JP2003202445A - Photonic crystal optical fiber and its manufacturing method - Google Patents

Photonic crystal optical fiber and its manufacturing method

Info

Publication number
JP2003202445A
JP2003202445A JP2002002197A JP2002002197A JP2003202445A JP 2003202445 A JP2003202445 A JP 2003202445A JP 2002002197 A JP2002002197 A JP 2002002197A JP 2002002197 A JP2002002197 A JP 2002002197A JP 2003202445 A JP2003202445 A JP 2003202445A
Authority
JP
Japan
Prior art keywords
core
holes
optical fiber
pcf
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002002197A
Other languages
Japanese (ja)
Other versions
JP3798984B2 (en
Inventor
Masataka Nakazawa
正隆 中沢
Kazumasa Osono
和正 大薗
Hei Yo
兵 姚
Kazushi Osuga
一志 大須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002002197A priority Critical patent/JP3798984B2/en
Publication of JP2003202445A publication Critical patent/JP2003202445A/en
Application granted granted Critical
Publication of JP3798984B2 publication Critical patent/JP3798984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • G02B6/02328Hollow or gas filled core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02338Structured core, e.g. core contains more than one material, non-constant refractive index distribution in core, asymmetric or non-circular elements in core unit, multiple cores, insertions between core and clad
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • C03B2203/16Hollow core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a PCF whose loss is reduced by reducing loss of the PCF caused by impurities. <P>SOLUTION: The PCF comprises a hollow core 2 whose external diameter is nearly several times as large as the wavelength of light and a clad 4 which is formed around the core 2 and has a plurality of holes 3 formed to constitute a diffraction grating in photonic band-gap structure around the core 2 adjacently, and the hollow core 2 and the plurality of holes 3 of the clad 4 are evacuated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フォトニックバン
ドギャップ構造を備えたフォトニッククリスタル光ファ
イバに係り、特に、中空コアとクラッドの空孔内とを真
空にして低損失化を図ったフォトニッククリスタル光フ
ァイバに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photonic crystal optical fiber having a photonic bandgap structure, and more particularly, to a photonic crystal having a hollow core and a void in a clad, which has a reduced loss. It relates to a crystal optical fiber.

【0002】[0002]

【従来の技術】従来の光ファイバは、屈折率の高いコア
と、コアよりもわずかに屈折率が低いクラッドとの2層
構造をなし、その素材のベースは石英である。コアは、
クラッドに比べわずかに屈折率を高くするために、石英
にゲルマニウム等の添加物を加えた組成となっている。
2. Description of the Related Art A conventional optical fiber has a two-layer structure of a core having a high refractive index and a clad having a refractive index slightly lower than that of the core, and its material base is quartz. The core is
In order to make the refractive index slightly higher than that of the clad, quartz has a composition in which an additive such as germanium is added.

【0003】従来の光ファイバにおいては、光ファイバ
のコアの屈折率がクラッドの屈折率よりも高いため、こ
の屈折率差によって光ファイバに入射した光がコア内に
閉じこめられて光ファイバ中を伝搬することができる。
伝搬する光の単一モード条件を満足するために、コアの
直径は5〜10μm程度と小さい。
In the conventional optical fiber, since the refractive index of the core of the optical fiber is higher than that of the cladding, the light entering the optical fiber is confined in the core by the difference in the refractive indexes and propagates in the optical fiber. can do.
In order to satisfy the single mode condition of the propagating light, the diameter of the core is as small as 5 to 10 μm.

【0004】ところが、近年、光増幅技術や、波長多重
(WDM)技術の発展により光ファイバへ入射させる光
のパワーが大きくなってきており、種々の非線形効果現
象が生じやすくなっている。
However, in recent years, due to the development of optical amplification technology and wavelength division multiplexing (WDM) technology, the power of light incident on an optical fiber has increased, and various non-linear effect phenomena are likely to occur.

【0005】例えば、非線形効果現象の一つである自己
位相変調現象が生じると、光ファイバ中のパルス信号波
形が歪み、伝送容量が制限される。また、同じく非線形
現象の一つであるブリュリアン散乱現象も生じやすく、
この現象が起きると光ファイバ径の入射パワーが飽和す
る。
For example, when the self-phase modulation phenomenon, which is one of the nonlinear effect phenomena, occurs, the pulse signal waveform in the optical fiber is distorted and the transmission capacity is limited. In addition, the Brüllian scattering phenomenon, which is also a non-linear phenomenon, is likely to occur.
When this phenomenon occurs, the incident power of the optical fiber diameter is saturated.

【0006】これら非線形効果現象が生じると、光ファ
イバ中を伝搬する伝送特性の劣化を招く。また、現状の
光ファイバの伝送損失は最良のものでも0.16dB/
km程度であり、その主要因は光が伝搬するコアやコア
近傍のクラッド部の組成密度揺らぎによるレイリー散乱
損失であるが、大陸間長距離伝送等で用いる光ファイバ
には、より一層の低損失化が望まれている。
When these non-linear effect phenomena occur, the transmission characteristics propagating in the optical fiber are deteriorated. Moreover, even the best transmission loss of the current optical fiber is 0.16 dB /
The main factor is Rayleigh scattering loss due to fluctuations in composition density of the core where light propagates and the clad near the core, but it is much lower in optical fibers used for long-distance transmission between continents. Is desired.

