFeN bonded magnet, 100 ℃ which is necessary for practical use
The irreversible demagnetization ratio in 5: 5% or less cannot be satisfied, and there is a problem in reliability. Further, when it is incorporated in a rotating machine, it is usually adhered to a rotor core or a stator by using an adhesive, but if the surface roughness is large, the thickness of the adhesive layer also becomes large. Therefore, the adhesion strength is not the adhesive strength but the resin strength of the adhesive agent, so that peeling of the magnet when assembled is a problem. Therefore, it is desired that the surface roughness be small. Further, the gap of the magnetic circuit tends to become narrower year by year due to the improvement of output and miniaturization, and there is a problem that dimensional accuracy sufficient to obtain sufficient reliability cannot be obtained if the surface roughness is large.

【0005】[0005]

【発明が解決しようとする課題】したがって本発明の課
題は、従来のSmFeN等方性ボンド磁石の着磁性を改
善したボンド磁石の提供と、従来のSmFeN異方性ボ
ンド磁石の不可逆減磁率を改善し、かつ表面粗さを改善
することによって回転機に組込んだ際の磁石剥離を改善
し、また寸法精度を向上させたボンド磁石提供すること
である。また本発明の課題は、前記複合型ボンド磁石を
用いて構成した高性能の回転機を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a bond magnet in which the magnetizability of a conventional SmFeN isotropic bond magnet is improved, and to improve the irreversible demagnetization rate of the conventional SmFeN anisotropic bond magnet. In addition, the present invention provides a bonded magnet having improved surface roughness and improved peeling of the magnet when incorporated in a rotary machine, and improved dimensional accuracy. Moreover, the subject of this invention is providing the high performance rotary machine comprised using the said composite-type bond magnet.

【0006】[0006]

【課題を解決するための手段】上記改題を解決した本発
明の複合型ボンド磁石は、原子%でRα100−(α+
β+γ+δ)βγδ(RはYを含む希土類元素の
少なくとも1種でありSmを必ず含み、TはFeまたは
FeとCoであり、MはAl、Ti、V、Cr、Mn、
Cu、Ga、Zr、Nb、Mo、Hf、TaおよびWの
少なくとも1種であり、5≦α≦18,0≦β≦10,0≦
γ≦4,4≦δ≦30)で表される主要成分組成を有す
る、平均粒径が1〜10μmのR−T−N系異方性微粉
と、平均粒径が1〜10μmのR−T−N等方性系微粉
と、前記2種の磁粉を結着するバインダーとからなり、
平均表面粗さが0.5μm以下、さらには0.3μm以
下とすることが可能である。また、(R−T−N系等方
性微粉):(R−T−N系異方性微粉)=50〜95重量
部:50〜5重量部の磁粉およびバインダーとからなり、
[着磁磁場強度:800kA/m (10kOe)で着磁したときの残
留磁束密度Br]/[着磁磁場強度:4000kA/m (50kOe)
で着磁したときの残留磁束密度Br]×100% で定義す
る着磁率が85%以上であり、かつパーミアンス係(Pc)
=2において大気中で100℃×1時間加熱後室温に戻した
ときの不可逆減磁率が3.5%以下という良好な着磁性を
具備するものである。また、(R−T−N系等方性微
粉):(R−T−N系異方性微粉)=50〜5重量部:50
〜95重量部の磁粉およびバインダーとからなり、着磁率
が80%以上であり、かつ不可逆減磁率が5.0%以下とい
う良好な耐熱性を具備するものである。
SUMMARY OF THE INVENTION The composite bonded magnet of the present invention, which has solved the above-mentioned problem, is R α T 100− (α +
β + γ + δ) M β B γ N δ (R is at least one rare earth element including Y and always contains Sm, T is Fe or Fe and Co, M is Al, Ti, V, Cr, Mn,
At least one of Cu, Ga, Zr, Nb, Mo, Hf, Ta and W, and 5 ≦ α ≦ 18,0 ≦ β ≦ 10,0 ≦
γ ≦ 4,4 ≦ δ ≦ 30) and an R—T—N anisotropic fine powder having an average particle size of 1 to 10 μm and an R−T—N average particle size of 1 to 10 μm. TN isotropic fine powder, and a binder that binds the two types of magnetic powder,
The average surface roughness can be 0.5 μm or less, further 0.3 μm or less. Further, (R-T-N-based isotropic fine powder): (R-T-N-based anisotropic fine powder) = 50 to 95 parts by weight: 50 to 5 parts by weight of magnetic powder and binder,
[Magnetic field strength: Residual magnetic flux density Br when magnetized at 800 kA / m (10 kOe)] / [Magnetic field strength: 4000 kA / m (50 kOe)
The residual magnetic flux density when magnetized in [Br] x 100% has a magnetization rate of 85% or more and the permeance coefficient (Pc)
It has a good magnetizability of irreversible demagnetization rate of 3.5% or less when heated to 100 ° C. for 1 hour in the atmosphere and returned to room temperature. Further, (R-T-N type isotropic fine powder): (R-T-N type anisotropic fine powder) = 50 to 5 parts by weight: 50
It is composed of up to 95 parts by weight of magnetic powder and a binder, and has good heat resistance such as a magnetization rate of 80% or more and an irreversible demagnetization rate of 5.0% or less.

【0007】前記複合型ボンド磁石(特に厚みが0.05〜
2mmのシート形状のもの、圧縮成形による高強度のも
の)を用いて構成される回転機(ファンモータ、スピン
ドルモータあるいは移動体通信機器に搭載される振動モ
ータ等)は有用である。また前記複合型ボンド磁石を用
いて構成される静電現像方式のプリンタや複写機等に用
いるマグネットロールは有用である。また音響用スピー
カ、ブザー、吸着用または磁界発生用磁石等に有用であ
る。
The composite-type bonded magnet (especially with a thickness of 0.05 to
A rotary machine (a fan motor, a spindle motor, a vibration motor mounted on a mobile communication device, or the like) configured by using a 2 mm sheet-shaped one or a high-strength one by compression molding is useful. Further, a magnet roll used in an electrostatic development type printer, a copying machine, or the like, which is configured by using the composite bond magnet, is useful. It is also useful as an acoustic speaker, a buzzer, a magnet for attracting or generating a magnetic field, and the like.

【0008】本発明においてR−T−N系等方性微粉と
は、例えば高周波溶解またはアーク溶解等によりR−T
−N系磁粉に対応したR−T系母合金の主要成分組成に
調整した溶湯を作製後、鋳型鋳造法またはストリップキ
ャスト法により凝固して得られたR−T系母合金を用
い、必要により粗粉砕工程、水素化・分解反応処理およ
び脱水素・再結合反応処理(HDDR工程)に代表され
る結晶微細化工程、窒化工程、微粉砕工程を行ない製造
した粒径が1〜10μmのものを指す。また、R−T系
母合金溶湯を超急冷による結晶微細化工程を行なったも
のでもよい。
In the present invention, the R-T-N type isotropic fine powder refers to R-T by, for example, high frequency melting or arc melting.
Using an RT master alloy obtained by producing a molten metal adjusted to the main component composition of an RT master alloy corresponding to -N magnetic powder and then solidifying it by a mold casting method or a strip casting method, if necessary. Coarse crushing process, hydrogenation / cracking reaction process and dehydrogenation / recombination reaction process (HDDR process), such as crystal refining process, nitriding process, and fine crushing process, are used to produce particles having a particle size of 1 to 10 μm. Point to. Alternatively, the molten RT alloy may be subjected to a crystal refining step by ultraquenching.

【0009】また、R−T−N系異方性微粉とは例えば
高周波溶解またはアーク溶解等によりR−T−N系磁粉
に対応したR−T系母合金の主要成分組成に調整した溶
湯を作製後、鋳型鋳造法またはストリップキャスト法に
より凝固して得られたR−T系母合金を用い、結晶微細
化工程を行わずに窒化工程を行ない、単軸結晶粒径とな
るように1〜10μmに微粉砕したものである。
Further, the R-T-N anisotropic fine powder is a molten metal adjusted to the main component composition of the R-T master alloy corresponding to the R-T-N magnetic powder by, for example, high frequency melting or arc melting. After the production, using the RT master alloy obtained by solidifying by the mold casting method or the strip casting method, the nitriding step is performed without performing the crystal refining step so that the uniaxial crystal grain size becomes 1 to It is finely pulverized to 10 μm.

【0010】RにはSmを必ず含み、Sm以外にY、L
a、Ce、Pr、Nd、Eu、Gd、Tb、Dy、H
o、Er、Tm、YbおよびLuの少なくとも1種を含
むことが許容される。Smミッシュメタルやジジム等の
2種以上の希土類元素の混合物を用いてもよい。Rとし
て、より好ましくはSmまたはSmおよびLaとY、C
e、Pr、Nd、Gd、DyおよびErの少なくとも1
種の組み合わせ、さらに好ましくはSmまたはSmおよ
びLaとY、Ce、PrおよびNdの少なくとも1種と
の組み合わせ、特にRがSmまたはSmおよびLaから
なることが好ましい。Smの純度でいえば、iHc≧397.9
kA/m(5kOe)とするために、Rに占めるSm比率を、好
ましくは50原子%以上、さらに好ましくは70原子%以上
とすることがよい。Rには、製造上混入が避けられない
O、H、C、Al、Si、Na、MgおよびCa等の不
可避的不純物を合計でRのうちの10原子%以下含有する
ことが許容される。R含有量(α)は5〜18原子%が好
ましく、6〜12原子%がより好ましい。R含有量が5原
子%未満ではiHc≧397.9kA/m(5kOe)を得ることが困難
であり、18原子%超では(BH)maxが大きく低下する。
R always includes Sm, and Y, L other than Sm
a, Ce, Pr, Nd, Eu, Gd, Tb, Dy, H
It is allowed to contain at least one of o, Er, Tm, Yb and Lu. A mixture of two or more kinds of rare earth elements such as Sm misch metal and didymium may be used. As R, more preferably Sm or Sm and La and Y, C
at least one of e, Pr, Nd, Gd, Dy and Er
It is preferred that a combination of species, more preferably a combination of Sm or Sm and La with at least one of Y, Ce, Pr and Nd, especially R consisting of Sm or Sm and La. In terms of Sm purity, iHc ≧ 397.9
In order to achieve kA / m (5 kOe), the Sm ratio in R is preferably 50 atom% or more, more preferably 70 atom% or more. It is permissible for R to contain inevitable impurities such as O, H, C, Al, Si, Na, Mg, and Ca, which are unavoidable from the viewpoint of manufacturing, in a total amount of 10 atom% or less of R. The R content (α) is preferably 5 to 18 atom%, more preferably 6 to 12 atom%. If the R content is less than 5 atomic%, it is difficult to obtain iHc ≧ 397.9 kA / m (5 kOe), and if it exceeds 18 atomic%, the (BH) max is greatly reduced.

