JP2003194984A - Repair method for reactor structure - Google Patents

Repair method for reactor structure

Info

Publication number
JP2003194984A
JP2003194984A JP2001396199A JP2001396199A JP2003194984A JP 2003194984 A JP2003194984 A JP 2003194984A JP 2001396199 A JP2001396199 A JP 2001396199A JP 2001396199 A JP2001396199 A JP 2001396199A JP 2003194984 A JP2003194984 A JP 2003194984A
Authority
JP
Japan
Prior art keywords
welding
welded
reactor structure
repairing
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001396199A
Other languages
Japanese (ja)
Inventor
Shohei Kawano
昌平 川野
Hidenori Takahashi
英則 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001396199A priority Critical patent/JP2003194984A/en
Publication of JP2003194984A publication Critical patent/JP2003194984A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To perform repair-welding without requiring preprocess of welding for welded material in reactor structures irradiated by neutron and prevent weld cracking. <P>SOLUTION: The vicinity of crack type defect 10 caused on a welded material 9 of reactor structure irradiated by neutron is cut (a), a new welding material 12 is provided to the cut surface (a) and contact surfaces are welded with a laser welder 13. During the welding, annular heat radiation jigs 11 are arranged to each of welding member 9 and a new member 11. By arranging the heat radiation jigs 11 to the welding members 9 and 12, the weld part is quickly cooled after welding, and growth of helium bubbles in grain boundary is suppressed and generation of weld cracking is prevented. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、軽水冷却型原子炉
等の原子炉構造物の健全性を確保する中性子照射を受け
た原子炉構造物の補修方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of repairing a neutron-irradiated nuclear reactor structure for ensuring the integrity of a nuclear reactor structure such as a light water cooled reactor.

【0002】[0002]

【従来の技術】沸騰水型原子炉の内部構造を図7により
概略的に説明する。図7は沸騰水型原子炉の内部構造を
概略的に示したもので、図7中、符号1は炉心で、この
炉心1を内蔵する原子炉圧力容器2内には原子炉構造物
として炉心1を包囲する炉心シュラウド3が設置されて
いる。また、炉心1の上下部には炉心支持板4および上
部格子板5が設けられ、炉心シュラウド3と原子炉圧力
容器2との間にジェットポンプ6、ディフューザ7、シ
ュラウドサポートプレート8等の炉内構造物が設置され
ている。
2. Description of the Related Art The internal structure of a boiling water reactor will be schematically described with reference to FIG. FIG. 7 schematically shows the internal structure of a boiling water reactor. In FIG. 7, reference numeral 1 is a core, and a reactor pressure vessel 2 containing the core 1 has a core as a reactor structure. A core shroud 3 surrounding 1 is installed. Further, a core support plate 4 and an upper lattice plate 5 are provided above and below the core 1, and a jet pump 6, a diffuser 7, a shroud support plate 8 and the like are provided between the core shroud 3 and the reactor pressure vessel 2. The structure is installed.

【0003】これらの炉内構造物のうち、炉心シュラウ
ド3、炉心支持板4、上部格子板5、ジェットポンプ6
等はほとんどがステンレス鋼により構成されており、そ
の他のディフューザ7、シュラウドサポートプレート8
等においてはNi基合金が使用されている。
Among these internal structures, a core shroud 3, a core support plate 4, an upper lattice plate 5, a jet pump 6
Etc. are mostly made of stainless steel. Other diffusers 7, shroud support plates 8
Etc., a Ni-based alloy is used.

【0004】また、原子炉圧力容器2は低合金鋼により
構成されており、原子炉圧力容器2内面には、ステンレ
ス鋼またはNi基合金がバタリング溶接されている。一
部の軽水型原子力発電所では、原子炉構造物を構成する
ステンレス鋼として炭素含有量の多いオーステナイト系
ステンレス鋼が使用されている。
The reactor pressure vessel 2 is made of low alloy steel, and the inner surface of the reactor pressure vessel 2 is buttered with stainless steel or Ni-based alloy. In some light water nuclear power plants, austenitic stainless steel having a high carbon content is used as the stainless steel forming the reactor structure.

【0005】原子炉の建設時において、炭素含有量の多
いオーステナイト系ステンレス鋼を溶接した場合には、
その熱影響部にクロム炭化物の粒界析出が生じて材料が
鋭敏化するため、材料中に高い引張応力が存在すると高
温水中で応力腐食割れが生じる可能性がある。また、N
i基合金についてもステンレス鋼と同様の原理により応
力腐食割れを生じ得ることが知られている。
When austenitic stainless steel having a high carbon content is welded during the construction of a nuclear reactor,
Grain boundary precipitation of chromium carbide occurs in the heat-affected zone to sensitize the material. Therefore, if high tensile stress is present in the material, stress corrosion cracking may occur in high temperature water. Also, N
It is known that the i-based alloy can also cause stress corrosion cracking according to the same principle as stainless steel.

【0006】一方、炉心シュラウド3、炉心支持板5、
上部格子板6等の原子炉構造物や原子炉圧力容器2は原
子力発電所の稼働中に中性子照射を受ける。このため、
原子炉構造物材料には、延性の低下や照射誘起応力腐食
割れの感受性増加といった材質の劣化が生じる。また、
中性子照射により、原子炉構造物を形成するステンレス
鋼やNi基合金等の構成元素の核反応が生じ、ヘリウム
等の気体成分が材料中にわずかに存在するようになる。
On the other hand, the core shroud 3, the core support plate 5,
The reactor structure such as the upper lattice plate 6 and the reactor pressure vessel 2 receive neutron irradiation during the operation of the nuclear power plant. For this reason,
Deterioration of the material of the reactor structure, such as a decrease in ductility and an increase in susceptibility to irradiation-induced stress corrosion cracking, occurs. Also,
The neutron irradiation causes a nuclear reaction of constituent elements such as stainless steel and Ni-based alloy forming the reactor structure, and gas components such as helium slightly exist in the material.

【0007】上述の材料中の気体成分は、溶接時の加熱
により溶融金属近傍の結晶粒界に凝集して気泡を形成
し、隣接する気泡同士がほぼ接触するまで成長すること
により、結晶粒界に沿った割れの原因となることが知ら
れている。
The gas component in the above-mentioned material is agglomerated at the grain boundaries in the vicinity of the molten metal by heating during welding to form bubbles, and the bubbles grow until almost adjacent bubbles come into contact with each other. It is known to cause cracks along the.

