JP2003197226A - Operating method of solid high polymer fuel cell - Google Patents

Operating method of solid high polymer fuel cell

Info

Publication number
JP2003197226A
JP2003197226A JP2001392994A JP2001392994A JP2003197226A JP 2003197226 A JP2003197226 A JP 2003197226A JP 2001392994 A JP2001392994 A JP 2001392994A JP 2001392994 A JP2001392994 A JP 2001392994A JP 2003197226 A JP2003197226 A JP 2003197226A
Authority
JP
Japan
Prior art keywords
fuel cell
ion exchange
operating
polymer electrolyte
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001392994A
Other languages
Japanese (ja)
Inventor
Hiroshi Takano
洋 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001392994A priority Critical patent/JP2003197226A/en
Publication of JP2003197226A publication Critical patent/JP2003197226A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain stable power generating over a long period of time with respect to a solid high polymer fuel cell equipped with a humidity controller of a film humidifying type. <P>SOLUTION: With respect to the fuel cell equipped with a humidity controller, in which humidify controlling devices 1, which are constituted by arranging the ion exchange films 5 on both sides of the cooling-water separator 3, and further on these external surfaces, arranging the hydrogen gas separators 2 and the air separators 4, are connected in parallel, the power generating operation is performed while always supervising the resistance of the ion exchange film 5 by a milli-ohmmeter 6, and if the resistance rises beyond a regulation value, it stops power generation and takes a step of regeneration of the ion exchange films 5. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、膜加湿方式の調
湿装置を備えた固体高分子型燃料電池の運転方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a polymer electrolyte fuel cell equipped with a membrane humidification type humidity controller.

【0002】[0002]

【従来の技術】固体高分子型燃料電池においては、電解
質膜が乾燥すると、イオン伝導度が低下するとともに電
解質膜と電極との接合不良を起し、電池出力の急激な低
下が生じる。また、一度乾燥すると、電解質膜を湿潤状
態に戻しても、電解質膜と電極との接合不良は改善され
ず、電池出力は低下したままとなる。したがって、固体
高分子型燃料電池においては、電解質膜を常時一定の湿
潤状態に保持する必要がある。
2. Description of the Related Art In a polymer electrolyte fuel cell, when the electrolyte membrane is dried, the ionic conductivity is lowered and the electrolyte membrane and the electrode are not joined properly, resulting in a sharp drop in the cell output. Further, once dried, even if the electrolyte membrane is returned to a wet state, the defective joint between the electrolyte membrane and the electrode is not improved, and the battery output remains reduced. Therefore, in the polymer electrolyte fuel cell, it is necessary to always keep the electrolyte membrane in a constant wet state.

【0003】電解質膜を常時一定の湿潤状態に保持する
方法としては、燃料電池に流入する直前の反応ガスを、
透水性を有するイオン交換膜を介して水流路と隔てられ
たガス流路に通流させて湿潤に加湿、調湿し、この加
湿、調湿した原料ガスを燃料電池に供給することによっ
て電解質膜を湿潤に保持する方法が一般的に用いられて
いる。例えば、特開平9−35737号公報には、上記
のごとき方法(以下、膜加湿法と記述する)によってガ
スを加湿、調湿する複数の加湿ユニットからなる調湿装
置を、複数の単電池からなる燃料電池積層体に近接して
配置し、調湿装置で調湿したガスを反応ガスとして各単
電池に供給する方式の固体高分子型燃料電池が示されて
いる。
As a method of always keeping the electrolyte membrane in a constant wet state, the reaction gas immediately before flowing into the fuel cell is
The electrolyte membrane is made to flow through a gas passage separated from a water passage through an ion-exchange membrane having water permeability to moisturize and humidify, and the humidified and humidified raw material gas is supplied to a fuel cell. Is generally used. For example, Japanese Patent Application Laid-Open No. 9-35737 discloses a humidity control device including a plurality of humidification units for humidifying and controlling a gas by the above method (hereinafter, referred to as a film humidification method). The polymer electrolyte fuel cell of the type in which the gas conditioned by the humidity control device is supplied as a reaction gas to each unit cell is provided in the vicinity of the fuel cell stack.

