JP2003201118A - Method for manufacturing inorganic metal compound powder - Google Patents

Method for manufacturing inorganic metal compound powder

Info

Publication number
JP2003201118A
JP2003201118A JP2001399222A JP2001399222A JP2003201118A JP 2003201118 A JP2003201118 A JP 2003201118A JP 2001399222 A JP2001399222 A JP 2001399222A JP 2001399222 A JP2001399222 A JP 2001399222A JP 2003201118 A JP2003201118 A JP 2003201118A
Authority
JP
Japan
Prior art keywords
metal compound
inorganic metal
compound powder
producing
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001399222A
Other languages
Japanese (ja)
Inventor
Yasuo Shimomura
康夫 下村
Naoto Kijima
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Mitsubishi Chemical Corp
Original Assignee
Kasei Optonix Ltd
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd, Mitsubishi Chemical Corp filed Critical Kasei Optonix Ltd
Priority to JP2001399222A priority Critical patent/JP2003201118A/en
Publication of JP2003201118A publication Critical patent/JP2003201118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing functional inorganic metal compound powder such as a phosphor which has little impurity compound and is composed of fine powder of excellent crystallinity. <P>SOLUTION: In the method for manufacturing the inorganic metal compound powder by a spraying pyrolysis/synthesis method, a process for removing water contained in a raw material fluidized body outside the system by a diffusion drying method or the like before pyrolysis in a heating furnace is added. Otherwise the raw material fluidized body is subjected to two steps of heat treatment in the heating furnace and a process for removing water outside the system is provided at least between a first step heating process and a second step heating process. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、噴霧熱分解・合成
法による無機金属化合物粉末の製造方法の改良に関す
る。更に詳細には、粉末径分布が狭く、しかも内部が緻
密で凝集が少なく形状がほぼ球状である無機金属化合物
粉末、特に機能性の無機金属化合物粉末、例えば蛍光体
の製造方法に関する。
TECHNICAL FIELD The present invention relates to an improvement in a method for producing an inorganic metal compound powder by a spray pyrolysis / synthesis method. More specifically, the present invention relates to a method for producing an inorganic metal compound powder having a narrow powder diameter distribution, a dense interior, less aggregation, and a substantially spherical shape, particularly a functional inorganic metal compound powder, for example, a phosphor.

【0002】[0002]

【従来の技術】従来、蛍光体をはじめとする機能性の無
機金属化合物粉末を製造する方法の1つに、噴霧熱分解
法又は噴霧熱反応合成法(以下、「噴霧熱分解・合成
法」という)と称される製造方法が知られている。噴霧
熱分解・合成法は、製造しようとする無機金属化合物粉
末(明細書中において、「所望の無機金属化合物粉末」
ともいう)を構成する金属元素を含む化合物を溶解もし
くは懸濁させた溶液(以下、「原料溶液」という)を同
伴気体中に噴霧して液滴化し、この液滴を乾燥させ、該
同伴気体と共に加熱炉に導いて加熱処理して熱分解並び
に熱反応をさせることによって所望の無機金属化合物粉
末を製造する方法である{例えば、化学工学論文集、第
18巻、第3号(1992年)、特表2001−513
828号特許公表公報等参照}。
2. Description of the Related Art Conventionally, one of the methods for producing functional inorganic metal compound powders such as phosphors is a spray pyrolysis method or a spray thermal reaction synthesis method (hereinafter, "spray pyrolysis / synthesis method"). A manufacturing method called ") is known. The spray pyrolysis / synthesis method refers to the inorganic metal compound powder to be produced (in the specification, "desired inorganic metal compound powder"
(Also referred to as)), a solution (hereinafter referred to as “raw material solution”) obtained by dissolving or suspending a compound containing a metal element is sprayed into an entrained gas to form droplets, and the droplets are dried, and the entrained gas is then dried. It is a method for producing a desired inorganic metal compound powder by introducing it into a heating furnace and subjecting it to heat treatment for thermal decomposition and thermal reaction {eg, Chemical Engineering Papers, Vol. 18, No. 3 (1992). , Special Table 2001-513
828 patent publication gazette etc.}.

【0003】噴霧熱分解・合成法により製造された無機
金属化合物粉体は、原料粉末同士を混合したものを坩堝
などの焼成容器に入れ、高温で長時間加熱、焼成するこ
とにより固相反応によって得られた粉体に比べて、1)
球状に近い規則形状の粉体が得られる、2)焼成物をボ
ールミルなどで微粉砕しなくとも凝集のほとんどない粉
体が得られる、3)粒子径の小さい微粉末の粉体が得や
すく、得られる粉体の粒子径コントロールが比較的容易
である、等の利点を有する。
The inorganic metal compound powder produced by the spray pyrolysis / synthesis method is a solid-phase reaction in which a mixture of raw material powders is put in a firing container such as a crucible and heated and fired at high temperature for a long time. 1) compared to the powder obtained
A powder having a regular shape close to a sphere can be obtained, 2) a powder having almost no agglomeration can be obtained without finely pulverizing a fired product with a ball mill, etc. 3) a fine powder having a small particle size can be easily obtained. It has the advantage that the particle size of the obtained powder is relatively easy to control.

【0004】しかしながら、従来の噴霧熱分解・合成法
によると、加熱炉に同伴気体と共に導入されてくる、原
料溶液を含んだ液滴、流動中に乾燥した該液滴の乾燥物
である、固体状原料粉末及び該同伴気体(以下、原料溶
液の液滴、この液滴が流動中に乾燥された固体粉末及び
これらを搬送する同伴気体を含めて「原料流動体」とい
う)が含有する水分が、反応系から完全に取り除けない
ため、原料流動体中に残存する水分に影響されて、合成
された所望の無機金属化合物粉末が中空粉末になり易
く、かさ密度の大きい緻密な無機金属化合物の粉末が得
られ難いため、例えば、この方法で製造した無機金属化
合物粉末を成膜化すると膜密度の大きい膜が得られない
という欠点があった。
However, according to the conventional spray pyrolysis / synthesis method, a droplet containing a raw material solution, which is introduced together with an entrained gas into a heating furnace, and a solid substance which is a dried product of the droplet dried during flowing. Of the raw material powder and the entrained gas (hereinafter referred to as “raw material fluid” including the raw material solution droplets, the solid powder dried while the droplets are flowing, and the entrained gas carrying these) , Because it cannot be completely removed from the reaction system, the desired inorganic metal compound powder synthesized is likely to become a hollow powder due to the influence of moisture remaining in the raw material fluid, and a dense inorganic metal compound powder having a large bulk density. Therefore, there is a drawback that a film having a high film density cannot be obtained when the inorganic metal compound powder produced by this method is formed into a film.

【0005】また、反応系に水が存在することにより、
反応が阻害されたり、加熱炉や反応経路の耐熱材等と水
との反応によって生ずる不純物の影響により、所望の無
機金属化合物粉末の合成反応が阻害されたり、所望の無
機金属化合物粉末以外の副生成物を生じる場合があるた
めに、所望の無機金属化合物粉末として蛍光体などを製
造すると発光輝度や発光色純度の良好な蛍光体が得難い
等、製造される所望の無機金属化合物粉末の特性を悪化
させる弊害があった。更に、原料流動体中に水分を含ん
でいると熱容量の大きい水も加熱しなければならないた
めに、エネルギー的に非効率であるなどの問題点があっ
た。噴霧熱分解・合成法により無機金属化合物粉末を合
成する際、原料流動体中の水分を除去する方法として
は、例えば、原料流動体を重量分級器、円心分級器など
の分級器を用いてその水蒸気濃度を低減させる方法が提
案されているが(特開2001−152144号公報参
照)その操作が煩雑であり、また、必ずしも水分除去も
充分ではなく、原料流動体中の水分を効率的に除去する
簡便な方法が望まれていた。
Further, since water is present in the reaction system,
The reaction may be hindered, or the synthesis reaction of the desired inorganic metal compound powder may be hindered by the influence of impurities generated by the reaction between the heat-resistant material of the heating furnace or the reaction path and water, Since a product may be produced, it is difficult to obtain a phosphor having good emission brightness and emission color purity when a phosphor or the like is produced as a desired inorganic metal compound powder. There was a bad effect to make it worse. Further, if the raw material fluid contains water, water having a large heat capacity must be heated, which is inefficient in terms of energy. When synthesizing the inorganic metal compound powder by the spray pyrolysis / synthesis method, as a method for removing water in the raw material fluid, for example, a classifier such as a weight classifier or a circle center classifier is used for the raw material fluid. Although a method of reducing the water vapor concentration has been proposed (see Japanese Patent Application Laid-Open No. 2001-152144), the operation is complicated, and the water removal is not always sufficient, so that the water in the raw material fluid can be efficiently removed. A simple method of removing the pigment has been desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は、噴霧熱分解
・合成法による無機金属化合物粉末を合成するに際し
て、熱分解又は反応合成に供する原料流動体中の水分を
簡便に効率よく除去し、不純物化合物粉末の副生を抑制
し、結晶性に優れた緻密な粉末からなる蛍光体などの機
能性の無機金属化合物粉末を効率よく製造することので
きる無機金属化合物粉末の製造方法を提供することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention, when synthesizing an inorganic metal compound powder by a spray pyrolysis / synthesis method, simply and efficiently removes water in a raw material fluid to be subjected to pyrolysis or reaction synthesis, To provide a method for producing an inorganic metal compound powder capable of efficiently producing a functional inorganic metal compound powder such as a phosphor made of a dense powder having excellent crystallinity by suppressing by-product of impurity compound powder. With the goal.

【0007】本発明者らは、噴霧熱分解・合成法により
無機金属化合物粉末を製造する際、熱分解又は反応合成
される前の原料流動体中の水分を効率よく系外に除去す
るための手段について詳細に検討した結果、熱分解又は
反応合成を起こさせる加熱炉内に導入して高温で加熱処
理又は加熱反応処理される前の原料流動体中の水分(金
属化合物を含有した液滴の水分、同伴ガス中における気
体状の水分、金属化合物粉末中に含まれている水分等)
を、いわゆる拡散乾燥法を適用して除去させることによ
り上記の目的を達成できること、更に、最終生成物であ
る所望の無機金属化合物の粉末内に空洞を有する中空粉
末ができず、緻密な粉末を得ることが可能となり、一段
と高いレベルでの目的が達成できることがわかった。さ
らに、原料流動体の加熱を2段階に分けて行い、最初の
第1段目の加熱を終えた加熱処理生成物流体中の水分を
系外に除去する工程を付加することによって、加熱処理
工程での水分の存在が生成する材料の特性に悪影響をも
たらすような無機金属化合物粉末の合成においては、特
性向上に特に好都合であることがわかった。ここにおけ
る「系」とは、原料流動体が形成、加熱処理又は加熱反
応処理されるための流路を意味している。
The inventors of the present invention, in order to efficiently remove the water in the raw material fluid before pyrolysis or reaction synthesis from the system when producing the inorganic metal compound powder by the spray pyrolysis / synthesis method. As a result of a detailed examination of the means, the water content (liquid droplets containing a metal compound in the raw material fluid before being introduced into a heating furnace for causing thermal decomposition or reaction synthesis and subjected to heat treatment or heat reaction treatment at high temperature Moisture, gaseous moisture in accompanying gas, moisture contained in metal compound powder, etc.)
, That the above object can be achieved by removing by applying a so-called diffusion drying method, further, it is not possible to form a hollow powder having cavities in the powder of the desired inorganic metal compound which is the final product, and to obtain a dense powder. It was found that it was possible to obtain, and the purpose at a higher level could be achieved. Furthermore, the heating treatment step is performed by adding the step of removing the water in the heat treatment product fluid, which has been subjected to the first heating of the first stage, to the outside of the system by heating the raw material fluid in two stages. In the synthesis of inorganic metal compound powders in which the presence of water adversely affects the properties of the resulting material, it has been found to be particularly advantageous for improving the properties. The "system" here means a flow path for forming a raw material fluid, heat treatment, or heat reaction treatment.