【0008】したがって、原子力発電所の安全性や信頼
性を向上させる目的で、中性子照射を受けた原子炉構造
物等を補修溶接する際には、溶接により生じるヘリウム
気泡によって引き起こされる溶接割れの発生、ならびに
溶接継手強度の低下を回避する工法を適用する必要があ
る。
[0008] Therefore, when repair welding is performed on a nuclear reactor structure or the like that has undergone neutron irradiation for the purpose of improving the safety and reliability of a nuclear power plant, the occurrence of welding cracks caused by helium bubbles generated by welding. In addition, it is necessary to apply a construction method that avoids a decrease in the strength of the welded joint.

【0009】中性子照射を受けた原子炉構造物の溶接割
れを防止する補修溶接方法としては、例えば溶接入熱量
の低減により、ヘリウム気泡の成長を抑制し、溶接割れ
を防止する概念が、W.R.Kanne,Jr. et al.:Welding Jou
rnal, 67 (1988) p33.等に掲載されている。
As a repair welding method for preventing welding cracks in a nuclear reactor structure that has been irradiated with neutrons, for example, the concept of suppressing the growth of helium bubbles by reducing the amount of welding heat input and preventing welding cracks is described in WRKanne, Jr. et al .: Welding Jou
rnal, 67 (1988) p33.

【0010】また、例えば特開平6-234070号公報、特開
平8-254595号公報、特開平8-29580号公報、特開平6-289
183号公報、特開平8-15481号公報、特開平6-289184号公
報、特開平8-1344号公報、特開平8-57637号公報、特開2
000-230996号公報には従来例が開示されている。
Further, for example, JP-A-6-234070, JP-A-8-254595, JP-A-8-29580, and JP-A-6-289.
No. 183, JP 8-15481 JP, JP 6-289184 JP, JP 8-1344 JP, JP 8-57637 JP, JP 2
A conventional example is disclosed in Japanese Patent Publication No. 000-230996.

【0011】すなわち、特開平6-234070号公報は、中性
子照射を受けて劣化したSUS304鋼製炉内構造物の全体あ
るいは所定部分を、融点を超えない指定温度に加熱し、
冷却後、加熱領域を溶接することにより割れを回避する
補修方法である。
That is, Japanese Unexamined Patent Publication No. 6-234070 discloses heating the whole or a predetermined portion of a SUS304 steel furnace internal structure deteriorated by neutron irradiation to a designated temperature not exceeding the melting point,
After cooling, this is a repairing method that avoids cracks by welding the heating area.

【0012】特開平8-254595号公報は、不活性ガス原子
を含む照射材に前熱処理を施して、ガス原子がバブル化
するトラップサイト核を生成させた後、溶接することに
より割れを回避する補修方法である。
Japanese Unexamined Patent Publication (Kokai) No. 8-254595 discloses that irradiation material containing an inert gas atom is preheated to generate trap site nuclei in which gas atoms are bubbled and then welded to avoid cracking. It is a repair method.

【0013】特開平8-29580号公報は、中性子照射を受
けて劣化した金属材料を、溶接前に熱処理してヘリウム
等の不活性ガスを金属材料から放出させ、その後補修溶
接を行うことにより割れを回避する方法である。
Japanese Unexamined Patent Publication No. 8-29580 discloses that a metal material deteriorated by neutron irradiation is heat-treated before welding to release an inert gas such as helium from the metal material, and then cracked by repair welding. Is a way around.

【0014】特開平6-289183号公報は、0〜5.0×1027
n/m2 の中性子照射を受けたき裂状欠陥の発生している
構造物に対し、欠陥の発生している部分を含む領域に板
材を被覆し、板材の縁部をスミ肉溶接する補修方法にお
いて、板材を被覆する前に構造物側を表面溶融処理し、
その後に板材の縁部をスミ肉溶接することにより割れを
回避する補修方法である。
Japanese Unexamined Patent Publication No. 6-289183 discloses 0 to 5.0 × 10 27.
For a structure with a crack-like defect that has been irradiated with neutrons of n / m 2 , a plate material is covered in the area including the defect part, and the edge of the plate material is fillet-welded. In, in the surface of the structure side is melted before coating the plate,
After that, it is a repair method that avoids cracks by performing fillet welding on the edges of the plate material.

【0015】特開平8-15481号公報は、0〜5.0×1027 n
/m2 の高エネルギー粒子線照射を受けたき裂状欠陥の発
生している構造物に対し、き裂状欠陥の発生部分を含む
領域を除去した後、除去部表面に対し、点溶接を連続あ
るいは断続的に施し、各点溶接部をハーフラップさせて
初層溶接部を形成させた後、2層以降の溶接を行うこと
により割れを回避する補修方法である。
Japanese Unexamined Patent Publication No. 8-15481 discloses 0 to 5.0 × 10 27 n
After removing the region containing the crack-like defect occurrence part in the structure where the crack-like defect has been generated by irradiation with high energy particle beam of / m 2 , spot welding is continuously performed on the removed part surface. Alternatively, it is a repairing method in which cracking is avoided by intermittently performing half-wrapping of each spot weld to form a first layer weld and then performing welding of two or more layers.

【0016】特開平6-289184号公報は、中性子照射を受
けた原子炉内構造材料に対し、補修溶接部を取り囲む周
囲を大気温度または炉内構造物の温度より低い温度に予
め冷却させた後、もしくは冷却媒体で覆って冷却させ
て、溶接によって生じる引張残留応力を予冷によって生
じる圧縮歪の開放によって相殺させて、溶接による割れ
を回避する補修方法である。
Japanese Unexamined Patent Publication (Kokai) No. 6-289184 discloses a method of cooling a material surrounding a repair welding portion of a reactor internal structure material, which has been subjected to neutron irradiation, to an ambient temperature or a temperature lower than a temperature of the reactor internal structure. Alternatively, it is a repairing method in which a tensile residual stress caused by welding is offset by releasing the compressive strain caused by precooling by cooling by covering with a cooling medium to avoid cracking due to welding.

【0017】特開平8-1344号公報は、高エネルギー粒子
線照射を受けた欠陥の発生している原子炉内構造材に対
して、欠陥発生部に板材を被覆し、板材表面より局所的
に圧力を加えながら板材と構造材とを接合することによ
り割れを回避する補修方法である。
Japanese Unexamined Patent Publication No. 8-1344 discloses a reactor internal structural material that has been irradiated with high-energy particle beams and has a defect. This is a repair method for avoiding cracks by joining the plate material and the structural material while applying pressure.

【0018】特開平8-57637号公報は、中性子照射を受
けた部材に対して、溶接予定部近傍に降伏点以上の応力
を加えて転位を増加させた後さらに加熱処理を行い、そ
の後に溶接することにより割れを回避する補修方法であ
る。
Japanese Unexamined Patent Publication (Kokai) No. 8-57637 discloses that a member that has been irradiated with neutrons is subjected to heat treatment after applying stress above the yield point to increase dislocations in the vicinity of a portion to be welded and then performing heat treatment. This is a repair method that avoids cracking by doing.