【0004】[0004]

【発明が解決しようとする課題】上記のごとく、膜加湿
法を適用した調湿装置を組み込めば、固体高分子型燃料
電池の各単電池の電解質膜が湿潤に保持されるので、電
解質膜の乾燥化によるイオン伝導度の低下や、電解質膜
と電極との接合不良が防止され、固体高分子型燃料電池
は長時間の運転が可能となる。
As described above, when the humidity control apparatus to which the membrane humidification method is applied is incorporated, the electrolyte membrane of each unit cell of the polymer electrolyte fuel cell is kept in a wet state. The decrease in ionic conductivity due to drying and the defective joint between the electrolyte membrane and the electrode are prevented, and the polymer electrolyte fuel cell can be operated for a long time.

【0005】しかしながら、このように調湿装置を組み
込んだ固体高分子型燃料電池においても、運転がさらに
長期にわたると、イオン交換膜に接する水流路に流れる
加湿水の中に含まれる金属イオンやガス流路に流れる反
応ガスに含まれる陽イオンによってイオン交換膜の水透
過性の低下が引き起こされるので、反応ガスの調湿が不
十分となり、電池特性が低下するという問題点がある。
However, even in the polymer electrolyte fuel cell incorporating such a humidity control device, when the operation is continued for a longer period of time, metal ions and gas contained in the humidification water flowing in the water flow path in contact with the ion exchange membrane are included. Since the cations contained in the reaction gas flowing in the flow channel cause a decrease in water permeability of the ion exchange membrane, there is a problem that the humidity of the reaction gas is insufficient and the battery characteristics are deteriorated.

【0006】本発明の目的は、上記の問題点を解決し、
長期の運転に伴うイオン交換膜の特性低下が未然に検知
され、適正な措置によって長期の安定した発電運転が維
持される固体高分子型燃料電池の運転方法を提供するこ
とにある。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a method for operating a polymer electrolyte fuel cell, in which deterioration of the characteristics of the ion exchange membrane due to long-term operation is detected in advance, and proper power generation operation is maintained for a long time by appropriate measures.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、燃料電池に供給前の反応ガス
を、イオン交換膜を介して水流路と隔てられたガス流路
に流通して調湿する膜加湿方式の調湿装置を備えた固体
高分子型燃料電池の運転方法において、 (1)上記の調湿装置に用いられているイオン交換膜の
抵抗値を常時測定し、この抵抗値が第1の規定値(例え
ば、初期抵抗値の 1.2 倍の抵抗値)以上となったと
き、燃料電池の運転を停止してイオン交換膜の再生措置
を講じ、この再生措置によって抵抗値が第2の規定値以
下となったとき、燃料電池の運転を再開することとす
る。
In order to achieve the above object, in the present invention, a reaction gas before being supplied to a fuel cell is circulated through a gas flow path separated from a water flow path through an ion exchange membrane. In a method of operating a polymer electrolyte fuel cell equipped with a membrane humidifying type humidity control device for controlling the humidity, (1) the resistance value of the ion exchange membrane used in the above humidity control device is constantly measured, When this resistance value exceeds the first specified value (for example, 1.2 times the initial resistance value), the fuel cell is stopped and the ion exchange membrane is regenerated. When the value becomes equal to or less than the second specified value, the operation of the fuel cell is restarted.

【0008】(2)上記の(1)の運転方法において、
上記の調湿装置を水流路とガス流路が共に直列に連結さ
れた複数の調湿器の連結体によって構成し、最上流に組
みこまれた調湿器のイオン交換膜の抵抗値を常時測定す
ることとする。 (3)また、上記の(1)または(2)の運転方法にお
いて、上記のイオン交換膜の再生措置を、水流路への酸
の通流により行うか、新品との交換により行うこととす
る。
(2) In the operating method of (1) above,
The humidity control device is configured by a connected body of a plurality of humidity control devices in which the water flow path and the gas flow path are connected in series, and the resistance value of the ion exchange membrane of the humidity control device incorporated in the uppermost stream is constantly maintained. It will be measured. (3) Also, in the operating method of (1) or (2) above, the above-mentioned regeneration treatment of the ion exchange membrane is carried out by flowing an acid into the water channel or by exchanging it with a new one. .