【0008】[0008]

【課題を解決するための手段】本発明は、上記のような
知見をもとにして完成されたものである。 1.本発明に係る無機金属化合物粉末の製造方法は、所
望の無機金属化合物粉末の構成金属元素を含有する溶液
を同伴気体中に噴霧して液滴を形成した後、該液滴を乾
燥して固体状無機金属化合物原料粉末となし、引き続き
これを加熱処理又は加熱反応処理することにより所望の
無機金属化合物粉末を製造する方法において、該加熱処
理又は加熱反応処理する前に該液滴及び/又は該同伴気
体中に含まれる水分の少なくとも1部を系外に除去する
ことを特徴とする。(請求項1)
The present invention has been completed based on the above findings. 1. The method for producing an inorganic metal compound powder according to the present invention is a method of spraying a solution containing a constituent metal element of a desired inorganic metal compound powder into an entrained gas to form droplets, and then drying the droplets to form a solid. In the method of producing a desired inorganic metal compound powder by forming a powdery inorganic metal compound raw material powder and subsequently subjecting it to a heat treatment or a heat reaction treatment, the droplets and / or the It is characterized in that at least a part of water contained in the accompanying gas is removed out of the system. (Claim 1)

【0009】2.本発明に係る無機金属化合物粉末の製
造方法は、所望の無機金属化合物粉末の構成金属元素を
含有する溶液を同伴気体中に噴霧して液滴を形成した
後、該液滴を乾燥して固体状無機金属化合物原料粉末と
なし、引き続きこれを加熱処理又は加熱反応処理するこ
とにより所望の無機金属化合物粉末を製造する方法にお
いて、該加熱処理又は加熱反応処理を、第1の加熱炉に
よる第1の加熱処理又は加熱反応処理と、第2の加熱炉
による第2の加熱処理又は加熱反応処理との2段階に分
けて行い、少なくとも該第2の加熱炉内に導入される前
の加熱処理生成物及び/又は該同伴気体中に含まれる水
分の少なくとも1部を系外に除去することを特徴とす
る。(請求項2)
2. The method for producing an inorganic metal compound powder according to the present invention is a method of spraying a solution containing a constituent metal element of a desired inorganic metal compound powder into an entrained gas to form droplets, and then drying the droplets to form a solid. In the method for producing a desired inorganic metal compound powder by forming a powdery inorganic metal compound raw material powder and subsequently subjecting it to a heat treatment or a heat reaction treatment, the heat treatment or the heat reaction treatment is performed by a first heating furnace. Heat treatment or heat reaction treatment and the second heat treatment or heat reaction treatment by the second heating furnace are divided into two stages, and at least heat treatment is generated before being introduced into the second heating furnace. It is characterized in that at least a part of the water contained in the substance and / or the accompanying gas is removed out of the system. (Claim 2)

【0010】3.本発明に係る無機金属化合物粉末の製
造方法は、前記2記載の製造方法において、前記第1の
加熱処理又は加熱反応処理が、250℃〜1500℃の
温度範囲でなされることを特徴とする。(請求項3) 4.本発明に係る無機金属化合物粉末の製造方法は、前
記2または3記載の製造方法において、前記第2の加熱
処理又は加熱反応処理が、500℃〜1800℃の温度
範囲でなされることを特徴とする。(請求項4) 5.本発明に係る無機金属化合物粉末の製造方法は、前
記2〜5のいづれかに記載の製造方法において、前記第
1の加熱炉内に導入される前にも、前記液滴及び/又は
前記同伴気体中に含まれる水分の少なくとも1部を系外
に除去することを特徴とする。(請求項5)
3. The method for producing an inorganic metal compound powder according to the present invention is characterized in that, in the production method described in 2 above, the first heat treatment or heat reaction treatment is performed in a temperature range of 250 ° C to 1500 ° C. (Claim 3) 4. The method for producing an inorganic metal compound powder according to the present invention is characterized in that, in the production method according to 2 or 3, the second heat treatment or heat reaction treatment is performed in a temperature range of 500 ° C to 1800 ° C. To do. (Claim 4) 5. The method for producing an inorganic metal compound powder according to the present invention is the method for producing an inorganic metal compound powder according to any one of 2 to 5 above, wherein the droplets and / or the entrained gas are also introduced before being introduced into the first heating furnace. It is characterized in that at least a part of water contained therein is removed to the outside of the system. (Claim 5)

【0011】6.本発明に係る無機金属化合物粉末の製
造方法は、前記1〜5のいづれかに記載の製造方法にお
いて、前記液滴及び/又は前記同伴気体中の水分を取り
込み得る乾燥用媒体と該液滴及び/又は該同伴気体とを
多孔質隔膜を介して互いに接触させ、該液滴及び/又は
該同伴気体中の水分を拡散させて該乾燥用媒体中に移動
させることによって該液滴及び/又は該同伴気体中に含
まれる水分の少なくとも1部を系外に除去することを特
徴とする。(請求項6) 7.本発明に係る無機金属化合物粉末の製造方法は、前
記1〜6のいづれかに記載の製造方法において、前記乾
燥用媒体中の水分含有率が、前記液滴及び/又は前記同
伴気体中の水分含有率よりも小であることを特徴とす
る。(請求項7)
6. The method for producing an inorganic metal compound powder according to the present invention is the method for producing an inorganic metal compound powder according to any one of 1 to 5 above, wherein a drying medium capable of taking in water in the droplets and / or the accompanying gas, and the droplets and / or Alternatively, the entrained gas and the entrained gas are brought into contact with each other through a porous membrane, and the water content in the droplet and / or the entrained gas is diffused and moved into the drying medium, thereby entraining the droplet and / or the entrained gas. It is characterized in that at least a part of water contained in the gas is removed out of the system. (Claim 6) 7. The method for producing an inorganic metal compound powder according to the present invention is the method according to any one of 1 to 6 above, wherein the water content in the drying medium is water content in the droplets and / or the entrained gas. It is characterized by being smaller than the rate. (Claim 7)

【0012】8.本発明に係る無機金属化合物粉末の製
造方法は、前記6または7のいづれかに記載の製造方法
において、前記乾燥用媒体が、気体であることを特徴と
する。(請求項8) 9.本発明に係る無機金属化合物粉末の製造方法は、前
記8記載の無機金属化合物粉末の製造方法において、前
記気体の水蒸気濃度が、前記同伴気体の水蒸気濃度の1
/2以下であることを特徴とする。(請求項9) 10.本発明に係る無機金属化合物粉末の製造方法は、
前記8または9記載の製造方法において、前記気体の少
なくとも1部を、前記液滴及び/又は前記同伴気体と接
触させる前に100℃以下に冷却することを特徴とす
る。(請求項10)
8. The method for producing an inorganic metal compound powder according to the present invention is characterized in that, in the production method according to any of 6 or 7, the drying medium is a gas. (Claim 8) 9. The method for producing an inorganic metal compound powder according to the present invention is the method for producing an inorganic metal compound powder as described in 8 above, wherein the water vapor concentration of the gas is one of the water vapor concentration of the accompanying gas.
It is characterized by being / 2 or less. (Claim 9) 10. The method for producing an inorganic metal compound powder according to the present invention,
In the manufacturing method described in 8 or 9, at least a part of the gas is cooled to 100 ° C. or lower before being brought into contact with the droplet and / or the entrained gas. (Claim 10)

【0013】11.本発明に係る無機金属化合物粉末の
製造方法は、前記6記載の粉末の製造方法において、前
記乾燥用媒体が、固体状の乾燥剤であることを特徴とす
る。(請求項11) 12.本発明に係る無機金属化合物粉末の製造方法は、
前記11記載の製造方法において、前記固体状の乾燥剤
が、シリカゲル、塩化カルシウム、ゼオライトからなる
群から選ばれる少なくとも1つであることを特徴とす
る。(請求項12) 13.本発明に係る無機金属化合物粉末の製造方法は、
前記1〜12のいづれかに記載の製造方法において、前
記所望の無機金属化合物が、蛍光体であることを特徴と
する。(請求項13)
11. The method for producing an inorganic metal compound powder according to the present invention is characterized in that, in the method for producing a powder according to 6 above, the drying medium is a solid desiccant. (Claim 11) 12. The method for producing an inorganic metal compound powder according to the present invention,
11. In the production method described in 11, the solid desiccant is at least one selected from the group consisting of silica gel, calcium chloride and zeolite. (Claim 12) 13. The method for producing an inorganic metal compound powder according to the present invention,
13. The manufacturing method according to any one of 1 to 12 above, wherein the desired inorganic metal compound is a phosphor. (Claim 13)

【0014】[0014]

【発明の実施の形態】以下、本発明の無機金属化合物粉
末の製造方法について、更に詳細に説明する。本発明の
無機金属化合物粉末の製造方法は、噴霧熱分解・合成法
による無機金属化合物粉末の製造方法において、加熱炉
に導入して熱分解される前の原料流動体中の水分を同伴
気体中に水蒸気等の状態で残存させておくのではなく、
拡散乾燥法により完全に反応系の外に除去する工程を付
加すること(請求項1の発明)、または原料流動体を2
段階に分けて加熱炉により加熱処理し、少なくとも第1
段目の加熱工程と第2段目の加熱工程との間に水分除去
工程を設けること(請求項2の発明)を特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing an inorganic metal compound powder of the present invention will be described in more detail below. The method for producing an inorganic metal compound powder according to the present invention is a method for producing an inorganic metal compound powder by a spray pyrolysis / synthesis method, wherein water in a raw material fluid before being pyrolyzed by being introduced into a heating furnace is contained in an entrained gas. Instead of leaving it in the state of water vapor,
Adding a step of completely removing it outside the reaction system by the diffusion drying method (the invention of claim 1), or adding the raw material fluid to 2
Heat treatment in a heating furnace divided into stages, at least the first
The invention is characterized in that a moisture removing step is provided between the heating step of the second step and the heating step of the second step (the invention of claim 2).

【0015】図1は、請求項1の発明に係る無機金属化
合物粉末(以下、単に、「無機金属化合物」ともいう)
の製造方法の製造工程を例示する概略図である。先ず、
各種の噴霧化手段を適用した噴霧化装置Aにより所望の
無機金属化合物の原料溶液、即ち、所望の無機金属化合
物の構成金属元素を含有する溶液を同伴気体中に噴霧し
て液滴化する。原料としては、水に可溶性で、高温に加
熱するときに酸化物、硫化物などに分解し、反応して所
望の無機金属化合物を生成し得る無機塩や有機金属化合
物など(原料化合物)を水などの溶媒中に溶解して原料
溶液とする。ただし、原料化合物は必ずしも水溶性であ
る必要はなく、その粒径が小さく、水などの溶媒中に均
一に懸濁しておれば用いる溶媒に対して難溶性の化合物
であっても良い。また、原料化合物が水に不溶性である
場合には、これを予め酸等に溶解しておいてから使用す
ることも可能である。
FIG. 1 shows an inorganic metal compound powder according to the invention of claim 1 (hereinafter, also simply referred to as "inorganic metal compound").
FIG. 6 is a schematic view illustrating a manufacturing process of the manufacturing method of FIG. First,
A raw material solution of a desired inorganic metal compound, that is, a solution containing a constituent metal element of a desired inorganic metal compound is sprayed in an entrained gas into droplets by an atomizing apparatus A to which various atomizing means are applied. As a raw material, an inorganic salt or an organometallic compound (raw material compound) that is soluble in water and decomposes into oxides, sulfides, etc. when heated to a high temperature and can react to generate a desired inorganic metal compound (raw material compound) is used. It is dissolved in a solvent such as to prepare a raw material solution. However, the raw material compound does not necessarily have to be water-soluble, and may be a compound that has a small particle size and is hardly soluble in the solvent used if it is uniformly suspended in a solvent such as water. When the raw material compound is insoluble in water, it can be used after being dissolved in an acid or the like in advance.