【0007】[0007]

【発明が解決しようとする課題 】ところで、従来の光
ファイバの問題点を解決する光ファイバとして、フォト
ニッククリスタル光ファイバ(PCF:Photoni
c Crystal Fiber)が最近注目を集めて
いる。PCFとは、フォトニック結晶構造がクラッド部
に設けてあるファイバである。フォトニック結晶構造と
は、屈折率の周期構造のことであり、具体的には蜂の巣
のようなハニカム構造の空間をクラッド部に設けること
で、光のエネルギー禁制帯であるフォトニックバンドギ
ャップ(PBG:Photonic Band Ga
p)が発生する。
By the way, as an optical fiber for solving the problems of the conventional optical fiber, a photonic crystal optical fiber (PCF: Photon i) is used.
c Crystal Fiber) has recently received a lot of attention. PCF is a fiber with a photonic crystal structure provided in the cladding. The photonic crystal structure is a periodic structure of refractive index. Specifically, by providing a honeycomb-like space such as a honeycomb in the clad portion, a photonic band gap (PBG) that is an energy forbidden band of light is obtained. : Photonic Band Ga
p) occurs.

【0008】例えば、Knightらは、Scienc
e282,1476,(1999)において、PBGを
導波原理とするPCFを報告しており、また、Creg
anらは、Science285,1537,(199
9)において、PBG構造を導波原理とする中空コアの
PCFの報告を行っている。中空コアのPCFは、光が
伝搬するコアに石英媒質がないため、損失の主要因とな
るレイリー散乱が非常に小さくなる超低損失ファイバの
可能性を示すものである。
For example, Knight et al., Science
e282, 1476, (1999), reported a PCF using PBG as a guiding principle, and Creg.
an et al., Science 285, 1537, (199
In 9), a hollow core PCF having a PBG structure as a guiding principle is reported. The hollow core PCF shows the possibility of an ultra-low-loss fiber in which Rayleigh scattering, which is the main cause of loss, is extremely small because there is no quartz medium in the core through which light propagates.

【0009】また、特許第3072842号明細書にお
いても、中空コアのPCFについて開示されており、
0.01dB/km程度の低損失化が期待できると記載
されている。
Further, Japanese Patent No. 3072842 also discloses a hollow core PCF,
It is described that a loss reduction of about 0.01 dB / km can be expected.

【0010】しかしながら、これら従来のPCFにおい
ては、光が伝搬するコアおよびその近傍域がレイリー散
乱の小さい空間になっているが、空間内に存在する気体
(この場合、空間内は通常空気で満たされている。)の
純度が悪い。つまり、空間内に不純物が存在すると、そ
の不純物に対する吸収損失が発生するという問題があ
る。
However, in these conventional PCFs, the core in which light propagates and the vicinity thereof form a space in which Rayleigh scattering is small, but the gas existing in the space (in this case, the space is usually filled with air). It has a poor purity. That is, if impurities are present in the space, there is a problem that absorption loss for the impurities occurs.

【0011】例えば、光ファイバ用プリフォームの製造
工程では、酸水素火炎による成形加工作業を頻繁に行う
ため、酸素と水素の反応による水分がプリフォーム内に
残留し、PCFの中空部の空気内に含まれる可能性があ
る。この水分の一部はプリフォームの線引き中にガラス
内に拡散し、OH基の分子振動による吸収損失を増加さ
せる原因となるという問題がある。
For example, in the manufacturing process of an optical fiber preform, since molding work by an oxyhydrogen flame is frequently performed, moisture due to the reaction of oxygen and hydrogen remains in the preform, and the air in the hollow portion of the PCF is removed. May be included in. There is a problem that a part of this moisture diffuses into the glass during drawing of the preform, which causes an increase in absorption loss due to molecular vibration of OH groups.

【0012】そこで、本発明の目的は、PCFの不純物
による損失を低減することで低損失化を図ったPCFを
提供することにある。
Therefore, an object of the present invention is to provide a PCF in which the loss due to impurities in the PCF is reduced to reduce the loss.

【0013】[0013]

【課題を解決するための手段】本発明は上記目的を達成
するために創案されたものであり、請求項1の発明は、
外径が光の波長の数倍程度である中空のコアと、コアの
周囲に形成され、少なくともコアに隣接する周囲にフォ
トニックバンドギャップ構造の回折格子を構成する複数
の空孔が形成されたクラッドとを備え、上記中空のコア
内とクラッドの複数の空孔内とを真空にしたフォトニッ
ククリスタル光ファイバである。
The present invention was devised to achieve the above object, and the invention of claim 1 is
A hollow core having an outer diameter of several times the wavelength of light and a plurality of holes formed around the core and forming a photonic bandgap diffraction grating are formed at least around the core. A photonic crystal optical fiber including a clad, wherein the hollow core and a plurality of holes in the clad are evacuated.

