JP2003200433A - Method for manufacturing fine processing mold and organic coloring matter dispersed substrate sheet used therein - Google Patents

Method for manufacturing fine processing mold and organic coloring matter dispersed substrate sheet used therein

Info

Publication number
JP2003200433A
JP2003200433A JP2002301435A JP2002301435A JP2003200433A JP 2003200433 A JP2003200433 A JP 2003200433A JP 2002301435 A JP2002301435 A JP 2002301435A JP 2002301435 A JP2002301435 A JP 2002301435A JP 2003200433 A JP2003200433 A JP 2003200433A
Authority
JP
Japan
Prior art keywords
organic dye
mold
polymer
dyes
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002301435A
Other languages
Japanese (ja)
Inventor
Hiromasa Yagyu
裕聖 柳生
Shigehiko Hayashi
茂彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2002301435A priority Critical patent/JP2003200433A/en
Publication of JP2003200433A publication Critical patent/JP2003200433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a fine processing mold having a fine and sharp smooth pattern in the atmosphere by utilizing laser beam having a relatively short wavelength and weak in intensity without using a mask. <P>SOLUTION: A powdery organic coloring matter is kneaded with a transparent polymer and the resulting kneaded mixture is ground and subsequently dissolved in a solvent to prepare an organic coloring matter dispersed polymer, which is, in turn, applied to a substrate sheet. After the solvent is removed, the obtained thin film 3 is irradiated with laser beam to manufacture the processed fine processing mold. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は微細加工型の製造方
法とこれに使用する有機色素分散基板に係り、詳しくは
比較的波長が短く、弱い強度のレーザ光が利用可能で、
その上、マスクを使用することなく大気中で微細かつ鮮
明でしかも平滑なパターンを有する光学素子、マイクロ
ギヤ、DNAチップなどのミクロンオーダーの部品を作
製できる微細加工型の製造方法、及び比較的厚みを有す
る有機色素分散基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microfabrication type manufacturing method and an organic dye-dispersed substrate used for the method. More specifically, a laser beam having a relatively short wavelength and weak intensity can be used.
In addition, a microfabricated manufacturing method capable of producing micron-order parts such as an optical element, a microgear, and a DNA chip having a fine, clear and smooth pattern in the atmosphere without using a mask, and a relatively thick And an organic dye-dispersed substrate having

【0002】[0002]

【従来の技術】基板の表面に微細パターンを形成する方
法として、フォトリソグラフィ法がある。この方法は基
板表面にフォトレジストを塗布し、予め作製しておいた
所定パターンのマスクを通して、フォトレジストに紫外
線等を照射するものであり、これによってフォトレジス
トにマスク像を焼き付け、フォトレジストを溶媒で除去
し、パターンに従って基板をエッチング加工する。ま
た、レーザ描画法や、電子線、走査型プロ−ブ顕微鏡を
用いて微細加工型を作製し、基板上に形成した高分子層
に押し付けて微細加工を転写する技術が提示されてい
る。しかし、フォトリソグラフィ法ではマスクを別に作
製する必要があり、一方、レーザ描画法では数MWの出
力の紫外光レーザが必要なため、装置が大掛かりになる
といった問題があった。
2. Description of the Related Art Photolithography is a method for forming a fine pattern on the surface of a substrate. In this method, a photoresist is applied to the surface of a substrate, and the photoresist is irradiated with ultraviolet rays or the like through a mask of a predetermined pattern prepared in advance, whereby a mask image is printed on the photoresist and the photoresist is used as a solvent. And the substrate is etched according to the pattern. Further, a technique has been proposed in which a fine processing mold is manufactured by using a laser drawing method, an electron beam, or a scanning probe microscope, and the fine processing is transferred by being pressed against a polymer layer formed on a substrate. However, in the photolithography method, it is necessary to separately manufacture a mask, while in the laser drawing method, an ultraviolet laser having an output of several MW is required, which causes a problem that the apparatus becomes large in size.

【0003】ここに、大型で高価な装置を必要とするこ
となく薄膜にマイクロメートルオーダーの微細加工を行
う技術として、絞り込んだレーザ光を任意のパターンに
従って薄膜に照射する方法がある。金属微粒子を高分子
膜中に分散させた金属微粒子分散高分子膜は、金属微粒
子に特有の光吸収特性を有するため、特定の波長域に発
振波長を有するレーザ光を所定パターンに従って照射す
れば、照射部分に形成される凹部からなる任意の微細構
造を作製することができる。本出願人は、金属微粒子分
散高分子膜を用いた光記録媒体(例えば特許文献1参
照)、微細加工型(例えば特許文献2参照)、グレーテ
ィング(例えば特許文献3参照)等を開示している。
Here, there is a method of irradiating a thin film with a narrowed laser beam according to an arbitrary pattern as a technique for performing microfabrication on the thin film on the order of micrometers without requiring a large and expensive device. The metal fine particle-dispersed polymer film in which the metal fine particles are dispersed in the polymer film has a light absorption characteristic peculiar to the metal fine particles. It is possible to produce an arbitrary fine structure composed of concave portions formed in the irradiated portion. The present applicant discloses an optical recording medium (see, for example, Patent Document 1), a fine processing type (see, for example, Patent Document 2), a grating (see, for example, Patent Document 3) and the like using a metal fine particle dispersed polymer film. .