【0016】原料溶液中の原料化合物の配合量は、所望
の無機金属化合物の構成金属元素をその構成比率で含ん
だ量だけ使用されることはいうまでもないが、原料溶液
内の金属元素の溶質濃度Cが0.01≦C≦5の範囲に
あることが好ましい。ここで、Cは、水溶液1リットル
に含有される全ての金属元素の合計のモル数である。溶
質濃度が0.01より低いと、乾燥除去される水分量に
対して合成出来る所望の無機金属化合物量が少ないため
に生産性が低くなる。一方、溶質濃度が5より高いと、
液滴が生成し難くなる。なお、原料溶液内の構成金属元
素の含有量は、原料溶液から生成される液滴のサイズと
最終的に得られる所望の無機金属化合物の粒径との兼ね
合いで決定される。生成される液滴のサイズが同じな
ら、構成金属元素の含有量が多いほど、得られる所望の
無機金属化合物の粒径は大きくなる。
It goes without saying that the raw material compound is mixed in the raw material solution in an amount including the constituent metal elements of the desired inorganic metal compound in the constituent ratio. The solute concentration C is preferably in the range of 0.01 ≦ C ≦ 5. Here, C is the total number of moles of all metal elements contained in 1 liter of the aqueous solution. If the solute concentration is lower than 0.01, the productivity becomes low because the desired amount of inorganic metal compound that can be synthesized is small relative to the amount of water removed by drying. On the other hand, if the solute concentration is higher than 5,
Droplets are less likely to be generated. The content of the constituent metal elements in the raw material solution is determined by the balance between the size of droplets generated from the raw material solution and the particle size of the desired inorganic metal compound finally obtained. The larger the content of the constituent metal elements, the larger the particle size of the desired inorganic metal compound obtained, if the size of the generated droplets is the same.

【0017】所望の無機金属化合物の熱分解、合成を容
易にするために、原料化合物として、所望の無機金属化
合物の構成金属元素の硝酸塩を使用することが好まし
い。その理由は、硝酸塩粉末の場合、加熱により容易に
分解して無機金属化合物を生成するからである。それ
故、溶液に溶解されている金属塩の少なくとも10重量
%が硝酸塩であることが好ましく、少なくとも50重量
%が硝酸塩であることがより好ましい。
In order to facilitate the thermal decomposition and synthesis of the desired inorganic metal compound, it is preferable to use a nitrate of a constituent metal element of the desired inorganic metal compound as a raw material compound. The reason is that the nitrate powder is easily decomposed by heating to form an inorganic metal compound. Therefore, it is preferred that at least 10% by weight of the metal salt dissolved in the solution is nitrate, and more preferred that at least 50% by weight is nitrate.

【0018】また、本発明の無機金属化合物の製造方法
においては、所望の無機金属化合物の構成金属元素以外
の金属元素や添加物を種々の目的で原料溶液中に含有さ
せても良い。例えば、硫化物を合成するときにはチオ尿
素やチオアセトアミドなどの硫黄含有化合物を含有させ
ることが好ましい。さらに、アルカリ金属やアルカリ土
類金属のハロゲン化物、ハロゲン化アンモニウム、ホウ
酸などを結晶性向上剤として原料溶液中に添加しておく
と、熱分解・合成炉での加熱温度を下げたり、滞留時間
を短くすることができる。
Further, in the method for producing an inorganic metal compound of the present invention, metal elements other than the constituent metal elements of the desired inorganic metal compound and additives may be contained in the raw material solution for various purposes. For example, it is preferable to include a sulfur-containing compound such as thiourea or thioacetamide when synthesizing a sulfide. Furthermore, if alkali metal or alkaline earth metal halides, ammonium halides, boric acid, etc. are added to the raw material solution as crystallinity improvers, the heating temperature in the thermal decomposition / synthesis furnace can be lowered or the retention The time can be shortened.

【0019】原料溶液は、そのpHを7以下に調整する
ことが好ましく、特にpH5以下に調整することがより
好ましい。原料溶液のpHを7以下に適切に調整する
と、均質な水溶液が形成され、噴霧により均質な液滴を
形成することができるため、均質な所望の無機金属化合
物を合成することができるからである。原料溶液のpH
が7を越えると、水酸化物が多量に沈殿し、その結果、
噴霧する液滴中の沈殿物成分の含有量が増加し、液滴中
の原料化合物の組成が変動するため、所望の無機金属化
合物の結晶核が均一に発生せず、所望の無機金属化合物
の組成が変動したり、粒径が変動する要因となり、均質
で特性の良好な所望の無機金属化合物を得ることができ
ない。原料溶液に原料化合物などの固形分が混在する場
合でも、その混在割合は10重量%以下であることが好
ましく、1重量%以下がより好ましい。
The pH of the raw material solution is preferably adjusted to 7 or less, and more preferably adjusted to 5 or less. This is because when the pH of the raw material solution is appropriately adjusted to 7 or less, a homogeneous aqueous solution is formed, and homogeneous droplets can be formed by spraying, so that a homogeneous desired inorganic metal compound can be synthesized. . PH of raw material solution
When the value exceeds 7, a large amount of hydroxide precipitates, and as a result,
Since the content of the precipitate component in the sprayed droplets increases and the composition of the raw material compound in the droplets fluctuates, the crystal nuclei of the desired inorganic metal compound do not uniformly occur, and the desired inorganic metal compound As a result, the composition changes or the particle size changes, and it is not possible to obtain a desired inorganic metal compound that is homogeneous and has good characteristics. Even when solid components such as raw material compounds are mixed in the raw material solution, the mixing ratio is preferably 10% by weight or less, and more preferably 1% by weight or less.

【0020】なお、所望の無機金属化合物によっては、
その特性を低下させる不純物を含まない原料を使用する
ことが大切である。例えば、所望の無機金属化合物が紫
外線や電子線を照射することにより可視光を発光する蛍
光体である場合には、鉄やニッケルなどの遷移金属の不
純物が蛍光体の特性を大幅に低下させる場合が多いの
で、良好な発光特性を得るためには、キラーセンターと
なる鉄やニッケルなどの不純物元素の含有量の少ない原
料化合物を原料溶液成分として使用することが好まし
い。
Depending on the desired inorganic metal compound,
It is important to use a raw material that does not contain impurities that reduce its properties. For example, when the desired inorganic metal compound is a phosphor that emits visible light by irradiating with ultraviolet rays or electron beams, when impurities of transition metals such as iron and nickel significantly reduce the characteristics of the phosphor. Therefore, in order to obtain good emission characteristics, it is preferable to use a raw material compound having a small content of an impurity element such as iron or nickel, which serves as a killer center, as a raw material solution component.

【0021】原料溶液から微細な液滴を形成する噴霧化
手段としては、一般に知られているいずれの手段も使用
することができる。例えば、加圧空気で液体を吸い上げ
ながら噴霧して1〜50μmの液滴を形成する方法、圧
電結晶からの2MHz程度の超音波を利用して4〜10
μmの液滴を形成する方法、穴径が10〜20μmのオ
リフィスが振動子により振動し、そこへ一定の速度で供
給される液体が振動数に応じて一定量ずつ穴から放出さ
れ5〜50μmの液滴を形成する方法等による方法で同
伴気体中に原料化合物溶液を噴霧し、液滴化して原料流
動体を形成する。
As the atomizing means for forming fine droplets from the raw material solution, any generally known means can be used. For example, a method of forming a liquid droplet of 1 to 50 μm by sucking the liquid with pressurized air to form a liquid droplet of 4 to 10 using ultrasonic waves of about 2 MHz from a piezoelectric crystal.
A method of forming a droplet of μm, an orifice having a hole diameter of 10 to 20 μm is vibrated by a vibrator, and a liquid supplied to the orifice at a constant speed is discharged from the hole in a constant amount according to the frequency of vibration of 5 to 50 μm The raw material compound solution is sprayed into the entrained gas by a method such as the method of forming liquid droplets, and the raw material fluid is formed by droplets.

【0022】同伴気体としては、所望の無機金属化合物
の種類に応じて選択され、空気、酸素、窒素、水素、少
量の一酸化炭素や水素や硫化水素を含む窒素又はアルゴ
ンなどが使用できる。例えば、所望の無機金属化合物が
蛍光体であれば、良好な発光特性を得るためには、蛍光
体の化学組成と発光に関与する付活剤イオンの種類によ
り気体を選択することが重要である。即ち、酸化雰囲気
で原子価を保ちやすいEu3+等を付活イオンとする酸化
物を主相とする蛍光体を合成する場合には、空気や酸素
などの酸化性ガスが好ましく、還元雰囲気で原子価を保
ちやすいEu2+等を付活イオンとする酸化物を主相とす
る蛍光体を合成する場合には、水素、少量の水素を含む
窒素又はアルゴンなどの還元性ガスが好ましい。また、
硫化物蛍光体や酸硫化物蛍光体を合成する際には、硫化
水素を含有する同伴気体を使用することが好ましい。
The accompanying gas is selected according to the kind of the desired inorganic metal compound, and air, oxygen, nitrogen, hydrogen, a small amount of carbon monoxide, nitrogen containing hydrogen or hydrogen sulfide, or argon can be used. For example, if the desired inorganic metal compound is a phosphor, it is important to select a gas according to the chemical composition of the phosphor and the type of activator ions involved in light emission in order to obtain good emission characteristics. . That is, when synthesizing a phosphor whose main phase is an oxide having Eu 3+ or the like as a activating ion, which is easy to maintain valence in an oxidizing atmosphere, an oxidizing gas such as air or oxygen is preferable, In the case of synthesizing a phosphor having an oxide having Eu 2+ or the like as an active ion as the main phase, which easily maintains the valence, a reducing gas such as hydrogen, nitrogen containing a small amount of hydrogen, or argon is preferable. Also,
When synthesizing the sulfide phosphor and the oxysulfide phosphor, it is preferable to use an entrained gas containing hydrogen sulfide.

【0023】このようにして得られた微小な液滴は、気
体の流れにのって原料流動体として流動し、必要に応じ
て次の乾燥工程に入る前に各種分級手段を適用した分級
装置Bにより液滴の分級を行っても良い。液滴を分級す
ると、生成する所望の無機金属化合物粉末の粒度分布を
狭くすることが出来る。分級の方法としては、サイクロ
ンによる慣性分級法などが採用される。分級により原料
流動体から除去された液体は、回収され液滴生成に再利
用しても良い。
The fine droplets thus obtained flow as a raw material fluid along with the flow of gas, and if necessary, various classification means are applied before starting the next drying step. The droplets may be classified by B. By classifying the droplets, it is possible to narrow the particle size distribution of the desired inorganic metal compound powder produced. As a classification method, an inertial classification method using a cyclone or the like is adopted. The liquid removed from the raw material fluid by classification may be recovered and reused for droplet formation.

【0024】噴霧化装置Aにより液滴化され、必要に応
じて分級装置Bによって分級された微小な液滴を含む原
料流動体は、加熱炉Dにおいて加熱処理されて熱分解・
合成される前に、拡散乾燥器Cで拡散乾燥法により水分
の除去が行われる。本発明の無機金属化合物の製造方法
において、請求項1の発明の特徴は、原料流動体を予め
拡散乾燥法が適用された拡散乾燥器Cによって水分除去
してから加熱炉Dに導入して熱分解することにある。こ
こで言う拡散乾燥法とは、原料流動体と、乾燥剤や乾燥
空気などの水分を取り込むことのできる乾燥用媒体とを
接触もしくは近接させておき、加熱することなくその乾
燥用媒体の作用により該原料流動体中の水分を乾燥媒体
中に拡散させ、取り込ませることによって該原料流動体
中の水分を系内から除去、低減させる方法をいう。な
お、原料流動体中の水分が取り込まれた乾燥用媒体は、
適宜交換することにより、原料流動体の流路(反応系)
に還流されることはない。
The raw material fluid containing fine liquid droplets atomized by the atomizing device A and classified by the classifying device B as required is heat-treated in the heating furnace D to be thermally decomposed and decomposed.
Before the synthesis, the moisture is removed by the diffusion dryer C by the diffusion drying method. In the method for producing an inorganic metal compound of the present invention, the feature of the invention of claim 1 is that the raw material fluid is heated by a diffusion dryer C to which a diffusion drying method is applied in advance to remove water and then introduced into a heating furnace D. It is to disassemble. The diffusion drying method here means that the raw material fluid is brought into contact with or in close proximity to a drying medium capable of taking in moisture such as a desiccant or dry air, and the action of the drying medium is performed without heating. This is a method of removing and reducing the water in the raw material fluid from the system by diffusing and incorporating the water in the raw material fluid into a drying medium. The drying medium in which the water content of the raw material fluid is taken in is
By exchanging appropriately, the flow path of the raw material fluid (reaction system)
Is never refluxed.