【0014】請求項2の発明は、フォトニッククリスタ
ル光ファイバ用のプリフォームに、線引き後に中空のコ
アとなるコア用穴と、線引き後にフォトニックバンドギ
ャップ構造の回折格子を構成する複数の空孔となる複数
のクラッド用穴とを形成し、これらコア用穴と複数のク
ラッド用穴に、あらかじめHeガスを充填して密閉封止
した後、プリフォームを線引きし、線引き後の光ファイ
バの真空処理を行ってHeガスを抜き取り、中空のコア
内とクラッドの複数の空孔内とを真空にするフォトニッ
ククリスタル光ファイバの製造方法である。
According to a second aspect of the present invention, a preform for a photonic crystal optical fiber is provided with a core hole which becomes a hollow core after drawing and a plurality of holes forming a diffraction grating having a photonic bandgap structure after drawing. A plurality of clad holes to be formed, and these core holes and a plurality of clad holes are filled with He gas in advance and hermetically sealed, and then the preform is drawn, and the vacuum of the optical fiber after drawing is drawn. This is a method for producing a photonic crystal optical fiber in which a He gas is extracted by performing a treatment to make a vacuum in a hollow core and a plurality of holes in a clad.

【0015】[0015]

【発明の実施の形態】以下、本発明の好適実施の形態を
添付図面にしたがって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

【0016】図1は、本発明の好適実施の形態であるフ
ォトニッククリスタル光ファイバ(PCF)の断面図で
ある。
FIG. 1 is a sectional view of a photonic crystal optical fiber (PCF) which is a preferred embodiment of the present invention.

【0017】図1に示すように、本発明に係るPCF1
は、中心に配置され、外径φcが5〜50μmである中
空のコア2と、コア2の周囲に形成され、PCF1の外
径φよりやや小さい径に亘って複数の空孔3がハニカム
状に配列されてフォトニックバンドギャップ(PBG)
構造の回折格子を構成するクラッド4と、クラッド4の
外周に被覆されるジャケット5とからなり、中空のコア
2内とクラッド4の複数の空孔3内とを真空にしたもの
である。PCF1の外径φは、80〜150μmであ
る。
As shown in FIG. 1, a PCF 1 according to the present invention.
Is a hollow core 2 arranged in the center and having an outer diameter φc of 5 to 50 μm, and a plurality of holes 3 formed around the core 2 and having a diameter slightly smaller than the outer diameter φ of the PCF 1. Arranged in a photonic bandgap (PBG)
It is composed of a clad 4 constituting a diffraction grating having a structure and a jacket 5 covering the outer periphery of the clad 4, and the inside of the hollow core 2 and the plurality of holes 3 of the clad 4 are evacuated. The outer diameter φ of PCF1 is 80 to 150 μm.

【0018】中空のコア2は、PCF1の長手方向に沿
って断面六角形状の空孔が形成されたものであり、その
内部が真空状態に保たれていることから、屈折率が1と
なっている。中空かつ真空状態に保たれたコア2は、光
の散乱要因およびOH基の分子振動による光の吸収損失
がないため、光ファイバの低損失化には最も望ましい形
態である。
The hollow core 2 is formed by forming holes having a hexagonal cross section along the longitudinal direction of the PCF 1, and since the inside is kept in a vacuum state, the refractive index is 1. There is. The core 2 which is hollow and kept in a vacuum state is the most desirable form for lowering the loss of the optical fiber, because there is no light scattering factor and light absorption loss due to molecular vibration of the OH group.

【0019】クラッド4は、全体の断面が略六角形状に
形成されている。このクラッド4は、PCF1の長手方
向に沿って形成される断面円形状の複数の空孔3を、コ
ア2の周囲にハニカム状に配列することで、PBG構造
の回折格子を構成している。複数の空孔3の内部も真空
状態に保たれているので、クラッド4の屈折率も1であ
る。
The clad 4 has a substantially hexagonal cross section. The clad 4 constitutes a diffraction grating having a PBG structure by arranging a plurality of holes 3 having a circular cross section formed along the longitudinal direction of the PCF 1 around the core 2 in a honeycomb shape. Since the insides of the plurality of holes 3 are also kept in a vacuum state, the refractive index of the cladding 4 is also 1.

【0020】PCF1は、信号光エネルギーが最も集中
するコア2が中空かつ真空のため光の損失要因が少な
く、従来の光ファイバの損失レベル0.2dB/kmよ
りも格段に低損失が図れることが予想され、0.01d
B/km台の可能性がある。
In the PCF 1, since the core 2 where the signal light energy is most concentrated is hollow and the vacuum is small, there are few optical loss factors, and it is possible to achieve a much lower loss than the conventional optical fiber loss level of 0.2 dB / km. Expected, 0.01d
There is a possibility of B / km level.