【0004】更に、複雑な形状加工を行うには3次元微
細加工が必要になるため、深さ方向の加工形状が制御可
能な材料とその加工方法が要求される。このため高アス
ペクト比な微細加工が可能なX線や紫外線の照射により
硬化または劣化するPMMA、エポキシ、ウレタンを原
料とする厚膜レジストとその加工方法が提案されてい
る。いずれのレジストもフォトマスクを用いた露光と現
像により加工されるが、深さ方向に対する加工形状の自
由度は低い。たとえば深さ方向の加工形状は垂直な壁面
を有しており、テーパを付けたり、先端が鋭利な加工形
状を得ることが困難である。このような課題を解決する
ために移動マスクを用いた露光方法やリフトオフによる
加工方法が提案されている。しかしながら工程や装置が
複雑になるため,加工コストが大変高価になる問題があ
る。
Further, since three-dimensional fine processing is required to perform complicated shape processing, a material capable of controlling the processing shape in the depth direction and a processing method therefor are required. For this reason, a thick film resist made of PMMA, epoxy, or urethane which is hardened or deteriorated by irradiation of X-rays or ultraviolet rays, which enables fine processing with a high aspect ratio, and a processing method thereof have been proposed. All resists are processed by exposure and development using a photomask, but the degree of freedom of the processed shape in the depth direction is low. For example, the processed shape in the depth direction has a vertical wall surface, and it is difficult to taper or obtain a processed shape with a sharp tip. In order to solve such problems, an exposure method using a moving mask and a processing method by lift-off have been proposed. However, there is a problem that the processing cost becomes very high because the process and the equipment become complicated.

【0005】本出願人は、このような問題点を鑑みて、
強力なレーザ光を必要とせず、可視域の比較的弱い強度
のレーザ光でも加工可能で、かつマスクを使用すること
なく大気中で微細で鮮明なパターンを有する微細加工型
の製造方法及び微細パターンを有する成形体の製造方法
を特願2001−231360号にて提供した。
In view of such problems, the present applicant has considered
A method and a fine pattern for manufacturing a fine patterning type that does not require a strong laser beam and can be processed by a laser beam having a relatively weak intensity in the visible range and has a fine and clear pattern in the atmosphere without using a mask. A method for producing a molded article having the above is provided in Japanese Patent Application No. 2001-231360.

【0006】即ち、微細加工型の製造方法において、溶
媒中あるいは保護高分子中に金属微粒子が独立分散した
金属微粒子分散液、高分子マトリクス、及び溶媒からな
る金属微粒子分散剤を基板上に展開して金属微粒子分散
膜を形成する工程、硬化した金属微粒子分散膜にレーザ
光を照射してパターン付けしたマスター型を作製する工
程、前記マスター型の上に液状シリコーンゴムの薄膜を
形成して硬化した後、脱型してシリコーンゴムの転写型
を作製する工程、からなる微細加工型の製造方法であっ
て、高分子マトリクスとしてエチルセルロースやシリコ
ーンなどを具体的に例示したるものである。従来のよう
にエキシマレーザやYAGレーザ等の強力なレーザ光を
必要とせず、微弱なレーザ光で加工可能なことを特徴と
する。
That is, in the microfabrication type manufacturing method, a metal fine particle dispersion comprising a metal fine particle dispersion liquid in which metal fine particles are independently dispersed in a solvent or a protective polymer, a polymer matrix, and a solvent is spread on a substrate. To form a metal fine particle dispersed film, a step of producing a patterned master mold by irradiating a cured metal fine particle dispersed film with a laser beam, and forming and hardening a thin film of liquid silicone rubber on the master mold After that, the method is a method for producing a microfabricated mold, which comprises a step of removing the mold to produce a transfer mold of silicone rubber, and specifically illustrates ethyl cellulose, silicone, or the like as the polymer matrix. It is characterized in that it can be processed by a weak laser beam without requiring a strong laser beam such as an excimer laser or a YAG laser as in the conventional case.

【0007】[0007]

【特許文献1】特開2001−216680号公報[Patent Document 1] Japanese Patent Laid-Open No. 2001-216680

【特許文献2】特開2001−310331号公報[Patent Document 2] Japanese Patent Laid-Open No. 2001-310331

【特許文献3】特開2001−311810号公報[Patent Document 3] Japanese Unexamined Patent Application Publication No. 2001-311810

【0008】[0008]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0009】しかし、上記技術には改良の余地が残され
ており、高分子マトリクスとしてエチルセルロースやシ
リコーンを用いた場合、レーザ加工した穴入口の周辺が
隆起し、平滑なパターンを得ることができないという問
題があった。前記欠点は、加工時のマスク材など表面の
隆起が問題とならない分野では適用可能だが、例えば生
化学分野で注目されているマイクロキャピラリ電気泳動
チップなど微細な流路の形成が必要なものについては適
用が困難であった。
However, there is room for improvement in the above technique, and when ethyl cellulose or silicone is used as the polymer matrix, the periphery of the laser-machined hole entrance is raised, and a smooth pattern cannot be obtained. There was a problem. The above-mentioned drawbacks can be applied in a field in which the surface bulge such as a mask material at the time of processing is not a problem, but, for example, for a microcapillary electrophoresis chip that is attracting attention in the field of biochemistry, it is necessary to form a fine channel. It was difficult to apply.

【0010】更に、従来では金、銀等の貴金属微粒子を
使用しているため、処理液のコストがかさみ、また使用
するレーザ光の波長も大きくなって細い線を加工するこ
とが困難であった。
Further, conventionally, since precious metal fine particles such as gold and silver are used, the cost of the treatment liquid is high and the wavelength of the laser light used is large, so that it is difficult to process a fine line. .

【0011】本発明は上記のような問題を解決するもの
であり、比較的波長が短く、弱い強度のレーザ光が利用
可能で、その上、マスクを使用することなく大気中で微
細かつ鮮明でしかも平滑なパターンを有する微細加工型
の製造方法とこれに使用する有機色素分散基板を提供す
ることを目的とする。
The present invention solves the above-mentioned problems, and it is possible to use a laser beam having a relatively short wavelength and a weak intensity, and moreover, it is fine and clear in the atmosphere without using a mask. Moreover, it is an object of the present invention to provide a method for manufacturing a microfabricated mold having a smooth pattern and an organic dye-dispersed substrate used for the method.