【0025】図2は、本発明においてこの拡散乾燥法に
より水分を取り除くための拡散乾燥器の一例を示す概略
断面図である。本例の拡散乾燥器Cは、両端が開口し
た、例えば、円筒状のガラス、ステンレス、プラスチッ
ク、磁器などからなるカラムgの内部のほぼ中心に、そ
の壁面に多数の貫通する小孔を有し、外径がカラムgの
内径より小さく、両端が開口した筒状の隔壁mがカラム
gの軸方向に挿入されているものである。隔壁mは、一
方の面から他方の面に貫通する多数の小孔が設けられた
ステンレス、ナイロン、テフロン(登録商標)等からな
るシートや、メッシュもしくは多孔質膜を筒状に加工し
たもので、所定の太さに数回巻いて紐などにより固定し
てカラムg内に配設される。隔壁mにより形成される内
側中空部分は原料流動体が流動するための原料流動体搬
送路oとなる。カラムgの両端の開口部は、その中央部
に筒状隔膜mにより形成される原料流動体搬送路oに連
通する原料流動体出入孔tが設けられたシリコンなどか
らなる封止栓sにより封じられており、カラムgの内壁
と隔膜mの外側との空間には乾燥用媒体dが充填された
構造となっている。
FIG. 2 is a schematic sectional view showing an example of a diffusion dryer for removing water by the diffusion drying method in the present invention. The diffusion dryer C of the present example has a large number of small holes penetrating its wall surface in the center of a column g made of, for example, cylindrical glass, stainless steel, plastic, porcelain, etc. A cylindrical partition wall m having an outer diameter smaller than the inner diameter of the column g and both ends opened is inserted in the axial direction of the column g. The partition wall m is a sheet made of stainless steel, nylon, Teflon (registered trademark) or the like having a large number of small holes penetrating from one surface to the other surface, or a mesh or porous film processed into a cylindrical shape. , Is wound several times to a predetermined thickness, fixed with a string or the like, and arranged in the column g. The inner hollow portion formed by the partition wall m serves as a raw material fluid transport path o through which the raw material fluid flows. The openings at both ends of the column g are sealed by a sealing plug s made of silicon or the like in which a raw material fluid inlet / outlet hole t communicating with the raw material fluid transport passage o formed by the tubular diaphragm m is provided in the central portion. The space between the inner wall of the column g and the outer side of the diaphragm m is filled with the drying medium d.

【0026】本発明において使用される拡散乾燥器Cに
充填される乾燥用媒体dとしては、シリカゲル、塩化カ
ルシウム、ゼオライト等の固体乾燥剤が取り扱いの簡便
さなどの点で好ましい。この隔膜mで囲まれた内部の原
料流動体搬送路oを原料流動体が流動する間に、その原
料流動体中の水分が隔膜mを介してその外側に充填され
ている乾燥媒体d中に拡散、吸収され、除去されるよう
になっている。なお、隔膜mとしてメッシュを用いる場
合、そのメッシュの目開きは、充填した固体乾燥剤がメ
ッシュの内側の原料流動体搬送路oに入らず、かつ、空
気の流通ができるようなサイズのものを用いる必要があ
る。目開きが小さいほど乾燥媒体dの保持は容易になる
が、水分の拡散が困難になるので、乾燥媒体dのサイズ
との兼ね合いでできるだけ大きな目開きのものを選ぶ必
要がある。例えば、乾燥媒体dとして粒径2mmのシリ
カゲルを使用した場合には、目開き約1mmのメッシュ
を複数回巻いて筒状にしたものが適当である。乾燥媒体
dとして固体乾燥剤を使用した場合、流通するガスの温
度が高いとこれらの固体乾燥剤が水分を吸着しないた
め、固体乾燥剤の温度を下げる必要があり、充填される
固体乾燥剤の温度は、少なくとも100℃以下になるよ
う調整しておく必要がある。
As the drying medium d to be filled in the diffusion dryer C used in the present invention, a solid desiccant such as silica gel, calcium chloride or zeolite is preferable from the viewpoint of easy handling. While the raw material fluid is flowing through the internal raw material fluid conveying path o surrounded by the diaphragm m, the moisture in the raw material fluid flows through the diaphragm m into the drying medium d filled outside. It is supposed to be diffused, absorbed and removed. When a mesh is used as the diaphragm m, the mesh should be of a size such that the filled solid desiccant does not enter the raw material fluid transfer path o inside the mesh and air can flow. Must be used. The smaller the mesh size, the easier the holding of the drying medium d becomes, but it becomes difficult to diffuse the water. Therefore, it is necessary to select the mesh size as large as possible in consideration of the size of the drying medium d. For example, when silica gel having a particle diameter of 2 mm is used as the drying medium d, it is suitable that a mesh having an opening of about 1 mm is wound a plurality of times to form a tubular shape. When a solid desiccant is used as the drying medium d, it is necessary to lower the temperature of the solid desiccant because the solid desiccant does not adsorb moisture when the temperature of the circulating gas is high. The temperature must be adjusted so that it is at least 100 ° C. or lower.

【0027】上記拡散乾燥器Cの別の態様としては、上
述の固体乾燥剤を充填する代わりにカラムgの内側と隔
膜mとの空間に乾燥用媒体dとして乾燥用気体を通気す
るようにし、隔膜mを介してその内側の原料流動体搬送
路oを通過する原料流動体中の水分を乾燥用気体中に拡
散させて除去することもできる。この方法の利点は、特
に連続運転を行う場合に好都合であることである。乾燥
用媒体dとして乾燥用気体を使用した拡散乾燥器Cを用
いる場合には、通気する乾燥用気体を100℃以下の冷
却部に接触させることにより、乾燥用気体の水分含有量
を低下させることができるのでさらに好ましい。このと
き水分が除去された気体は再び乾燥媒体d用の乾燥用気
体として原料流動体の乾燥に用いることができる。
As another mode of the diffusion dryer C, instead of filling the above-mentioned solid desiccant, a drying gas is aerated as a drying medium d in the space between the inside of the column g and the diaphragm m, It is also possible to remove the water in the raw material fluid that passes through the raw material fluid conveyance path o inside the membrane m through the diaphragm m by diffusing it into the drying gas. The advantage of this method is that it is particularly advantageous for continuous operation. When the diffusion dryer C using a drying gas as the drying medium d is used, the moisture content of the drying gas is reduced by bringing the drying gas to be aerated into contact with a cooling unit at 100 ° C. or lower. Is more preferable because it can be obtained. At this time, the gas from which the water has been removed can be used again as a drying gas for the drying medium d for drying the raw material fluid.

【0028】このようにして、拡散乾燥法により原料流
動体を加熱炉に導入する前に水分の除去をしておくと、
加熱せずに水分を除去できるので、中空粉末が生成し難
く、より緻密な所望の無機金属化合物粉末を得ることが
できる。また、原料流動体と水分とを容易に分離できる
ため、加熱工程に運ばれる水分量を効率よく低減でき
る。
In this way, if the water content is removed before the raw material fluid is introduced into the heating furnace by the diffusion drying method,
Since water can be removed without heating, a hollow powder is less likely to be formed, and a more dense desired inorganic metal compound powder can be obtained. Further, since the raw material fluid and water can be easily separated, the amount of water carried to the heating step can be efficiently reduced.

【0029】次に、拡散乾燥器Cによりその水分が除去
された原料流動体は、所定の温度に保持された加熱炉D
に導入され、所定の滞留時間だけ加熱されることによ
り、原料化合物は熱分解し、その熱分解生成物同士の化
学反応により所望の無機金属化合物が生成し、更にその
結晶成長などが起こり、最終的に所望の無機金属化合物
の粉末が生成する。加熱炉Dでの加熱工程を終えた所望
の無機金属化合物を含む流動体は、バグフィルターなど
の粉末捕集器Eで捕集される。その後、必要に応じて、
洗浄、分散などの後処理が施されて分散性の良好な所望
の無機金属化合物の粉末が得られる。
Next, the raw material fluid from which the moisture has been removed by the diffusion dryer C is heated in a heating furnace D kept at a predetermined temperature.
The raw material compound is thermally decomposed by being heated to a predetermined residence time, and a desired inorganic metal compound is generated by a chemical reaction between the thermal decomposition products, and further, crystal growth thereof occurs, and finally A powder of the desired inorganic metal compound is formed. The fluid containing the desired inorganic metal compound that has undergone the heating step in the heating furnace D is collected by the powder collector E such as a bag filter. Then, if necessary,
After-treatment such as washing and dispersion is performed to obtain a desired inorganic metal compound powder having good dispersibility.

【0030】拡散乾燥器Cを通過した、熱分解・合成炉
Dに導入される前の乾燥処理流体(乾燥処理生成物を含
有する同伴気体)中には、水分が含まれないか、含まれ
るとしてもごくわずかなので、水分が多量に含まれる場
合に生じる副反応を抑制することができ、また、比熱の
大きい水を加熱する必要がなく、エネルギー消費量が小
さくなり好都合である。加熱炉Dでの乾燥処理流体の加
熱温度並びに滞留時間(加熱時間)は所望の無機金属化
合物の組成によって異なるが、温度はほぼ500〜18
00℃の温度で、滞留時間はほぼ0.5秒〜10分の範
囲から選ばれるのが一般的である。加 熱時間が短すぎ
ると熱分解、所望の無機金属化合物の結晶成長など、目
的の反応が完了しない。一方、必要な反応時間を越えて
加熱することはエネルギーの浪費であり、好ましくな
い。
The drying treatment fluid (entrained gas containing the drying treatment product) that has passed through the diffusion dryer C and before being introduced into the thermal decomposition / synthesis furnace D does not contain or contains water. Since it is extremely small, it is possible to suppress a side reaction that occurs when a large amount of water is contained, and it is not necessary to heat water having a large specific heat, which is convenient because the energy consumption is small. The heating temperature of the drying treatment fluid in the heating furnace D and the residence time (heating time) vary depending on the composition of the desired inorganic metal compound, but the temperature is approximately 500-18.
At a temperature of 00 ° C., the residence time is generally selected from the range of approximately 0.5 seconds to 10 minutes. If the heating time is too short, the desired reaction such as thermal decomposition and crystal growth of a desired inorganic metal compound cannot be completed. On the other hand, heating beyond the required reaction time is a waste of energy and is not preferable.

【0031】図3は請求項2の発明に係る無機金属化合
物の製造方法の製造工程を例示する概略図である。請求
項2の発明に係る製造方法は、上記請求項1の発明に係
る製造方法と同様に原料溶液を噴霧化装置Aにより液滴
化し、同伴気体中に噴霧してなる原料流動体を分級装置
Bにより液滴の分級を行ってから、所定の温度に保持さ
れている第1の加熱炉D1に搬送して、一定時間滞留さ
せて熱分解し(第1段目の加熱工程)、次にこの第1の
加熱炉D1で得られた加熱処理流体(熱分解生成物を含
有する同伴気体)を拡散乾燥器Cに導いて第1段目の加
熱工程において水が生成すればその生成した水を含む全
ての水成分を除去する。次いで、水分が除去された、乾
燥処理流体(第1段目の加熱工程で得られた加熱処理生
成物を含む同伴気体)を、所定の温度に保持されている
第2の加熱炉D2に導入して一定の時間加熱処理し(第
2段目の加熱工程)、同伴気体に伴われて炉外に流出し
て来る所望の無機金属化合物をバグフィルターなどの粉
末捕集器Eで捕集する。
FIG. 3 is a schematic view illustrating the manufacturing process of the method for manufacturing an inorganic metal compound according to the second aspect of the invention. The manufacturing method according to the invention of claim 2 is, as in the manufacturing method according to the invention of claim 1 described above, a raw material fluid which is made into droplets by the atomizing device A and sprayed in the accompanying gas to classify the raw material fluid. After the droplets have been classified by B, the droplets are conveyed to the first heating furnace D1 which is maintained at a predetermined temperature, retained for a certain period of time and pyrolyzed (the first heating step), and then If the heat treatment fluid (entrained gas containing a thermal decomposition product) obtained in the first heating furnace D1 is introduced into the diffusion dryer C and water is generated in the first heating step, the generated water is generated. Remove all water components including. Then, the dry treatment fluid (the entrained gas containing the heat treatment product obtained in the first heating step) from which the water has been removed is introduced into the second heating furnace D2 which is maintained at a predetermined temperature. Then, heat treatment is performed for a certain time (second heating step), and a desired inorganic metal compound flowing out of the furnace along with the accompanying gas is collected by a powder collector E such as a bag filter. .