【0009】イオン交換膜の水透過性が低下するとイオ
ン交換膜の抵抗が増大する。したがって、イオン交換膜
の抵抗を測定すれば水透過性が評価でき、反応ガスの調
湿状態を知ることができる。したがって、上記の(1)
のように、イオン交換膜の抵抗値を常時測定し、この抵
抗値が第1の規定値以上となったとき、燃料電池の運転
を停止してイオン交換膜の再生措置、例えば上記の
(3)のごとき再生措置を講じ、この再生措置によって
抵抗値が第2の規定値以下となったとき、燃料電池の運
転を再開することとすれば、電池特性の低下が未然に防
止され、かつ、長期にわたり安定して運転できることと
なる。
When the water permeability of the ion exchange membrane decreases, the resistance of the ion exchange membrane increases. Therefore, the water permeability can be evaluated by measuring the resistance of the ion exchange membrane, and the humidity control state of the reaction gas can be known. Therefore, the above (1)
As described above, the resistance value of the ion exchange membrane is constantly measured, and when the resistance value becomes equal to or higher than the first specified value, the operation of the fuel cell is stopped to regenerate the ion exchange membrane, for example, (3) ), The fuel cell operation is restarted when the resistance value becomes equal to or lower than the second specified value by this regeneration measure, the deterioration of the cell characteristics is prevented, and It will be possible to operate stably over a long period of time.

【0010】また、水流路とガス流路が共に直列に連結
された複数の調湿器の連結体によって構成された調湿装
置においては、入口に位置する最上流部の調湿器のイオ
ン交換膜が反応ガスの加湿に最も寄与するので、その水
透過性の低下も最も速い。したがって、上記の(2)の
ごとくとすれば、この種の調湿装置を組み込んだ燃料電
池においても、効果的にイオン交換膜の性能低下が検知
され、電池特性の低下が未然に防止されて長期にわたり
安定して運転できることとなる。
Further, in the humidity control apparatus constituted by a connected body of a plurality of humidity control devices in which both the water flow path and the gas flow path are connected in series, the ion exchange of the most upstream humidity control device located at the inlet is performed. Since the membrane contributes most to the humidification of the reaction gas, its water permeability also drops the fastest. Therefore, according to the above (2), even in the fuel cell incorporating this type of humidity control device, the deterioration of the performance of the ion exchange membrane is effectively detected, and the deterioration of the cell characteristics is prevented in advance. It will be possible to operate stably over a long period of time.

【0011】[0011]

【発明の実施の形態】以下、本発明の固体高分子型燃料
電池の運転方法を、実施例を挙げて詳しく説明する。 <実施例1>図1は、本実施例の固体高分子型燃料電池
の運転方法を適用した燃料電池の調湿装置の基本構成を
示す模式図である。図に見られるように、本調湿装置
は、酸化剤ガスとしての空気、燃料ガスとしての水素ガ
ス、ならびに加湿水としての冷却水をいずれも並列に通
流させた3個の調湿器1より構成されている。また、3
個の調湿器1は、いずれも、冷却水が流れる冷却水セパ
レータ3の両面に2枚のイオン交換膜5を配し、さら
に、その外面の一方に水素ガスの流路を備えたカーボン
樹脂材料よりなる水素ガスセパレータ2を、外面のもう
一方に空気の流路を備えた同じくカーボン樹脂材料より
なる空気セパレータ4を配して構成されている。また、
3個の調湿器1のうち、図中の右側端部に配された調湿
器1には、水素ガスセパレータ2と空気セパレータ4と
の間の抵抗を測定するミリオームメータ6が組み込まれ
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for operating a polymer electrolyte fuel cell of the present invention will be described in detail with reference to Examples. <Example 1> FIG. 1 is a schematic diagram showing the basic structure of a fuel cell humidity control apparatus to which the method for operating a polymer electrolyte fuel cell of this example is applied. As shown in the figure, the humidity control apparatus includes three humidity control devices 1 in which air as an oxidant gas, hydrogen gas as a fuel gas, and cooling water as a humidifying water are all passed in parallel. It is composed of Also, 3
Each of the humidity control devices 1 has two ion exchange membranes 5 on both sides of a cooling water separator 3 through which cooling water flows, and a carbon resin having a hydrogen gas flow path on one of its outer surfaces. A hydrogen gas separator 2 made of a material is arranged, and an air separator 4 also made of a carbon resin material having an air flow path on the other outer surface is arranged. Also,
Of the three humidity control devices 1, the humidity control device 1 arranged at the right end portion in the drawing has a milliohm meter 6 for measuring the resistance between the hydrogen gas separator 2 and the air separator 4 incorporated therein. There is.