【0012】[0012]

【課題を解決するための手段】上記のような課題を解決
するために請求項1記載の発明では、微細なパターンを
有する型の製造方法において、粉末状の有機色素を透明
な高分子と混練、粉砕した後に溶剤に溶解して有機色素
分散ポリマーを作製し、該有機色素分散ポリマーを基板
上に塗付して溶剤を除去した後、得られた薄膜にレーザ
光を照射してマスター型を作製し、該マスター型から転
写型を成形する微細加工型の製造方法にある。
In order to solve the above problems, according to the invention of claim 1, in a method for producing a mold having a fine pattern, a powdery organic dye is kneaded with a transparent polymer. After crushing, an organic dye-dispersed polymer was prepared by dissolving in a solvent, the organic dye-dispersed polymer was applied onto a substrate to remove the solvent, and the resulting thin film was irradiated with laser light to form a master mold. It is a method for producing a microfabrication mold, which is produced and molds a transfer mold from the master mold.

【0013】本願請求項2記載の発明は、微細なパター
ンを有する型の製造方法において、粉末状の有機色素を
透明な高分子と溶剤で混練、粉砕して得られた粉末状有
機色素分散ポリマーを金型に充填し、加熱、加圧して得
られた有機色素分散基板にレーザ光を照射してマスター
型を作製し、該マスター型から転写型を成形する微細加
工型の製造方法にある。
According to the second aspect of the present invention, in the method for producing a mold having a fine pattern, a powdery organic dye dispersion polymer obtained by kneading and pulverizing a powdery organic dye with a transparent polymer and a solvent. In a mold, heat and pressurize the resulting organic dye-dispersed substrate to irradiate a laser beam to prepare a master mold, and form a transfer mold from the master mold.

【0014】本願請求項3記載の発明では、有機色素が
縮合アゾ系、イソインドリノン系、キナクリドン系、ジ
ケノピロロピロール系、アンスラキノン系、ジオキサジ
ン系、フタロシアニン系、ペリレン系から選ばれた少な
くとも一種である微細加工型の製造方法にある。
According to the third aspect of the present invention, at least the organic dye is selected from condensed azo type, isoindolinone type, quinacridone type, dikenopyrrolopyrrole type, anthraquinone type, dioxazine type, phthalocyanine type and perylene type. It is a method of manufacturing a microfabricated mold.

【0015】本願請求項4記載の発明では、透明な高分
子がエチルセルロースである微細加工型の製造方法にあ
る。
The invention according to claim 4 of the present application is the method for producing a microfabricated mold, wherein the transparent polymer is ethyl cellulose.

【0016】本願請求項5記載の発明では、透明な高分
子に有機色素を分散させた有機色素分散基板であり、粉
末状の有機色素を透明な高分子と溶剤で混練、粉砕して
得られた有機色素分散ポリマーを金型に充填し、加熱、
加圧して得られた有機色素分散基板にある。
According to a fifth aspect of the present invention, there is provided an organic dye dispersion substrate in which an organic dye is dispersed in a transparent polymer, which is obtained by kneading and pulverizing a powdery organic dye with a transparent polymer and a solvent. Fill the mold with the organic dye-dispersed polymer, heat,
It is on the organic dye-dispersed substrate obtained by pressing.

【0017】[0017]

【発明の実施の形態】本発明で使用する有機色素は、比
較的波長の短いレーザの照射により直径が数百nmのピ
ットを形成するものであり、浅い穴加工や細い線加工が
可能になる。また、高分子中に有機色素を分散させるこ
とで、厚さ数百μmの膜厚が作製することができるのと
同時に、加工幅の深さの比(深さ/幅)で表示されるア
スペクト比の大きい微細加工が可能になる。有機色素は
金微粒子と比較して安価であり、また例えば、3,4,
9,10−ペリレンテトラカルボン酸ジイミドは金微粒
子の吸収と同じ赤色の光を吸収することできる。この試
料に波長532nmのレーザ光を照射すると、μmオー
ダの溝、穴等が可能になる。
BEST MODE FOR CARRYING OUT THE INVENTION The organic dye used in the present invention forms pits having a diameter of several hundred nm by irradiation with a laser having a relatively short wavelength, and enables shallow hole processing and fine line processing. . Also, by dispersing an organic dye in a polymer, a film having a thickness of several hundreds of μm can be formed, and at the same time, the aspect ratio displayed by the depth ratio of the processed width (depth / width). Fine processing with a large ratio becomes possible. Organic dyes are cheaper than fine gold particles and, for example, 3, 4,
The 9,10-perylenetetracarboxylic acid diimide can absorb the same red light as the gold fine particles. When this sample is irradiated with laser light having a wavelength of 532 nm, grooves, holes, etc. of the order of μm become possible.

【0018】上記有機色素としては、有機色素が縮合ア
ゾ系、イソインドリノン系、キナクリドン系、ジケノピ
ロロピロール系、アンスラキノン系、ジオキサジン系、
フタロシアニン系、ペリレン系から選ばれた少なくとも
一種である。
Examples of the above-mentioned organic dye include condensed azo dyes, isoindolinone dyes, quinacridone dyes, dikenopyrrolopyrrole dyes, anthraquinone dyes, dioxazine dyes,
It is at least one selected from phthalocyanine series and perylene series.