【0019】特開2000-230996号公報は、原子炉構造物
のヘリウム含有量に応じて、溶接入熱量と溶接金属の断
面形状とをそれぞれ特定の範囲に制御して溶接すること
により割れを回避する補修方法である。
Japanese Unexamined Patent Publication No. 2000-230996 discloses cracking by controlling the welding heat input and the cross-sectional shape of the weld metal within specific ranges according to the helium content of the reactor structure and avoiding cracking. It is a repair method.

【0020】[0020]

【発明が解決しようとする課題】上記公知例のうち、特
開平6-234070号公報や特開平8-254595号公報、特開平8-
29580号公報、特開平6-289183号公報は、溶接補修前に
溶接部を加熱したり溶融処理する必要があるため、補修
溶接のみを行う場合に比べて膨大な作業時間がかかると
ともに、加熱処理や溶融処理を行うための施工装置が別
途必要となる。
Among the above-mentioned known examples, JP-A-6-234070, JP-A-8-254595, and JP-A-8-254595
In JP-A-29580 and JP-A-6-289183, since it is necessary to heat or melt the weld before repairing the weld, it takes an enormous amount of work time as compared with the case where only repair welding is performed, and the heat treatment is performed. A separate construction device is required to perform the melting process.

【0021】特開平8-15481号公報の方法は、除去部を
肉盛溶接で充填する前に、除去表面全体を点溶接する必
要があるため、特開平6-289183号と同様に膨大な作業時
間がかかるとともに、点溶接を行うための施工装置が別
途必要となる。
In the method disclosed in Japanese Patent Laid-Open No. 8-15481, it is necessary to perform spot welding on the entire removed surface before filling the removed portion by overlay welding. It takes time and requires a separate construction device for spot welding.

【0022】特開平6-289184号公報の方法は、補修溶接
部を取り囲む周囲を大気温度または炉内構造物の温度よ
り低い温度に予め冷却させる方法であり、ドライアイス
等の冷却媒体や冷却用設備が別途必要となる。
The method disclosed in Japanese Patent Laid-Open No. 6-289184 is a method of preliminarily cooling the surrounding area of the repaired welded portion to a temperature lower than the atmospheric temperature or the temperature of the internal structure of the furnace. Equipment is required separately.

【0023】特開平8-1344号公報の方法は、施工部を被
覆する板材に圧力を加える装置が別途必要となる。特開
平8-57637号公報の方法は、溶接予定部近傍に応力付加
して転位を増殖させ、さらに加熱処理を行う必要がある
ため、膨大な作業時間がかかるとともに、圧力付加装置
及び加熱装置が別途必要となる。
The method disclosed in Japanese Patent Laid-Open No. 8-1344 requires a separate device for applying a pressure to the plate material covering the working portion. The method disclosed in Japanese Patent Laid-Open No. 8-57637 requires a huge amount of work time because a stress is added to the vicinity of the planned welding portion to propagate dislocations, and further heat treatment is required. It is required separately.

【0024】特開2000-230996号公報の方法は、原子炉
構造物のヘリウム含有量に応じて、溶接入熱量と溶接金
属の断面形状とをそれぞれ特定の範囲に制御して溶接す
ることにより溶接割れの発生を抑制できるため有効な方
法である。しかしながら、ヘリウム含有量の大きい材料
に対しては溶接入熱量と溶接金属の断面形状とをある程
度低減する必要があり、施工条件が限定される場合があ
りうる。
The method disclosed in Japanese Unexamined Patent Publication No. 2000-230996 is performed by controlling the welding heat input amount and the cross-sectional shape of the weld metal within specific ranges in accordance with the helium content of the reactor structure to perform welding. This is an effective method because it can suppress the occurrence of cracks. However, for a material having a large helium content, it is necessary to reduce the welding heat input amount and the cross-sectional shape of the weld metal to some extent, and the construction conditions may be limited.

【0025】本発明は上記課題を解決するためになされ
たもので、中性子照射を受けた原子炉構造物に対して補
修溶接を行うことができ、原子炉の長寿命化や予防保全
を図り、しかも原子炉の信頼性が向上する原子力発電所
における原子炉構造物の補修方法を提供することを目的
とする。
The present invention has been made to solve the above-mentioned problems, and repair welding can be performed on a nuclear reactor structure that has been irradiated with neutrons, and the life of the nuclear reactor can be extended and preventive maintenance can be achieved. Moreover, it is an object of the present invention to provide a method for repairing a nuclear reactor structure in a nuclear power plant that improves the reliability of the nuclear reactor.

【0026】[0026]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、中性子照射を受けてヘリウムを
含有するステンレス鋼、Ni基合金または低合金鋼から
なる原子炉構造物の被溶接部材に対し、き裂状欠陥が発
生している部分または前記中性子照射により前記被溶接
部材の材質が劣化した部分を含む領域を削除した後、そ
の削除箇所に新たな被溶接部材を接触させて設け、前記
接触させた各々の被溶接部材に放熱ジグを配置して溶接
することを特徴とする。
In order to achieve the above-mentioned object, the invention of claim 1 is to cover a nuclear reactor structure made of stainless steel, Ni-base alloy or low alloy steel containing helium by neutron irradiation. For the welded member, after deleting a region including a portion where a crack-like defect has occurred or a portion where the material of the welded member has deteriorated due to the neutron irradiation, a new welded member is brought into contact with the deleted portion. The heat dissipating jig is disposed on each of the contacted members to be welded, and welding is performed.

【0027】この発明によれば、放熱ジグを被溶接部に
配置することにより、溶接直後に溶接部が急速に冷却さ
れるため、粒界ヘリウム気泡の成長が非常に抑制され、
溶接割れの発生を防止できる。
According to the present invention, by disposing the heat radiation jig in the welded portion, the welded portion is rapidly cooled immediately after welding, so that the growth of the grain boundary helium bubbles is greatly suppressed,
The occurrence of welding cracks can be prevented.

【0028】請求項2の発明は、中性子照射を受けてヘ
リウムを含有するステンレス鋼、Ni基合金または低合
金鋼からなる原子炉構造物の被溶接部材に対し、き裂状
欠陥が発生している部分、または中性子照射により材質
が劣化した部分を含む領域の両側に放熱ジグを配置し、
溶接により溶融層を形成して前記き裂状欠陥を除去する
か、または前記溶融層で被覆することを特徴とする。こ
の発明によれば、溶接割れを抑制することができる。
According to the second aspect of the present invention, crack-like defects are generated in the welded member of the reactor structure made of helium-containing stainless steel, Ni-base alloy or low alloy steel, which is irradiated with neutrons. Place heat radiating jigs on both sides of the area where the material is deteriorated by neutron irradiation.
It is characterized in that a molten layer is formed by welding to remove the crack-like defects, or the molten layer is coated with the molten layer. According to this invention, weld cracking can be suppressed.