【0032】第1段目の加熱工程と第2段目の加熱工程
との間において行う水分除去工程での水分除去手段は必
ずしも拡散乾燥法によらなくても良く、その脱水手段に
制限はないが、例えば、図2に例示したような拡散乾燥
器Cを用いて拡散乾燥法を適用することが好ましい。拡
散乾燥法により水分を系外に除去すると、加熱処理流体
と水分とを容易に分離できるため、次の加熱工程に運ば
れる水分量を効率よく低減できる。
The moisture removing means in the moisture removing step performed between the first heating step and the second heating step may not necessarily be the diffusion drying method, and the dehydrating means is not limited. However, it is preferable to apply the diffusion drying method by using the diffusion dryer C illustrated in FIG. 2, for example. When the moisture is removed from the system by the diffusion drying method, the heat treatment fluid and the moisture can be easily separated, so that the amount of moisture carried to the next heating step can be efficiently reduced.

【0033】このように請求項2の発明に係る無機金属
化合物の製造方法の特徴は、原料流動体を少なくとも2
段階に分けて加熱処理し、かつ、第1段目の加熱工程に
より生成した加熱処理生成物を、その同伴気体と共に一
旦何らかの水分除去手段、例えば図2に例示したような
拡散乾燥器Cによって水分を除去してから更に第2段目
の加熱処理をすることにあり、このことにより、第1段
目の加熱処理による生成物を、水分を含まない状態とし
て第2段目の加熱処理を行うことが出来るので、水分が
含まれる場合に生じる各種の副反応を起こさせることが
ない上、熱容量の大きい水を加熱することがないためエ
ネルギーを浪費が少なくてすむので好ましい。原料流動
体中の水分の除去は、上記請求項1の発明の場合のよう
に、加熱工程を1回だけとし、その加熱工程の前に水分
を系外に除去する工程を設けることによってもかなりの
程度可能だが、その場合、加熱工程で脱離する原料化合
物中の結晶水や、原料化合物が熱分解することにより生
じる水までは系外に除去することができない。そこで、
請求項2の発明のように、加熱工程を2段階とし、第1
段目の加熱工程と第2段目の加熱工程のと間に水分を系
外に除去する工程を設けることは、水の完全除去のため
により有効な方法である。
As described above, the feature of the method for producing an inorganic metal compound according to the invention of claim 2 is that at least two raw material fluids are used.
The heat-treated product is heat-treated in stages, and the heat-treated product produced in the first-stage heating step is temporarily moisturized with some entrained gas by some moisture removing means, for example, a diffusion dryer C as illustrated in FIG. The second step is to carry out the second heat treatment by removing the water and further performing the second heat treatment so that the product obtained by the first heat treatment does not contain water. Therefore, it is preferable that various side reactions that occur when water is contained do not occur and that water with a large heat capacity is not heated, so that energy is wasted less. The removal of water in the raw material fluid can be considerably performed by performing the heating step only once and providing a step of removing the water out of the system before the heating step as in the case of the invention of claim 1 above. However, in that case, the water of crystallization in the raw material compound desorbed in the heating step and the water generated by the thermal decomposition of the raw material compound cannot be removed out of the system. Therefore,
According to the invention of claim 2, the heating step is performed in two stages, and the first step
Providing a step of removing water outside the system between the heating step of the second step and the heating step of the second step is a more effective method for complete removal of water.

【0034】また、この請求項2の発明に係る製造方法
において、原料流動体の水分除去手段は上述のように、
第1段目の加熱工程と第2段目の加熱工程との間に設け
ることが必須ではあるが、それに加えて第1段目の加熱
処理を行う前の原料流動体に対しても水分除去手段を施
しておくことがより好ましい。すなわち、原料流動体に
水分除去手段を施してから第1段目の加熱処理を行い、
該加熱処理流体(第1段目の加熱処理による生成物を含
む同伴気体)に再び水分除去処理を施してから第2段目
の加熱処理を行っても良い。第1段目の加熱工程の前に
行う水分除去は、中空粉末を減少させるために特に有効
であるが、水分を多く含む液滴を急激に加熱すると、液
滴の中央と表面の溶質濃度の不均一性により中空粉末を
生じやすいので、第1段目の加熱処理の条件として、加
熱工程に必要な熱量を減らし中空粉末の生成を抑制する
ような加熱条件を採用する。このように第1段目の加熱
工程において必要な熱量を減らすと液滴や固体粒子に依
然として水分が含まれるため、第2段目の水分除去を行
なっても乾燥処理流体に水分が残留してしまい、この残
留水分の影響による副反応が起こり易い。そこで、第1
段目の加熱処理が施される前の原料流動体中の水分を予
じめ除去した後、これを中空粉末の生成を抑制するよう
な加熱条件で加熱処理を施し、その生成物に再度水分除
去操作を行ってから第2段目の加熱処理を行うと、中空
粉末がなく、副生物の無い、純粋な所望の無機金属化合
物を得ることができる。
In the manufacturing method according to the second aspect of the invention, the means for removing water from the raw material fluid is as described above.
It is essential to provide between the first heating step and the second heating step, but in addition to that, moisture removal is also performed on the raw material fluid before the first heating treatment. It is more preferable to provide means. That is, after performing the water removing means on the raw material fluid, the first stage heat treatment is performed,
The heat treatment fluid (the entrained gas containing the product of the first heat treatment) may be subjected to the moisture removal treatment again, and then the second heat treatment. Moisture removal performed before the first heating step is particularly effective for reducing hollow powder, but when droplets containing a large amount of water are rapidly heated, the concentration of solute in the center of the droplets and on the surface of the droplets is increased. Since the hollow powder is likely to be generated due to the non-uniformity, the heating condition of the first stage is set to a heating condition that reduces the amount of heat required for the heating step and suppresses the generation of the hollow powder. When the amount of heat required in the first heating step is reduced in this way, the droplets and solid particles still contain water, so that water remains in the drying treatment fluid even after the second step of removing water. Therefore, a side reaction is likely to occur due to the influence of this residual water content. So the first
After preliminarily removing the water in the raw material fluid before the heat treatment of the first stage, heat treatment is performed under heating conditions that suppress the formation of hollow powder, and the water content is again added to the product. When the second stage heat treatment is performed after the removal operation, a pure desired inorganic metal compound free from hollow powder and free from by-products can be obtained.

【0035】第1段目の加熱工程においては、加熱温度
によっては液滴からの水の蒸発、含有化合物の結晶化、
結晶水の脱離、熱分解、含有成分同士の反応等が生じ
る。この第1段目の加熱工程における加熱温度は、所望
の無機金属化合物の種類により250℃〜1500℃の
温度範囲であることが好ましい。250℃以下では、原
料化合物の結晶水の脱離や、原料化合物として硝酸塩化
合物を用いた場合、硝酸塩の分解が起こらないため、加
熱工程を2段階とする意味がない。第1段目の加熱工程
を終えた加熱処理流体(加熱処理生成物を含む同伴気
体)は、所望の無機金属化合物またはその前駆体、導入
した気体、原料化合物の分解によって生じた副生成物、
水、などを含む。副生成物とは、例えば原料溶液に金属
の硝酸塩が含まれていた場合、各種の酸化窒素、酸素、
窒素などが副生成物として生成する。
In the first heating step, depending on the heating temperature, water is evaporated from the droplets, the contained compound is crystallized,
Desorption of water of crystallization, thermal decomposition, reaction between contained components, etc. occur. The heating temperature in the first heating step is preferably in the temperature range of 250 ° C to 1500 ° C depending on the kind of the desired inorganic metal compound. At 250 ° C. or lower, there is no point in using the heating step in two stages, because desorption of crystal water of the raw material compound and decomposition of the nitrate salt do not occur when a nitrate compound is used as the raw material compound. The heat treatment fluid (entrained gas containing the heat treatment product) after the first heating step is a desired inorganic metal compound or its precursor, the introduced gas, a by-product generated by the decomposition of the raw material compound,
Including water, etc. By-products include, for example, various nitric oxides, oxygen, when the raw material solution contains a metal nitrate.
Nitrogen and the like are produced as by-products.

【0036】一方、第2段目の加熱工程における加熱温
度は、所望の無機金属化合物の種類によって500℃〜
1800℃の温度範囲から選ばれる。第2段目の加熱工
程である、第2の加熱炉D2での滞留時間(加熱時間)
も所望の無機金属化合物の種類によるが、0.5秒〜1
0分の範囲で選択する。加熱時間が短すぎると目的の反
応、 すなわち、熱分解、結晶成長などが完了しない。
一方、必要な加熱時間を越えて加熱処理することはエネ
ルギーの浪費であり、好ましくない。加熱炉D2での第
2段目の加熱工程を終えた生成物は、バグフィルターな
どの粉末補集器Eで捕集される。必要に応じて、洗浄、
分散などの処理を行っても良い。
On the other hand, the heating temperature in the second heating step is 500 ° C. or higher depending on the kind of the desired inorganic metal compound.
It is selected from the temperature range of 1800 ° C. Residence time (heating time) in the second heating furnace D2, which is the second heating step
Also depends on the type of desired inorganic metal compound, but 0.5 seconds to 1
Select in the range of 0 minutes. If the heating time is too short, the desired reaction, that is, thermal decomposition, crystal growth, etc., cannot be completed.
On the other hand, it is not preferable to heat-treat for more than the required heating time because it wastes energy. The product that has undergone the second heating step in the heating furnace D2 is collected by the powder collector E such as a bag filter. Wash, if necessary,
Processing such as dispersion may be performed.

【0037】本発明の無機金属化合物の製造方法による
と、凝集が少なく、球状で粉末径の小さい微少粉末の無
機金属化合物が得られ、また、従来の噴霧熱分解・合成
法により得られたものに比べて中空粉末の存在がほとん
どなく、緻密な粉末が得られる。本発明の製造方法を適
用できる所望の無機金属化合物としては、特に、紫外線
や電子線などの照射により紫外から可視スペクトル域の
波長の発光を呈する蛍光体、とりわけ酸化物を主成分と
する蛍光体が挙げられる。酸化物を主成分とする蛍光体
は、加熱工程での加熱温度が高く、水の存在による副反
応が起こり易い。加熱温度が高い場合には、特に加熱の
ためのエネルギー費が製造コストに占める割合が高くな
るので、本発明の製造方法により酸化物系の蛍光体を製
造すると、従来の製造方法による場合に比べ、水分除去
による省エネルギー効果が顕著となり、また、水の存在
による副反応、たとえば、炉心管の腐食とその成分の所
望の無機金属化合物への混入や、所望の無機金属化合物
の表面劣化は大きな問題となるので、本発明の製造法は
特に酸化物系蛍光体の製造に適用したときその効果が大
きい。
According to the method for producing an inorganic metal compound of the present invention, a fine powder of an inorganic metal compound having a small amount of agglomeration, a spherical shape and a small powder diameter is obtained, and further obtained by a conventional spray pyrolysis / synthesis method. Compared with the above, there is almost no hollow powder, and a dense powder can be obtained. As the desired inorganic metal compound to which the production method of the present invention can be applied, particularly, a phosphor that emits light in a wavelength range from ultraviolet to visible spectrum by irradiation with ultraviolet rays or electron beams, especially a phosphor containing an oxide as a main component. Is mentioned. The phosphor containing an oxide as a main component has a high heating temperature in the heating step, and a side reaction due to the presence of water is likely to occur. When the heating temperature is high, the energy cost for heating particularly accounts for a large proportion of the manufacturing cost. Therefore, when the oxide-based phosphor is manufactured by the manufacturing method of the present invention, compared with the case of the conventional manufacturing method. , The energy saving effect due to the removal of water becomes remarkable, and side reactions due to the presence of water, such as corrosion of the furnace core tube and mixing of its components with the desired inorganic metal compound, and surface deterioration of the desired inorganic metal compound are major problems. Therefore, the production method of the present invention is particularly effective when applied to the production of oxide-based phosphors.