【0019】上記有機色素の具体例としては、キナクリ
ドン、ジアントラキノニルレッド、ベンツイミダゾロン
イソインドリノン、ポリアゾ、ジスアゾ、アゾメチンニ
ッケル、ナフトールヒ素、チオインジコフタロシアニ
ン、フタロシアニン、ペリレン、ペリレンテトラカルボ
ン酸ジイミド等の分子結晶体がある。あるいは、フタロ
シアニン、オクタシアノフタロシアニン、テトラtーブ
チルフタロシアニン、マグネシウムフタロシアニン、バ
ナジルフタロシアニン、銅フタロシアニン、亜鉛フタロ
シアニン、アルミニウムフタロシアニン、シリコンフタ
ロシアニン、銅テトラtーブチルフタロシアニン、銅オ
クタシアノフタロシアニン、ナフタロシアニン、銅ナフ
タロシアニン、亜鉛ナフタロシアニン、コバルトナフタ
ロシアニン、バナジルナフタロシアニン、オクタシアノ
ナフタロシアニン、テトラシアノナフタロシアニン、テ
トラメチルナフタロシアニン、テトラエチルナフタロシ
アニン、テトラメトキシナフタロシアニン等の分子性結
晶体である。
Specific examples of the above organic dyes include quinacridone, dianthraquinonyl red, benzimidazolone isoindolinone, polyazo, disazo, azomethine nickel, naphthol arsenic, thioindicophthalocyanine, phthalocyanine, perylene, perylene tetracarboxylic acid diimide. There is a molecular crystal such as. Alternatively, phthalocyanine, octacyanophthalocyanine, tetra-t-butylphthalocyanine, magnesium phthalocyanine, vanadyl phthalocyanine, copper phthalocyanine, zinc phthalocyanine, aluminum phthalocyanine, silicon phthalocyanine, copper tetra-t-butyl phthalocyanine, copper octacyanophthalocyanine, naphthalocyanine, copper naphthalocyanine. , Zinc naphthalocyanine, cobalt naphthalocyanine, vanadyl naphthalocyanine, octacyanonaphthalocyanine, tetracyanonaphthalocyanine, tetramethylnaphthalocyanine, tetraethylnaphthalocyanine, tetramethoxynaphthalocyanine, and the like.

【0020】有機色素は粉砕されたもので、有機色素分
散ポリマー中での有機色素の添加量は2.8〜6.7質
量%である。2.8質量%未満になるとレーザ光を照射
する工程においてレーザ光の光エネルギーを十分に利用
できず、微細で鮮明なパターンを形成することが困難に
なり、また有機色素の添加量が6.7質量%を超えると
濃度が高すぎ、有機色素が分解し、良好な分散液、分散
膜を得ることができる。
The organic dye is pulverized, and the amount of the organic dye added in the organic dye-dispersed polymer is 2.8 to 6.7% by mass. If it is less than 2.8% by mass, the light energy of the laser beam cannot be fully utilized in the step of irradiating the laser beam, and it becomes difficult to form a fine and clear pattern, and the addition amount of the organic dye is 6. When it exceeds 7% by mass, the concentration is too high, the organic dye is decomposed, and a good dispersion liquid or dispersion film can be obtained.

【0021】透明な高分子としては、エチルセルロー
ス、ニトロセルロースなどのセルロース樹脂、ポリメチ
ルメタクリレート,ポリエチルメタクリレートなどのア
クリル樹脂が使用され、この中ではエチルセルロースが
有機色素の分散性が良好であるという理由で好ましい。
As the transparent polymer, cellulose resins such as ethyl cellulose and nitrocellulose, acrylic resins such as polymethyl methacrylate and polyethyl methacrylate are used, and among them, ethyl cellulose has a good dispersibility of organic dyes. Is preferred.

【0022】溶剤は透明な高分子を溶かすものであれば
よく、例えばα−テレピネオール、メタノール、エタノ
ール、トルエン、p−キシレン、水、カルビトール、メ
タクレゾール、N−メチル2−ピタリドン、ジメチルホ
ルムアミド、ジメチルアセトアミド等を用いることが好
ましい。
Any solvent may be used as long as it can dissolve a transparent polymer, for example, α-terpineol, methanol, ethanol, toluene, p-xylene, water, carbitol, methacresol, N-methyl-2-pitaridone, dimethylformamide, It is preferable to use dimethylacetamide or the like.

【0023】上記粉末状の有機色素、透明な高分子を乳
鉢で混練、粉砕機で粉砕した後,溶剤に溶解させた有機
色素分散ポリマーにする。また、粉末状の有機色素を透
明な高分子と溶剤で混練、粉砕して得られた粉末状の有
機色素分散ポリマーにする。
The above-mentioned powdery organic dye and transparent polymer are kneaded in a mortar and crushed by a crusher to obtain an organic dye-dispersed polymer dissolved in a solvent. Further, a powdery organic dye is kneaded with a transparent polymer and a solvent and pulverized to obtain a powdery organic dye dispersion polymer.

【0024】続いて、微細加工型の製造方法の製造方法
を図1〜図3に従って以下に説明する。図1に示すよう
に、ガラス、ポリメチルメタクリレート、ポリカーボネ
ート、ABS樹脂等からなる樹脂からなる基板1の表面
2へ上記の上記粉末状の有機色素、透明な高分子を乳鉢
で混練、粉砕機で粉砕した後,溶剤に溶解させた有機色
素分散ポリマーを塗布して厚さ1μm以上の薄膜3を形
成し、乾燥する。薄膜3を基板1表面に形成する方法
は、スピンコート法、ディップ法、刷毛塗り、スプレー
など様々な方法を採ることができるが、出来るだけ均一
に塗布することが好ましく、スピンコート法が適当であ
る。
Next, the manufacturing method of the microfabrication mold manufacturing method will be described below with reference to FIGS. As shown in FIG. 1, the above-mentioned powdery organic dye and transparent polymer are kneaded in a mortar on a surface 2 of a substrate 1 made of a resin made of glass, polymethylmethacrylate, polycarbonate, ABS resin, etc. After crushing, an organic dye dispersion polymer dissolved in a solvent is applied to form a thin film 3 having a thickness of 1 μm or more and dried. The thin film 3 can be formed on the surface of the substrate 1 by various methods such as spin coating, dipping, brush coating, and spraying. However, it is preferable to apply the coating as uniformly as possible, and spin coating is suitable. is there.