【0011】Al、Ti、V、Cr、Mn、Cu、G
a、Zr、Nb、Mo、Hf、TaおよびWの少なくと
も1種からなるM元素の含有量(β)は0〜10原子%と
することが好ましい。M元素の増加とともにiHcは増加
するが、M元素の含有量が10原子%超ではThMn12
型のSm(Fe,M)12相が生成してiHcが大き
く低下する。Bの含有量(γ)は0〜4原子%とするこ
とが好ましい。B量の増加とともにiHcは増加するが、
4原子%超ではiHcが大きく低下する。窒素の含有量
(δ)は4〜30原子%が好ましく、10〜20原子%がより
好ましい。4原子%未満および30原子%超ではiHc、(B
H)maxが大きく低下する。Feの一部を0.01〜30原子%
のCoで置換することが好ましく、1〜20原子%のCo
で置換することがより好ましい。所定量のCoを含有す
ることによりキュリー温度およびiHcの温度係数が向上
するが、Co含有量が30原子%超では(BH)max、iHcが顕
著に低下し、0.01原子%未満では添加効果が認められな
い。
Al, Ti, V, Cr, Mn, Cu, G
The content (β) of the M element consisting of at least one of a, Zr, Nb, Mo, Hf, Ta and W is preferably 0 to 10 atomic%. IHc increases with the increase of M element, but when the content of M element exceeds 10 atomic%, ThMn 12
Type Sm (Fe, M) 12 N z phase is generated and iHc is greatly reduced. The B content (γ) is preferably 0 to 4 atomic%. IHc increases as the amount of B increases,
If it exceeds 4 atomic%, iHc is greatly reduced. The nitrogen content (δ) is preferably 4 to 30 atom%, more preferably 10 to 20 atom%. Below 4 atom% and above 30 atom%, iHc, (B
H) max is greatly reduced. 0.01 to 30 atom% of a part of Fe
Of Co is preferable, and 1 to 20 atomic% of Co
More preferably, Although the Curie temperature and the temperature coefficient of iHc are improved by containing a predetermined amount of Co, (BH) max and iHc are significantly reduced when the Co content exceeds 30 atomic%, and the addition effect is less than 0.01 atomic%. unacceptable.

【0012】還元/拡散法を用いた場合は安価なR−T
−N系磁粉を提供することができる。また、高周波溶解
またはアーク溶解等によりR−T−N系磁粉に対応した
R−T系母合金の主要成分組成に調整した溶湯を作製
後、鋳型鋳造法またはストリップキャスト法により凝固
して得られたR−T系母合金を用いてR−T−N系磁粉
を作製することができる。
When the reduction / diffusion method is used, it is inexpensive RT
-N-based magnetic powder can be provided. Further, it is obtained by producing a molten metal adjusted to the main component composition of the RT master alloy corresponding to the RTN magnetic powder by high frequency melting or arc melting, and then solidifying it by a mold casting method or a strip casting method. The R-T-based magnetic powder can be produced by using the R-T-based master alloy.

【0013】R−T−N系磁粉を還元/拡散法を用いて
作製する場合の好ましい製造条件を以下に説明する。ま
ず、Rの酸化物とFeまたはFeの酸化物とを、R−T
−N系磁粉に対応したR−T系母合金の主要成分組成に
配合する。さらにRの酸化物および必要に応じてFeの
酸化物が化学反応式上100%還元される量(これを化学
量論的必要量という)の0.5〜2倍に相当する量の還元
剤(Ca、Mg、CaHおよびMgHの少なくとも
1種)を前記配合物に添加後、混合する。続いて、混合
物を不活性ガス雰囲気中で1000〜1300℃×1〜20時間加
熱してRの酸化物等を還元し、続いて還元したRとFe
とを十分に相互拡散させた後室温まで冷却する。還元剤
の添加量が化学量論的必要量の0.5倍未満では工業生産
上有益な還元反応が実現されず、2倍超では最終的に磁
粉に残留する還元剤量が増大して磁気特性の低下を招
く。また、不活性ガス雰囲気中での加熱条件が1000℃×
1時間未満では工業生産上有益な還元/拡散反応が進行
せず、1300℃×20時間超では還元/拡散反応炉の劣化が
顕著になる。次に、反応物を洗浄液中に投入してCaO
等の反応副生成物を洗い流した後、脱水および真空乾燥
を行って還元/拡散法によるR−T系母合金が得られ
る。次に、必要に応じて前記R−T系母合金を、窒素を
含まない不活性ガス雰囲気中で1010〜1280℃×1〜40時
間加熱する均質化熱処理を行い、αFeおよび他の偏析
相を固溶させた後、室温まで冷却する。均質化熱処理の
条件が1010℃×1時間未満ではαFeおよび他の偏析相
の固溶が進まず、1280℃×40時間超では均質化熱処理の
効果が飽和し、Sm等の蒸発による組成ずれが顕著にな
る。
Preferred manufacturing conditions for manufacturing the RTN magnetic powder by the reduction / diffusion method will be described below. First, the oxide of R and the oxide of Fe or Fe are separated by RT
-The compound is added to the main component composition of the RT master alloy corresponding to the N magnet powder. Further, the amount of the reducing agent (Ca, which is 0.5 to 2 times the amount of the R oxide and, if necessary, the Fe oxide, which is 100% reduced in the chemical reaction formula (this is called the stoichiometrically required amount). , Mg, CaH 2 and MgH 2 ) are added to the formulation and then mixed. Subsequently, the mixture is heated in an inert gas atmosphere at 1000 to 1300 ° C. for 1 to 20 hours to reduce oxides of R and the like, and then to reduce R and Fe.
After sufficiently diffusing and, the mixture is cooled to room temperature. If the amount of the reducing agent added is less than 0.5 times the stoichiometrically required amount, the reduction reaction useful in industrial production will not be realized, and if it exceeds 2 times, the amount of the reducing agent remaining in the magnetic powder will increase and the magnetic properties Cause decline. Also, the heating condition in an inert gas atmosphere is 1000 ° C ×
If it is less than 1 hour, the reduction / diffusion reaction beneficial for industrial production does not proceed, and if it exceeds 1300 ° C x 20 hours, the reduction / diffusion reaction furnace is significantly deteriorated. Next, the reaction product is put into a cleaning liquid to add CaO.
After washing away reaction by-products such as the above, dehydration and vacuum drying are performed to obtain an RT master alloy by a reduction / diffusion method. Next, if necessary, the RT master alloy is subjected to homogenizing heat treatment by heating it in an inert gas atmosphere containing no nitrogen for 1010 to 1280 ° C. for 1 to 40 hours to remove αFe and other segregated phases. After making a solid solution, it is cooled to room temperature. If the homogenization heat treatment condition is less than 1010 ° C x 1 hour, the solid solution of αFe and other segregated phases does not proceed, and if it exceeds 1280 ° C x 40 hours, the effect of the homogenization heat treatment is saturated and the composition shift due to evaporation of Sm etc. occurs. It will be noticeable.