【0012】本調湿装置において、水素ガスセパレータ
に水素、空気セパレータに空気を流し、冷却水セパレー
タに冷却水を流すと、水素ガスセパレータ中の水素ガス
および空気セパレータ中の空気は、イオン交換膜5を透
過して滲入する冷却水によって加湿、調湿され、燃料電
池積層体へと送られる。これらの調湿された反応ガスが
通流することにより燃料電池の電解質膜は湿潤に保持さ
れ、所定の電池特性が得られることとなる。
In this humidity control apparatus, when hydrogen is passed through the hydrogen gas separator, air is passed through the air separator and cooling water is passed through the cooling water separator, the hydrogen gas in the hydrogen gas separator and the air in the air separator are ion exchange membranes. It is humidified and conditioned by the cooling water that permeates and infiltrates 5 and is sent to the fuel cell stack. The flow of the conditioned reaction gas allows the electrolyte membrane of the fuel cell to be kept wet, so that predetermined cell characteristics can be obtained.

【0013】本調湿装置を組み込んだ固体高分子型燃料
電池を、ミリオームメータ6によって水素ガスセパレー
タ2と空気セパレータ4との間の抵抗を常時監視しなが
ら運転した。初期抵抗値は 0.10 Ωm であったが、運転
開始後 10000時間経過した時点で、抵抗値は 20 %増加
して規定値の 0.12 Ωm に達したので、発電運転を停止
した。引き続いて冷却水セパレータ3の冷却水経路に1
M硫酸を通流して酸洗を行ったところ、30分経過した
時点で抵抗値が規定値の 0.105Ωm に低下したので、固
体高分子型燃料電池の運転を再開した。以降、ミリオー
ムメータ6により測定された抵抗値が規定値の 0.12 Ω
m に達すると、燃料電池の運転を停止して酸洗によるイ
オン交換膜5の再生を行い、抵抗値が規定値の 0.105Ω
m に低下すると、酸洗を停止して再び燃料電池の運転を
行う方法により発電運転を継続した。
The polymer electrolyte fuel cell incorporating this humidity control apparatus was operated while constantly monitoring the resistance between the hydrogen gas separator 2 and the air separator 4 by the milliohm meter 6. The initial resistance value was 0.10 Ωm, but at 10000 hours after the start of operation, the resistance value increased by 20% and reached the specified value of 0.12 Ωm, so the power generation operation was stopped. 1 in the cooling water path of the cooling water separator 3
When pickling was carried out by flowing M sulfuric acid, the resistance value dropped to the specified value of 0.105 Ωm after 30 minutes, so the operation of the polymer electrolyte fuel cell was restarted. After that, the resistance value measured by the milliohm meter 6 is 0.12 Ω which is the specified value.
When it reaches m, the operation of the fuel cell is stopped and the ion exchange membrane 5 is regenerated by pickling, and the resistance value is 0.105Ω which is the specified value.
When it decreased to m, the power generation operation was continued by the method of stopping the pickling and restarting the operation of the fuel cell.

【0014】図3は、本実施例の運転方法により運転し
た場合の電池寿命特性を、従来の運転方法、すなわちイ
オン交換膜5の再生措置を行わないで運転した場合の特
性と比較して示した特性図である。図において、太い点
線で示した特性Aが第1の実施例の運転方法を用いた場
合の特性であり、細い実線で示した特性Cが従来の運転
方法を用いた場合の特性である。従来の運転方法を用い
た場合には運転時間の経過とともに発生電圧が一定速度
で低下していたのに対して、本実施例の運転方法を用い
れば発生電圧の低下速度が緩くなり、所定の電圧以上で
の運転が長期にわたり可能となった。
FIG. 3 shows the battery life characteristics when operated by the operation method of the present embodiment, in comparison with the characteristics when operated by the conventional operation method, that is, when the ion exchange membrane 5 is not regenerated. FIG. In the figure, the characteristic A indicated by the thick dotted line is the characteristic when the operating method of the first embodiment is used, and the characteristic C indicated by the thin solid line is the characteristic when the conventional operating method is used. When the conventional operating method was used, the generated voltage decreased at a constant speed with the lapse of operating time, whereas when the operating method of the present example was used, the decreasing speed of the generated voltage slowed down, and Operation above the voltage has become possible for a long time.