【0025】続いて、上記有機色素分散ポリマーの薄膜
3を形成した基板1を室温もしくは加熱して溶剤を除去
した後、薄膜3にレーザ光を照射してパターンを形成す
る。具体的には図2に示すように、光源11としてグリ
ーンレーザのレーザ光19を所定強度に調整し、数個の
ミラー12によって光路を変えながら光学顕微鏡13内
のハーフミラー14へ入射し、そして対物レンズ15に
よって絞込み、XYZステージ16に設置した薄膜3に
所定時間照射した。CCDカメラ17とこれに連結した
TVモニター18で観察しながらXYZステージ16を
移動させながら薄膜3上の凹条部と凸条部をもつ種々の
パターンを形成し、マスター型20を作製する。
Subsequently, the substrate 1 on which the thin film 3 of the organic dye-dispersed polymer is formed is heated at room temperature or to remove the solvent, and then the thin film 3 is irradiated with laser light to form a pattern. Specifically, as shown in FIG. 2, the laser light 19 of the green laser as the light source 11 is adjusted to a predetermined intensity, and while entering the half mirror 14 in the optical microscope 13 while changing the optical path by several mirrors 12, The thin film 3 was narrowed down by the objective lens 15, and the thin film 3 placed on the XYZ stage 16 was irradiated for a predetermined time. While observing with the CCD camera 17 and the TV monitor 18 connected thereto, various patterns having concave and convex portions on the thin film 3 are formed while moving the XYZ stage 16 to manufacture the master mold 20.

【0026】尚、マスター型20の上に液状シリコーン
ゴムを滴下して厚さ2〜5mmの膜を形成し、室温下で
重合した後、図3に示すように剥離してシリコーンゴム
の転写型21である微細加工型22を作製した。
Liquid silicone rubber was dropped on the master mold 20 to form a film having a thickness of 2 to 5 mm, and the film was polymerized at room temperature and then peeled off as shown in FIG. A microfabrication mold 22 which is 21 was manufactured.

【0027】ここで使用する液状シリコーンゴムはジメ
チルポリシロキサンのような液状ジオルガノポリシロキ
サンを用い、室温ないしは僅かの加熱で硬化することが
できる。両末端にシラノール基を持つ直鎖状で低粘度の
ジメチルシロキサンと架橋剤として脱酢酸型、脱アルコ
ール型、脱オキシム型、脱アミノ型、脱アセトン型、脱
アミノキシ型、脱水素型等の多官能シランを含み、この
ポリマーに金属カルボン酸塩等の触媒を添加することに
よりシリコーンゴムとなる。
The liquid silicone rubber used here is a liquid diorganopolysiloxane such as dimethylpolysiloxane and can be cured at room temperature or with slight heating. A linear, low-viscosity dimethylsiloxane having silanol groups at both ends and a deacetic acid type, dealcohol type, deoxime type, deamino type, deacetone type, deaminoxy type, dehydrogenation type, etc. A silicone rubber is obtained by containing a functional silane and adding a catalyst such as a metal carboxylate to this polymer.

【0028】また、本発明では、スピンコート法などで
数百μm以上の厚膜を得るためには数十回以上繰り返し
積層する必要があり、これを解消するために、以下の方
法も含む。即ち、図6に示すように、粉末状の有機色素
を透明な高分子と溶剤で混練、粉砕して得られた粉末状
有機色素分散ポリマー30を下金型31に充填した後、
上金型32によって140〜150℃で加熱、加圧によ
り圧縮成形する。得られた有機色素分散基板は、透明な
高分子中に有機色素を分散した厚さ0.3〜1mmの板
状体である。尚、圧縮成形の加熱温度が150℃を越え
ると、有機色素の老化、分解が生じるため、レーザ加工
が困難になる。一方、140℃未満の場合には、透明な
高分子が溶融しにくくなり、微細加工型が得られない。
Further, according to the present invention, it is necessary to repeatedly stack several tens of times or more in order to obtain a thick film of several hundreds of μm or more by a spin coating method or the like, and in order to solve this, the following method is also included. That is, as shown in FIG. 6, after a powdery organic dye dispersion polymer 30 obtained by kneading and pulverizing a powdery organic dye with a transparent polymer and a solvent is filled in a lower mold 31,
Compression molding is performed by heating and pressurizing at 140 to 150 ° C. by the upper mold 32. The obtained organic dye-dispersed substrate is a plate-like body having a thickness of 0.3 to 1 mm in which an organic dye is dispersed in a transparent polymer. If the heating temperature for compression molding exceeds 150 ° C., laser processing becomes difficult because the organic dye is aged and decomposed. On the other hand, when the temperature is lower than 140 ° C., the transparent polymer becomes difficult to melt, and a fine processing mold cannot be obtained.

【0029】そして、前記と同様に有機色素分散基板3
3にレーザ光を照射して加工してマスター型を作製し、
該マスター型から転写型を成形する。
Then, as in the above, the organic dye-dispersed substrate 3
3 is irradiated with laser light and processed to produce a master mold,
A transfer mold is molded from the master mold.

【0030】[0030]

【実施例】次に、本発明の具体的な方法を以下に示す。EXAMPLES Next, specific methods of the present invention will be described below.

【0031】実施例1〜3 (有機色素分散ポリマーの作製)粉末状の3,4,9,
10−ペリレンテトラカルボン酸ジイミド0.05〜
0.02gとエチルセルロース0.7gに少量のp−キ
シレンを加え乳鉢で混練した。混練後,室温で24時間
乾燥し、冷凍粉砕機で粉末状のペリレン分散エチルセル
ロースを得た。
Examples 1 to 3 (Preparation of Organic Dye Dispersion Polymer) Powdery 3, 4, 9,
10-Perylene tetracarboxylic acid diimide 0.05-
A small amount of p-xylene was added to 0.02 g and 0.7 g of ethyl cellulose and kneaded in a mortar. After kneading, it was dried at room temperature for 24 hours, and powdery perylene-dispersed ethyl cellulose was obtained with a freeze pulverizer.

【0032】(色素分散液の作製)粉砕したペリレン分
散エチルセルロース0.5gにp−キシレン0.5gを
加え室温で24時間攪拌した。
(Preparation of Dye Dispersion) 0.5 g of p-xylene was added to 0.5 g of crushed perylene-dispersed ethyl cellulose, and the mixture was stirred at room temperature for 24 hours.