【0029】請求項3の発明は、前記溶融層の代わりに
肉盛溶接を施すことを特徴とする。この発明によれば、
請求項2の発明よりさらに溶接割れを抑制することがで
きる。
The invention of claim 3 is characterized in that overlay welding is applied instead of the molten layer. According to this invention,
Weld cracks can be further suppressed as compared with the invention of claim 2.

【0030】請求項4の発明は、中性子照射を受けてヘ
リウムを含有するステンレス鋼、Ni基合金または低合
金鋼からなる原子炉構造物の被溶接部材に対し、き裂状
欠陥が発生している部分、または中性子照射により材質
が劣化した部分を含む領域を切削または放電加工で除去
した後、前記溶接部材に放熱ジグを配置し、前記除去部
分を肉盛溶接して充填することを特徴とする。この発明
によれば、溶接割れをさらに防止することができる。
According to a fourth aspect of the present invention, a crack-like defect occurs in a welded member of a reactor structure made of stainless steel containing Ni, helium, a Ni-base alloy or a low-alloy steel by neutron irradiation. Part, or after removing a region including a part where the material is deteriorated by neutron irradiation by cutting or electrical discharge machining, a heat dissipation jig is arranged on the welding member, and the removed part is welded by overlay welding and filled. To do. According to the present invention, weld cracking can be further prevented.

【0031】請求項5の発明は、中性子照射を受けてヘ
リウムを含有するステンレス鋼、Ni基合金または低合
金鋼からなる原子炉構造物の被溶接部材に対し、き裂状
欠陥が発生している部分、または中性子照射により材質
が劣化した部分を含む領域に板材を被覆し、前記被溶接
部材に放熱ジグを配置して前記板材の縁部を前記被溶接
部材に溶接することを特徴とする。この発明によれば、
溶接割れをさらに一層防止することができる。
In a fifth aspect of the present invention, crack-like defects are generated in a welded member of a reactor structure made of helium-containing stainless steel, Ni-base alloy or low-alloy steel under neutron irradiation. Characterized in that the plate material is coated on a region including a portion where the material is deteriorated by neutron irradiation, or a radiating jig is arranged on the member to be welded and the edge of the plate member is welded to the member to be welded. . According to this invention,
Weld cracks can be further prevented.

【0032】請求項6の発明は、請求項1ないし5にお
いて、前記放熱ジグの材質は銅、アルミニウムまたは鉄
から選択された少なくとも一種の金属または合金からな
ることを特徴とする。この発明によれば、放熱ジグの材
質に熱伝導性に優れる金属または合金を使用することに
より溶接熱を放散し易くなり溶接部を急速冷却できる。
The invention of claim 6 is characterized in that, in any one of claims 1 to 5, the material of the heat radiation jig is at least one metal or alloy selected from copper, aluminum or iron. According to the present invention, by using a metal or an alloy having excellent thermal conductivity as the material of the heat radiating jig, the welding heat can be easily dissipated and the welded portion can be rapidly cooled.

【0033】請求項7の発明は、請求項1ないし5にお
いて、放熱ジグに冷媒冷却機構を設けてなることを特徴
とする。この発明によれば、冷媒で冷却しながら溶接す
ることにより、溶接割れを抑制することができる。
The invention of claim 7 is characterized in that, in any one of claims 1 to 5, the heat dissipating jig is provided with a coolant cooling mechanism. According to the present invention, welding cracks can be suppressed by welding while cooling with a refrigerant.

【0034】請求項8の発明は、請求項1ないし5にお
いて、放熱ジグには冷却フィンを設けてなることを特徴
とする。この発明によれば、放熱ジグの冷却効果が向上
するため、溶接割れを抑制することができる。
An eighth aspect of the present invention is characterized in that, in the first to fifth aspects, the heat radiating jig is provided with a cooling fin. According to the present invention, the cooling effect of the heat radiating jig is improved, so that welding cracks can be suppressed.

【0035】請求項9の発明は、請求項1において、被
溶接部材同士に押し付け力を付加しながら溶接すること
を特徴とする。この発明によれば、押付力を付加する
と、溶接中のヘリウム気泡の成長が抑制され、溶接割れ
の発生を防止できる。
According to a ninth aspect of the present invention, in the first aspect, the members to be welded are welded while applying a pressing force. According to the present invention, when a pressing force is applied, the growth of helium bubbles during welding is suppressed, and the occurrence of welding cracks can be prevented.

【0036】請求項10の発明は、請求項1、6、8、
9いずれか記載の発明において、前記溶接はレーザ、T
IGアーク、MIGアーク、プラズマアーク、摩擦圧
接、通電加熱のいずれかを熱エネルギー源とすることを
特徴とする。この発明によれば、溶接方法としては簡単
で、容易に実施することができる。
The invention of claim 10 relates to claims 1, 6, 8 and
9. In the invention according to any one of 9 above, the welding is laser, T
One of IG arc, MIG arc, plasma arc, friction welding, and electric heating is used as the thermal energy source. According to the present invention, the welding method is simple and can be easily implemented.

【0037】[0037]

【発明の実施の形態】図1(a)〜(d)により本発明
に係る原子炉構造物の補修方法に係る第1の実施の形態
を説明する。本実施の形態は図1(a)に示すように中
性子照射を受けた原子炉構造物の被溶接部材9にき裂状
の欠陥10が発生している場合、欠陥10を含む領域を点線
aで示したように、切削または放電加工で削除する。次
に図1(b)、(c)に示すように図1(a)で削除し
た点線aの削除箇所に新たな溶接部材12を接触させて設
け、被溶接部材9と新たな被溶接部材12に各々環状放熱
ジグ11を配置するとともに、レーザ溶接機13を設置す
る。その後、図1(d)に示すように、被溶接部材9と
新たな被溶接部材12との接触面周囲をレーザ溶接機13に
より溶接して溶接金属層14を形成させる。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of a method for repairing a nuclear reactor structure according to the present invention will be described with reference to FIGS. In this embodiment, as shown in FIG. 1A, when a crack-like defect 10 is generated in a welded member 9 of a nuclear reactor structure that has been irradiated with neutrons, a region including the defect 10 is indicated by a dotted line a. Remove by cutting or EDM as shown in. Next, as shown in FIGS. 1 (b) and 1 (c), a new welding member 12 is provided in contact with the deleted portion of the dotted line a deleted in FIG. 1 (a), and the welding target member 9 and the new welding target member are provided. An annular heat radiating jig 11 is arranged in each of 12 and a laser welding machine 13 is installed. Then, as shown in FIG. 1D, the periphery of the contact surface between the member to be welded 9 and the new member to be welded 12 is welded by a laser welding machine 13 to form a weld metal layer 14.