【0014】こうして得られたR−T系母合金は、Ca
含有量が好ましくは0.4重量%以下、より好ましくは0.2
重量%以下、特に好ましくは0.1重量%以下であり、酸
素含有量が好ましくは0.8重量%以下、より好ましくは
0.4重量%以下、特に好ましくは0.2重量%以下であり、
炭素含有量が好ましくは0.3重量%以下、より好ましく
は0.2重量%以下、特に好ましくは0.1重量%以下のもの
である。次に、1.0×10〜1.0×10Pa(0.1〜10atm)
の水素ガス中または水素ガス分圧を有する不活性ガス
(窒素ガスを除く)中で675〜900℃×0.5〜8時間加熱
する水素化・分解反応処理と、続いて1.3Pa(1×10
−2Torr)以下の高真空中で700〜900℃×0.5〜10時間
加熱する脱水素・再結合反応処理とを行う。水素化・分
解反応により母合金を希土類元素Rの水素化物RHx相
などに分解する。続いて、脱水素・再結合反応により、
母合金相に再結合させて平均結晶粒径が0.01〜1μmの
微細な再結晶粒からなる母合金を得る。個々の再結晶粒
子はランダムに配向する。水素化・分解反応の水素分圧
が1.0×10Pa(0.1atm)未満では分解反応が起こら
ず、1.0×10Pa(10atm)超では真空排気設備の大型
化、コスト増を招く。よって水素分圧は1.0×10〜1.0
×10Pa (0.1〜10atm)が好ましく、5.0×10〜5.0
×10Pa (0.5〜5atm)がより好ましい。水素化・分解
反応の加熱条件が675℃(ほぼ水素化分解下限温度相
当)×0.5時間未満では母合金が水素を吸収するのみで
RHx相などへの分解が起こらず、900℃×8時間超では
脱水素後の母合金が粗大粒化し、希土類ボンド磁石のiH
cが大きく低下する。よって、水素化・分解反応の加熱
条件は675〜900℃×0.5〜8時間が好ましく、675〜875
℃×0.5〜8時間がより好ましい。脱水素・再結合反応
の水素分圧が1.3Pa(1×10−2Torr)よりも低真空では
処理に長時間を要し、1.3×10−4Pa (1×10 Tor
r)よりも高真空とすると真空排気装置の大型化、コス
ト増を招く。脱水素・再結合反応の加熱条件が700℃×
0.5時間未満ではRHx等の分解が進行せず、900℃×10
時間超では再結晶組織が粗大粒化してiHcが大きく低下
する。よって、平均再結晶粒径を0.01〜1μmとするた
めに、脱水素・再結合反応の加熱条件は700〜900℃×0.
5〜10時間が好ましく、725〜875℃×0.5〜10時間がより
好ましい。次に必要に応じて粉砕を行い、その後窒化処
理を行うことにより本発明に用いるR−T−M磁粉が得
られる。窒化前に必要に応じて分級または篩分して粒径
分布を調整することが均一な窒化組織を実現し、かつ希
土類ボンド磁石の成形容易性および密度を向上するため
に好ましい。
The RT master alloy thus obtained is Ca
The content is preferably 0.4% by weight or less, more preferably 0.2
% By weight or less, particularly preferably 0.1% by weight or less, the oxygen content is preferably 0.8% by weight or less, more preferably
0.4 wt% or less, particularly preferably 0.2 wt% or less,
The carbon content is preferably 0.3% by weight or less, more preferably 0.2% by weight or less, and particularly preferably 0.1% by weight or less. Next, 1.0 × 10 4 to 1.0 × 10 6 Pa (0.1 to 10 atm)
Hydrogenation / decomposition reaction treatment by heating in 675 to 900 ° C. for 0.5 to 8 hours in hydrogen gas or an inert gas (excluding nitrogen gas) having a partial pressure of hydrogen gas, and then 1.3 Pa (1 × 10
Dehydrogenation / recombination reaction treatment is performed by heating at 700 to 900 ° C. for 0.5 to 10 hours in a high vacuum of −2 Torr or less. The mother alloy is decomposed into a hydride RHx phase of the rare earth element R by a hydrogenation / decomposition reaction. Then, by dehydrogenation / recombination reaction,
By recombining with the mother alloy phase, a mother alloy composed of fine recrystallized grains having an average grain size of 0.01 to 1 μm is obtained. The individual recrystallized grains are randomly oriented. If the hydrogen partial pressure of the hydrogenation / cracking reaction is less than 1.0 × 10 4 Pa (0.1 atm), the cracking reaction does not occur, and if it exceeds 1.0 × 10 6 Pa (10 atm), the vacuum exhaust facility becomes large and the cost increases. Therefore, the hydrogen partial pressure is 1.0 × 10 4 to 1.0.
× 10 6 Pa (0.1 to 10 atm) is preferable, 5.0 × 10 4 to 5.0
× 10 5 Pa (0.5 to 5 atm) is more preferable. If the heating condition of the hydrogenation / cracking reaction is less than 675 ° C (corresponding to the lower limit of hydrocracking temperature) x 0.5 hours, the mother alloy only absorbs hydrogen and does not decompose into the RHx phase, etc., and exceeds 900 ° C x 8 hours. Then, after dehydrogenation, the mother alloy becomes coarse-grained, and the iH
c is greatly reduced. Therefore, the heating conditions for the hydrogenation / cracking reaction are preferably 675 to 900 ° C x 0.5 to 8 hours, and 675 to 875
More preferably 0.5 ° C. × 0.5 to 8 hours. Hydrogen partial pressure of dehydrogenation-recombination reaction takes a long time to process the low vacuum than 1.3Pa (1 × 10 -2 Torr) , 1.3 × 10 -4 Pa (1 × 10 - 6 Tor
If the vacuum is higher than that of r), the size and cost of the vacuum exhaust device will increase. Heating conditions for dehydrogenation / recombination reaction are 700 ℃ ×
Degradation of RHx, etc. does not proceed in less than 0.5 hours, 900 ° C x 10
If the time is exceeded, the recrystallized structure will become coarse and iHc will decrease significantly. Therefore, in order to set the average recrystallized grain size to 0.01 to 1 μm, the heating conditions for the dehydrogenation / recombination reaction are 700 to 900 ° C. × 0.
It is preferably 5 to 10 hours, more preferably 725 to 875 ° C x 0.5 to 10 hours. Next, if necessary, pulverization is performed, and then nitriding treatment is performed to obtain the R-T-M magnetic powder used in the present invention. It is preferable to adjust the particle size distribution by classifying or sieving as needed before nitriding in order to realize a uniform nitriding structure and to improve the moldability and density of the rare earth bonded magnet.

【0015】窒化は、2.0×10〜1.0×10Pa (0.2〜
10atm)の窒素ガス、水素が1〜95モル%で残部が窒素か
らなる(水素+窒素)の混合ガス、NHのモル%が1
〜50%で残部水素からなる(NH+水素)の混合ガス
のいずれかの雰囲気中で300〜650℃×0.1〜30時間加熱
するガス窒化が実用性に富んでいる。ガス窒化の加熱条
件は300〜650℃×0.1〜30時間が好ましく、400〜550℃
×0.5〜20時間がより好ましい。300℃×0.1時間未満で
は窒化が進行せず、650℃×30時間超では逆にRN相を
生成しiHcが低下する。窒化における窒素単独ガスまた
は窒素含有ガスの圧力は2.0×10〜1.0×10Pa (0.2
〜10atm)が好ましく、5.0×10〜5.0×10Pa (0.5
〜5atm)がより好ましい。2.0×10Pa(0.2atm)未満
では窒化反応が非常に遅くなり、1.0×10Pa (10at
m)超では高圧ガス設備の大型化、コスト増を招く。窒
化後に、真空中あるいは不活性ガス中(窒素ガスを除
く)で300〜600℃×0.5〜50時間の熱処理を行うとiHcを
さらに高めることができる。こうして得られたR−T−
N系磁粉には0.01〜10原子%の水素の含有が許容され
る。
Nitriding is performed at 2.0 × 10 4 to 1.0 × 10 6 Pa (0.2 to
10 atm) nitrogen gas, hydrogen is 1 to 95 mol% and the balance is nitrogen (hydrogen + nitrogen) mixed gas, and NH 3 is 1 mol%
Gas nitriding, which heats at 300 to 650 ° C. for 0.1 to 30 hours in any atmosphere of a mixed gas of (NH 3 + hydrogen) with the balance being hydrogen at ˜50% is highly practical. The heating conditions for gas nitriding are preferably 300 to 650 ℃ × 0.1 to 30 hours, 400 to 550 ℃
× 0.5 to 20 hours is more preferable. Nitriding does not proceed at less than 300 ° C. × 0.1 hours, and RN phase is generated conversely at more than 650 ° C. × 30 hours to lower iHc. The pressure of nitrogen alone gas or nitrogen-containing gas in nitriding is 2.0 × 10 4 to 1.0 × 10 6 Pa (0.2
~ 10 atm) is preferable, and 5.0 x 10 4 to 5.0 x 10 5 Pa (0.5
~ 5 atm) is more preferred. When it is less than 2.0 × 10 4 Pa (0.2 atm), the nitriding reaction becomes very slow, and 1.0 × 10 6 Pa (10 atm)
If it exceeds m, high pressure gas equipment will become large and cost will increase. After nitriding, iHc can be further increased by performing heat treatment in vacuum or in an inert gas (excluding nitrogen gas) at 300 to 600 ° C. for 0.5 to 50 hours. RT-obtained in this way
The N-based magnetic powder may contain 0.01 to 10 atomic% of hydrogen.

【0016】本発明に用いるR−T−N系等方性微粉お
よび異方性微粉の平均粒径は、1〜10μmが好ましく、1
〜5μmがより好ましい。平均粒径が1μm未満では成形
性が悪化し、かつ酸化が顕著になり(BH)maxが大きく低
下する。平均粒径が10μm超では複合型ボンド磁石体と
したときの表面粗さが悪化して磁気回路のギャップの小
さい用途への適用が困難になる。等方性微粉を10μm
以上のものを使用するとさらに耐酸化性が向上するが、
本願の意図する表面粗さの平均が0.5μm以下のもの
は得られない。よって磁気特性は若干下がるものの狭ギ
ャップが要求される小型モータ用途等に優位性がある。
The average particle size of the R-T-N isotropic fine powder and anisotropic fine powder used in the present invention is preferably 1 to 10 μm.
-5 μm is more preferable. When the average particle size is less than 1 μm, the moldability is deteriorated, and the oxidation becomes remarkable, and (BH) max is greatly reduced. If the average particle size exceeds 10 μm, the surface roughness of the composite bonded magnet body deteriorates, making it difficult to apply it to applications where the gap of the magnetic circuit is small. Isotropic fine powder 10 μm
If the above is used, the oxidation resistance is further improved,
A surface roughness average of 0.5 μm or less intended by the present application cannot be obtained. Therefore, although the magnetic characteristics are slightly lowered, it has an advantage in applications such as small motors that require a narrow gap.