【0021】PCF1のクラッド4はPBG構造を有す
るので、回折格子のブラッグ反射により、光はファイバ
の半径方向に漏洩することなく、コア2内に閉じこめら
れて光ファイバの長手方向に伝搬する。
Since the cladding 4 of the PCF 1 has the PBG structure, the light is confined in the core 2 and propagates in the longitudinal direction of the optical fiber without leaking in the radial direction of the fiber due to the Bragg reflection of the diffraction grating.

【0022】PCF1では、中空ハニカム構造のクラッ
ド4も真空状態に保っている。そのため、光がクラッド
4内をブラッグ反射を繰り返しながら伝搬する際の損失
要因も低減している。
In the PCF 1, the hollow honeycomb structure clad 4 is also kept in a vacuum state. Therefore, the loss factor when light propagates in the cladding 4 while repeating Bragg reflection is also reduced.

【0023】次に、本発明に係るPCF1の製造方法を
説明する。
Next, a method of manufacturing the PCF 1 according to the present invention will be described.

【0024】PCF1を製造するにあたり、まず、PC
F用のプリフォームとなる部材として、例えば、純度の
高い純粋石英母材をVAD(Vapor Phase
Axial Deposition)法により製造す
る。通常の光ファイバをVAD法で製造する際は、コア
となる部分の屈折率を上げるために、石英に添加物とし
てゲルマニウム等をドープするが、本発明に係るPCF
1では、PBG構造により光を伝搬させるので、屈折率
を上げるための添加物は使用していない。ただし、PB
G構造といえども、光が伝搬するコア近傍領域に石英ガ
ラス部も存在するので、石英中に残留するOH基対策は
行った。
In manufacturing the PCF1, first, the PC
As a member to be a preform for F, for example, a pure quartz base material having high purity is used for VAD (Vapor Phase).
It is manufactured by the Axial Deposition method. When an ordinary optical fiber is manufactured by the VAD method, quartz is doped with germanium or the like as an additive in order to increase the refractive index of the core portion.
In No. 1, since light is propagated by the PBG structure, no additive for increasing the refractive index is used. However, PB
Even with the G structure, since the silica glass portion is also present in the region near the core through which light propagates, countermeasures against OH groups remaining in the quartz were taken.

【0025】具体的には、VAD法で製造したスート母
材を焼結透明ガラス化する際に塩素ガス雰囲気で行うこ
とで、OH基含有量0.1ppm以下の純粋石英母材と
する。 図2に示すように、この純粋石英母材を外径φ
21が80mmとなるように延伸した後、長さが200
mmとなるように切断してPCF用のプリフォーム21
とする。
Specifically, when the soot base material produced by the VAD method is sintered and vitrified into a transparent atmosphere in a chlorine gas atmosphere, a pure quartz base material having an OH group content of 0.1 ppm or less is obtained. As shown in Fig. 2, this pure quartz base material was
After stretching so that 21 becomes 80 mm, the length is 200
Preform 21 for PCF cut to mm
And

【0026】このプリフォーム21の断面中心部に、プ
リフォーム21を線引きしてファイバ化を行った際、中
空のコアとなる外径φ22が5mmのコア用穴22を、
超音波ドリルにより、くり貫き加工を施して形成する。
同様に、コア用穴22の周囲に、プリフォーム21を線
引きしてファイバ化を行った際、PBG構造の回折格子
を構成するように、外径φ23が2mmの複数のクラッ
ド用穴23を、超音波ドリルにより、くり貫き加工を施
してハニカム状に形成する。この後、線引き加工を容易
にするために、プリフォーム21を、外径φ21が40
mm程度となるように延伸加工を行う。
When the preform 21 is drawn into a fiber to form a fiber, a core hole 22 having an outer diameter φ22 of 5 mm is formed in the center of the cross section of the preform 21.
It is formed by punching with an ultrasonic drill.
Similarly, when the preform 21 is drawn around the core hole 22 to form a fiber, a plurality of cladding holes 23 having an outer diameter φ23 of 2 mm are formed so as to form a diffraction grating having a PBG structure. An ultrasonic drill is used to perform a hollowing process to form a honeycomb shape. After this, in order to facilitate the drawing process, the preform 21 is
Stretching is performed so as to be about mm.

【0027】次に、延伸加工後のプリフォーム21のコ
ア用穴22と複数のクラッド用穴23に、Heガスを充
填するための加工を施す。
Next, the core hole 22 and the plurality of clad holes 23 of the preform 21 after the drawing process are processed to fill with He gas.

【0028】具体的には、図3(a)に示すように、プ
リフォーム21の一端21aを封止し、他端21bに
は、プリフォーム21と同じ外径の石英管30を接続
し、石英管30に接続した真空ポンプ31により、プリ
フォーム21のコア用穴と複数のクラッド用穴に存在し
ている空気を吸引し、プリフォーム21内を真空状態に
する。
Specifically, as shown in FIG. 3A, one end 21a of the preform 21 is sealed, and the other end 21b is connected to a quartz tube 30 having the same outer diameter as the preform 21, A vacuum pump 31 connected to the quartz tube 30 sucks air existing in the core hole and the plurality of clad holes of the preform 21 to bring the inside of the preform 21 into a vacuum state.