【0038】このような図1(a)から図1(d)に示
した工程により原子炉構造物の補修箇所を放熱ジグ11を
設け、溶接して補修することができる。なお、被溶接部
材9としては管状体または無空棒等が使用できる。
Through the steps shown in FIGS. 1 (a) to 1 (d), the repair portion of the reactor structure can be repaired by providing a heat radiating jig 11 and welding. As the member 9 to be welded, a tubular body or an empty rod can be used.

【0039】ここで、放熱ジグ11を被溶接部材9,12に
配置する理由について説明する。供試材(被溶接部材)
としてヘリウムを含有するステンレス鋼を表1に示す条
件で溶接試験を行い、溶接部の断面金相観察により溶接
割れの有無を評価した。その結果、表2に示すように、
放熱ジグを配置しない場合には、溶接熱影響部に粒界に
沿った溶接割れの発生が観察された。一方、放熱ジグを
配置した場合には、溶接割れの発生が観察されず、健全
な溶接部の形成が確認された。
Here, the reason for disposing the heat radiation jig 11 on the members 9 and 12 to be welded will be described. Specimen (material to be welded)
As a result, a welding test was performed on stainless steel containing helium under the conditions shown in Table 1, and the presence or absence of weld cracks was evaluated by observing the cross-section metallurgical phase of the welded portion. As a result, as shown in Table 2,
When the heat radiating jig was not arranged, the occurrence of weld cracks along the grain boundaries was observed in the weld heat affected zone. On the other hand, when the heat radiating jig was arranged, the occurrence of welding cracks was not observed, and the formation of sound welds was confirmed.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】放熱ジグを被溶接部材に配置して溶接する
ことにより溶接割れが発生し難くなる理由は、溶接直後
に溶接部が急速に冷却されるため、粒界ヘリウム気泡の
成長が非常に抑制されるからである。
The reason why welding cracks are less likely to occur when a heat radiation jig is placed on a member to be welded and then welded is that the welded portion is rapidly cooled immediately after welding, so that the growth of grain boundary helium bubbles is extremely suppressed. Because it is done.

【0043】しかして、第1の実施の形態によれば、溶
接継手強度を満足する補修溶接が可能となり、溶接割れ
の発生を回避することができ、健全な溶接継手を得るこ
とができる。
Therefore, according to the first embodiment, repair welding satisfying the strength of the welded joint can be performed, the occurrence of weld cracks can be avoided, and a sound welded joint can be obtained.

【0044】なお、放熱ジグ11の材質は銅、アルミニウ
ムまたは鉄から選択された少なくとも一種の金属または
合金を用いることにより熱伝導性に優れ、溶接熱を放散
し易くなり、急速冷却できるので、効果的である。
By using at least one kind of metal or alloy selected from copper, aluminum or iron as the material of the heat radiating jig 11, the heat conductivity is excellent, the welding heat can be easily dissipated, and it can be rapidly cooled. Target.

【0045】つぎに、図2により本発明に係る原子炉構
造物の補修方法の第2の実施の形態を説明する。図2に
おいて、図1(b)と同一部分には同一符号を付して重
複する部分の説明は省略する。
Next, a second embodiment of the method for repairing a nuclear reactor structure according to the present invention will be described with reference to FIG. In FIG. 2, the same parts as those in FIG. 1B are designated by the same reference numerals and overlapping description will be omitted.

【0046】本実施の形態が第1の実施の形態と異なる
点は図2に示すように中性子照射を受けた原子炉構造物
の被溶接部材9および新たな被溶接部材12に配置する放
熱ジグ11に、冷媒冷却機構として水冷用チューブ15を設
けたことにあり、その他の部分は第1の実施の形態と同
様である。
This embodiment is different from the first embodiment in that as shown in FIG. 2, a heat radiating jig to be placed on a welded member 9 and a new welded member 12 of a nuclear reactor structure which has been irradiated with neutrons. In FIG. 11, a water cooling tube 15 is provided as a refrigerant cooling mechanism, and the other parts are the same as in the first embodiment.

【0047】本実施の形態によれば、冷媒冷却機構とし
ての水冷用チューブ15に冷却水を流し放熱ジグ11を冷却
しながらレーザ溶接機13で溶接する。水は冷却用チュー
ブ15を通して放熱ジグ11内を流通または循環する。これ
により、被溶接部材9、12が冷却されて溶接割れを抑制
することができる。
According to the present embodiment, the laser welding machine 13 welds while cooling water is flown through the water cooling tube 15 serving as the refrigerant cooling mechanism to cool the heat radiation jig 11. Water circulates or circulates in the heat dissipation jig 11 through the cooling tube 15. As a result, the members to be welded 9 and 12 are cooled and welding cracks can be suppressed.

【0048】つぎに図3により本発明に係る原子炉構造
物の補修方法の第3の実施の形態を説明する。本実施の
形態は第2の実施の形態において、水冷用チューブ15の
代りに冷却フィン16を放熱ジグ11に設けたことにある。
すなわち、冷却フィン16を備えた放熱ジグ11を、中性子
照射を受けた原子炉構造物の被溶接部材9および新たな
被溶接部材12に配置することにあり、その他の部分は第
1の実施の形態と同様である。本実施の形態によれば、
放熱ジグ11の冷却効果が向上するため、溶接割れを抑制
することが可能となる。
Next, a third embodiment of the method for repairing a nuclear reactor structure according to the present invention will be described with reference to FIG. In the present embodiment, in the second embodiment, a cooling fin 16 is provided in the heat radiating jig 11 instead of the water cooling tube 15.
That is, the heat radiation jig 11 provided with the cooling fins 16 is arranged in the welded member 9 and the new welded member 12 of the nuclear reactor structure that have been irradiated with neutrons, and the other portions are the same as those in the first embodiment. It is similar to the form. According to this embodiment,
Since the cooling effect of the heat radiation jig 11 is improved, it is possible to suppress welding cracks.

【0049】また、第2の実施の形態及び第3の実施の
形態において、中性子照射を受けた原子炉構造物の被溶
接部材9および新たな被溶接部材12に押付力を付加する
と、溶接中のヘリウム気泡の成長が抑制されるため、さ
らに溶接割れが発生し難くなり、溶接割れを防止でき
る。
In addition, in the second and third embodiments, when a pressing force is applied to the welded member 9 and the new welded member 12 of the nuclear reactor structure which have been irradiated with neutrons, the welding is performed during welding. Since the growth of helium bubbles is suppressed, welding cracks are less likely to occur, and welding cracks can be prevented.