【0017】R−T−N系等方性微粉の主相は2-17型あ
るいは1-7型の結晶構造の硬質磁性相であり、高い(BH)m
axおよび良好な耐熱性を具備するために、前記硬質磁性
相の平均結晶粒径は、0.01〜1μmが好ましく、0.01〜
0.4μmがより好ましく、0.01〜0.3μmが特に好まし
い。平均結晶粒径が1μm超ではiHcが397.9kA/m(5kO
e)未満になる。磁気特性を高めるために、R−T−N
系等方性微粉のαFeの含有比率を、面積比率の平均値
で、5%以下にすることが好ましく、3%以下がより好
ましく、1%以下が特に好ましい。硬質磁性相およびα
Feの同定ならびにそれらの相の面積比率の算出は、電
子顕微鏡および光学顕微鏡により撮影した断面組織写
真、電子回折結果ならびにX線回折結果等を考慮して求
める。例えば、対象とするR−T−N系磁粉粒子の断面
を撮影した透過型電子顕微鏡写真およびその断面組織の
同定結果を符合させて求めることができる。
The main phase of the R-T-N isotropic fine powder is a hard magnetic phase having a 2-17 type or 1-7 type crystal structure and a high (BH) m.
In order to have ax and good heat resistance, the average crystal grain size of the hard magnetic phase is preferably 0.01 to 1 μm, and 0.01 to 1 μm.
0.4 μm is more preferable, and 0.01 to 0.3 μm is particularly preferable. If the average crystal grain size exceeds 1 μm, iHc is 397.9 kA / m (5 kO
Less than e). In order to improve magnetic properties, R-T-N
The content ratio of αFe in the isotropic fine powder is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less in terms of the average value of the area ratio. Hard magnetic phase and α
The identification of Fe and the calculation of the area ratio of these phases are performed in consideration of the cross-sectional structure photograph taken by an electron microscope and an optical microscope, the electron diffraction result, the X-ray diffraction result, and the like. For example, it can be determined by matching the transmission electron micrograph of the cross section of the target R-N-N magnetic powder particles and the identification result of the cross-sectional structure.

【0018】R−T−N系異方性微粉は、還元/拡散
法、鋳型鋳造法またはストリップキャスト法により得ら
れたR−T系母合金を用いてハンマーミル、ジョークラ
ッシャー等で粗粉砕し窒化処理を行った後、ボールミ
ル、ジェットミル等で微粉砕することにより得ることが
できる。
The R-T-N anisotropic fine powder is roughly crushed with a hammer mill, a jaw crusher, etc., using an RT mother alloy obtained by a reduction / diffusion method, a mold casting method or a strip casting method. After nitriding, it can be obtained by finely pulverizing with a ball mill, jet mill or the like.

【0019】本発明の複合型ボンド磁石のバインダーと
して熱硬化性樹脂、熱可塑性樹脂またはゴム材料が好適
である。圧縮成形法またはカレンダーロール法による場
合は熱可塑性樹脂または熱硬化性樹脂が好ましく、特に
熱硬化性液状樹脂が適している。具体例を挙げれば、エ
ポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、フェ
ノール樹脂、フッ素樹脂、ケイ素樹脂またはポリフェニ
レンサルファイド樹脂(PPS)の液状樹脂が有用であ
る。液状エポキシ樹脂は取り扱いが容易で良好な耐熱性
を示し、安価であるので最も好ましい。
A thermosetting resin, a thermoplastic resin or a rubber material is suitable as the binder of the composite bonded magnet of the present invention. In the case of the compression molding method or the calendar roll method, a thermoplastic resin or a thermosetting resin is preferable, and a thermosetting liquid resin is particularly suitable. As specific examples, liquid resins such as epoxy resin, polyimide resin, polyester resin, phenol resin, fluororesin, silicon resin or polyphenylene sulfide resin (PPS) are useful. Liquid epoxy resins are the most preferable because they are easy to handle, exhibit good heat resistance, and are inexpensive.

【0020】[0020]

【発明の実施の形態】(実施例)以下、実施例により本
発明を詳しく説明するが、それら実施例により本発明が
限定されるものではない。 (実施例1)ストリップキャスト法による窒化用母合金
を用いたR−T−N系等方性磁粉を作製した。純度99.9
%以上のSm、Fe、TiおよびBを用いて下記の窒化
磁粉に対応する母合金の主要成分組成に調整した溶湯
を、直径300mmの銅製の双ロール式ストッリップキャス
ターの冷却用ロール面(周速1m/秒)上に注湯して急
冷凝固し、板厚が約150μmの板状母合金を得た。次
に、母合金に1.0×10Pa(1atm)の水素ガス中で800
℃×1時間加熱する水素化・分解反応処理を施し、次い
で水素分圧(真空中)約6.7Pa(5×10−2Torr)で800
℃×1時間加熱する脱水素・再結合反応処理を施した。
次に、ハンマーミルを用いて窒素ガス雰囲気中で粉砕後
75μmアンダーに篩分した。次に、1.0×10Pa(1at
m)の窒素ガス中で450℃×10時間加熱する窒化処理を施
し、冷却した。その後、アルゴンガス気流中で400℃×3
0分間熱処理し、主要成分組成が原子%で Sm8.1
FebalTi 2.01.012.0 、平均粒径
が56.2μm、粒径分布が26〜74μmの窒化磁粉を得た。
平均粒径、粒径分布はSympatec社製レーザー回折型粒径
分布測定装置;ヘロス・ロードスにより測定した。この
窒化磁粉は平均結晶粒径が0.15μmの硬質磁性相(Th
Zn17型)および少量のαFeからなり、αFeは
面積比率の平均値で1%未満であり非常に少なかった。
前記の窒化磁粉をボールミルにより微粉砕し平均粒径が
1〜10μmのR−T−N系等方性微粉とした。
BEST MODE FOR CARRYING OUT THE INVENTION (Examples)
BEST MODE FOR CARRYING OUT THE INVENTION The invention will be described in detail, but the present invention is
It is not limited. (Example 1) Master alloy for nitriding by strip casting method
The R-TN type isotropic magnetic powder using was produced. Purity 99.9
% Of Sm, Fe, Ti, and B with the following nitriding
Molten metal adjusted to the main component composition of the master alloy corresponding to magnetic powder
Is a twin roll type strip caster made of copper with a diameter of 300 mm.
Pour molten metal onto the cooling roll surface (peripheral speed 1 m / sec)
It was cooled and solidified to obtain a plate-shaped master alloy having a plate thickness of about 150 μm. Next
, 1.0 × 10 in mother alloy5800 in Pa (1 atm) hydrogen gas
After hydrogenation / decomposition reaction treatment by heating at ℃ × 1 hour,
Hydrogen partial pressure (in vacuum) of about 6.7Pa (5 x 10-2Torr) 800
A dehydrogenation / recombination reaction treatment was performed by heating at ℃ × 1 hour.
Next, after crushing in a nitrogen gas atmosphere using a hammer mill
Sieve to 75 μm under. Then 1.0 x 105Pa (1at
m) Nitrogen gas is subjected to nitriding treatment by heating at 450 ° C for 10 hours.
And cooled. After that, in an argon gas stream, 400 ° C x 3
Heat treated for 0 minutes, main component composition is atomic% Sm8.1
FebalTi 2.0B1.0N12.0, Average particle size
Of 56.2 μm and a particle size distribution of 26 to 74 μm were obtained.
Average particle size and particle size distribution are laser diffraction particle size manufactured by Sympatec
Distribution measuring device: measured by Heros Rhodes. this
Nitride magnetic powder has a hard magnetic phase (Th
TwoZn17Type) and a small amount of αFe, and αFe is
The average area ratio was less than 1%, which was very small.
The above-mentioned magnetic nitride powder was finely pulverized with a ball mill to obtain an average particle size of
It was a 1-10 μm R-T-N type isotropic fine powder.