【0038】[0038]

【実施例】次に、所望の無機金属化合物が蛍光体である
場合を例として挙げ、本発明の実施例と比較例について
具体的に説明するが、本発明は、以下の実施例によって
限定されるものではない。
EXAMPLES Next, examples of the present invention and comparative examples will be specifically described by taking the case where the desired inorganic metal compound is a phosphor as an example, but the present invention is limited by the following examples. Not something.

【0039】〔実施例1〕硝酸イットリウムと硝酸ユー
ロピウムを94:6のモル比で混合し、水に溶解させ
て、合計の金属量を0.3mol/lとした原料溶液を
調製した。この原料溶液を1.7MHzの振動子を備え
た超音波噴霧器により、微細な液滴とし、この液滴をお
よそ1L/min.の流速の空気の流れにのせ、図2に
示した構造の拡散乾燥器Cの原料流動体搬送路oを通過
させて液滴から水分を除去し、原料溶液の液滴が乾燥し
た粉末と空気との混合物である原料流動体を、1600
℃に設定された電気炉の中を10秒間かけて通過させる
ことにより加熱し、この原料流動体から粉末のみをバグ
フィルターで捕集し、組成式(Y0.94,Eu 0.623
で表される蛍光体粉末を得た。
Example 1 Yttrium nitrate and Eu nitrate
Ropium was mixed at a molar ratio of 94: 6 and dissolved in water.
The raw material solution with a total metal content of 0.3 mol / l
Prepared. This raw material solution is equipped with a 1.7MHz oscillator
Ultrasonic atomizer to make fine droplets and
About 1 L / min. 2 on the flow of air
Passing through the raw material fluid conveyance path o of the diffusion dryer C having the structure shown
To remove water from the droplets, and the droplets of the raw material solution are dried.
1600 of the raw material fluid, which is a mixture of powder and air
Pass through an electric furnace set at ℃ for 10 seconds
By heating it, only the powder from this raw material fluid is bugged.
Collected with a filter, composition formula (Y0.94, Eu 0.6)2O3
A phosphor powder represented by

【0040】この蛍光体粉末の粒子径は、メジアン径d
50が1.2μm、標準偏差0.42μmの粒度分布をも
つ球状の粉末で、この粉末のCu−Kα特性X線による
X線回折スペクトルを測定したところ、(Y0.94,Eu
0.623以外の結晶構造を有する成分の存在は認めら
れなかった。また、この蛍光体粒子の電子顕微鏡写真に
よる観察から、中空粒子の破裂した破片と思われる形状
の粒子の存在も認められなかった。この蛍光体を254
nmの紫外線で励起したところ良好な赤色発光を示し
た。なお、用いた拡散乾燥器Cは、カラムgとして、長
さ75cm、直径6cmφのガラス管を用い、隔膜mと
して19メッシュ、オープニング1.04mmのナイロ
ンメッシュを内径2cmφの円筒状に加工したものをカ
ラムg内に設けた。また、カラムgと隔壁mとの間の空
間には、乾燥媒体dとして120℃で乾燥させたシリカ
ゲルを充填した。
The particle diameter of this phosphor powder is the median diameter d.
X-ray diffraction spectrum by Cu-Kα characteristic X-ray of this spherical powder having a particle size distribution of 50 = 1.2 μm and standard deviation 0.42 μm was measured and found to be (Y 0.94 , Eu
The presence of components having a crystal structure other than 0.6 ) 2 O 3 was not recognized. In addition, from the observation of the phosphor particles by an electron micrograph, the presence of particles having a shape thought to be ruptured fragments of hollow particles was not recognized. 254 this phosphor
When excited with ultraviolet rays of nm, a good red emission was shown. The diffusion drier C used was a glass tube having a length of 75 cm and a diameter of 6 cmφ as a column g, and a nylon mesh having a mesh of 19 mesh and an opening of 1.04 mm processed into a cylindrical shape having an inner diameter of 2 cmφ. It was provided in column g. Further, the space between the column g and the partition wall m was filled with silica gel dried at 120 ° C. as the drying medium d.

【0041】〔比較例1〕液滴を空気の流れにのせた原
料流動体を拡散乾燥器Cに導入することなく直ちに16
00℃に設定された電気炉の中に導いて加熱処理した以
外は実施例1と同様にして、組成式(Y0.94,E
0.623で表される蛍光体粉末を製造した。この蛍
光体粉末の粒子径は、メジアン径d50が1.6μm、標
準偏差0.60μmの粒度分布をもつ球状の粉末で、こ
の粉末のCu−Kα特性X線によるX線回折スペクトル
を測定したところ、(Y0.94,Eu0.623 以外の組
成の組成物と思われる回折ピークの存在が若干認められ
た。また、この蛍光体粒子の電子顕微鏡写真による観察
から、中空粒子の破裂による破片のような粒子の存在も
認められた。この蛍光体を254nmの紫外線で励起し
たところ赤色発光を示したが、その発光強度は、実施例
1の蛍光体の94%であった。実施例1の蛍光体と比較
例1の蛍光体とでは、噴霧器の運転条件が同じであるた
め、供給される液滴の大きさと液滴に含まれる溶質量は
同じであり、メジアン径が実施例1のものより比較例1
のもののほうが大きいことから、実施例1の蛍光体のほ
うがより緻密な蛍光体であることを示している。
[Comparative Example 1] A raw material fluid having droplets placed on a stream of air was immediately introduced into the diffusion dryer C without introducing the raw material fluid into the diffusion dryer C.
The composition formula (Y 0.94 , E) was obtained in the same manner as in Example 1 except that the composition was heated in an electric furnace set at 00 ° C.
A phosphor powder represented by u 0.6 ) 2 O 3 was manufactured. The particle diameter of this phosphor powder is a spherical powder having a median diameter d50 of 1.6 μm and a standard deviation of 0.60 μm, and the X-ray diffraction spectrum of the Cu-Kα characteristic X-ray was measured. , (Y 0.94 , Eu 0.6 ) 2 O 3 was observed. Also, from the observation of the phosphor particles by an electron micrograph, the existence of particles such as fragments due to the rupture of hollow particles was also recognized. When this phosphor was excited by ultraviolet rays of 254 nm, it emitted red light, whose emission intensity was 94% of that of the phosphor of Example 1. Since the phosphor of Example 1 and the phosphor of Comparative Example 1 have the same operating conditions of the atomizer, the size of the supplied droplet and the dissolved mass contained in the droplet are the same, and the median diameter is the same. Comparative Example 1 rather than Example 1
It is shown that the phosphor of Example 1 is a denser phosphor because the phosphor of Example 1 is larger.

【0042】〔実施例2〕硝酸バリウム、硝酸ユーロピ
ウム、硝酸マグネシウム、硝酸アルミニウムをそれぞれ
水に溶解し、Ba:Eu:Mg:Alの比率が、0.
9:0.1: 1.0:10.0になるよう混合し、合計の
金属のモル濃度が0.3mol/lと した原料溶液を調
製した。この原料溶液を1.7MHzの振動子を備えた
超音波 噴霧器により、微細な液滴とした。この液滴を
およそ1L/min.の流速の、水素を2%含む窒素ガ
ス(水素窒素混合ガス)の流れにのせて実施例1に記載
したものと同じ拡散乾燥器Cの原料流動体搬送路oを通
過させて、液滴から水分を除去した。得られた乾燥処理
流体、すなわち、原料溶液の液滴が乾燥された粉末と水
素・窒素混合ガスとの混合物を1600℃に設定された
電気炉の中を10秒間かけて通過させることにより加熱
し、この流動体から粉末のみをバグフィルターで捕集し
て、組成式(Ba0.9,Eu0.1)MgAl1017で表さ
れる蛍光体粉末を得た。
Example 2 Barium nitrate, europium nitrate, magnesium nitrate and aluminum nitrate were each dissolved in water and the ratio of Ba: Eu: Mg: Al was 0.
They were mixed so as to be 9: 0.1: 1.0: 10.0 to prepare a raw material solution having a total metal molar concentration of 0.3 mol / l. This raw material solution was made into fine droplets by an ultrasonic atomizer equipped with a 1.7 MHz oscillator. This liquid droplet is approximately 1 L / min. The same flow rate of nitrogen gas containing 2% of hydrogen (hydrogen-nitrogen mixed gas) was passed through the raw material fluid conveyance path o of the diffusion dryer C as described in Example 1 to remove the droplets. The water was removed. The obtained dried treatment fluid, that is, the mixture of the powder in which the droplets of the raw material solution are dried and the hydrogen / nitrogen mixed gas is passed through an electric furnace set at 1600 ° C. for 10 seconds to heat the mixture. Then, only the powder was collected from this fluid with a bag filter to obtain a phosphor powder represented by the composition formula (Ba 0.9 , Eu 0.1 ) MgAl 10 17 .

【0043】この蛍光体粉末の粒子径は、メジアン径d
50が1.0μm、標準偏差0.36μmの粒度分布をも
つ球状の粉末で、この粉末のCu−Kα特性X線による
X線回折スペクトルを測定したところ、(Ba0.9,E
0.1)MgAl1017の組成以外の組成物の存在は認
められなかった。また、この蛍光体粒子の電子顕微鏡写
真による観察から、中空粒子の破裂した破片と思われる
形状の粒子の存在も認められなかった。この蛍光体を2
54nmの紫外線で励起したところ良好な青色発光を示
した。
The particle diameter of this phosphor powder is the median diameter d.
X-ray diffraction spectrum by Cu-Kα characteristic X-ray of this spherical powder having a particle size distribution of 50 = 1.0 μm and standard deviation 0.36 μm was measured to find that (Ba 0.9 , E
The presence of any composition other than the composition of u 0.1 ) MgAl 10 17 was not observed. In addition, from the observation of the phosphor particles by an electron micrograph, the presence of particles having a shape thought to be ruptured fragments of hollow particles was not recognized. This phosphor is 2
When excited with 54 nm ultraviolet light, it showed good blue emission.

【0044】〔比較例2〕液滴を水素を2%含む窒素ガ
ス(水素・窒素混合ガス)の流れにのせ、拡散乾燥器C
に導入することなく直ちに1600℃に設定された電気
炉の中に導いて加熱処理した以外は実施例2と同様にし
て組成式(Ba0.9,Eu0.1)MgAl1017で表され
る蛍光体粉末を製造した。この蛍光体粉末の粒子径は、
メジアン径d50が1.1μm、標準偏差0.46μmの
粒度分布をもつ球状の粉末で、この粉末のCu−Kα特
性X線によるX線回折スペクトルを測定したところ、
(Ba0.9,Eu0.1)MgAl1017の組成以外の組成
物の回折ピークが若干検出された。また、この蛍光体粒
子の電子顕微鏡写真による観察から、中空粒子の破裂し
た破片と思われる形状の粒子の存在も認められた。この
蛍光体を254nmの紫外線で励起したところ良好な青
色発光を示したが、その発光強度は、実施例1の蛍光体
の95%であった。
[Comparative Example 2] A droplet was placed on a flow of nitrogen gas (hydrogen / nitrogen mixed gas) containing 2% of hydrogen, and a diffusion dryer C was used.
The phosphor represented by the composition formula (Ba 0.9 , Eu 0.1 ) MgAl 10 0 17 was prepared in the same manner as in Example 2 except that the phosphor was immediately introduced into an electric furnace set at 1600 ° C. without being introduced into the furnace and heat-treated. A powder was produced. The particle size of this phosphor powder is
A spherical powder having a median diameter d50 of 1.1 μm and a standard deviation of 0.46 μm and having a particle size distribution was measured by an X-ray diffraction spectrum using Cu-Kα characteristic X-rays.
Some diffraction peaks of compositions other than the composition of (Ba 0.9 , Eu 0.1 ) MgAl 10 17 were detected. In addition, from the observation of the phosphor particles by an electron micrograph, the presence of particles having a shape thought to be ruptured fragments of hollow particles was also recognized. When this phosphor was excited by ultraviolet rays of 254 nm, it exhibited excellent blue light emission, but its emission intensity was 95% of that of the phosphor of Example 1.