【0015】<実施例2>図2は、第2の実施例の固体
高分子型燃料電池の運転方法を適用した燃料電池の調湿
装置の基本構成を示す模式図である。本実施例の運転方
法に用いられている調湿装置も、図1に示した第1の実
施例の運転方法に用いられた調湿装置と同様に、3個の
調湿器から構成されている。図1の調湿装置との相違点
は、反応ガスおよび加湿用の冷却水の流通方式にある。
すなわち、図1においては、酸化剤ガスとしての空気、
燃料ガスとしての水素ガス、ならびに加湿水としての冷
却水が、いずれも、3個の調湿器に並列に通流されてい
たのに対して、図2に示した第2の実施例の運転方法を
適用した調湿装置においっては、空気、水素ガス、冷却
水が、いずれも、これら3個の調湿器に直列に通流され
ている。また、イオン交換膜5の劣化をモニターするた
めのミリオームメータ6は、最も水透過性の低下の進行
が速い最上流に位置する調湿器に組み込まれている。
<Embodiment 2> FIG. 2 is a schematic diagram showing the basic construction of a fuel cell humidity control apparatus to which the method for operating a polymer electrolyte fuel cell of the second embodiment is applied. The humidity control apparatus used in the operation method of the present embodiment is also composed of three humidity control units, like the humidity control apparatus used in the operation method of the first embodiment shown in FIG. There is. The difference from the humidity control apparatus of FIG. 1 lies in the flow system of the reaction gas and the cooling water for humidification.
That is, in FIG. 1, air as an oxidant gas,
While the hydrogen gas as the fuel gas and the cooling water as the humidifying water were all passed through the three humidity controllers in parallel, the operation of the second embodiment shown in FIG. In the humidity control apparatus to which the method is applied, air, hydrogen gas, and cooling water are all passed in series through these three humidity control units. Further, the milliohm meter 6 for monitoring the deterioration of the ion exchange membrane 5 is incorporated in the humidity controller located at the uppermost stream where the decrease in water permeability is the fastest.

【0016】この調湿装置を組み込んだ固体高分子型燃
料電池を、ミリオームメータ6でイオン交換膜5の抵抗
変化を監視しながら運転した。初期抵抗値は 0.10 Ωm
であったが、運転開始後 5000 時間経過した時点で、抵
抗値は規定値の 0.12 Ωm (初期抵抗値の 1.2倍)に達
したので、発電運転を停止した。運転停止後、調湿装置
の最上流に位置する調湿器に組み込まれたイオン交換膜
5を未使用の新品と交換し、燃料電池の発電運転を再開
した。このように抵抗値が規定値の 0.12 Ωmに達する
度にイオン交換膜5を未使用の新品と交換する再生措置
を行って運転を継続したときの寿命特性は、図3に太い
実線で示した特性Bのごとくである。直列に連結された
調湿器のうちでイオン交換膜5の劣化速度の速い最上流
部の調湿器を監視しているので、並列連結された第1の
実施例に比べて早期に劣化が検知されるので、再生措置
の頻度は多くなるが、発生電圧の低下は一層小さく抑え
られ、長期に渡って、高電圧が安定して得られている。
A polymer electrolyte fuel cell incorporating this humidity control device was operated while monitoring the resistance change of the ion exchange membrane 5 with a milliohm meter 6. Initial resistance is 0.10 Ωm
However, the resistance value reached the specified value of 0.12 Ωm (1.2 times the initial resistance value) at 5000 hours after the start of operation, so the power generation operation was stopped. After the operation was stopped, the ion exchange membrane 5 incorporated in the humidity controller located on the most upstream side of the humidity controller was replaced with an unused new one, and the fuel cell power generation operation was restarted. In this way, the life characteristics when the operation is continued by carrying out the regenerating procedure of exchanging the ion exchange membrane 5 with an unused new product every time when the resistance value reaches the specified value of 0.12 Ωm, the thick solid line is shown in FIG. It is like the characteristic B. Among the humidity controllers connected in series, the most upstream humidity controller in which the deterioration rate of the ion exchange membrane 5 is high is monitored, so that the deterioration is earlier than in the parallel-connected first embodiment. Since this is detected, the frequency of regeneration measures increases, but the drop in generated voltage is suppressed to a much smaller level, and a high voltage is obtained stably over a long period of time.