【0021】次にストリップキャスト法による窒化用母
合金を用いたR−T−N系異方性磁粉を作製した。R−
T−N系等方性磁粉同様にして板厚が約150μmの板状
母合金を得た。次にハンマーミルを用いて窒素ガス雰囲
気中で粉砕後75μmアンダーに篩分した。次に、1.0×1
0Pa(1atm)の窒素ガス中で450℃×10時間加熱する
窒化処理を施し、冷却した。その後、アルゴンガス気流
中で400℃×30分間熱処理し、主要成分組成が原子%で
Sm8.1FebalTi2.01.0
12.0 、平均粒径が56.2μm、粒径分布が26〜74μ
mの窒化磁粉を得た。前記の窒化磁粉をボールミルによ
り単軸結晶粒径近くまで微粉砕し、平均粒径が1〜10μ
mのR−T−N系異方性微粉とした。 (表面粗さの測定)前記のR−T−N系等方性微粉とR
−T−N系異方性微粉とを70:30の重量比で配合
し、シラン系カップリング剤を添加してミキサーに投入
し混合した。次いで2.8重量部の液状エポキシ樹脂お
よび硬化剤DDSを添加し複合型ボンド磁石用のコンパウ
ンドを得た。次に、前記コンパウンドを用いて、成形圧
力7.8×10Pa(8トン/cm)で、パーミアンス係数(P
c)が2;(厚み)/(直径)=0.7の中実円筒形状に圧
縮成形した。次いで、成形体を大気中で200℃×2時間加
熱硬化後、室温まで冷却し複合型ボンド磁石を得た。こ
の複合型ボンド磁石の表面粗さを軸方向に沿って測定し
た。測定結果のプロットを図1(a)に示す。最大の表
面粗さは0.5μm以内であり、平均表面粗さは約0.
3μmであった。 (比較例1)前記のR−T−N系等方性微粉の製造方法
において微粉工程を行わず、窒化処理後の平均粒径が5
6.2μmのR−T−N系等方性粗粉を用いて本発明と比
較した。また、R−T−N系異方性微粉は実施例1と同
様のものを用いた。R−T−N系等方性粗粉とR−T−
N系異方性微粉を70:30の重量比で配合し、シラン
系カップリング剤を添加してミキサーに投入し混合し
た。次いで2.8重量部の液状エポキシ樹脂および硬化
剤DDSを添加し複合型ボンド磁石用のコンパウンドを得
た。次に、前記コンパウンドを用いて、実施例1と同様
にして複合型ボンド磁石を得、表面粗さの測定を行っ
た。測定結果のプロットを図1(b)に示す。最大の表
面粗さは1.4μmであり、平均表面粗さは約0.6μ
mであった。
Next, a nitriding mother by the strip casting method
An R-T-N anisotropic magnetic powder using an alloy was produced. R-
A plate shape with a thickness of about 150 μm, similar to T-N isotropic magnetic powder
A mother alloy was obtained. Next, using a hammer mill, use a nitrogen gas atmosphere.
After crushing in air, it was sieved to 75 μm under. Then 1.0 x 1
05Heat at 450 ℃ for 10 hours in Pa (1atm) nitrogen gas
It was subjected to a nitriding treatment and cooled. After that, argon gas flow
Heat treatment at 400 ℃ for 30 minutes at a main component composition of atomic%
 Sm8.1FebalTi2.0B1.0N
12.0, Average particle size 56.2μm, particle size distribution 26-74μ
m nitride magnetic powder was obtained. The above-mentioned nitrided magnetic powder was ball milled.
Finely pulverized to a uniaxial crystal grain size close to 1 to 10μ
m of R-T-N anisotropic fine powder. (Measurement of surface roughness) R-TN type isotropic fine powder and R
-T-N based anisotropic fine powder is mixed in a weight ratio of 70:30.
Then, add the silane coupling agent and add it to the mixer.
And mixed. Then 2.8 parts by weight of liquid epoxy resin and
And compounding agent DDS
I got a hand. Then, using the compound,
Power 7.8 × 108Pa (8 tons / cmTwo), The permeance coefficient (P
c) is 2; (thickness) / (diameter) = 0.7 pressed into a solid cylindrical shape
It was compression molded. Next, the molded body is heated in air at 200 ° C for 2 hours.
After thermosetting, it was cooled to room temperature to obtain a composite bonded magnet. This
The surface roughness of the composite bonded magnet of was measured along the axial direction.
It was A plot of the measurement results is shown in FIG. Largest table
The surface roughness is within 0.5 μm, and the average surface roughness is about 0.
It was 3 μm. (Comparative Example 1) Method for producing the above-mentioned R-T-N isotropic fine powder
No fine powder process was performed and the average particle size after nitriding was 5
Compared with the present invention by using 6.2 μm R-T-N type isotropic coarse powder.
Compared. The R-T-N anisotropic fine powder was the same as in Example 1.
I used a similar one. R-T-N type isotropic coarse powder and R-T-
N-type anisotropic fine powder was mixed in a weight ratio of 70:30 to prepare silane.
Add a system coupling agent and add it to the mixer to mix
It was Then 2.8 parts by weight of liquid epoxy resin and cure
Compound DDS was added to obtain compound for composite type bonded magnet
It was Next, using the compound, the same as in Example 1
To obtain the composite bonded magnet and measure the surface roughness.
It was A plot of the measurement results is shown in FIG. Largest table
Surface roughness is 1.4μm, average surface roughness is about 0.6μ
It was m.

【0022】(複合型等方性ボンド磁石の作製)前記の
R−T−N系等方性微粉とR−T−N系異方性微粉とを
90:10、70:30、50:50の重量比で配合
し、シラン系カップリング剤を添加してミキサーに投入
し混合した。次いで2.8重量部の液状エポキシ樹脂お
よび硬化剤DDSを添加し複合型ボンド磁石用のコンパウ
ンドを得た。次に、前記コンパウンドを用いて、成形圧
力7.8×10Pa(8トン/cm)で、パーミアンス係数(P
c)が2;(厚み)/(直径)=0.7の中実円筒形状に圧
縮成形した。次いで、成形体を大気中で200℃×2時間加
熱硬化後、室温まで冷却し複合型ボンド磁石を得た。
(実施例2〜4)次に、前記R−T−N系等方性微粉と
R−T−N系異方性微粉とを40:60、100:0の重量比で
配合した以外は実施例2〜4と同様にして、比較例2、
3の複合型ボンド磁石を作製した。着磁性は以下の式に
より定義した。 (着磁率)=[着磁磁場強度:800kA/m (10kOe)で着磁
したときのBr]/[着磁磁場強度:(4000kA/m (50kOe)
で着磁したときのBr)×100(%) 次に各複合型ボンド磁石のPc=2の試料を、20℃、238
7.4kA/m(30kOe)で着磁後、総磁束量(φ)を測定し
た。次いで大気中で100℃×1時間暴露後室温まで冷却
し、総磁束量(φ1)を測定した。耐熱性の指標とし
て、下記式で定義した不可逆減磁率(総磁束量の変化
率)を採用し、評価した。結果を表1に示す。 (不可逆減磁率)=(φ−φ1)/(φ)×100(%)
(Preparation of Composite Type Isotropic Bonded Magnet) The above-mentioned R-T-N isotropic fine powder and R-T-N anisotropic fine powder are 90:10, 70:30, 50:50. The silane coupling agent was added and added to the mixer and mixed. Then, 2.8 parts by weight of the liquid epoxy resin and the curing agent DDS were added to obtain a compound for a composite bonded magnet. Next, using the above compound, at a molding pressure of 7.8 × 10 8 Pa (8 ton / cm 2 ), the permeance coefficient (P
c) is 2; (thickness) / (diameter) = 0.7, and compression molded into a solid cylindrical shape. Next, the molded body was heat-cured in the air at 200 ° C. for 2 hours and then cooled to room temperature to obtain a composite bonded magnet.
(Examples 2 to 4) Next, except that the R-T-N isotropic fine powder and the R-T-N anisotropic fine powder were mixed in a weight ratio of 40:60 and 100: 0, respectively. Comparative Example 2, in the same manner as in Examples 2 to 4.
A composite type bonded magnet of No. 3 was produced. The magnetizability was defined by the following formula. (Magnetization rate) = [Magnetic field strength: Br when magnetized at 800 kA / m (10 kOe)] / [Magnetic field strength: (4000 kA / m (50 kOe)]
Br) x 100 (%) when magnetized at 20% of the sample of each composite bond magnet with Pc = 2
After magnetizing at 7.4 kA / m (30 kOe), the total amount of magnetic flux (φ) was measured. Then, the sample was exposed to 100 ° C. for 1 hour in the atmosphere and then cooled to room temperature, and the total magnetic flux amount (φ1) was measured. The irreversible demagnetization rate (rate of change of total magnetic flux) defined by the following formula was adopted and evaluated as an index of heat resistance. The results are shown in Table 1. (Irreversible demagnetization rate) = (φ-φ1) / (φ) × 100 (%)

【0023】[0023]

【表1】 α:大気中で100℃×1時間加熱後室温に戻したときの
不可逆減磁率
[Table 1] α: Irreversible demagnetization rate when heated to 100 ° C x 1 hour in the air and returned to room temperature

【0024】表1より等方性微粉と異方性微粉との配合
重量比率を10:90〜50:50wt%とした実施例
2〜4の複合型ボンド磁石で、目標とする着磁率が85%
超であり不可逆減磁率が3.5%以下の特性が得られた。
これに対し等方性R−T−N系微粉のみからなる比較例
3は不可逆減磁率は−2.0と良好であるものの着磁率
が充分でなかった。また、比較例2の場合は着磁率は97
%以上のもののαが−5.3で耐熱性が十分ではなかっ
た。
As shown in Table 1, the composite bonded magnets of Examples 2 to 4 in which the mixing weight ratio of the isotropic fine powder and the anisotropic fine powder was 10:90 to 50:50 wt%, the target magnetizability was 85. %
The characteristics were over, and the irreversible demagnetization rate was 3.5% or less.
On the other hand, Comparative Example 3 consisting of only the isotropic R-T-N fine powder had an irreversible demagnetization factor of -2.0, but the magnetizability was not sufficient. Further, in the case of Comparative Example 2, the magnetization rate is 97.
%, The α was -5.3 and the heat resistance was not sufficient.

【0025】(実施例5)実施例1と同じ磁粉を用い、
混合した磁粉:91.94重量部に対してそれぞれ、天然ゴ
ム:3重量部、ニトリルゴム:3重量部、塩素化ポリエチ
レン:2重量部、ビスフェノール型エポキシ樹脂:0.05
重量部およびステアリン酸カルシウム:0.01重量部を配
合後、加熱しながら混練した。混練物を冷却後、粒径5
mm以下に粉砕した。粉砕後、大気中で棒状の成形体を
加熱しながら押出成形した。続いて大気中、50℃で前記
棒状成形体をロール圧延機により圧延して厚さ1mm、
幅100mmのシート状成形体を得た。次いで、シート状
成形体を長さ80mmになるように切断した。その後、不
純物を除去するために大気中で50℃x10時間加熱する熱
処理を行った後、続いて大気中で加硫処理(150℃x2
時間)を行い、シート状ボンド磁石を得た。実施例1と
同様にして表面粗さの測定を行なった。最大の表面粗さ
は0.5μmであり、平均表面粗さは約0.3μmであ
った。
(Example 5) Using the same magnetic powder as in Example 1,
Mixed magnetic powder: 91.94 parts by weight, natural rubber: 3 parts by weight, nitrile rubber: 3 parts by weight, chlorinated polyethylene: 2 parts by weight, bisphenol type epoxy resin: 0.05
Parts by weight and 0.01 parts by weight of calcium stearate were mixed and then kneaded while heating. After cooling the kneaded product, the particle size is 5
Milled to less than mm. After crushing, a rod-shaped molded body was extruded while heating in the air. Then, in the air, at a temperature of 50 ℃, the rod-shaped molded body is rolled by a rolling mill to a thickness of 1 mm,
A sheet-shaped molded product having a width of 100 mm was obtained. Then, the sheet-shaped molded body was cut into a length of 80 mm. After that, in order to remove impurities, heat treatment is performed by heating in the air at 50 ° C for 10 hours, followed by vulcanization in the air (150 ° C x 2
Time) to obtain a sheet-shaped bonded magnet. The surface roughness was measured in the same manner as in Example 1. The maximum surface roughness was 0.5 μm and the average surface roughness was about 0.3 μm.