【0033】(成膜工程)上記色素分散液をPMMA基
板上に、スピンコーター(回転数5,000rpm、1
5秒)で膜化後、80℃で5分間乾燥させた。
(Film Forming Step) The above dye dispersion liquid was placed on a PMMA substrate by a spin coater (rotation speed: 5,000 rpm, 1 rpm).
After forming a film for 5 seconds), it was dried at 80 ° C. for 5 minutes.

【0034】(レーザ加工)膜上に対物レンズ(×1
0、NA0.25)で集光したレーザ光(波長532n
m、出力28mW)を走査させて、パターンを形成して
マスター型を作製した。
(Laser processing) The objective lens (× 1
0, NA 0.25) focused laser light (wavelength 532n
m, output 28 mW) was scanned to form a pattern to prepare a master mold.

【0035】(評価)走査型電子顕微鏡を用いて加工し
たペリレン分散エチルセルロース膜からなるマスター型
の表面および断面形状を観察した。この結果、実施例1
〜3は、目視では色素の凝集は見られなかった。また、
図4は実施例1で得られたマスター型をジメチルポリシ
ロキサンで転写して得た微細加工型を原子間力顕微鏡で
撮影した写真を示し、図5は実施例3で得られた同様の
微細加工型を原子間力顕微鏡で撮影した写真を示す。
(Evaluation) The surface and cross-sectional shape of the master mold made of the perylene-dispersed ethyl cellulose film processed using a scanning electron microscope were observed. As a result, Example 1
In Nos. 3 to 3, no dye aggregation was visually observed. Also,
FIG. 4 shows a photograph of the microfabrication mold obtained by transferring the master mold obtained in Example 1 with dimethylpolysiloxane by an atomic force microscope, and FIG. 5 shows the same fine microstructure obtained in Example 3. The photograph which image | photographed the process type with the atomic force microscope is shown.

【0036】比較例1 粉末状の3,4,9,10−ペリレンテトラカルボン酸
ジイミド0.01g、エチルセルロース0.7gを実施
例1と同様の方法で分散液を作製し成膜後、レーザ加工
したが、任意のパターンを形成することはできなかっ
た.
Comparative Example 1 A dispersion of 0.01 g of powdered 3,4,9,10-perylenetetracarboxylic acid diimide and 0.7 g of ethyl cellulose was prepared in the same manner as in Example 1 to form a film, which was then laser processed. However, it was not possible to form an arbitrary pattern.

【0037】比較例2 エチルセルロースをp−キシレンに溶解して成膜後、レ
ーザ加工したが、任意のパターンは形成されなかった。
Comparative Example 2 Ethyl cellulose was dissolved in p-xylene to form a film, which was then laser processed, but no arbitrary pattern was formed.

【0038】比較例3 エチルセルロースをp−キシレンに溶解後,粉末状の
3,4,9,10−ペリレンテトラカルボン酸ジイミド
を添加し24時間攪拌したが、色素は分散せず沈殿し
た。
Comparative Example 3 Ethyl cellulose was dissolved in p-xylene, powdery 3,4,9,10-perylenetetracarboxylic acid diimide was added and stirred for 24 hours, but the dye did not disperse but precipitated.

【0039】上記実施例1〜3、比較例1〜3を表1に
示す。
Table 1 shows Examples 1 to 3 and Comparative Examples 1 to 3 above.

【0040】[0040]

【表1】 [Table 1]

【0041】このように、実施例では分散液に状態もよ
く、また微細加工型表面においても色素の凝集もなくパ
ターン形成も良好であった。
As described above, in the examples, the dispersion was in a good condition, and the dye was not aggregated even on the surface of the microfabricated mold, and the pattern formation was good.

【0042】実施例4〜10、比較例4 (有機色素分散ポリマーの作製)表2に示すように、エ
チルセルロース3gに所定量の有機色素(マイクロリス
2C−A:チバ・スペシャルチィ・ケミカルズ社製)と
p−キシレンを少量加え乳鉢で混練後、室温で乾燥さ
せ、冷凍粉砕機で粉砕し粉末状の有機色素分散エチルセ
ルロースを得た。
Examples 4 to 10 and Comparative Example 4 (Preparation of Organic Dye Dispersion Polymer) As shown in Table 2, 3 g of ethyl cellulose was mixed with a predetermined amount of an organic dye (Microlith 2C-A: manufactured by Ciba Specialty Chemicals Co., Ltd.). ) And p-xylene were added in a small amount, the mixture was kneaded in a mortar, dried at room temperature, and pulverized with a freeze pulverizer to obtain powdery organic dye-dispersed ethyl cellulose.

【0043】[0043]

【表2】 [Table 2]

【0044】(有機色素分散基板の作製)金型を100
℃に保温後、下金型に粉末状の有機色素分散エチルセル
ロースを充填し、上金型で所定の圧力まで加圧する。加
圧後、温度を140〜150℃まで上昇させて溶融した
後、100℃まで冷却し、厚さ0.5mmの有機色素分
散基板を取り出した。
(Preparation of Organic Dye Dispersion Substrate) 100
After keeping the temperature at 0 ° C., the lower mold is filled with powdery organic dye-dispersed ethyl cellulose, and the upper mold is pressed to a predetermined pressure. After pressurizing, the temperature was raised to 140 to 150 ° C. to melt, and then cooled to 100 ° C., and an organic dye-dispersed substrate having a thickness of 0.5 mm was taken out.

【0045】(レーザ加工)有機色素分散基板上に対物
レンズ(×10、NA0.25)で集光したグリーンレー
ザ光(波長532nm、出力28mW)を走査させて、
ラインパターン、穴開け加工を行ってマスター型を作製
した。照射面のレーザ強度は23mWであり、ラインパ
ターンの描画速度は0.5mm/秒であった。
(Laser processing) A green laser beam (wavelength 532 nm, output 28 mW) focused by an objective lens (× 10, NA 0.25) is scanned on an organic dye dispersion substrate,
A master pattern was prepared by performing a line pattern and punching. The laser intensity on the irradiated surface was 23 mW, and the line pattern writing speed was 0.5 mm / sec.