【0017】[0017]

【発明の効果】上記のように、本発明においては、 (1)イオン交換膜を介して水流路と隔てられたガス流
路に燃料電池に供給前の反応ガスを流通して調湿する膜
加湿方式の調湿装置を備えた固体高分子型燃料電池を、
請求項1に記載のごとき運転方法を用いて運転すること
としたので、調湿装置に用いられているイオン交換膜の
劣化が早期に検知されて、再生措置、例えば、請求項3
あるいは4に記載のごとき再生措置が採られるので、長
期に渡り安定した電池特性が得られることとなった。
As described above, according to the present invention, (1) a membrane for controlling the humidity by circulating a reaction gas before being supplied to a fuel cell in a gas channel separated from a water channel via an ion exchange membrane. A polymer electrolyte fuel cell equipped with a humidifying humidifier
Since the operation is performed by using the operation method as described in claim 1, deterioration of the ion exchange membrane used in the humidity control device is detected early, and regeneration treatment, for example, claim 3, is performed.
Alternatively, since the regenerating measures as described in 4 are adopted, stable battery characteristics can be obtained for a long period of time.

【0018】(2)また、この調湿装置を備えた固体高
分子型燃料電池を、特に、請求項2に記載のごとき運転
方法を用いて運転することとすれば、イオン交換膜の劣
化がより一層早期に検知されるので、長期に渡り安定し
た電池特性が得られる運転方法として好適である。
(2) If the polymer electrolyte fuel cell provided with this humidity control device is operated by using the operating method as defined in claim 2, the ion exchange membrane is deteriorated. Since it is detected earlier, it is suitable as an operating method that can obtain stable battery characteristics for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の運転方法を適用した固体高分子
型燃料電池の調湿装置の基本構成を示す模式図
FIG. 1 is a schematic diagram showing the basic configuration of a humidity control apparatus for a polymer electrolyte fuel cell to which the operating method of the first embodiment is applied.

【図2】第2の実施例の運転方法を適用した固体高分子
型燃料電池の調湿装置の基本構成を示す模式図
FIG. 2 is a schematic diagram showing the basic configuration of a humidity control device for a polymer electrolyte fuel cell to which the operating method of the second embodiment is applied.

【図3】第1の実施例の運転方法および第2の実施例の
運転方法により運転した場合の電池寿命特性を、従来の
方法で運転した場合の特性と比較して示した特性図
FIG. 3 is a characteristic diagram showing the battery life characteristics when operated by the operation method of the first embodiment and the operation method of the second embodiment in comparison with the characteristics when operated by the conventional method.

【符号の説明】[Explanation of symbols]

1 調湿器 2 水素ガスセパレータ 3 冷却水セパレータ 4 空気セパレータ 5 イオン交換膜 6 ミリオームメータ 1 Humidifier 2 Hydrogen gas separator 3 Cooling water separator 4 air separator 5 ion exchange membrane 6 Milliohm meter