【0026】(実施例6〜8)実施例2〜4と同じ配合
重量比率とした磁粉を用い、混合した磁粉:91.94重量
部に対してそれぞれ、天然ゴム:3重量部、ニトリルゴ
ム:3重量部、塩素化ポリエチレン:2重量部、ビスフェ
ノール型エポキシ樹脂:0.05重量部およびステアリン酸
カルシウム:0.01重量部を配合後、加熱しながら混練し
た。混練物を冷却後、粒径5mm以下に粉砕した。粉砕
後、大気中で棒状の成形体を加熱しながら押出成形し
た。続いて大気中、50℃で前記棒状成形体をロール圧延
機により圧延して厚さ1mm、幅100mmのシート状成形
体を得た。次いで、シート状成形体を長さ80mmになる
ように切断した。その後、不純物を除去するために大気
中で50℃x10時間加熱する熱処理を行った後、続いて大
気中で加硫処理(150℃x2時間)を行い、シート状ボ
ンド磁石を得た(実施例6〜8)。これらのシート状ボ
ンド磁石の(BH)max、着磁率、αを表2に示す。
(Examples 6 to 8) Using magnetic powders having the same blending weight ratio as in Examples 2 to 4, with respect to mixed magnetic powders: 91.94 parts by weight, natural rubber: 3 parts by weight, nitrile rubber: 3 parts by weight, respectively. Parts, chlorinated polyethylene: 2 parts by weight, bisphenol type epoxy resin: 0.05 parts by weight and calcium stearate: 0.01 parts by weight, and then kneaded while heating. The kneaded product was cooled and then pulverized to a particle size of 5 mm or less. After crushing, a rod-shaped molded body was extruded while heating in the air. Then, the bar-shaped compact was rolled in air at 50 ° C. by a roll mill to obtain a sheet-shaped compact having a thickness of 1 mm and a width of 100 mm. Then, the sheet-shaped molded body was cut into a length of 80 mm. After that, a heat treatment of heating at 50 ° C. for 10 hours in the atmosphere to remove impurities was performed, and then a vulcanization treatment (150 ° C. for 2 hours) was performed in the atmosphere to obtain a sheet-shaped bonded magnet (Examples) 6-8). Table 2 shows (BH) max, magnetization rate, and α of these sheet-like bonded magnets.

【0027】[0027]

【表2】 α:大気中で100℃×1時間加熱後室温に戻したときの
不可逆減磁率
[Table 2] α: Irreversible demagnetization rate when heated to 100 ° C x 1 hour in the air and returned to room temperature

【0028】表2より、R−T−N系等方性微粉とR−
T−N系異方性微粉との配合重量比率を95:5〜5
0:50とした実施例6〜8の複合型ボンド磁石で、目
標とする着磁率が85%超であり不可逆減磁率が3.5%以
下の特性が得られた。これに対し、R−T−N系粗粉の
みの比較例5は着磁率が81%であり、また40:60の比較
例4の場合は着磁率は97%のもののαが−5.4で耐熱性
が十分ではなかった。
From Table 2, R-TN type isotropic fine powder and R-N
The blending weight ratio with the TN anisotropic fine powder is 95: 5-5.
With the composite type bonded magnets of Examples 6 to 8 with 0:50, the target magnetization ratio was over 85% and the irreversible demagnetization ratio was 3.5% or less. On the other hand, Comparative Example 5 containing only the R-T-N coarse powder had a magnetization rate of 81%, and in the case of Comparative Example 4 of 40:60, the magnetization rate was 97% but α was -5.4 and heat resistance was high. The sex was not enough.

【0029】(複合型異方性ボンド磁石の作製)前記の
R−T−N系等方性微粉とR−T−N系異方性微粉を実
施例2〜4と同じ配合重量比率とした磁粉とし、各々シ
ラン系カップリング剤とともにミキサーに投入し混合し
た。次いで2.8重量部の液状エポキシ樹脂および硬化
剤DDSを添加し複合型ボンド磁石用のコンパウンドを得
た。次に、前記コンパウンドを用いて、成形圧力7.8×10
Pa(8トン/cm)で、パーミアンス係数(Pc)が2;
(厚み)/(直径)=0.7 の中実円筒形状に磁場中圧
縮成形した。次いで、成形体を大気中で200℃×2時間加
熱硬化後、室温まで冷却し複合型ボンド磁石を得た(実
施例9〜11)。これらの表面粗さを実施例1と同様に
して測定したところ、ほぼ同じ結果が得られた。また、
次に、前記異方性R−T−N系微粉と等方性R−T−N
系微粉とを40:60、100:0の重量比で配合した以外は実
施例12〜17と同様にして、比較例8〜10の複合型
ボンド磁石を作製した。
(Production of Composite Anisotropic Bonded Magnet) The above-mentioned R—T—N isotropic fine powder and R—T—N anisotropic fine powder were used in the same blending weight ratio as in Examples 2-4. The powder was made into magnetic powder, and each was put into a mixer together with a silane coupling agent and mixed. Then, 2.8 parts by weight of the liquid epoxy resin and the curing agent DDS were added to obtain a compound for a composite bonded magnet. Then, using the compound, a molding pressure of 7.8 × 10
8 Pa (8 ton / cm 2 ) and a permeance coefficient (Pc) of 2;
(Thickness) / (Diameter) = 0.7 A solid cylindrical shape was compression molded in a magnetic field. Next, the molded body was heat-cured in the air at 200 ° C. for 2 hours and then cooled to room temperature to obtain composite bonded magnets (Examples 9 to 11). When these surface roughnesses were measured in the same manner as in Example 1, almost the same results were obtained. Also,
Next, the anisotropic R-T-N-based fine powder and the isotropic R-T-N are used.
Composite bonded magnets of Comparative Examples 8 to 10 were produced in the same manner as in Examples 12 to 17 except that the fine powder was mixed in a weight ratio of 40:60 and 100: 0.

【0030】[0030]

【表3】 α:大気中で100℃×1時間加熱後室温に戻したときの
不可逆減磁率
[Table 3] α: Irreversible demagnetization rate when heated to 100 ° C x 1 hour in the air and returned to room temperature

【0031】表3より、異方性R−T−N系微粉と等方
性R−T−N系微粉との配合重量比率を95〜50:5〜50
とした実施例9〜11の複合型ボンド磁石で、目標とす
る着磁率が80%超であり不可逆減磁率が5%以下の特性
が得られた。これに対し、異方性R−T−N系微粉のみ
の比較例7はαが−7.0%であり、また40:60の比較例
6場合はαが−3.7%のものの着磁率が78%で十分では
なかった。
From Table 3, the compounding weight ratio of anisotropic R-T-N type fine powder to isotropic R-T-N type fine powder is 95-50: 5-50.
With the composite bond magnets of Examples 9 to 11, the target magnetizability was over 80% and the irreversible demagnetization ratio was 5% or less. On the other hand, in Comparative Example 7 containing only anisotropic RTN fine powder, α was −7.0%, and in Comparative Example 6 of 40:60, α was −3.7% and the magnetization rate was 78%. Was not enough.

【0032】実施例9〜11と同じ磁粉を用い、混合し
た磁粉:91.94重量部に対してそれぞれ、天然ゴム:3重
量部、ニトリルゴム:3重量部、塩素化ポリエチレン:2
重量部、ビスフェノール型エポキシ樹脂:0.05重量部お
よびステアリン酸カルシウム:0.01重量部を配合後、加
熱しながら混練した。混練物を冷却後、粒径5mm以下
に粉砕した。粉砕後、大気中で棒状の成形体を加熱しな
がら磁場を印加し押出成形した。次いで、シート状成形
体を長さ80mmになるように切断した。その後、不純物
を除去するために大気中で50℃x10時間加熱する熱処理
を行った後、続いて大気中で加硫処理(150℃x2時
間)を行い、シート状ボンド磁石を得た。これらの表面
粗さを実施例5と同様にして測定したところ、ほぼ同じ
結果が得られた。これらのシート状ボンド磁石の(BH)ma
x、着磁率、αを表4に示す。
Using the same magnetic powder as in Examples 9 to 11, natural rubber: 3 parts by weight, nitrile rubber: 3 parts by weight, chlorinated polyethylene: 2 with respect to mixed magnetic powder: 91.94 parts by weight, respectively.
Parts by weight, bisphenol type epoxy resin: 0.05 parts by weight and calcium stearate: 0.01 parts by weight were mixed and then kneaded while heating. The kneaded product was cooled and then pulverized to a particle size of 5 mm or less. After the crushing, a magnetic field was applied to the extruded product while heating the rod-shaped product in the atmosphere. Then, the sheet-shaped molded body was cut into a length of 80 mm. Then, in order to remove impurities, a heat treatment of heating at 50 ° C. for 10 hours in the atmosphere was performed, and then a vulcanization treatment (150 ° C. for 2 hours) was performed in the atmosphere to obtain a sheet-shaped bonded magnet. When these surface roughnesses were measured in the same manner as in Example 5, almost the same results were obtained. (BH) ma of these sheet-shaped bonded magnets
Table 4 shows x, magnetization rate, and α.