【0046】(評価)上記マスター型の走査型電子顕微
鏡観察を行った。その一例である実施例5の写真を図7
に示す。加工形状は色素濃度により変化し、加工深さは
濃度3%のときに極大になり、加工幅は極小になる。そ
の結果を表3に示す。
(Evaluation) Scanning electron microscope observation of the above master type was performed. A photograph of Example 5, which is an example thereof, is shown in FIG.
Shown in. The processing shape changes depending on the dye concentration, and the processing depth becomes maximum and the processing width becomes minimum when the concentration is 3%. The results are shown in Table 3.

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【発明の効果】以上のように本願請求項記載の発明で
は、粉末状の有機色素を透明な高分子と混練、粉砕した
後に溶剤に溶解して有機色素分散ポリマーを作製し、該
有機色素分散ポリマーを基板上に塗付して溶剤を除去し
た後、得られた薄膜にレーザ光を照射してマスター型を
作製し、該マスター型から転写型にする微細加工型の製
造方法にあり、使用する有機色素が比較的波長の短いレ
ーザの照射により直径が数百nmのピットを形成して浅
い穴加工や細い線加工が可能になり、また高分子中に有
機色素を分散させて厚さ数百μmの膜厚が作製すること
ができるのと同時に、加工幅の深さの比で表示されるア
スペクト比の大きい、安価な微細加工を得ることができ
る。また、有機色素分散基板にレーザ光を照射して加工
した方法では、比較的厚みを有する有機色素分散基板に
アスペクト比の大きい、そして安価な微細加工を得るこ
とができる。
As described above, in the invention described in the claims of the present application, a powdery organic dye is kneaded with a transparent polymer, pulverized, and then dissolved in a solvent to prepare an organic dye dispersion polymer. After the polymer is applied on the substrate to remove the solvent, the thin film obtained is irradiated with laser light to prepare a master mold, and the master mold is used in a method for producing a microfabrication mold to be a transfer mold. By irradiating a laser with a relatively short wavelength, a pit with a diameter of several hundred nanometers can be formed by irradiating a laser with a relatively short wavelength, making it possible to perform shallow hole processing and fine line processing. A film thickness of 100 μm can be produced, and at the same time, inexpensive fine processing with a large aspect ratio displayed by the ratio of the processing width and depth can be obtained. Further, in the method in which the organic dye-dispersed substrate is irradiated with the laser beam to be processed, the organic dye-dispersed substrate having a relatively large thickness can be obtained by fine processing with a large aspect ratio and at a low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る微細加工型の製造方法において、
基板上に有機色素分散ポリマーの薄膜を形成した状態を
示す図である。
FIG. 1 shows a method for manufacturing a microfabrication die according to the present invention,
It is a figure which shows the state which formed the thin film of the organic dye dispersion polymer on the board | substrate.

【図2】本発明に係る微細加工型の製造方法において、
基板上に硬化した有機色素分散ポリマーの薄膜にレーザ
光を照射して微細加工型を作製している図である。
FIG. 2 shows a method for manufacturing a microfabrication die according to the present invention,
FIG. 3 is a diagram in which a thin film of an organic dye-dispersed polymer cured on a substrate is irradiated with laser light to produce a microfabricated mold.

【図3】本発明に係る微細加工型の製造方法において、
マスター型の上に転写型を作製している図である。
FIG. 3 shows a method for manufacturing a microfabrication die according to the present invention,
It is a figure which has produced the transfer type on the master type.

【図4】実施例1で得られた微細加工型を原子間力顕微
鏡で撮影した写真を示す。
FIG. 4 shows a photograph of the microfabricated mold obtained in Example 1 taken by an atomic force microscope.

【図5】実施例3で得られた微細加工型を原子間力顕微
鏡で撮影した写真を示す
FIG. 5 shows a photograph of the microfabricated mold obtained in Example 3 taken with an atomic force microscope.

【図6】粉末状有機色素分散ポリマーを金型に充填し、
加熱、加圧して得られた有機色素分散基板を作製してい
る状態の断面図である。
FIG. 6 is a diagram showing a method in which a mold is filled with a powdery organic dye-dispersed polymer,
It is sectional drawing of the state which is producing the organic dye dispersion substrate obtained by heating and pressurizing.

【図7】実施例5におけるマスター型の走査型電子顕微
鏡観察図である。
FIG. 7 is an observation view of a master type scanning electron microscope in Example 5.

【符号の説明】[Explanation of symbols]

1 基板 3 薄膜 5 紫外線 11 光源 13 光学顕微鏡 14 ハーフミラー 15 対物レンズ 16 XYZステージ 19 レーザ光 20 マスター型 21 転写型 22 微細加工型 1 substrate 3 thin film 5 ultraviolet rays 11 light source 13 Optical microscope 14 Half mirror 15 Objective lens 16 XYZ stage 19 laser light 20 master type 21 Transfer type 22 Micro processing type