【0050】図4(a)〜(c)により本発明に係る原
子炉構造物の補修方法の第4の実施の形態を説明する。
本実施の形態は、第1から第3の実施の形態とは異な
り、図1(a)に示した切断aと図1(b)、図2およ
び図3に示した新たな被溶接部材12を設けることなく、
図4(a)に示したように中性子照射を受けたき裂状欠
陥10を有する原子炉構造物の被溶接部材9に対して、図
4(b)に示したようにき裂状欠陥10から離れた両側に
放熱ジグ11を配置し、レーザ溶接機13を設置した後、図
4(c)に示したようにレーザ溶接機13でノンフィラー
溶接によりき裂状欠陥10を除去した後の溶接金属層14
に、溶融層17を形成する。
A fourth embodiment of a method for repairing a nuclear reactor structure according to the present invention will be described with reference to FIGS. 4 (a) to 4 (c).
This embodiment differs from the first to third embodiments in that the cutting a shown in FIG. 1A and the new welded member 12 shown in FIGS. 1B, 2 and 3 are obtained. Without
As shown in FIG. 4 (a), the welded member 9 of the nuclear reactor structure having the crack-like defect 10 that has been irradiated with neutrons has the same structure as that shown in FIG. 4 (b). Welding after disposing the heat radiating jigs 11 on both sides apart and installing the laser welder 13 and then removing the crack-like defects 10 by non-filler welding with the laser welder 13 as shown in FIG. 4 (c). Metal layer 14
Then, the molten layer 17 is formed.

【0051】本実施の形態によれば、き裂状欠陥10を中
心にしてその両側に放熱ジグ11を配置し、溶接によりき
裂状欠陥10を除去した溶接金属層14上に溶融層17を形成
して原子炉構造物を補修する。これにより溶接割れを抑
制することができる。なお、溶融層17の代わりに、例え
ば溶加棒を供給しながら被溶接部材9のき裂状欠陥10を
溶接し、肉盛溶接処理を行ってもよい。
According to the present embodiment, the heat radiating jigs 11 are arranged on both sides of the crack-like defect 10 as the center, and the molten layer 17 is formed on the weld metal layer 14 from which the crack-like defect 10 is removed by welding. Form and repair reactor structures. Thereby, weld cracking can be suppressed. In place of the molten layer 17, for example, a crack-like defect 10 of the member 9 to be welded may be welded while supplying a filler rod, and overlay welding processing may be performed.

【0052】図5(a)〜(c)により本発明に係る原
子炉構造物の補修方法の第5の実施の形態を説明する。
本実施の形態は図5(a)に示すように中性子照射を受
けたき裂状欠陥10を有する原子炉構造物の被溶接板状部
材9aに対して、き裂状欠陥10を取り囲むようにして点
線aで示すようにほぼ有底V字状の切断除去領域を定
め、点線aの領域を図5(b)で示すように切削または
放電加工で除去して被溶接板状部材9aに有底ほぼV字
状の開先18を形成する。この場合、被溶接板状部材9a
の上下面に板状放熱ジグ11a〜11cを配置する。その
後、図5(c)に示したように肉盛溶接により開先18に
溶接金属層14を形成させてき裂状欠陥10を補修する。本
実施の形態によれば、溶接前処理を必要とすることなく
補修溶接でき、溶接割れを防止できる。
A fifth embodiment of a method for repairing a nuclear reactor structure according to the present invention will be described with reference to FIGS.
In this embodiment, as shown in FIG. 5A, the crack-like defect 10 is surrounded by the welded plate-like member 9a of the nuclear reactor structure having the crack-like defect 10 that has been irradiated with neutrons. As shown by the dotted line a, a substantially bottomed V-shaped cutting removal region is defined, and the region of the dotted line a is removed by cutting or electric discharge machining as shown in FIG. A substantially V-shaped groove 18 is formed. In this case, the plate member 9a to be welded
The plate-shaped heat radiation jigs 11a to 11c are arranged on the upper and lower surfaces of the above. After that, as shown in FIG. 5C, a weld metal layer 14 is formed in the groove 18 by overlay welding to repair the crack-like defect 10. According to the present embodiment, repair welding can be performed without the need for welding pretreatment, and weld cracking can be prevented.

【0053】図6(a)〜(c)により本発明に係る原
子炉構造物の補修方法の第6の実施の形態を説明する。
本実施の形態は第5の実施の形態における開先18を形成
することなく、図6(a)に示した中性子照射を受けた
き裂状欠陥10を有する原子炉構造物の被溶接板状部材9
aに対して、図6(b)に示すように欠陥10の発生して
いる部分を含む領域に板材19を被覆するとともに、被溶
接板状部材9aの上下面に板状放熱ジグ11a〜11cを配
置する。その後、図6(c)に示したように、板材19の
縁部を被溶接板状部材9aに溶接して溶接金属層14を形
成する。
A sixth embodiment of the method for repairing a nuclear reactor structure according to the present invention will be described with reference to FIGS. 6 (a) to 6 (c).
The present embodiment does not form the groove 18 in the fifth embodiment, but the welded plate-like member of the reactor structure having the crack-like defect 10 which has been subjected to the neutron irradiation shown in FIG. 6A. 9
As shown in FIG. 6 (b), the plate material 19 is coated on the area including the portion where the defect 10 is generated, and the plate-shaped heat radiation jigs 11a to 11c are formed on the upper and lower surfaces of the plate-shaped member 9a to be welded. To place. Thereafter, as shown in FIG. 6C, the edge portion of the plate material 19 is welded to the plate-shaped member 9a to be welded to form the weld metal layer 14.

【0054】本実施の形態によれば、中性子照射を受け
た原子炉構造物の被溶接部材に対して前処理を必要とす
ることなく溶接して補修できる。上記各実施の形態にお
いて、溶接時の熱エネルギー源として、レーザ、TIG
アーク、MIGアーク、プラズマアーク、摩擦圧接、通
電加熱を使用することができる。
According to the present embodiment, the member to be welded of the nuclear reactor structure which has been irradiated with neutrons can be repaired by welding without requiring pretreatment. In each of the above embodiments, a laser, a TIG, etc. are used as the heat energy source during welding.
Arc, MIG arc, plasma arc, friction welding, electrical heating can be used.