【0033】[0033]

【表4】 [Table 4]

【0034】表4より、異方性R−T−N系微粉と等方
性R−T−N系微粉との配合重量比率を95〜50:5〜50
とした実施例12〜14の複合型ボンド磁石で、目標と
する着磁率が80%超であり不可逆減磁率が5%以下の特
性が得られた。これに対し、異方性R−T−N系微粉の
みの比較例9はαが−7.0%であり、また40:60の場合
はαが−3.7%のものの着磁率が79%で十分ではなかっ
た。
From Table 4, the blending weight ratio of the anisotropic R-T-N fine powder to the isotropic R-T-N fine powder is 95-50: 5-50.
In the composite bonded magnets of Examples 12 to 14, the target magnetizability was over 80% and the irreversible demagnetization ratio was 5% or less. On the other hand, in Comparative Example 9 containing only the anisotropic R-T-N fine powder, α was -7.0%, and in the case of 40:60, the magnetization rate of 79% when α was -3.7% was not sufficient. There wasn't.

【0035】(シート状複合型ボンド磁石の作製および
回転機での評価) (実施例15)施例5で作製した厚み1.0mmのシー
ト状複合型等方性ボンド磁石を用いて図2のファンモー
タ10を構成し、評価した結果について以下に説明する。
図2の(a)は本発明のファンモータの一例を示す要部
正面図であり、(b)は(a)の裏側から見た図であ
る。図2(a)において、1は前記シート状複合型等方
性ボンド磁石を1巻きして形成したリング状の界磁磁石
であり、リング状の強磁性体ヨーク2(SS400等)の内
周面側に接着剤により固定されている。シート状複合型
異方性ボンド磁石の表面粗さが非常に小さく、精密な寸
法精度を保ちつつ均一かつ強固に固着可能である。1aは
界磁磁石1の継ぎ目であり、界磁磁石1の内周面側に対
称4極の磁極1bが形成してある。3はファンモータ10の
回転軸であり、軸受6を介して回転軸3(回転子7)が
所定の速度で回転するようになっている。回転軸3とヨ
ーク2とは同軸に配置してあり、ガラス入りポリブチレ
ンテレフタレート樹脂製の射出成形部材4により一体に
抱持固定されている。保持部材4はファン4a、リム4b、
スポーク4cおよび背面部4dからなり、回転子7に実用に
耐える強度を付与している。界磁磁石1の着磁は、回転
子7を所定の着磁機の着磁ゾーン(図示省略)に配置
後、着磁できるので工業生産効率を向上することができ
る。エアギャップ9を介して回転子7と固定子(電機
子)8とが対向して配置されている。固定子8の外周面
側に固定子磁極(対称4極)が形成してあり、ファンモ
ータ駆動制御回路(図示省略)からの矩形波通電(電気
角で180度通電)信号を受けてファン4aが効率よく回転
する。回転子7を組み込んだファンモータ10を送風ファ
ンに搭載後、1ヶ月間連続運転した結果、連続運転後の
界磁磁石1には割れまたはクラックは認められず正常な
外観を呈していた。また、この連続運転によるファンモ
ータ10の性能劣化は認められなかった。
(Preparation of Sheet-shaped Composite Type Bonded Magnet and Evaluation on Rotating Machine) (Example 15) Using the sheet-shaped composite type isotropic bonded magnet having a thickness of 1.0 mm prepared in Example 5, as shown in FIG. The results of evaluation of the fan motor 10 which is configured will be described below.
2A is a front view of a main part of an example of the fan motor of the present invention, and FIG. 2B is a view seen from the back side of FIG. In FIG. 2 (a), 1 is a ring-shaped field magnet formed by winding the sheet-shaped composite type isotropic bonded magnet once, and the inner circumference of the ring-shaped ferromagnetic yoke 2 (SS400, etc.) It is fixed to the surface side with an adhesive. The surface roughness of the sheet-shaped composite type anisotropic bonded magnet is very small, and it is possible to firmly and uniformly adhere while maintaining precise dimensional accuracy. Reference numeral 1a is a joint of the field magnet 1, and a symmetrical 4-pole magnetic pole 1b is formed on the inner peripheral surface side of the field magnet 1. Reference numeral 3 denotes a rotary shaft of the fan motor 10, and the rotary shaft 3 (rotor 7) is rotated via a bearing 6 at a predetermined speed. The rotating shaft 3 and the yoke 2 are arranged coaxially, and are integrally held and fixed by an injection molding member 4 made of glass-containing polybutylene terephthalate resin. The holding member 4 includes a fan 4a, a rim 4b,
It consists of the spokes 4c and the back surface 4d, and gives the rotor 7 sufficient strength for practical use. The field magnet 1 can be magnetized by arranging the rotor 7 in a magnetizing zone (not shown) of a predetermined magnetizer and then magnetizing it, so that industrial production efficiency can be improved. The rotor 7 and the stator (armature) 8 are arranged so as to face each other via an air gap 9. A stator magnetic pole (symmetrical 4 poles) is formed on the outer peripheral surface side of the stator 8 and receives a rectangular wave energization (180 degrees electric angle energization) signal from a fan motor drive control circuit (not shown) to produce a fan 4a. Rotates efficiently. After the fan motor 10 incorporating the rotor 7 was mounted on a blower fan and continuously operated for one month, no cracks or cracks were observed in the field magnet 1 after the continuous operation, and the field magnet 1 had a normal appearance. Further, no performance deterioration of the fan motor 10 due to this continuous operation was observed.

【0036】(実施例16)実施例13で作製した厚み
1.0mmのシート状複合型異方性ボンド磁石を用いて図
3のペジャ用の振動モータ20を構成し、評価した結果に
ついて以下に説明する。図3の(a)はモータ20の要部
断面図であり、(b)は(a)のA−A線矢視断面図で
ある。界磁磁石24は前記の厚み1.0mmのシート状複合
型異方性ボンド磁石を所定寸法に切断後、強磁性体(S4
5C)製の回転子ヨーク26表面に丁度1巻して接着し、形
成した。シート状複合型異方性ボンド磁石の表面粗さが
非常に小さく、精密な寸法精度を保ちつつ均一かつ強固
に固着可能である。24aは固着した前記シート状ボンド
磁石の継ぎ目である。回転子ヨーク26と回転軸28とが固
定されているので回転子ヨーク26内の鉄損の発生は無視
できる。界磁磁石24の外周面の周方向に対称4極着磁が
施されている。固定子35は固定子鉄芯22および巻線30を
具備する。固定子鉄芯の歯22aの数は6、各歯22aの巻線
数は36ターンである。固定子鉄芯22は0.5mm厚みの強
磁性体(珪素鋼板:JIS50A350)製の薄板をL方向(L
=10mm)に積層して形成されている。回転軸28の先端部
分に略半円筒形状の偏芯おもり33が付設されて、回転軸
28と一体に回転するようになっている。モータ20を駆動
すると、偏芯おもり33が偏芯しながら回転し、モータ20
に顕著な振動が発生する。モータ20は三相交流通電方式
による回転制御により効率よく回転する。このモータ20
を所定の移動体通信機器(携帯電話)に組み込んで、1
ヶ月間使用した後、分解して界磁磁石24の状況を調べ
た。その結果、界磁磁石24に割れ、クラックは認められ
ず、実用に耐えるモータ性能を維持していることがわか
った。
(Example 16) Thickness produced in Example 13
The vibration motor 20 for a pager shown in FIG. 3 was constructed using a 1.0 mm sheet-shaped composite anisotropic bonded magnet, and the evaluation results are described below. FIG. 3A is a sectional view of a main part of the motor 20, and FIG. 3B is a sectional view taken along the line AA of FIG. The field magnet 24 is made of a ferromagnetic material (S4
It was formed by adhering just one roll to the surface of the rotor yoke 26 made of 5C) and adhering it. The surface roughness of the sheet-shaped composite type anisotropic bonded magnet is very small, and it is possible to firmly and uniformly adhere while maintaining precise dimensional accuracy. Reference numeral 24a is a seam of the bonded sheet-shaped bonded magnets. Since the rotor yoke 26 and the rotating shaft 28 are fixed, the occurrence of iron loss in the rotor yoke 26 can be ignored. The field magnet 24 is symmetrically quadrupole magnetized in the circumferential direction of the outer peripheral surface. The stator 35 includes a stator iron core 22 and windings 30. The number of teeth 22a of the stator iron core is 6, and the number of windings of each tooth 22a is 36 turns. The stator iron core 22 is a thin plate made of a ferromagnetic material (silicon steel plate: JIS50A350) having a thickness of 0.5 mm in the L direction (L
= 10 mm). A substantially semi-cylindrical eccentric weight 33 is attached to the tip of the rotary shaft 28,
It is designed to rotate together with 28. When the motor 20 is driven, the eccentric weight 33 rotates while being eccentric, and the motor 20
Noticeable vibration occurs. The motor 20 rotates efficiently by the rotation control by the three-phase AC energization method. This motor 20
Embedded in a predetermined mobile communication device (mobile phone)
After using it for a month, it was disassembled and the condition of the field magnet 24 was examined. As a result, it was found that the field magnet 24 was not cracked or cracked, and the motor performance that could withstand practical use was maintained.

【0037】耐食性を向上するために、本発明の複合型
ボンド磁石の表面に平均膜厚で0.5〜10μmの耐食性被
膜(エポキシ樹脂塗装等)を被覆して耐食性を高めても
よい。耐食性被膜の平均膜厚が0.5μm未満では耐食性
が高められず、10μm超では耐食性の付与効果が飽和す
る。
In order to improve the corrosion resistance, the surface of the composite type bonded magnet of the present invention may be coated with a corrosion resistant coating (epoxy resin coating or the like) having an average film thickness of 0.5 to 10 μm to enhance the corrosion resistance. If the average thickness of the corrosion-resistant coating is less than 0.5 μm, the corrosion resistance is not enhanced, and if it exceeds 10 μm, the effect of imparting corrosion resistance is saturated.