【0029】真空状態となったコア用穴22と複数のク
ラッド用穴23に、図3(b)に示すように、同じ石英
管30を使ってコア用穴と複数のクラッド用穴にHeガ
スを充填させ、その後、石英管30の一部を封止切断す
る。
As shown in FIG. 3B, the same quartz tube 30 is used for the core hole 22 and the plurality of clad holes 23 in a vacuum state, and He gas is used for the core hole and the plurality of clad holes. And then, a part of the quartz tube 30 is sealed and cut.

【0030】このとき、プリフォーム21内のHeガス
圧力は、大気圧程度であることが望ましい。その理由
は、プリフォーム21内部が初めから真空状態にある
と、次工程の線引き時にプリフォーム21内部のコア用
穴と複数のクラッド用穴がつぶれ、PBG構造を実現で
きないからである。また、反対に、Heガスを高圧状態
でプリフォーム21内に残留させると、線引き時にHe
ガスの膨張によるガス圧力にファイバのジャケット層が
耐えきれずに外径変動をきたしたり、ジャケット層をH
eガスが突き破ってファイバを損傷したりする場合があ
るからである。
At this time, the He gas pressure in the preform 21 is preferably about atmospheric pressure. The reason is that if the inside of the preform 21 is in a vacuum state from the beginning, the core hole and the plurality of cladding holes inside the preform 21 are crushed during drawing in the next step, and the PBG structure cannot be realized. On the other hand, if He gas is left in the preform 21 in a high pressure state, He gas will not be drawn during drawing.
The jacket layer of the fiber cannot withstand the gas pressure due to the expansion of the gas and the outer diameter fluctuates.
This is because the e-gas may break through and damage the fiber.

【0031】ここで、プリフォーム21内に充填させる
ガスとして、Heガスを選択した理由は、その拡散速度
が他のガスに比べて圧倒的に大きく、石英ガラス層を容
易に通過することが可能なガスだからである。同様に拡
散速度が大きいガスとして水素が存在するが、水素は石
英ガラス中に拡散する際、ガラス中の欠陥と結びついて
新たな損失要因を発生させる可能性があり、また、引火
性、爆発性の強いガスで取り扱いにくいガスのため使用
ガスとして選択しなかった。
Here, the reason why He gas is selected as the gas to be filled in the preform 21 is that its diffusion rate is overwhelmingly higher than that of other gases and that it can easily pass through the quartz glass layer. Because it is natural gas. Similarly, hydrogen exists as a gas with a high diffusion rate, but when hydrogen diffuses into quartz glass, it may combine with defects in the glass to generate new loss factors, and it is also flammable and explosive. Since it is a strong gas and difficult to handle, it was not selected as the gas to be used.

【0032】Heガスを充填したプリフォーム21を、
通常の光ファイバ線引き作業によってファイバ化を行
う。具体的には、外径φが125μmの線引き後のPC
Fとしたが、必要に応じて外径φが80〜150μm程
度に線引き加工することもできる。
The preform 21 filled with He gas is
Fiber is formed by a normal optical fiber drawing operation. Specifically, a PC after drawing with an outer diameter φ of 125 μm
Although it is set to F, the wire can be drawn to have an outer diameter φ of about 80 to 150 μm, if necessary.

【0033】次に、図4に示すように、線引き後のPC
F41を、圧力が1.33Pa(0.01Torr)以
下の高真空下の処理槽40に入れ、73時間の真空処理
を行って線引き後のPCF41からHeガスを抜き取
り、中空のコア内とクラッドの複数の空孔内とを真空に
すると、図1に示したPCF1が完成する。このPCF
1内、すなわち、中空のコア内とクラッドの複数の空孔
内の残留ガス分析をラマン分光法により行った結果、H
eガス成分は検出限界以下となり、残留していないこと
が確かめられた。
Next, as shown in FIG. 4, the PC after drawing
F41 was put in a treatment tank 40 under high vacuum with a pressure of 1.33 Pa (0.01 Torr) or less, and vacuum treatment was performed for 73 hours to remove He gas from the drawn PCF41, thereby removing the He gas from the hollow core and the clad. When the inside of the holes is evacuated, the PCF 1 shown in FIG. 1 is completed. This PCF
In Fig. 1, the residual gas in the hollow core and in the plurality of holes in the clad was analyzed by Raman spectroscopy.
It was confirmed that the e-gas component was below the detection limit and did not remain.