【0055】上述した各々の実施の形態は沸騰水型原子
炉のみでなく加圧水型原子炉や液体金属冷却型原子炉、
核融合炉にも適用可能である。また、上述した各々の実
施の形態を適用することによって、原子炉の長寿命化や
予防保全用に有効であり、原子炉の信頼性を向上させる
ことができる。
The above-mentioned respective embodiments are not limited to boiling water reactors, but also pressurized water reactors and liquid metal cooling reactors,
It is also applicable to fusion reactors. Further, by applying each of the embodiments described above, it is effective for extending the life of the nuclear reactor and for preventive maintenance, and it is possible to improve the reliability of the nuclear reactor.

【0056】[0056]

【発明の効果】本発明によれば、中性子照射を受けた原
子炉構造物に対して、溶接前処理を必要とすることなく
溶接により補修でき、被溶接部材の溶接割れを防止でき
る。
According to the present invention, a nuclear reactor structure that has been irradiated with neutrons can be repaired by welding without the need for welding pretreatment, and welding cracks in the welded member can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原子炉構造物の補修方法の第1の
実施の形態を説明するための図で、(a)は補修前の状
態を示す側面図、(b)は補修時の状態を示す側面図、
(c)は(b)のA−A矢視断面図、(d)は補修後の
状態を示す側面図。
1A and 1B are views for explaining a first embodiment of a method for repairing a nuclear reactor structure according to the present invention, in which FIG. 1A is a side view showing a state before repair, and FIG. Side view showing the state,
(C) is a sectional view taken along the line A-A of (b), and (d) is a side view showing a state after repair.

【図2】本発明に係る原子炉構造物の第2の実施の形態
を説明するための側面図。
FIG. 2 is a side view for explaining a second embodiment of the nuclear reactor structure according to the present invention.

【図3】本発明に係る原子炉構造物の第3の実施の形態
を説明するための側面図。
FIG. 3 is a side view for explaining a third embodiment of a nuclear reactor structure according to the present invention.

【図4】本発明に係る原子炉構造物の補修方法の第4の
実施の形態を説明するための図で、(a)は補修前の状
態を示す側面図、(b)は補修時の状態を示す側面図、
(c)は補修後の状態を示す側面図。
4A and 4B are views for explaining a fourth embodiment of a method for repairing a nuclear reactor structure according to the present invention, FIG. 4A is a side view showing a state before repair, and FIG. Side view showing the state,
(C) is a side view showing a state after repair.

【図5】本発明に係る原子炉構造物の補修方法の第5の
実施の形態を説明するための図で、(a)は補修前の状
態を示す縦断面図、(b)は補修時の状態を一部側面で
示す縦断面図、(c)は補修後の状態を一部側面で示す
縦断面図。
5A and 5B are views for explaining a fifth embodiment of a method for repairing a nuclear reactor structure according to the present invention, in which FIG. 5A is a longitudinal sectional view showing a state before repair, and FIG. 2C is a vertical cross-sectional view showing a part of the state in FIG. 3C, and FIG.

【図6】本発明に係る原子炉構造物の補修方法の第6の
実施の形態を説明するための図で、(a)は補修前の状
態を示す縦断面図、(b)は補修時の状態を一部側面で
示す縦断面図、(c)は補修後の状態を一部側面で示す
縦断面図。
6A and 6B are views for explaining a sixth embodiment of a method for repairing a nuclear reactor structure according to the present invention, in which FIG. 6A is a longitudinal sectional view showing a state before repair, and FIG. 2C is a vertical cross-sectional view showing a part of the state in FIG. 3C, and FIG.

【図7】沸騰水型原子炉の構造を説明するための概略的
立面図。
FIG. 7 is a schematic elevational view for explaining the structure of a boiling water reactor.

【符号の説明】[Explanation of symbols]