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】イオン交換膜を介して水流路と隔てられた
ガス流路に燃料電池に供給前の反応ガスを流通して調湿
する膜加湿方式の調湿装置を備えた固体高分子型燃料電
池の運転方法において、 前記調湿装置に用いられているイオン交換膜の抵抗値を
常時測定し、この抵抗値が第1の規定値以上となったと
き、燃料電池の運転を停止してイオン交換膜の再生措置
を講じ、この再生措置によって抵抗値が第2の規定値以
下となったとき、燃料電池の運転を再開することを特徴
とする固体高分子型燃料電池の運転方法。
1. A solid polymer type provided with a humidity control device of a membrane humidification system for controlling the humidity by flowing a reaction gas before being supplied to a fuel cell in a gas flow passage separated from a water flow passage through an ion exchange membrane. In the method of operating a fuel cell, the resistance value of the ion exchange membrane used in the humidity control apparatus is constantly measured, and when the resistance value is equal to or higher than a first specified value, the operation of the fuel cell is stopped. A method for operating a polymer electrolyte fuel cell, comprising: taking a regenerating measure for the ion exchange membrane, and restarting the operation of the fuel cell when the resistance value becomes equal to or lower than a second specified value by the regenerating measure.
【請求項2】請求項1に記載の固体高分子型燃料電池の
運転方法において、水流路とガス流路が共に直列に連結
された複数の調湿器の連結体によって前記調湿装置を構
成し、最上流に組みこまれた調湿器のイオン交換膜の抵
抗値を常時測定することを特徴とする固体高分子型燃料
電池の運転方法。
2. The method of operating a polymer electrolyte fuel cell according to claim 1, wherein the humidity control device is constituted by a connection body of a plurality of humidity control devices in which a water flow path and a gas flow path are both connected in series. The method for operating a polymer electrolyte fuel cell is characterized by constantly measuring the resistance value of the ion exchange membrane of the most upstream humidity controller.
【請求項3】請求項1、または2に記載の固体高分子型
燃料電池の運転方法において、前記のイオン交換膜の再
生措置が、水流路への酸の通流により行われることを特
徴とする固体高分子型燃料電池の運転方法。
3. The method for operating a polymer electrolyte fuel cell according to claim 1 or 2, wherein the ion exchange membrane is regenerated by flowing an acid into a water channel. Method of operating a polymer electrolyte fuel cell.
【請求項4】請求項1、または2に記載の固体高分子型
燃料電池の運転方法において、前記のイオン交換膜の再
生措置が、新品との交換により行われることを特徴とす
る固体高分子型燃料電池の運転方法。
4. The method for operating a polymer electrolyte fuel cell according to claim 1 or 2, wherein the ion exchange membrane is regenerated by replacing it with a new polymer. Type fuel cell operating method.
【請求項5】請求項1乃至4のいずれかに記載の固体高
分子型燃料電池の運転方法において、前記の抵抗値の第
1の規定値が、初期抵抗値の 1.2 倍の抵抗値であるこ
とを特徴とする固体高分子型燃料電池の運転方法。
5. The method for operating a polymer electrolyte fuel cell according to claim 1, wherein the first prescribed value of the resistance value is 1.2 times the initial resistance value. A method for operating a polymer electrolyte fuel cell, comprising:
JP2001392994A 2001-12-26 2001-12-26 Operating method of solid high polymer fuel cell Pending JP2003197226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001392994A JP2003197226A (en) 2001-12-26 2001-12-26 Operating method of solid high polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001392994A JP2003197226A (en) 2001-12-26 2001-12-26 Operating method of solid high polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2003197226A true JP2003197226A (en) 2003-07-11

Family

ID=27600096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001392994A Pending JP2003197226A (en) 2001-12-26 2001-12-26 Operating method of solid high polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2003197226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068902A (en) * 2007-09-11 2009-04-02 Yokogawa Electric Corp Impedance measuring method and impedance measuring device of fuel cell
JP2013044032A (en) * 2011-08-25 2013-03-04 Sharp Corp Power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068902A (en) * 2007-09-11 2009-04-02 Yokogawa Electric Corp Impedance measuring method and impedance measuring device of fuel cell
JP2013044032A (en) * 2011-08-25 2013-03-04 Sharp Corp Power generation system

Similar Documents

Publication Publication Date Title
JP3098510B2 (en) System and method for detecting and correcting fuel cell overflow conditions
JP7110913B2 (en) fuel cell system
JP5324756B2 (en) Multi-pressure controlled control to minimize RH excursion during transients
JP2009087954A (en) Fuel cell system
JP2004111196A (en) Operation method of fuel cell system
JP2004199988A (en) Fuel cell system
JP2008257947A (en) Mobile unit
JP2004165058A (en) Control device of fuel cell system
JP2001216989A (en) Humidifying system for fuel cell
JP2005302304A (en) Fuel cell system
JP6133365B2 (en) Operation method of fuel cell system
US20110076581A1 (en) Stack operation method aimed at cell reversal prevention
JP2005268086A (en) Solid polymer type fuel cell system
CN107346827A (en) Anode overflow is actively remedied
JP2008147178A (en) Polymer electrolyte fuel cell power generation system
JP5256586B2 (en) Fuel cell system
JP2007242449A (en) Fuel cell system
JP4542911B2 (en) Scavenging treatment apparatus and scavenging treatment method for fuel cell system
US20100190076A1 (en) Two stage, hfr-free freeze preparation shutdown strategy
JP2005093111A (en) Control unit of fuel cell system
US8927165B2 (en) Stack cathode inlet RH (relative humidity) control without RH sensing device feedback
JP2003197226A (en) Operating method of solid high polymer fuel cell
US11870111B2 (en) Water electrolysis and electricity generating system
JP2002313394A (en) Gas feeder of fuel cell
JP2005141940A (en) Fuel cell system