【0034】以上のようにして作製した本発明に係るP
CF1と、コア内およびクラッド内に空気が残った従来
のPCFとの特性を比較した。本発明に係るPCF1の
損失特性は、波長が0.8μm、1.3μm、1.55
μmでそれぞれ3.98dB/km、3.57dB/k
m、3.53dB/kmであった。また、従来のPCF
の損失特性は、波長0.8μm、1.3μm、1.55
μmでそれぞれ4.01dB/km、4.68dB/k
m、3.55dB/kmであった。
The P according to the present invention produced as described above
The characteristics of CF1 and the conventional PCF in which air remained in the core and the clad were compared. The loss characteristics of the PCF1 according to the present invention have wavelengths of 0.8 μm, 1.3 μm, and 1.55.
3.98 dB / km and 3.57 dB / k in μm, respectively
m, 3.53 dB / km. In addition, conventional PCF
Loss characteristics of 0.8μm, 1.3μm, 1.55
4.01 dB / km and 4.68 dB / k in μm, respectively
m, 3.55 dB / km.

【0035】これら損失レベルは、通常の光ファイバに
比べてまだ大きいが、損失要因を調べたところ、PCF
用のプリフォームの製造精度に起因する構造不整損失が
大きく支配的であることが分かった。しかし、この結果
より求めたレイリー散乱係数は、本発明に係るPCF1
および従来のPCFが約0.2であり、いずれも、従来
の光ファイバの中で最も小さいレイリー散乱係数である
0.6程度に比べて著しく低かった。
These loss levels are still larger than those of ordinary optical fibers, but when the loss factors were investigated, PCF
It was found that the structural imperfection loss due to the manufacturing precision of the preform for automobiles is largely dominant. However, the Rayleigh scattering coefficient obtained from this result is the PCF1 according to the present invention.
Further, the conventional PCF was about 0.2, which were significantly lower than the smallest Rayleigh scattering coefficient of about 0.6 in the conventional optical fiber.

【0036】さらに、本発明に係るPCF1は、波長が
1.3μmにおける損失が従来のPCFよりも低損失に
なっている。これは、波長が1.39μmにおけるOH
基の分子振動による吸収ピークの影響をより低く抑制し
ているからである。本発明に係るPCF1は、散乱損失
と吸収損失の低減を両立することが可能であることがわ
かる。
Further, the PCF1 according to the present invention has a loss at a wavelength of 1.3 μm lower than that of the conventional PCF. This is OH at wavelength 1.39 μm
This is because the influence of the absorption peak due to the molecular vibration of the group is suppressed to a lower level. It can be seen that the PCF1 according to the present invention can achieve both reduction of scattering loss and reduction of absorption loss.

【0037】このように、本発明のPCFは、中空のコ
ア内とクラッドの複数の空孔内とを真空にしているの
で、光の散乱要因および不純物による光の吸収損失がな
いため、従来の光ファイバでは達成できなかったレイリ
ー散乱損失の低減が可能で、しかも、不純物による吸収
損失を低くすることができるので、非常に低損失であ
る。
As described above, in the PCF of the present invention, since the inside of the hollow core and the inside of the plurality of holes in the clad are evacuated, there is no light absorption loss due to light scattering factors and impurities, and thus the conventional The Rayleigh scattering loss, which cannot be achieved with the optical fiber, can be reduced, and the absorption loss due to impurities can be reduced, resulting in a very low loss.

【0038】本発明のPCFの製造方法においては、P
CF用のプリフォーム製造時、コア用穴と複数のクラッ
ド用穴に、拡散係数の大きいガスであるHeガスを大気
圧程度で充填して密封封止し、その状態で線引き加工す
るので、プリフォーム内の圧力を大気圧と同程度にする
ことで、コア用穴と複数のクラッド用穴がつぶれること
を防ぎ、ファイバ内にフォトニックバンドギャップ構造
を実現することができる。
In the PCF manufacturing method of the present invention, P
When manufacturing a CF preform, the core hole and the plurality of clad holes are filled with He gas, which has a large diffusion coefficient, at about atmospheric pressure, hermetically sealed, and drawn in that state. By making the pressure in the reform substantially equal to the atmospheric pressure, it is possible to prevent the core hole and the plurality of cladding holes from being crushed, and to realize a photonic bandgap structure in the fiber.

【0039】また、線引き終了後得られたPCFを真空
処理することで、ファイバ内部に存在するHeガスをそ
の拡散係数が大きいことを利用して抜き取っているの
で、PCFの中空のコア内とクラッドの複数の空孔内と
を真空にし、ファイバを伝搬する光の散乱損失と不純物
による吸収損失を低減し、低損失なPCFを実現するこ
とができる。
Further, since the PCF obtained after drawing is vacuum-treated to extract the He gas existing inside the fiber by utilizing its large diffusion coefficient, the inside of the hollow core of the PCF and the clad are clad. It is possible to realize a low-loss PCF by reducing the scattering loss of light propagating through the fiber and the absorption loss due to impurities by making a vacuum inside the plurality of holes.