1…炉心、2…原子炉圧力容器、3…炉心シュラウド、
4…炉心支持板、5…上部格子板、6…ジェットポン
プ、7…ディフーザ、8…シュラウドサポートプレー
ト、9…中性子照射を受けた原子炉構造物の被溶接部
材、9a…被溶接板状部材、10…き裂状の欠陥、11…放
熱ジグ、12…新たな被溶接部材、13…レーザ溶接機、14
…溶接金属層、15…水冷用チューブ、16…冷却フィン、
17…溶融層、18…開先、19…板材。
1 ... Reactor core, 2 ... Reactor pressure vessel, 3 ... Reactor shroud,
4 ... Core support plate, 5 ... Upper lattice plate, 6 ... Jet pump, 7 ... Diffuser, 8 ... Shroud support plate, 9 ... Welded member of nuclear reactor structure that has been irradiated with neutrons, 9a ... Plated member to be welded , 10 ... Crack-like defects, 11 ... Heat dissipation jig, 12 ... New welded member, 13 ... Laser welding machine, 14
… Weld metal layer, 15… Water cooling tube, 16… Cooling fin,
17 ... molten layer, 18 ... groove, 19 ... plate material.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 中性子照射を受けてヘリウムを含有する
ステンレス鋼、Ni基合金または低合金鋼からなる原子
炉構造物の被溶接部材に対し、き裂状欠陥が発生してい
る部分または前記中性子照射により前記被溶接部材の材
質が劣化した部分を含む領域を削除した後、その削除箇
所に新たな被溶接部材を接触させて設け、前記接触させ
た各々の被溶接部材に放熱ジグを配置して溶接すること
を特徴とする原子炉構造物の補修方法。
1. A portion in which a crack-like defect is generated in a welded member of a reactor structure made of stainless steel, Ni-base alloy or low alloy steel containing helium upon irradiation with neutrons or the neutrons. After deleting the region including the part where the material of the welded member has deteriorated by irradiation, a new welded member is provided in contact with the deleted location, and a heat dissipation jig is arranged on each of the contacted welded members. A method for repairing a nuclear reactor structure, which comprises welding by welding.
【請求項2】 中性子照射を受けてヘリウムを含有する
ステンレス鋼、Ni基合金または低合金鋼からなる原子
炉構造物の被溶接部材に対し、き裂状欠陥が発生してい
る部分、または中性子照射により材質が劣化した部分を
含む領域の両側に放熱ジグを配置し、溶接により溶融層
を形成して前記き裂状欠陥を除去するか、または前記溶
融層で被覆することを特徴とする原子炉構造物の補修方
法。
2. A portion in which a crack-like defect is generated in a welded member of a reactor structure made of stainless steel, Ni-base alloy or low alloy steel containing helium upon neutron irradiation, or neutrons. Atoms characterized by disposing heat radiating jigs on both sides of a region including a portion where the material is deteriorated by irradiation, and removing the crack-like defects by forming a molten layer by welding or coating with the molten layer. Method of repairing furnace structure.
【請求項3】 前記溶融層の代わりに肉盛溶接を施すこ
とを特徴とする請求項2記載の原子炉構造物の補修方
法。
3. The method for repairing a nuclear reactor structure according to claim 2, wherein overlay welding is applied instead of the molten layer.
【請求項4】 中性子照射を受けてヘリウムを含有する
ステンレス鋼、Ni基合金または低合金鋼からなる原子
炉構造物の被溶接部材に対し、き裂状欠陥が発生してい
る部分、または中性子照射により材質が劣化した部分を
含む領域を切削または放電加工で除去した後、前記被溶
接部材に放熱ジグを配置し、前記除去部分を肉盛溶接し
て充填することを特徴とする原子炉構造物の補修方法。
4. A portion in which a crack-like defect is generated in a welded member of a reactor structure made of stainless steel, Ni-base alloy or low alloy steel containing helium under neutron irradiation, or neutrons. A reactor structure characterized in that after a region including a portion whose material is deteriorated by irradiation is removed by cutting or electric discharge machining, a heat radiation jig is arranged on the member to be welded, and the removed portion is welded by overlay welding and filled. How to repair things.
【請求項5】 中性子照射を受けてヘリウムを含有する
ステンレス鋼、Ni基合金または低合金鋼からなる原子
炉構造物の被溶接部材に対し、き裂状欠陥が発生してい
る部分、または中性子照射により材質が劣化した部分を
含む領域に板材を被覆し、前記被溶接部材に放熱ジグを
配置して前記板材の縁部を前記被溶接部材に溶接するこ
とを特徴とする原子炉構造物の補修方法。
5. A portion in which a crack-like defect has occurred in a welded member of a reactor structure made of stainless steel, Ni-base alloy or low alloy steel containing helium upon neutron irradiation, or neutrons. A reactor structure characterized by covering a plate material in a region including a portion whose material is deteriorated by irradiation, arranging a heat radiation jig on the member to be welded, and welding an edge portion of the plate material to the member to be welded. Repair method.
【請求項6】 前記放熱ジグの材質は銅、アルミニウム
または鉄から選択された少なくとも一種の金属または合
金からなることを特徴とする請求項1ないし5のいずれ
かに記載の原子炉構造物の補修方法。
6. The repair of the nuclear reactor structure according to claim 1, wherein the material of the heat radiation jig is at least one metal or alloy selected from copper, aluminum or iron. Method.
【請求項7】 前記放熱ジグに冷媒冷却機構を設けてな
ることを特徴とする請求項1ないし5のいずれかに記載
の原子炉構造物の補修方法。
7. The method for repairing a nuclear reactor structure according to claim 1, wherein the heat dissipation jig is provided with a coolant cooling mechanism.
【請求項8】 前記放熱ジグに冷却フィンを設けてなる
ことを特徴とする請求項1ないし5のいずれかに記載の
原子炉構造物の補修方法。
8. The method for repairing a nuclear reactor structure according to claim 1, wherein the heat radiation jig is provided with a cooling fin.
【請求項9】 前記被溶接部材同士に押し付け力を付加
しながら溶接することを特徴とする請求項1記載の原子
炉構造物の補修方法。
9. The method for repairing a nuclear reactor structure according to claim 1, wherein the members to be welded are welded while applying a pressing force.
【請求項10】 前記溶接はレーザ、TIGアーク、M
IGアーク、プラズマアーク、摩擦圧接、通電加熱のい
ずれかを熱エネルギー源とすることを特徴とする請求項
1ないし5および9のいずれかに記載の原子炉構造物の
補修方法。
10. The welding is laser, TIG arc, M
The method for repairing a nuclear reactor structure according to any one of claims 1 to 5 and 9, wherein any one of IG arc, plasma arc, friction welding, and electric heating is used as a thermal energy source.
JP2001396199A 2001-12-27 2001-12-27 Repair method for reactor structure Withdrawn JP2003194984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001396199A JP2003194984A (en) 2001-12-27 2001-12-27 Repair method for reactor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001396199A JP2003194984A (en) 2001-12-27 2001-12-27 Repair method for reactor structure

Publications (1)

Publication Number Publication Date
JP2003194984A true JP2003194984A (en) 2003-07-09

Family

ID=27602359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001396199A Withdrawn JP2003194984A (en) 2001-12-27 2001-12-27 Repair method for reactor structure

Country Status (1)

Country Link
JP (1) JP2003194984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333741A (en) * 2006-06-16 2007-12-27 Areva Np Method of repairing bottom head penetration part of reactor vessel
CN106660171A (en) * 2014-08-08 2017-05-10 本田技研工业株式会社 Laser welding device and laser welding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333741A (en) * 2006-06-16 2007-12-27 Areva Np Method of repairing bottom head penetration part of reactor vessel
CN106660171A (en) * 2014-08-08 2017-05-10 本田技研工业株式会社 Laser welding device and laser welding method

Similar Documents

Publication Publication Date Title
JP6104408B2 (en) Method for forming a cladding layer of a superalloy material
KR101791113B1 (en) Deposition of superalloys using powdered flux and metal
US5688419A (en) Method for mitigating residual stresses in welded metal components using high torch travel speeds
Sanderson et al. Advanced welding processes for fusion reactor fabrication
Marazani et al. Repair of cracks in metals: A review
JP2016511697A (en) Selective laser melting / sintering using powdered flux
JP2006247673A (en) Method of welding procedure for pipe
Fu et al. Underwater laser welding for 304 stainless steel with filler wire
US5674419A (en) Method for weld repairing of structures in nuclear reactors
JP2011161459A (en) Method of welding material with high-corrosion resistance
Yurioka et al. Recent developments in repair welding technologies in Japan
JPH0775893A (en) Method for repairing structure and preventive maintenance method
Abass et al. Study of solidification behaviour and mechanical properties of arc stud welded AISI 316L stainless steel
JP2002361469A (en) Welding method
JP2003194984A (en) Repair method for reactor structure
JP4987453B2 (en) Lap laser welding joint of steel plates and lap laser welding method
JP2000254776A (en) Stress corrosion crack prevention method for atomic reactor-inside piping welded part
Sun et al. Narrow gap welding for thick titanium plates: a review
Sørensen et al. Double-sided Hybrid Laser-Arc Welding of 25 mm S690QL High Strength Steel
KR20100086221A (en) Method of electron beam welding for thick stainless steel plate
EP0756643B1 (en) Method for mitigating residual stresses in welded metal components using high torch travel speeds
JP2003066183A (en) Method for repairing nuclear reactor structures
JP2000230996A (en) Repair method for nuclear reactor structure
Ola A study of laser-arc hybrid weldability of nickel-base inconel 738 LC superalloy
Wallersteina et al. Developments in laser welding of aluminum alloys

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301