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 微細なパターンを有する型の製造方法に
おいて、粉末状の有機色素を透明な高分子と混練、粉砕
した後に溶剤に溶解して有機色素分散ポリマーを作製
し、該有機色素分散ポリマーを基板上に塗付して溶剤を
除去した後、得られた薄膜にレーザ光を照射してマスタ
ー型を作製し、該マスター型から転写型を成形すること
を特徴とする微細加工型の製造方法。
1. In a method for producing a mold having a fine pattern, a powdery organic dye is kneaded with a transparent polymer, pulverized, and then dissolved in a solvent to prepare an organic dye dispersion polymer. Is applied to the substrate to remove the solvent, the thin film obtained is irradiated with a laser beam to prepare a master mold, and a transfer mold is molded from the master mold. Method.
【請求項2】 微細なパターンを有する型の製造方法に
おいて、粉末状の有機色素を透明な高分子と溶剤で混
練、粉砕して得られた粉末状有機色素分散ポリマーを金
型に充填し、加熱、加圧して得られた有機色素分散基板
にレーザ光を照射してマスター型を作製し、該マスター
型から転写型を成形することを特徴とする微細加工型の
製造方法。
2. In a method for producing a mold having a fine pattern, a powdery organic dye-dispersing polymer obtained by kneading and pulverizing a powdery organic dye with a transparent polymer and a solvent is filled in a mold, A method for producing a microfabrication mold, comprising irradiating an organic dye-dispersed substrate obtained by heating and pressurizing with a laser beam to prepare a master mold, and molding a transfer mold from the master mold.
【請求項3】 有機色素が縮合アゾ系、イソインドリノ
ン系、キナクリドン系、ジケノピロロピロール系、アン
スラキノン系、ジオキサジン系、フタロシアニン系、ペ
リレン系から選ばれた少なくとも一種である請求項1ま
たは2記載の微細加工型の製造方法。
3. The organic dye is at least one selected from condensed azo dyes, isoindolinone dyes, quinacridone dyes, dikenopyrrolopyrrole dyes, anthraquinone dyes, dioxazine dyes, phthalocyanine dyes, and perylene dyes. 2. The method for manufacturing a microfabricated mold according to 2.
【請求項4】 透明な高分子がエチルセルロースである
請求項1または2記載の微細加工型の製造方法。
4. The method for producing a microfabricated mold according to claim 1, wherein the transparent polymer is ethyl cellulose.
【請求項5】 透明な高分子に有機色素を分散させた有
機色素分散基板でああり、粉末状の有機色素を透明な高
分子と溶剤で混練し、粉砕して得られた有機色素分散ポ
リマーを金型に充填し、加熱、加圧して得られたことを
特徴とする有機色素分散基板。
5. An organic dye dispersion substrate in which an organic dye is dispersed in a transparent polymer, wherein the powdery organic dye is kneaded with a transparent polymer in a solvent and pulverized to obtain an organic dye dispersion polymer. An organic dye-dispersed substrate, which is obtained by filling a mold with, and heating and pressing.
JP2002301435A 2001-10-24 2002-10-16 Method for manufacturing fine processing mold and organic coloring matter dispersed substrate sheet used therein Pending JP2003200433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301435A JP2003200433A (en) 2001-10-24 2002-10-16 Method for manufacturing fine processing mold and organic coloring matter dispersed substrate sheet used therein

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-325729 2001-10-24
JP2001325729 2001-10-24
JP2002301435A JP2003200433A (en) 2001-10-24 2002-10-16 Method for manufacturing fine processing mold and organic coloring matter dispersed substrate sheet used therein

Publications (1)

Publication Number Publication Date
JP2003200433A true JP2003200433A (en) 2003-07-15

Family

ID=27666422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301435A Pending JP2003200433A (en) 2001-10-24 2002-10-16 Method for manufacturing fine processing mold and organic coloring matter dispersed substrate sheet used therein

Country Status (1)

Country Link
JP (1) JP2003200433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507364A (en) * 2003-09-11 2007-03-29 ブライト・ヴュー・テクノロジーズ,インコーポレイテッド System and method for forming a microstructure by imaging a radiation sensitive layer sandwiched between outer layers and the microstructure formed thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507364A (en) * 2003-09-11 2007-03-29 ブライト・ヴュー・テクノロジーズ,インコーポレイテッド System and method for forming a microstructure by imaging a radiation sensitive layer sandwiched between outer layers and the microstructure formed thereby
KR101192624B1 (en) * 2003-09-11 2012-10-18 브라이트 뷰 테크놀로지즈 코포레이션 Systems and methods for fabricating microstructures by imaging a radiation sensitive layer sandwiched between outer layers, and microstructures fabricated thereby

Similar Documents

Publication Publication Date Title
Harinarayana et al. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: A comprehensive review
Maruo et al. Recent progress in multiphoton microfabrication
Lu et al. Micro and nano-fabrication of biodegradable polymers for drug delivery
DE60310460T2 (en) Process and its mask for pattern production in a polymer layer
Lipomi et al. 7.11: soft lithographic approaches to nanofabrication
Lee et al. Pattern‐Transfer Fidelity in Soft Lithography: The Role of Pattern Density and Aspect Ratio
Berkowski et al. Introduction to photolithography: Preparation of microscale polymer silhouettes
Maruo et al. Fabrication of freely movable microstructures by using two-photon three-dimensional microfabrication
DE102009000642A1 (en) Process for producing microstructured components by means of photolithography
Li Microfabrication techniques for producing freestanding multi-dimensional microstructures
Guo et al. Using Laser Microfabrication to Write Conductive Polymer/SWNTs Nanocomposites.
Launay et al. Photothermal activation in the near infrared range for 4-dimensional printing using relevant organic dyes
Jaiswal et al. Additive manufacturing of highly fluorescent organic 3D-metastructures at sub-wavelength resolution
KR20050019557A (en) nano imprinting method and the polymerizable composite
JP4071022B2 (en) Manufacturing method of microfabricated mold and manufacturing method of compact having fine pattern
JP2003200433A (en) Method for manufacturing fine processing mold and organic coloring matter dispersed substrate sheet used therein
JP2007326296A (en) Pattern forming method
DE102010043059A1 (en) Imprint template, nanoimprint device and nanostructuring method
JP2006264288A (en) Manufacturing method of needle-like article
CN212422369U (en) Structural color anti-counterfeiting film based on micro-lens array
JP2001310331A (en) Manufacturing method for minutely working mold
Tian et al. A laser fabrication of magnetic micromachines by using optimized photosensitive ferrofluids
Hsieh et al. A soft photo-mask with embedded carbon black and its application in contact photolithography
Choi et al. Direct imprint of conductive silver patterns using nanosilver particles and UV curable resin
Wen et al. Innovative rapid replication of microlens arrays using electromagnetic force-assisted UV imprinting