【0040】[0040]

【発明の効果】以上説明したように、本発明のPCF
は、従来の光ファイバでは達成できなかったレイリー散
乱損失の低減が可能で、しかも、不純物による吸収損失
を低くすることができるので、非常に低損失である。
As described above, the PCF of the present invention
Is a very low loss because it is possible to reduce the Rayleigh scattering loss that could not be achieved by the conventional optical fiber, and the absorption loss due to impurities can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の好適実施の形態を示す断面図である。FIG. 1 is a cross-sectional view showing a preferred embodiment of the present invention.

【図2】PCF用のプリフォームの断面図である。FIG. 2 is a cross-sectional view of a PCF preform.

【図3】図3(a)は、PCF用のプリフォームを真空
処理する方法を説明する概略図である。図3(b)は、
PCF用のプリフォームにHeガスを充填する方法を説
明する概略図である。
FIG. 3 (a) is a schematic view illustrating a method of vacuum-treating a PCF preform. Figure 3 (b) shows
It is a schematic diagram explaining the method of filling the He gas into the preform for PCF.

【図4】線引き後のPCFからHeガスを抜き取る方法
を説明する概略図である。
FIG. 4 is a schematic diagram illustrating a method of extracting He gas from PCF after drawing.

【符号の説明】[Explanation of symbols]

1 フォトニッククリスタル光ファイバ(PCF) 2 中空のコア 3 空孔 4 クラッド 5 ジャケット φc 中空コアの外径 φ PCFの外径 1 Photonic crystal optical fiber (PCF) 2 hollow core 3 holes 4 clad 5 jacket φc Hollow core outer diameter φ PCF outer diameter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大薗 和正 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 (72)発明者 姚 兵 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 (72)発明者 大須賀 一志 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 Fターム(参考) 2H050 AB04Z AC01 AC64 4G021 BA00 HA00    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazumasa Ozono             1-6-1, Otemachi, Chiyoda-ku, Tokyo             Standing Wire Co., Ltd. (72) Inventor             1-6-1, Otemachi, Chiyoda-ku, Tokyo             Standing Wire Co., Ltd. (72) Inventor Kazushi Osuga             1-6-1, Otemachi, Chiyoda-ku, Tokyo             Standing Wire Co., Ltd. F-term (reference) 2H050 AB04Z AC01 AC64                 4G021 BA00 HA00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外径が光の波長の数倍程度である中空の
コアと、コアの周囲に形成され、少なくともコアに隣接
する周囲にフォトニックバンドギャップ構造の回折格子
を構成する複数の空孔が形成されたクラッドとを備え、
上記中空のコア内とクラッドの複数の空孔内とを真空に
したことを特徴とするフォトニッククリスタル光ファイ
バ。
1. A hollow core having an outer diameter of about several times the wavelength of light, and a plurality of cavities formed around the core and forming a photonic bandgap structure diffraction grating at least around the core. And a clad in which holes are formed,
A photonic crystal optical fiber, characterized in that the inside of the hollow core and the inside of a plurality of holes in the clad are evacuated.
【請求項2】 フォトニッククリスタル光ファイバ用の
プリフォームに、線引き後に中空のコアとなるコア用穴
と、線引き後にフォトニックバンドギャップ構造の回折
格子を構成する複数の空孔となる複数のクラッド用穴と
を形成し、これらコア用穴と複数のクラッド用穴に、あ
らかじめHeガスを充填して密閉封止した後、プリフォ
ームを線引きしてファイバ化を行うことを特徴とするフ
ォトニッククリスタル光ファイバの製造方法。
2. A preform for a photonic crystal optical fiber, a core hole which becomes a hollow core after drawing, and a plurality of clads which become holes forming a diffraction grating having a photonic bandgap structure after drawing. Photonic crystal characterized by forming holes for use in the core and a plurality of holes for the cladding, filling He gas in advance and hermetically sealing, and then drawing a preform to form a fiber. Optical fiber manufacturing method.
【請求項3】 線引き後のフォトニッククリスタル光フ
ァイバの真空処理を行ってHeガスを抜き取り、中空の
コア内とクラッドの複数の空孔内とを真空にする請求項
2記載のフォトニッククリスタル光ファイバの製造方
法。
3. The photonic crystal light according to claim 2, wherein the drawn photonic crystal optical fiber is subjected to a vacuum treatment to remove the He gas so as to form a vacuum in the hollow core and the plurality of holes in the clad. Fiber manufacturing method.
JP2002002197A 2002-01-09 2002-01-09 Photonic crystal optical fiber manufacturing method Expired - Fee Related JP3798984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002002197A JP3798984B2 (en) 2002-01-09 2002-01-09 Photonic crystal optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002002197A JP3798984B2 (en) 2002-01-09 2002-01-09 Photonic crystal optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2003202445A true JP2003202445A (en) 2003-07-18
JP3798984B2 JP3798984B2 (en) 2006-07-19