【0038】[0038]

【発明の効果】以上記述の通り、本発明によれば、表面
粗さが小さいと供に、従来の等方性R−T−N系ボンド
磁石の着磁性、異方性R−T−N系ボンド磁石の耐熱性
が改善された特性を有する複合型ボンド磁石を提供する
ことができる。また、前記複合型ボンド磁石を用いた安
全性の高い高性能の回転機を提供することができる。
As described above, according to the present invention, the surface roughness is small and the magnetism and anisotropy R-T-N of the conventional isotropic R-T-N type bonded magnet are obtained. It is possible to provide a composite-type bonded magnet having characteristics that the heat resistance of the system-based bonded magnet is improved. Further, it is possible to provide a highly safe and high-performance rotating machine using the composite bond magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明と従来のものの表面粗さを比較したプロ
ット図である。
FIG. 1 is a plot diagram comparing the surface roughness of the present invention with that of a conventional one.

【図2】本発明の回転機の一例を示す要部正面図
(a)、(a)の裏側から見た図(b)である。
FIG. 2 is a front view (a) of a main part showing an example of a rotating machine of the present invention, and a view (b) viewed from the back side of (a).

【図3】本発明の回転機の他の例を示す要部正面図
(a)、(a)のA−A線矢視断面図(b)である。
FIG. 3 is a front view (a) of a main part showing another example of the rotating machine of the present invention, and a sectional view (b) taken along the line AA of (a).

【符号の説明】[Explanation of symbols]

10 ファンモータ,20 ペジャ用モータ。 10 fan motor, 20 pager motor.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 原子%でRα100−(α+β+γ+δ)
βγδ(RはYを含む希土類元素の少なくとも1
種でありSmを必ず含み、TはFeまたはFeとCoで
あり、MはAl、Ti、V、Cr、Mn、Cu、Ga、
Zr、Nb、Mo、Hf、TaおよびWの少なくとも1
種であり、5≦α≦18,0≦β≦10,0≦γ≦4,4≦
δ≦30)で表される主要成分組成を有する、平均粒径が
1〜10μmのR−T−N系異方性微粉と、平均粒径が1
〜10μmのR−T−N系等方性微粉と、前記2種の磁粉
を結着するバインダーとからなることを特徴とする複合
型ボンド磁石。
1. R α T 100- (α + β + γ + δ) in atomic%
M β B γ N δ (R is at least 1 of rare earth elements including Y)
It is a seed and always contains Sm, T is Fe or Fe and Co, M is Al, Ti, V, Cr, Mn, Cu, Ga,
At least one of Zr, Nb, Mo, Hf, Ta and W
5 ≦ α ≦ 18, 0 ≦ β ≦ 10, 0 ≦ γ ≦ 4, 4 ≦
δ ≦ 30), and the average particle size is
1-10 μm R-T-N anisotropic fine powder with an average particle size of 1
A composite-type bonded magnet comprising: an R-T-N isotropic fine powder having a particle size of up to 10 μm; and a binder that binds the two types of magnetic powder.
【請求項2】 平均表面粗さが0.5μm以下である請
求項1に記載の複合型ボンド磁石。
2. The composite bonded magnet according to claim 1, which has an average surface roughness of 0.5 μm or less.
【請求項3】 請求項1に記載の複合型ボンド磁石であ
って、(R−T−N系等方性微粉):(R−T−N系異
方性微粉)=50〜95重量部:50〜5重量部の磁粉および
バインダーとからなり、[着磁磁場強度:800kA/m (10k
Oe)で着磁したときの残留磁束密度Br]/[着磁磁場強
度:4000kA/m (50kOe) で着磁したときの残留磁束密度B
r]×100% で定義する着磁率が85%以上であり、かつ
パーミアンス係(Pc)=2において大気中で100℃×1時
間加熱後室温に戻したときの不可逆減磁率が3.5%以下
である複合型ボンド磁石。
3. The composite bonded magnet according to claim 1, wherein (R—T—N isotropic fine powder) :( R—T—N anisotropic fine powder) = 50 to 95 parts by weight. : 50 to 5 parts by weight of magnetic powder and binder, [Magnetic field strength: 800kA / m (10k
Oe) residual magnetic flux density Br] / [magnetizing magnetic field strength: 4000kA / m (50kOe) residual magnetic flux density B]
r] x 100%, the magnetization rate is 85% or more, and the irreversible demagnetization rate is 3.5% or less when heated to room temperature at 100 ° C x 1 hour in the atmosphere with permeance coefficient (Pc) = 2 A composite bond magnet.
【請求項4】 請求項1に記載の複合型ボンド磁石であ
って、(R−T−N系等方性微粉):(R−T−N系異
方性微粉)=50〜5重量部:50〜95重量部の磁粉および
バインダーとからなり、[着磁磁場強度:800kA/m (10k
Oe)で着磁したときの残留磁束密度Br]/[着磁磁場強
度:4000kA/m (50kOe) で着磁したときの残留磁束密度B
r]×100% で定義する着磁率が80%以上であり、かつ
パーミアンス係(Pc)=2において大気中で100℃×1時
間加熱後室温に戻したときの不可逆減磁率が5.0%以下
である複合型ボンド磁石。
4. The composite bonded magnet according to claim 1, wherein (R—T—N isotropic fine powder) :( R—T—N anisotropic fine powder) = 50 to 5 parts by weight. : 50 to 95 parts by weight of magnetic powder and binder, [Magnetic field strength: 800kA / m (10k
Oe) residual magnetic flux density Br] / [magnetizing magnetic field strength: 4000kA / m (50kOe) residual magnetic flux density B]
r] x 100%, the magnetization rate is 80% or more, and the irreversible demagnetization rate is 5.0% or less when heated to room temperature at 100 ° C x 1 hour in the atmosphere with the permeance coefficient (Pc) = 2 A composite bond magnet.
【請求項5】 圧縮成形あるいは射出成形により製造さ
れたリング形状である請求項1〜4のいずれかに記載の
複合型ボンド磁石。
5. The composite bond magnet according to any one of claims 1 to 4, which has a ring shape manufactured by compression molding or injection molding.
【請求項6】 厚みが0.05〜2mmのシート形状を有す
る請求項1〜4のいずれかに記載の複合型ボンド磁石。
6. The composite bond magnet according to claim 1, which has a sheet shape with a thickness of 0.05 to 2 mm.
【請求項7】 請求項1〜6に記載の複合型ボンド磁石
を用いた回転機。
7. A rotating machine using the composite bond magnet according to claim 1.
JP2002000717A 2002-01-07 2002-01-07 Composite bonded magnet and rotating machine using the same Pending JP2003203808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002000717A JP2003203808A (en) 2002-01-07 2002-01-07 Composite bonded magnet and rotating machine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002000717A JP2003203808A (en) 2002-01-07 2002-01-07 Composite bonded magnet and rotating machine using the same

Publications (1)

Publication Number Publication Date
JP2003203808A true JP2003203808A (en) 2003-07-18

Family

ID=27641018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000717A Pending JP2003203808A (en) 2002-01-07 2002-01-07 Composite bonded magnet and rotating machine using the same

Country Status (1)

Country Link
JP (1) JP2003203808A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201478A (en) * 2015-04-10 2016-12-01 住友電気工業株式会社 Rare earth magnet material and manufacturing method of the same
JP2017216298A (en) * 2016-05-30 2017-12-07 住友電気工業株式会社 Rare earth magnet material and method for manufacturing rare earth magnet material
JP2020053515A (en) * 2018-09-26 2020-04-02 日亜化学工業株式会社 Manufacturing method of multipole bonded magnet composite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201478A (en) * 2015-04-10 2016-12-01 住友電気工業株式会社 Rare earth magnet material and manufacturing method of the same
JP2017216298A (en) * 2016-05-30 2017-12-07 住友電気工業株式会社 Rare earth magnet material and method for manufacturing rare earth magnet material
JP2020053515A (en) * 2018-09-26 2020-04-02 日亜化学工業株式会社 Manufacturing method of multipole bonded magnet composite

Similar Documents

Publication Publication Date Title
JP4702547B2 (en) Functionally graded rare earth permanent magnet
JP2004031781A (en) Rare earth magnet, its manufacturing method and motor using the same
TW201336207A (en) A method for fabricating a ferrite sintered magnet
US6537463B2 (en) Resin-bonded magnet, its product, and ferrite magnet powder and compound used therefor
JP2002343659A (en) Rare earth magnet alloy and anisotropic exchange spring magnet using the same
JP2003224010A (en) Compound for rare earth based bonded magnet and bonded magnet using the same
JP2001069692A (en) Permanent magnet filed type, small-sized direct-current motor
JP2001230111A (en) Rotating machine
JP2004146713A (en) Manufacturing methods of r-t-n-based magnetic powder and r-t-n-based bond magnet
JP2000357606A (en) Compound isotropic bonded magnet and rotary machine using the magnet
JPH10125518A (en) Thin sheet magnet with fine crystal structure
JP2003203808A (en) Composite bonded magnet and rotating machine using the same
JP2004031780A (en) Rare earth magnet, its manufacturing method and motor using the same
JP2001313205A (en) Isotropic compound, isotropic bonded magnet, rotating machine, and magnet roll
JP2010062326A (en) Bond magnet
JP2001135509A (en) Isotropic rare earth magnet material, isotropic bond magnet, rotating machine and magnet roll
JP2003168602A (en) Anisotropic rare earth bonded magnet and its manufacturing method
JP2002025811A (en) Composite bonded magnet and rotating machine using the same
JPS6318602A (en) Manufacture of permanent magnet of rare earth-iron system
JP3856869B2 (en) Resin-containing rolled sheet magnet and method for producing the same
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP3643215B2 (en) Method for producing laminated permanent magnet
WO2001039216A1 (en) Isotropic compound and method for preparation thereof, isotropic bonded magnet, rotary machine and magnet roll
JPH09148166A (en) Manufacture of resin-bonded magnet
JP3425409B2 (en) Hard magnetic material, generator and motor