【0045】〔実施例3〕拡散乾燥器Cのカラムgと隔
壁mとの間の空間にシリカゲルを充填するかわりに、乾
燥媒体dとして乾燥空気を通気させたこと以外は、実施
例1と同様にして、組成式(Y0.94,Eu0.623
表される蛍光体粉末を得た。このとき、拡散乾燥器Cの
乾燥媒体dとして通気し、拡散乾燥器Cの出口から出た
空気は、その経路の一部を液体窒素温度に冷却して空気
中の水分濃度を低減させ、再び拡散乾燥器Cの乾燥媒体
dとして循環して使用した。この蛍光体粉末の粒子径
は、メジアン径d50が1.4μm、標準偏差0.52μ
mの粒度分布をもつ球状の粉末で、この粉末のCu−K
α特性X線によるX線回折スペクトルを測定したとこ
ろ、(Y0.94,Eu0.623以外の結晶構造を有する
成分の存在は認められなかった。また、この蛍光体粒子
の電子顕微鏡写真による観察から、中空粒子の破裂した
破片と思われる形状の粒子の存在も認められなかった。
この蛍光体を254nmの紫外線で励起したところほぼ
実施例1の蛍光体と同じ発光強度を示す良好な赤色発光
を示した。
Example 3 The same as Example 1 except that dry air was aerated as the drying medium d instead of packing the silica gel in the space between the column g and the partition wall m of the diffusion dryer C. Thus, a phosphor powder represented by the composition formula (Y 0.94 , Eu 0.6 ) 2 O 3 was obtained. At this time, the air that has been ventilated as the drying medium d of the diffusion dryer C and that has exited from the outlet of the diffusion dryer C cools part of its path to the liquid nitrogen temperature to reduce the water concentration in the air, and again It was circulated and used as the drying medium d of the diffusion dryer C. The particle size of this phosphor powder has a median diameter d50 of 1.4 μm and a standard deviation of 0.52 μm.
Spherical powder having a particle size distribution of m. Cu-K of this powder
When the X-ray diffraction spectrum by α-characteristic X-ray was measured, the existence of components having a crystal structure other than (Y 0.94 , Eu 0.6 ) 2 O 3 was not recognized. In addition, from the observation of the phosphor particles by an electron micrograph, the presence of particles having a shape thought to be ruptured fragments of hollow particles was not recognized.
When this phosphor was excited by ultraviolet rays of 254 nm, it exhibited favorable red light emission having almost the same emission intensity as that of the phosphor of Example 1.

【0046】〔実施例4〕実施例1の蛍光体を製造する
ための原料溶液を用い、この原料溶液を1.7MHzの
振動子を備えた超音波噴霧器により、微細な液滴とし、
この液滴をおよそ1L/min.の流速の空気の流れに
のせ、図2に示した構造の拡散乾燥器Cの原料流動体搬
送路oを通過させて液滴から第1段目の水分除去を行
い、原料溶液の液滴が乾燥した粉末と空気との混合物の
乾燥処理流体を1000℃に設定された電気炉の中を1
0秒間かけて通過させて第1段目の加熱処理を行い、こ
の加熱処理流体を上記拡散乾燥器Cと同じ構造をもった
別の拡散乾燥器Cを通過させて第2段目の水分除去を行
った後、引き続いてこれを今度は1600℃に設定され
た電気炉の中を10秒間かけて通過させて2段目の加熱
処理を施した。この2段目の加熱処理を終えた流動体か
ら粉末のみをバグフィルターで捕集し、(Y0.94,Eu
0.623で表される蛍光体粉末を得た。この蛍光体粉
末の粒子径は、メジアン径d50が1.0μm、標準偏差
0.34μmの粒度分布をもつ球状の粉末で、この粉末
のCu−Kα特性X線によるX線回折スペクトルを測定
したところ、(Y0.94,Eu0.623以外の結晶構造
を有する成分の存在は認められなかった。また、この蛍
光体粒子の電子顕微鏡写真による観察から、中空粒子の
破裂した破片と思われる形状の粒子の存在も認められな
かった。この蛍光体を254nmの紫外線で励起したと
ころ良好な赤色発光を示した。
Example 4 A raw material solution for producing the phosphor of Example 1 was used, and the raw material solution was made into fine droplets by an ultrasonic atomizer equipped with a 1.7 MHz oscillator,
This liquid droplet is approximately 1 L / min. On the air flow having the flow velocity of 10 μm, the first stage water is removed from the liquid droplets by passing through the raw material fluid conveying path o of the diffusion dryer C having the structure shown in FIG. A dry process fluid of a mixture of dry powder and air was placed in an electric furnace set at 1000 ° C for 1 hour.
The first stage heat treatment is performed by passing it through 0 seconds, and the heat treatment fluid is passed through another diffusion dryer C having the same structure as the diffusion dryer C to remove the second stage moisture. After that, it was subsequently passed through an electric furnace set at 1600 ° C. for 10 seconds this time, and the second stage heat treatment was performed. Only powder was collected with a bag filter from the fluid that had been subjected to the second-stage heat treatment, and (Y 0.94 , Eu
A phosphor powder represented by 0.6 ) 2 O 3 was obtained. The particle diameter of this phosphor powder is a spherical powder having a median diameter d50 of 1.0 μm and a standard deviation of 0.34 μm, and the X-ray diffraction spectrum of the Cu-Kα characteristic X-ray was measured. , (Y 0.94 , Eu 0.6 ) 2 O 3 was not found. In addition, from the observation of the phosphor particles by an electron micrograph, the presence of particles having a shape thought to be ruptured fragments of hollow particles was not recognized. When this phosphor was excited with 254 nm ultraviolet light, excellent red light emission was exhibited.

【0047】〔実施例5〕実施例1と同様にして、図2
に示した構造の拡散乾燥器Cを用いて水分を除去した原
料流動体を1000℃に設定された電気炉の中を10秒
間かけて通過させ、原料流動体の第1段目の加熱工程を
終えた後、第2段目の水分除去を行わないで、その加熱
処理流体を直ちに1600℃に設定された電気炉の中を
10秒間かけて通過させて第2段目の加熱処理を行った
以外は実施例4と同様の方法で組成式(Y0.94,Eu
0.623で表される蛍光体を合成した。この蛍光体粉
末の粒子径は、メジアン径d50が1.2μm、標準偏差
0.42μmの粒度分布をもつ球状の粉末で、この粉末
のCu−Kα特性X線によるX線回折スペクトルを測定
したところ、(Y0.94,Eu0.623以外の結晶構造
を有する組成物の存在が若干認められた。また、この蛍
光体粒子の電子顕微鏡写真による観察から、中空粒子の
破裂した破片のような形状の粒子の存在は認められなか
った。この蛍光体を254nmの紫外線で励起したとこ
ろ良好な赤色発光を示したが、その発光強度は、実施例
4の蛍光体の90%であった。
[Embodiment 5] Similar to Embodiment 1, FIG.
The raw material fluid from which water has been removed using the diffusion dryer C having the structure shown in FIG. 1 is passed through an electric furnace set at 1000 ° C. for 10 seconds to perform the first heating step of the raw material fluid. After the completion, without performing the second stage water removal, the heat treatment fluid was immediately passed through the electric furnace set at 1600 ° C. for 10 seconds to perform the second stage heat treatment. The composition formula (Y 0.94 , Eu
A phosphor represented by 0.6 ) 2 O 3 was synthesized. The particle diameter of this phosphor powder is a spherical powder having a median diameter d50 of 1.2 μm and a standard deviation of 0.42 μm, and the X-ray diffraction spectrum of the Cu-Kα characteristic X-ray was measured. , (Y 0.94 , Eu 0.6 ) 2 O 3 was found to have a composition having a crystal structure. In addition, from the observation of the phosphor particles by an electron micrograph, the presence of particles having a shape such as broken pieces of hollow particles was not recognized. When this phosphor was excited with 254 nm ultraviolet light, excellent red light emission was exhibited, but the emission intensity thereof was 90% of that of the phosphor of Example 4.

【0048】〔比較例4〕原料溶液から成る液滴を含む
原料流動体を、拡散乾燥器Cにより水分除去することな
く1000℃に設定された電気炉の中を10秒間かけて
通過させ、原料流動体の第1段目の加熱工程を終えた
後、拡散乾燥器Cによる第2段目の水分除去も行わず、
その加熱処理流体を直ちに1600℃に設定された電気
炉の中を10秒間かけて通過させて第2段目の加熱処理
を行った以外は実施例4と同様の方法で組成式
(Y0.94,Eu0.623で表される蛍光体を製造し
た。この蛍光体粉末の粒子径は、メジアン径d50が1.
6μm、標準偏差0.60μmの粒度分布をもつ球状の
粉末で、この粉末のCu−Kα特性X線によるX線回折
スペクトルを測定したところ、(Y0.94,Eu0.62
3以外の結晶構造を有する組成物の存在が若干認められ
た。また、この蛍光体粒子の電子顕微鏡写真による観察
から、中空粒子が破裂した破片のような形状の粒子の存
在も認められた。この蛍光体を254nmの紫外線で励
起したところ赤色発光を示したが、その発光強度は、実
施例4の蛍光体の85%であった。
Comparative Example 4 A raw material fluid containing droplets of a raw material solution was passed through an electric furnace set at 1000 ° C. for 10 seconds without removing water by the diffusion dryer C, and the raw material was passed through the raw material fluid. After completing the first-stage heating process of the fluid, the second-stage moisture removal by the diffusion dryer C is not performed,
The heat treatment fluid was immediately passed through an electric furnace set at 1600 ° C. for 10 seconds to perform the second heat treatment, and the composition formula (Y 0.94 , A phosphor represented by Eu 0.6 ) 2 O 3 was manufactured. The particle diameter of this phosphor powder is such that the median diameter d50 is 1.
A spherical powder having a particle size distribution of 6 μm and a standard deviation of 0.60 μm was used to measure the X-ray diffraction spectrum of the powder using Cu-Kα characteristic X-rays, which showed that (Y 0.94 , Eu 0.6 ) 2 O
The presence of a composition having a crystal structure other than 3 was slightly recognized. Further, from the observation of the phosphor particles by an electron micrograph, the existence of particles having a shape like a fragment of hollow particles was recognized. When this phosphor was excited by ultraviolet rays of 254 nm, it emitted red light, whose emission intensity was 85% of that of the phosphor of Example 4.

【0049】[0049]

【発明の効果】本発明は、以上のような構成としたの
で、噴霧熱分解・合成法により中空粒子の生成や不用の
組成を有する不純物化合物の副生を抑制し、結晶性の優
れた緻密な無機金属化合物の粉末を効率よく製造するこ
とができ、特に本発明は、高輝度の蛍光体など、機能性
の無機金属化合物の製造に対して有用である。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, it is possible to suppress the generation of hollow particles and the by-product of an impurity compound having an unnecessary composition by a spray pyrolysis / synthesis method, and to provide a dense crystal having excellent crystallinity. It is possible to efficiently produce a powder of such an inorganic metal compound, and the present invention is particularly useful for producing a functional inorganic metal compound such as a high-luminance phosphor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の無機金属化合物粉末の製造方法のプロ
セスの1例を示す概略図である。
FIG. 1 is a schematic view showing an example of a process of a method for producing an inorganic metal compound powder according to the present invention.

【図2】無機金属化合物粉末の製造方法において適用さ
れる拡散乾燥器の概略断面図である。
FIG. 2 is a schematic cross-sectional view of a diffusion dryer applied in a method for producing an inorganic metal compound powder.

【図3】本発明の無機金属化合物粉末の製造方法のプロ
セスの別の1例を示す概略図である。
FIG. 3 is a schematic view showing another example of the process of the method for producing an inorganic metal compound powder according to the present invention.

【符号の説明】[Explanation of symbols]

A 噴霧化装置 B 分級装置 C 拡散乾燥器 D1、D2 加熱炉 E 粉末捕集器 d 乾燥媒体 g カラム m 隔壁 o 原料流動体搬送路 s 封止栓 t 原料流動体出入孔 A atomizer B classifier C diffusion dryer D1, D2 heating furnace E powder collector d Dry medium g column m bulkhead o Raw material fluid transport path s Sealing plug t Raw material fluid inlet / outlet hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 11/80 C09K 11/80 (72)発明者 木島 直人 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学 株式会社横浜総合研究所内 Fターム(参考) 4G042 DA02 DB12 DB22 DB29 DC03 DD01 DE06 DE14 4G076 AA02 AA18 AB07 AC02 AC07 BA31 BD03 CA02 CA03 CA26 CA33 DA11 4H001 CF02 XA08 XA12 XA13 XA39 XA56 XA63 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C09K 11/80 C09K 11/80 (72) Inventor Naoto Kijima 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Mitsubishi Chemical Yokohama Institute of Technology F-term (reference) 4G042 DA02 DB12 DB22 DB29 DC03 DD01 DE06 DE14 4G076 AA02 AA18 AB07 AC02 AC07 BA31 BD03 CA02 CA03 CA26 CA33 DA11 4H001 CF02 XA08 XA12 XA13 XA39 XA56 XA63

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 所望の無機金属化合物粉末の構成金属元
素を含有する溶液を同伴気体中に噴霧して液滴を形成し
た後、該液滴を乾燥して固体状無機金属化合物原料粉末
となし、引き続きこれを加熱処理又は加熱反応処理する
ことにより所望の無機金属化合物粉末を製造する方法に
おいて、該加熱処理又は加熱反応処理する前に該液滴及
び/又は該同伴気体中に含まれる水分の少なくとも1部
を系外に除去することを特徴とする無機金属化合物粉末
の製造方法。
1. A solid inorganic metal compound raw material powder is obtained by spraying a solution containing a constituent metal element of a desired inorganic metal compound powder into an entrained gas to form liquid droplets, and then drying the liquid droplets. In the method for producing a desired inorganic metal compound powder by subsequently subjecting it to heat treatment or heat reaction treatment, the amount of water contained in the droplets and / or the entrained gas before the heat treatment or heat reaction treatment is A method for producing an inorganic metal compound powder, which comprises removing at least one part out of the system.
【請求項2】 所望の無機金属化合物粉末の構成金属元
素を含有する溶液を同伴気体中に噴霧して液滴を形成し
た後、該液滴を乾燥して固体状無機金属化合物原料粉末
となし、引き続きこれを加熱処理又は加熱反応処理する
ことにより所望の無機金属化合物粉末を製造する方法に
おいて、該加熱処理又は加熱反応処理を、第1の加熱炉
による第1の加熱処理又は加熱反応処理と、第2の加熱
炉による第2の加熱処理又は加熱反応処理との2段階に
分けて行い、少なくとも該第2の加熱炉内に導入される
前の加熱処理生成物及び/又は該同伴気体中に含まれる
水分の少なくとも1部を系外に除去することを特徴とす
る無機金属化合物粉末の製造方法。
2. A solid inorganic metal compound raw material powder is obtained by spraying a solution containing a constituent metal element of a desired inorganic metal compound powder into an entrained gas to form droplets, and then drying the droplets. In the method for producing a desired inorganic metal compound powder by subsequently subjecting it to a heat treatment or a heat reaction treatment, the heat treatment or the heat reaction treatment is referred to as a first heat treatment or a heat reaction treatment by a first heating furnace. , A second heat treatment by a second heating furnace or a heat reaction treatment in two stages, and at least a heat treatment product before being introduced into the second heating furnace and / or the entrained gas. A method for producing an inorganic metal compound powder, which comprises removing at least a part of water contained in the outside of the system.
【請求項3】 前記第1の加熱処理又は加熱反応処理
が、250℃〜1500℃の温度範囲でなされることを
特徴とする請求項2記載の無機金属化合物粉末の製造方
法。
3. The method for producing an inorganic metal compound powder according to claim 2, wherein the first heat treatment or heat reaction treatment is performed in a temperature range of 250 ° C. to 1500 ° C.
【請求項4】 前記第2の加熱処理又は加熱反応処理
が、500℃〜1800℃の温度範囲でなされることを
特徴とする請求項2または3記載の無機金属化合物粉末
の製造方法。
4. The method for producing an inorganic metal compound powder according to claim 2, wherein the second heat treatment or heat reaction treatment is performed in a temperature range of 500 ° C. to 1800 ° C.
【請求項5】 前記第1の加熱炉内に導入される前に
も、前記液滴及び/又は前記同伴気体中に含まれる水分
の少なくとも1部を系外に除去することを特徴とする請
求項2〜5のいづれか1項に記載の無機金属化合物粉末
の製造方法。
5. Even before being introduced into the first heating furnace, at least a part of water contained in the droplets and / or the accompanying gas is removed out of the system. Item 7. A method for producing an inorganic metal compound powder according to any one of Items 2 to 5.
【請求項6】 前記液滴及び/又は前記同伴気体中の水
分を取り込み得る乾燥用媒体と該液滴及び/又は該同伴
気体とを多孔質隔膜を介して互いに接触させ、該液滴及
び/又は該同伴気体中の水分を拡散させて該乾燥用媒体
中に移動させることによって該液滴及び/又は該同伴気
体中に含まれる水分の少なくとも1部を系外に除去する
ことを特徴とする請求項1〜5のいづれか1項に記載の
無機金属化合物粉末の製造方法。
6. The droplet and / or the entraining medium capable of taking in the water in the entrained gas and the drying medium and / or the entrained gas are brought into contact with each other through a porous membrane, and the droplet and / or Alternatively, at least a part of the water contained in the droplets and / or the accompanying gas is removed to the outside of the system by diffusing the water in the accompanying gas and moving it into the drying medium. The method for producing an inorganic metal compound powder according to any one of claims 1 to 5.
【請求項7】 前記乾燥用媒体中の水分含有率が、前記
液滴及び/又は前記同伴気体中の水分含有率よりも小で
あることを特徴とする請求項1〜6のいづれか1項に記
載の無機金属化合物粉末の製造方法。
7. The water content in the drying medium is smaller than the water content in the droplets and / or the entrained gas, according to any one of claims 1 to 6. A method for producing the inorganic metal compound powder described.
【請求項8】 前記乾燥用媒体が、気体であることを特
徴とする請求項6または7のいづれかに記載の無機金属
化合物粉末の製造方法。
8. The method for producing an inorganic metal compound powder according to claim 6, wherein the drying medium is a gas.
【請求項9】 前記気体の水蒸気濃度が、前記同伴気体
の水蒸気濃度の1/2以下であることを特徴とする請求
項8記載の無機金属化合物粉末の製造方法。
9. The method for producing an inorganic metal compound powder according to claim 8, wherein the vapor concentration of the gas is ½ or less of the vapor concentration of the accompanying gas.
【請求項10】 前記気体の少なくとも1部を、前記液
滴及び/又は前記同伴気体と接触させる前に100℃以
下に冷却することを特徴とする請求項8または9記載の
無機金属化合物粉末の製造方法。
10. The inorganic metal compound powder according to claim 8, wherein at least a part of the gas is cooled to 100 ° C. or lower before being brought into contact with the droplet and / or the entrained gas. Production method.
【請求項11】 前記乾燥用媒体が、固体状の乾燥剤で
あることを特徴とする請求項6記載の無機金属化合物粉
末の製造方法。
11. The method for producing an inorganic metal compound powder according to claim 6, wherein the drying medium is a solid desiccant.
【請求項12】 前記固体状の乾燥剤が、シリカゲル、
塩化カルシウム、ゼオライトからなる群から選ばれる少
なくとも1つであることを特徴とする請求項11記載の
無機金属化合物粉末の製造方法。
12. The solid desiccant is silica gel,
The method for producing an inorganic metal compound powder according to claim 11, which is at least one selected from the group consisting of calcium chloride and zeolite.
【請求項13】 前記所望の無機金属化合物が、蛍光体
であることを特徴とする請求項1〜12のいづれか1項
に記載の無機金属化合物粉末の製造方法。
13. The method for producing an inorganic metal compound powder according to claim 1, wherein the desired inorganic metal compound is a phosphor.
JP2001399222A 2001-12-28 2001-12-28 Method for manufacturing inorganic metal compound powder Pending JP2003201118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001399222A JP2003201118A (en) 2001-12-28 2001-12-28 Method for manufacturing inorganic metal compound powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399222A JP2003201118A (en) 2001-12-28 2001-12-28 Method for manufacturing inorganic metal compound powder

Publications (1)

Publication Number Publication Date
JP2003201118A true JP2003201118A (en) 2003-07-15

Family

ID=27639701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399222A Pending JP2003201118A (en) 2001-12-28 2001-12-28 Method for manufacturing inorganic metal compound powder

Country Status (1)

Country Link
JP (1) JP2003201118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154138A (en) * 2005-12-08 2007-06-21 National Institute Of Advanced Industrial & Technology Particulate phosphor, method and apparatus for producing the same
WO2009008440A1 (en) * 2007-07-10 2009-01-15 Chubu Chelest Co., Ltd. Method for producing fluorescent powder and fluorescent powder
JP2013533380A (en) * 2010-06-01 2013-08-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for producing non-hollow, non-fragmented spherical metal or metal alloy particles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154138A (en) * 2005-12-08 2007-06-21 National Institute Of Advanced Industrial & Technology Particulate phosphor, method and apparatus for producing the same
WO2009008440A1 (en) * 2007-07-10 2009-01-15 Chubu Chelest Co., Ltd. Method for producing fluorescent powder and fluorescent powder
JP2009019082A (en) * 2007-07-10 2009-01-29 Chubu Kiresuto Kk Manufacturing method for fluorescence emission powder, and fluorescence emission powder
JP2013533380A (en) * 2010-06-01 2013-08-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for producing non-hollow, non-fragmented spherical metal or metal alloy particles

Similar Documents

Publication Publication Date Title
US6712993B2 (en) Phosphor and its production process
JP2000505041A (en) Compounds based on alkaline earth metals, sulfur and aluminum, gallium or indium, their preparation and their use as luminophores
KR100833368B1 (en) Precursor compounds of alkaline earth metal or rare earth metal aluminates, method for production and use thereof particularly as precursors for luminophores
TWI417237B (en) Production of Inorganic Crystals
JP2003201118A (en) Method for manufacturing inorganic metal compound powder
Kang et al. Preparation of Sr 2 CeO 4 blue phosphor by ultrasonic spray pyrolysis: effect of NH 4 NO 3 addition
US7001537B2 (en) Phosphor and its production process
KR20010038293A (en) Process for Preparing Oxidized Phosphor Particles by Spray Pyrolysis Employing Flux
KR100424804B1 (en) Synthesizing method of crystalline and spherical phosphor
KR100481618B1 (en) Preparation method of a nano-size red phosphor
JP2000336353A (en) Production of fluorescent aluminate
EP1236784A1 (en) Method for producing phosphor
JP2002069441A (en) Method of producing acid sulfide fluorescent substance
JP2001172620A (en) Method for producing red light emitting fluorescent microparticle
KR100411176B1 (en) Preparation method of blue and green emitting Barium-Magnesium-aluminate phosphor particles by spray pyrolysis using non-organic polymer solution
JP2004277543A (en) Method for producing phosphor particle
JP4266488B2 (en) Phosphor made of hollow particles, method for producing the same, and phosphor slurry
Jung et al. (CeTb) MgAl11O19 phosphor particles prepared by spray pyrolysis from spray solution containing citric acid and ethylene glycol
JP2002322470A (en) Fluorophor and method for producing the same
JP2000109825A (en) Preparation of terbium-activated yttrium aluminate fluorescent substance
JP2001152144A (en) Preparation process of fluorescent body
JP2005002157A (en) Method for producing phosphor
JP2002322469A (en) Fluorophor and method for producing the same
SAITOH et al. Synthesis of blue phosphor by decomposition of metal complex powder
JP2001220581A (en) Preparation process of phosphor particle