Family

ID=27642129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002002197A Expired - Fee Related JP3798984B2 (en) 2002-01-09 2002-01-09 Photonic crystal optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP3798984B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043673A (en) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd Optical fiber and optical transmission medium
CN100412579C (en) * 2005-01-27 2008-08-20 日立电线株式会社 Laser energy transmission optical fiber, laser energy transmission method and laser energy transmission device
CN100449338C (en) * 2007-01-30 2009-01-07 浙江工业大学 Photonic crystal fiber
JP2009543065A (en) * 2006-06-29 2009-12-03 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ Optical fiber sensor using Bragg fiber
JP2011138143A (en) * 2004-01-16 2011-07-14 Imra America Inc Large core holey fiber
US8233151B2 (en) 2002-08-20 2012-07-31 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor using a hollow core fiber
US8873916B2 (en) 2005-05-20 2014-10-28 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
US8995051B2 (en) 2007-09-26 2015-03-31 Imra America, Inc. Glass large-core optical fibers
CN112408773A (en) * 2020-10-29 2021-02-26 东北大学 D-shaped photonic crystal optical fiber preform and D-shaped photonic crystal optical fiber drawing method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233151B2 (en) 2002-08-20 2012-07-31 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor using a hollow core fiber
US8427651B2 (en) 2002-08-20 2013-04-23 The Board Of Trustees Of The Leland Stanford Junior University Optical sensor using a hollow core waveguide
JP2005043673A (en) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd Optical fiber and optical transmission medium
US9645309B2 (en) 2004-01-16 2017-05-09 Imra America, Inc. Large core holey fibers
JP2011138143A (en) * 2004-01-16 2011-07-14 Imra America Inc Large core holey fiber
US10197727B2 (en) 2004-01-16 2019-02-05 Imra America, Inc. Large core holey fibers
US8861913B2 (en) 2004-01-16 2014-10-14 Imra America, Inc. Large core holey fibers
CN100412579C (en) * 2005-01-27 2008-08-20 日立电线株式会社 Laser energy transmission optical fiber, laser energy transmission method and laser energy transmission device
US9281650B2 (en) 2005-05-20 2016-03-08 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
US8873916B2 (en) 2005-05-20 2014-10-28 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
US9664849B2 (en) 2005-05-20 2017-05-30 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
US10067289B2 (en) 2005-05-20 2018-09-04 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
JP2009543065A (en) * 2006-06-29 2009-12-03 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ Optical fiber sensor using Bragg fiber
CN100449338C (en) * 2007-01-30 2009-01-07 浙江工业大学 Photonic crystal fiber
US8995051B2 (en) 2007-09-26 2015-03-31 Imra America, Inc. Glass large-core optical fibers
US9632243B2 (en) 2007-09-26 2017-04-25 Imra America, Inc. Glass large-core optical fibers
US10353144B2 (en) 2007-09-26 2019-07-16 Imra America, Inc. Glass large-core optical fibers
CN112408773A (en) * 2020-10-29 2021-02-26 东北大学 D-shaped photonic crystal optical fiber preform and D-shaped photonic crystal optical fiber drawing method thereof

Also Published As

Publication number Publication date
JP3798984B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
US11573366B2 (en) Optical fiber with low chlorine concentration improvements relating to loss and its use, method of its production and use thereof
TWI226464B (en) Optical fiber, non-linear optical fiber, optical amplifier using the same optical fiber, wavelength converter and optical fiber manufacture method
JP4761624B2 (en) Photonic crystal fiber and improvements related thereto
US4453961A (en) Method of making glass optical fiber
JP2002249335A (en) Method for producing optical fiber, optical fiber and optical communication system
JPH1095628A (en) Optical fiber-containing product having fine structure and production of optical fiber having fine structure
JP5612654B2 (en) Rare earth doped optical fibers for fiber lasers and fiber amplifiers
JP2007536580A (en) Long wavelength pure silica core single mode fiber and method of forming the fiber
JP2007536580A5 (en)
WO2006046467A1 (en) Optical fiber
KR100963812B1 (en) Microstructured optical fiber and method of making
JP2003202445A (en) Photonic crystal optical fiber and its manufacturing method
EP0540042B1 (en) High power acceptable optical fiber and fabrication method thereof
KR20040014239A (en) Optical fiber preform, method for manufacturing thereof, and optical fiber obtained by drawing thereof
EP1210751B1 (en) Cladding-pumped optical fibre and method for making same
FR2780516A1 (en) MULTI-SHEAR OPTICAL FIBER, BRAGG FIBER OPTIC NETWORK WITH A LONG PERIOD, INCLUDED IN THE SAME, AND METHOD FOR REGISTERING THE SAME
JP4015959B2 (en) High stress-resistant optical fiber
US6895155B2 (en) Method of fabricating an optical fiber with microstructures
US20030136154A1 (en) Method for manufacturing optical fiber using ultrasonic drill
JP3802875B2 (en) High stress-resistant optical fiber
JP3836730B2 (en) Polarization-maintaining photonic crystal fiber and manufacturing method thereof
JP2005208268A (en) Optical fiber
JP4106038B2 (en) Photonic crystal optical fiber manufacturing method
JP3315786B2 (en) Optical amplifier type optical fiber
JP2005247620A (en) Method of manufacturing photonic crystal fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees