JP2003194523A - Length measuring apparatus - Google Patents

Length measuring apparatus

Info

Publication number
JP2003194523A
JP2003194523A JP2001390089A JP2001390089A JP2003194523A JP 2003194523 A JP2003194523 A JP 2003194523A JP 2001390089 A JP2001390089 A JP 2001390089A JP 2001390089 A JP2001390089 A JP 2001390089A JP 2003194523 A JP2003194523 A JP 2003194523A
Authority
JP
Japan
Prior art keywords
light
interference
measured
measurement
length measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001390089A
Other languages
Japanese (ja)
Other versions
JP3851160B2 (en
Inventor
Jun Ishikawa
純 石川
Morimasa Ueda
守正 上田
Yutaka Kuriyama
豊 栗山
Yuichiro Yokoyama
雄一郎 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitutoyo Corp
Priority to JP2001390089A priority Critical patent/JP3851160B2/en
Publication of JP2003194523A publication Critical patent/JP2003194523A/en
Application granted granted Critical
Publication of JP3851160B2 publication Critical patent/JP3851160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a length measuring apparatus that can easily measure the length of an object to be measured with high accuracy in a short time. <P>SOLUTION: This length measuring apparatus measures the distance between the facing end faces 128a and 128b of the object 128 to be measured having an already known preliminary value. This apparatus is provided with first and second interfering means 144 and 150 having optical axes matched to the length measuring axis of the object 128 and arranged with a prescribed separating distance in between, and first and second observing means 148 and 154 which can observe the phase difference between interference light rays formed by the interfering means 144 and 150. This apparatus simultaneously performs the observation of reference and measuring interference fringes by means of the first observing means 148 and the observation of the reference and measuring interference fringes by means of the second observing means 154, and finds the distance between the end faces 128a and 128b of the object 128 based on the phase differences between the interference fringes observed by means of the observing means 148 and 154 and the preliminary value between the end faces 128a and 128b. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は測長装置、特に非密
着光波干渉計を用いた測長装置の光学系構成部材の配置
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a length measuring device, and more particularly to an improvement in the arrangement of optical system components of a length measuring device using a non-contact optical wave interferometer.

【0002】[0002]

【従来の技術】従来より、例えばブロックゲージ等の端
度器は、長さの測定の基準として用いられる精度のよい
標準器であり、数個を互いに密着すると、例えば1〜1
0μm単位で任意の寸法を作りだすことができるので、
例えば工場用長さ標準器として広く用いられている。
2. Description of the Related Art Conventionally, end gauges such as block gauges are standard instruments with high accuracy used as a standard for measuring length, and when several pieces are closely attached to each other, for example, 1-1.
Since it is possible to create arbitrary dimensions in units of 0 μm,
For example, it is widely used as a length standard for factories.

【0003】このような精度のよいゲージの検査には、
より高い精度が要求され、例えば寸法を高分解能、非接
触で測定できることから、光波干渉計を用いた測長装置
が広く用いられている。これには干渉縞の位相(端数)
を高い精度に求めることが必要である。
For inspection of such a highly accurate gauge,
Higher precision is required, and for example, dimensions can be measured with high resolution and in a non-contact manner, and therefore, a length measuring device using a light wave interferometer is widely used. This is the phase of the fringes (fractional)
Must be obtained with high accuracy.

【0004】このために従来は、まずベースプレート面
にブロックゲージの一端面を密着、つまりリンギングす
る。これをマイケルソン干渉計の一方の光路中に挿入
し、前記ブロックゲージの他端及びベースプレート面で
反射した光をそれぞれ、参照光と重ね合わせて干渉さ
せ、各干渉縞を観測する。そして、各干渉縞の位相差
と、ブロックゲージの相対向する端面間の予備値から、
ブロックゲージの寸法を測定していた。
For this reason, conventionally, one end surface of the block gauge is first brought into close contact with the base plate surface, that is, ringing is performed. This is inserted into one optical path of the Michelson interferometer, and the light reflected by the other end of the block gauge and the surface of the base plate is superposed on the reference light to cause interference, and each interference fringe is observed. Then, from the phase difference of each interference fringe and the preliminary value between the opposite end faces of the block gauge,
I was measuring the dimensions of the block gauge.

【0005】しかしながら、このリンギングはバラツキ
があると、大きな誤差要因となり、リンギングをバラツ
キなく行うのは非常に熟練した技術が必要であり、非常
に面倒であった。このため、最近、このようなリンギン
グを用いることなく、測長が行える非密着光波干渉計を
用いた測長が注目されている(特開平8−271216
号等)。
However, if there is variation in this ringing, it causes a large error, and it is very troublesome to perform ringing without variation because it requires a highly skilled technique. For this reason, recently, attention has been paid to length measurement using a non-contact optical wave interferometer that can perform length measurement without using such ringing (Japanese Patent Application Laid-Open No. 8-271216).
Etc.).

【0006】一般的な非密着光波干渉計を用いた測長装
置を図1に示す。すなわち、同図に示す測長装置10
は、光源12からのレーザ光をレンズ14にて必要な大
きさにコリメートする。このレーザ光15はハーフミラ
ー16に向かい、ハーフミラー16で参照鏡18に向か
うレーザ光と環状の干渉計20に向かうレーザ光とに分
けられる。
FIG. 1 shows a length measuring apparatus using a general non-contact optical wave interferometer. That is, the length measuring device 10 shown in FIG.
Collimates the laser light from the light source 12 with the lens 14 to a required size. The laser light 15 is directed to the half mirror 16, and is divided by the half mirror 16 into laser light directed to the reference mirror 18 and laser light directed to the annular interferometer 20.

【0007】そして、環状干渉計20に向かったレーザ
光は、さらにハーフミラー22で2つに分けられる。こ
のレーザ光の一部は、反射ミラー24、第一シャッタ2
6を介してブロックゲージ28の一端で反射した後、行
きと同じ光路を戻る。あるいは反射ミラー30、第二シ
ャッタ32を介してブロックゲージ28の他端で反射し
た後、行きと同じ光路を戻る。
The laser light directed to the annular interferometer 20 is further divided into two by the half mirror 22. A part of this laser light is reflected by the reflection mirror 24 and the first shutter 2.
After being reflected at one end of the block gauge 28 via 6, the optical path returns to the same optical path as the outgoing direction. Alternatively, after the light is reflected by the other end of the block gauge 28 via the reflection mirror 30 and the second shutter 32, the same optical path as the going back is returned.

【0008】またブロックゲージ28の脇を通りぬけた
レーザ光は、再びハーフミラー16に戻る。ハーフミラ
ー16は、前述のような環状干渉計20からのレーザ光
と参照鏡18で反射してきたレーザ光とを重ね合わせて
干渉させ、その干渉光はスクリーン26で干渉縞として
観測される。
Further, the laser light passing through the side of the block gauge 28 returns to the half mirror 16 again. The half mirror 16 causes the laser light from the annular interferometer 20 and the laser light reflected by the reference mirror 18 to overlap and interfere with each other, and the interference light is observed as interference fringes on the screen 26.

【0009】そして、ブロックゲージの相対向する端面
間の予備値と、スクリーン26で観測された干渉縞の各
位相差(端数)に基づいて、ブロックゲージ28の寸法
を求める。ブロックゲージ28の相対向する端面間の寸
法Lは、下記の数式で表せる。
Then, the size of the block gauge 28 is obtained based on the preliminary value between the opposite end faces of the block gauge and each phase difference (fractional number) of the interference fringes observed on the screen 26. The dimension L B between the opposite end faces of the block gauge 28 can be expressed by the following mathematical formula.

【数2】 L=(1/2)(2L−L−L) =(λ/2){2N−N−N+(ε−ε)+(ε−ε)} ただし、L:ハーフミラー22−第一反射鏡24−ブ
ロックゲージ28一端の往復光路長 L:ハーフミラー22−第二反射鏡30−ブロックゲ
ージ28他端の往復光路長 L:ハーフミラー22−第一反射鏡24−ゲージ28
の脇−第二反射鏡30−ハーフミラー22の光路長 L:λ(N+ε) L:λ(N+ε) L:λ(N+ε) λ:レーザ光15の波長 N:前記光路長Lを前記可干渉光の波長λで割った
ときの商の自然数 ε:前記光路長Lを前記可干渉光の波長λで割った
ときの商の端数(位相)
L B = (1/2) (2L 3 −L 2 −L 1 ) = (λ / 2) {2N 3 −N 2 −N 1 + (ε 3 −ε 2 ) + (ε 3 − epsilon 1)} However, L 1: half-mirror 22-first reflecting mirror 24 gauge block 28 back and forth optical path length of the end L 2: reciprocating optical path length of the half mirror 22-second reflector 30- gauge block 28 and the other end L 3 : Half mirror 22-first reflecting mirror 24-gauge 28
Side-second reflecting mirror 30-optical path length L 1 of the half mirror 22: λ (N 1 + ε 1 ) L 2 : λ (N 2 + ε 2 ) L 3 : λ (N 3 + ε 3 ) λ: laser light 15 wavelength N i: the natural number of the quotient when the optical path length L i divided by the wavelength λ of the coherent light epsilon i: fraction of the quotient when the optical path length L i divided by the wavelength λ of the coherent light (phase)

【0010】そして、前記位相差(ε−ε),(ε
−ε)の測定を行なう際、シャッタ26,32はブ
ロックゲージ28の測定面と同じ面積のレーザ光15を
遮断する役割を果たし、位相差(ε−ε)を測定す
る時は、第一シャッタ26を閉じ、第二シャッタ32を
開く。
Then, the phase differences (ε 3 −ε 2 ) and (ε
The shutters 26 and 32 play a role of blocking the laser light 15 having the same area as the measurement surface of the block gauge 28 when measuring ( 3- ε 1 ), and when measuring the phase difference (ε 32 ). , The first shutter 26 is closed and the second shutter 32 is opened.

【0011】一方、位相差(ε−ε)を測定する時
は、第一シャッタ26を開け、第二シャッタ32を閉じ
る。このようなシャッタ26,32の切換えにより、前
記位相差(ε−ε),(ε−ε)の測定を、2
回に分けて行う。そして、ブロックゲージの相対向する
端面間の予備値と、測定された各位相差に基づいて、ブ
ロックケージ28の相対向する端面間の寸法を求める。
On the other hand, when measuring the phase difference (ε 3 −ε 1 ), the first shutter 26 is opened and the second shutter 32 is closed. By switching the shutters 26 and 32 as described above, the phase difference (ε 3 −ε 2 ) and (ε 3 −ε 1 ) can be measured by 2 times.
Divide into times. Then, the dimension between the opposite end faces of the block cage 28 is obtained based on the preliminary value between the opposite end faces of the block gauge and each measured phase difference.

【0012】このような非密着光波干渉計を用いた測長
装置10では、リンギングを行う必要がないので、該リ
ンギングのバラツキによる大きな誤差要因を排除するこ
とができる。
In the length measuring device 10 using such a non-contact optical wave interferometer, since it is not necessary to perform ringing, it is possible to eliminate a large error factor due to the variation of the ringing.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、前述の
ような非密着光波干渉計を用いた測長装置にあっても、
被測定物の測長方向の一端の測定と他端の測定を、シャ
ッタを切換えて、2回に分けて行わなければならない。
However, even in the length measuring device using the non-contact optical wave interferometer as described above,
The measurement of one end and the measurement of the other end in the length measurement direction of the object to be measured must be performed twice by switching the shutter.

【0014】このため、前述のような非密着光波干渉計
を用いたのでは、測定時間がかかり、作業が面倒である
ので、測定時間、作業性の面について、また被測定物の
両側の観測に時間差があるため、その間に起きる環境変
化の影響を受けることについて、改善の余地が残されて
いた。
Therefore, if the non-contact optical wave interferometer as described above is used, the measuring time is long and the work is troublesome. Therefore, the measuring time, the workability and the observation of both sides of the object to be measured are performed. Since there is a time lag, there was room for improvement in being affected by the environmental changes that occurred during that time.

【0015】本発明は前記従来技術の課題に鑑みなされ
たものであり、その目的は高精度な測長が短時間で及び
容易に行える、非密着光波干渉計を用いた測長装置を提
供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a length measuring apparatus using a non-contact optical wave interferometer, which enables highly accurate length measurement in a short time and easily. Especially.

【0016】[0016]

【課題を解決するための手段】前記目的を達成するため
に本発明にかかる測長装置は、予備値が既知の被測定物
の相対向する端面間の寸法を測定する測長装置におい
て、前記被測定物の測長軸と一致した光軸を有し、且つ
所定離隔距離をおいて配置された第一干渉手段及び第二
干渉手段と、前記各干渉手段でそれぞれ形成される干渉
光の位相差を観察可能な第一観察手段及び第二観察手段
と、を備える。
In order to achieve the above object, a length measuring apparatus according to the present invention is a length measuring apparatus for measuring a dimension between opposed end faces of an object to be measured whose preliminary value is known. A first interference means and a second interference means, which have an optical axis that coincides with the length measurement axis of the object to be measured and are arranged at a predetermined separation distance, and the positions of the interference lights formed by the respective interference means. The first observation means and the second observation means capable of observing the phase difference are provided.

【0017】そして、前記第一干渉手段は、所定のビー
ム径及び波長を持つ可干渉光を前記被測定物の測長方向
に出射し、その一部を該被測定物の一端に入射させて反
射光を戻し、且つその残りを該被測定物の脇を通過させ
て第二干渉手段に入射させる。
The first interfering means emits coherent light having a predetermined beam diameter and wavelength in the measuring direction of the object to be measured, and part of the coherent light is incident on one end of the object to be measured. The reflected light is returned, and the rest is passed by the side of the object to be measured and is incident on the second interference means.

【0018】前記第二干渉手段は、前記可干渉光と同じ
ビーム径及び波長を持つ可干渉光を前記被測定物の測長
方向に出射し、その一部を該被測定物の他端に入射させ
て反射光を戻し、且つその残りを該被測定物の脇を通過
させて前記第一干渉手段に入射させる。
The second interference means emits coherent light having the same beam diameter and wavelength as the coherent light in the measuring direction of the object to be measured, and part of the coherent light is directed to the other end of the object to be measured. The reflected light is made incident and returned, and the rest is made to pass through the side of the object to be measured and made incident on the first interference means.

【0019】また前記第一干渉手段は、前記被測定物の
脇を通過してきた第二干渉手段からの可干渉光と可干渉
光である第一参照光とを重ね合わせて基準干渉光を得、
且つ該第一干渉手段からの可干渉光を前記被測定物の一
端に照射して得られた反射光と可干渉光である第一参照
光とを重ね合わせて測定干渉光を得る。
The first interfering means obtains a reference interfering light by superposing the coherent light from the second interfering means which has passed by the side of the object to be measured and the first reference light which is the coherent light. ,
Further, the reflected light obtained by irradiating the one end of the object to be measured with the coherent light from the first interference means and the first reference light which is the coherent light are superposed to obtain the measured coherent light.

【0020】また前記第二干渉手段は、前記被測定物の
脇を通過してきた第一干渉手段からの可干渉光と可干渉
光である第二参照光とを重ね合わせて基準干渉光を得、
且つ該第二干渉手段からの可干渉光を前記被測定物の他
端に照射して得られた反射光と可干渉光である第二参照
光とを重ね合わせて測定干渉光を得る。
The second interference means obtains standard interference light by superimposing the coherent light from the first interference means and the second reference light, which is coherent light, which has passed by the side of the object to be measured. ,
Further, the reflected light obtained by irradiating the other end of the object to be measured with the coherent light from the second interference means and the second reference light, which is the coherent light, are superposed to obtain the measured coherent light.

【0021】前記第一観察手段は、前記第一干渉手段で
得られた基準干渉光及び測定干渉光をそれぞれ干渉縞と
して同時に観察する。前記第二観察手段は、前記第二干
渉手段で得られた基準干渉光及び測定干渉光をそれぞれ
干渉縞として、前記第一観察手段での観察と同時に観察
する。
The first observing means simultaneously observes the reference interference light and the measurement interference light obtained by the first interference means as interference fringes. The second observation means observes the reference interference light and the measurement interference light obtained by the second interference means as interference fringes simultaneously with the observation by the first observation means.

【0022】そして、前記被測定物の相対向する端面間
の予備値、並びに、前記第一観察手段で観察された基準
干渉縞と測定干渉縞との位相差、及び前記第二観察手段
で観察された基準干渉縞と測定干渉縞との位相差に基づ
いて、前記被測定物の相対向する端面間の寸法を求める
ことを特徴とする。
Then, the preliminary value between the end faces of the object to be measured facing each other, the phase difference between the reference interference fringes and the measurement interference fringes observed by the first observing means, and the second observing means are observed. It is characterized in that the dimension between the facing end faces of the object to be measured is obtained based on the phase difference between the reference interference fringes and the measured interference fringes.

【0023】本発明において用いられる被測定物として
は、例えば予備値の概略値がわかっているブロックゲー
ジ等の端度器が挙げられる。
Examples of the object to be measured used in the present invention include end gauges such as block gauges whose rough preliminary values are known.

【0024】なお、本発明においては、一の光照射手段
と、一の光分割手段と、を備え、前記一の光照射手段、
前記第一干渉手段及び前記第二干渉手段で環状の干渉計
を構成することが好適である。
In the present invention, one light irradiation means and one light splitting means are provided, and the one light irradiation means,
It is preferable that the first interfering means and the second interfering means constitute an annular interferometer.

【0025】ここで、前記光照射手段は、前記所定ビー
ム径及び所定波長を持つ可干渉光を出射する。
Here, the light irradiation means emits coherent light having the predetermined beam diameter and the predetermined wavelength.

【0026】また、前記光分割手段は、前記光照射手段
からの可干渉光を二分割し、一方の分割光を前記第一干
渉手段に入射させ、他方の分割光を前記第二干渉手段に
入射させる。
The light splitting means splits the coherent light from the light irradiating means into two, one split light is made incident on the first interference means, and the other split light is made to enter the second interference means. Make it incident.

【0027】また、本発明においては、前記光分割手段
から前記第一干渉手段、前記被測定物の一端、前記第一
干渉手段までの光路長をLとし、前記光分割手段から
前記第二干渉手段、前記第一干渉手段までの光路長をL
とし、前記光分割手段から前記第二干渉手段、前記被
測定物の他端、前記第二干渉手段までの光路長をL
し、前記光分割手段から前記第一干渉手段、前記第二干
渉手段までの光路長をLとすると、前記被測定物の相
対向する端面間の寸法Lは、下記の数式で表せる。
Further, in the present invention, the optical path length from the light splitting means to the first interference means, one end of the object to be measured, and the first interference means is set to L 1 , and the light splitting means to the second The interference means, the optical path length to the first interference means is L
2 , the optical path length from the light splitting means to the second interference means, the other end of the object to be measured, and the second interference means is L 3 , and the light splitting means to the first interference means and the second Assuming that the optical path length to the interference means is L 4 , the dimension L B between the facing end faces of the measured object can be expressed by the following mathematical formula.

【数3】L=λ/2{N−N+N−N+(ε
−ε)+(ε−ε)} ただし、L:λ(N+ε) L:λ(N+ε) L:λ(N+ε) L:λ(N+ε) λ:前記可干渉光の波長 N(i=1〜4):前記光路長Liを前記可干渉光の
波長λで割ったときの商の自然数 ε(i=1〜4):前記光路長Liを前記可干渉光の
波長λで割ったときの商の端数(位相) (ε−ε):前記第一観察手段で観察された基準干
渉縞と測定干渉縞との位相差 (ε−ε):前記第二観察手段で観察された基準干
渉縞と測定干渉縞との位相差 また、本発明においては、読取手段と、演算手段と、を
備えることが好適である。
L B = λ / 2 {N 4 −N 3 + N 2 −N 1 + (ε
4 −ε 3 ) + (ε 2 −ε 1 )} where L 1 : λ (N 1 + ε 1 ) L 2 : λ (N 2 + ε 2 ) L 3 : λ (N 3 + ε 3 ) L 4 : λ (N 4 + ε 4 ) λ: wavelength N i of the coherent light (i = 1 to 4): natural number ε i (i = 1) of the quotient when the optical path length Li is divided by the wavelength λ of the coherent light 4): Fraction (phase) of the quotient when the optical path length Li is divided by the wavelength λ of the coherent light (ε 2 −ε 1 ): reference interference fringes observed by the first observation means and measurement interference Phase difference with fringe (ε 4 −ε 3 ): Phase difference between the reference interference fringe and the measurement interference fringe observed by the second observing means Further, in the present invention, a reading means and a computing means are provided. Is preferred.

【0028】ここで、前記読取手段は、前記各観察手段
で観察された干渉縞の位相差を読取る。
Here, the reading means reads the phase difference of the interference fringes observed by each of the observing means.

【0029】また、前記演算手段は、前記読取手段で得
られた各干渉縞の位相差、及び前記被測定物の相対向す
る端面間の予備値に基づいて、前記被測定物の相対向す
る端面間の寸法を求める。
The calculating means opposes the object to be measured based on the phase difference between the interference fringes obtained by the reading means and the preliminary value between the end faces of the object to be measured. Find the dimension between the end faces.

【0030】さらに、本発明においては、前記光源は、
複数の異なる波長の光干渉光を発射し、光軸補正手段を
備えることも好適である。
Further, in the present invention, the light source is
It is also preferable to emit a plurality of optical interference lights having different wavelengths and to provide an optical axis correcting means.

【0031】ここで、前記光軸補正手段は、前記光分割
手段と干渉手段間の光軸上に設けられ、前記可干渉光の
波長に応じて、該光軸のずれを補正する。
Here, the optical axis correction means is provided on the optical axis between the light splitting means and the interference means, and corrects the deviation of the optical axis according to the wavelength of the coherent light.

【0032】ここにいう複数の異なる波長の光干渉光と
しては、例えば、異なる波長の複数のレーザを切換えて
得られるレーザ光、多波長レーザの波長を変化させて得
られるレーザ光等をいう。
The optical interference light of a plurality of different wavelengths referred to herein includes, for example, laser light obtained by switching a plurality of lasers of different wavelengths, laser light obtained by changing the wavelength of a multi-wavelength laser, and the like.

【0033】[0033]

【発明の実施の形態】以下、図面に基づいて本発明の好
適な一実施形態について説明する。図2には本発明の一
実施形態にかかる測長装置の概略構成が示されている。
なお、本実施形態では、被測定物として長方形断面のブ
ロックゲージ等の端度器を想定し、予備値が既知のブロ
ックゲージの相対向する端面間の寸法を測定する例につ
いて説明する。前記従来技術と対応する部分には符号1
00を加えて示し説明を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows a schematic configuration of a length measuring device according to an embodiment of the present invention.
In the present embodiment, an example will be described in which an end prototyping device such as a block gauge having a rectangular cross section is assumed as an object to be measured, and a dimension between opposing end surfaces of a block gauge having a known preliminary value is measured. Reference numeral 1 is given to a portion corresponding to the prior art.
00 is added and description is omitted.

【0034】同図に示す測長装置110は、一の光照射
手段140と、第一ハーフミラー(光分割手段)142
と、前記ブロックゲージ(被測定物)128の測長軸と
一致した光軸を有し、且つ所定離隔距離をおいて配置さ
れた第二ハーフミラー(第一干渉手段)144及び第三
ハーフミラー(第二干渉手段)150を備える。
The length measuring apparatus 110 shown in the figure has one light irradiation means 140 and a first half mirror (light splitting means) 142.
And a second half mirror (first interference means) 144 and a third half mirror that have an optical axis that coincides with the length measurement axis of the block gauge (measurement object) 128 and that are arranged at a predetermined distance. (Second interference means) 150 is provided.

【0035】また、前記第二ハーフミラー144、第三
ハーフミラー150でそれそれ形成される干渉光の位相
差を観察可能な第一スクリーン(第一観察手段)148
及び第二スクリーン(第二観察手段)154を備える。
A first screen (first observing means) 148 capable of observing the phase difference of the interference light formed by the second half mirror 144 and the third half mirror 150.
And a second screen (second observation means) 154.

【0036】また、同図に示すように第一参照鏡(第一
干渉手段)146、及び第二参照鏡(第二干渉手段)1
52を光学系構成部材として備える。
Further, as shown in the figure, a first reference mirror (first interference means) 146 and a second reference mirror (second interference means) 1
52 is provided as an optical system constituent member.

【0037】このように第一ハーフミラー142、第二
ハーフミラー144、第三ハーフミラー150により、
環状の干渉計120を構成している。
As described above, by the first half mirror 142, the second half mirror 144, and the third half mirror 150,
An annular interferometer 120 is configured.

【0038】前記光照射手段は、単一波長レーザ(光
源)112と、コリメートレンズ114と、反射鏡15
6を備える。そして、前記レーザ112から出射された
所定波長λを持つレーザ光(可干渉光)は、レンズ11
4により必要な大きさのビーム径にコリメートされ、レ
ーザ光115として、反射鏡156を介して第一ハーフ
ミラー142に入射される。
The light irradiation means includes a single wavelength laser (light source) 112, a collimator lens 114, and a reflecting mirror 15.
6 is provided. Then, the laser light (coherent light) having a predetermined wavelength λ emitted from the laser 112 is transmitted to the lens 11
The laser beam 115 is collimated to a required beam diameter by 4 and is incident on the first half mirror 142 as a laser beam 115 via a reflecting mirror 156.

【0039】このレーザ光115のビーム径の大きさ
は、該ビームの一部がブロックゲージ128の端部に入
射し、且つその残りがブロックゲージ128の脇部を通
過して、第二ハーフミラー144、或いは第三ハーフミ
ラー150に入射することのできるように、ブロックゲ
ージ128の測定端面より大きい。
The size of the beam diameter of the laser beam 115 is such that a part of the beam is incident on the end of the block gauge 128 and the rest passes through the side of the block gauge 128, and the second half mirror. It is larger than the measurement end surface of the block gauge 128 so that it can be incident on the 144 or the third half mirror 150.

【0040】第一ハーフミラー142は、反射鏡156
からのレーザ光115を図中、時計回り光路と半時計回
り光路とに二分割し、各分割光を環状に構築された干渉
計120に入射させる。
The first half mirror 142 is a reflecting mirror 156.
The laser light 115 from is divided into a clockwise optical path and a counterclockwise optical path in the figure, and the respective divided lights are made incident on the interferometer 120 constructed in a ring shape.

【0041】すなわち、一方の分割光を第二ハーフミラ
ー144に入射させ、他方の分割光を第三ハーフミラー
150に入射させる。
That is, one split light is made incident on the second half mirror 144, and the other split light is made incident on the third half mirror 150.

【0042】そして、第二ハーフミラー144は、第一
ハーフミラー142からのレーザ光115を二分割し、
その一方をブロックゲージ128の測長方向の、図中右
方に向けて出射し、他方を第一参照鏡146に入射させ
る。第二ハーフミラー144によりブロックゲージ12
8の測長方向の、図中右方に向けて照射された光の一部
は、ブロックゲージ128の左端面128aに入射す
る。その残りの光は、ブロックゲージ128の一端12
8aに入射することなく、その脇を通過して、第三ハー
フミラー150に入射する。
The second half mirror 144 splits the laser light 115 from the first half mirror 142 into two,
One of them is emitted toward the right side in the drawing in the length measuring direction of the block gauge 128, and the other is incident on the first reference mirror 146. Block gauge 12 by the second half mirror 144
A part of the light emitted toward the right side in the drawing in the length measurement direction of 8 is incident on the left end surface 128 a of the block gauge 128. The remaining light is the one end 12 of the block gauge 128.
The light does not enter 8a, passes through the side thereof, and enters the third half mirror 150.

【0043】一方、第一ハーフミラー142により分割
された他方の分割光は、第三ハーフミラー150に入射
する。この第三ハーフミラー150は、第一ハーフミラ
ー142からのレーザ光115を二分割し、その一方を
ブロックゲージ128の測長方向の、図中左方に向けて
照射し、他方を第二参照鏡152に入射させる。第三ハ
ーフミラー150によりブロックゲージ128の図中左
方に向けて出射された光の一部は、ブロックゲージ12
8の右端面128bに入射する。その残りの光はブロッ
クゲージ128の右端面128bに入射することなくそ
の脇を通過して、第二ハーフミラー144に入射する。
そして、第一スクリーン148では、前記位相差(ε
−ε)が観測される。
On the other hand, the other split light split by the first half mirror 142 enters the third half mirror 150. The third half mirror 150 divides the laser beam 115 from the first half mirror 142 into two, irradiates one of them to the left side in the drawing in the length measuring direction of the block gauge 128, and refers to the other of the two. It is incident on the mirror 152. A part of the light emitted toward the left side of the block gauge 128 in the drawing by the third half mirror 150 is part of the block gauge 12
8 is incident on the right end surface 128b. The remaining light passes through the right end surface 128b of the block gauge 128 without passing through it, and enters the second half mirror 144.
Then, on the first screen 148, the phase difference (ε 2
−ε 1 ) is observed.

【0044】すなわち、第二ハーフミラー144により
第一参照鏡146に向けて出射された光は、第一参照鏡
146で反射し、再度第二ハーフミラー144に戻る。
That is, the light emitted toward the first reference mirror 146 by the second half mirror 144 is reflected by the first reference mirror 146 and returns to the second half mirror 144 again.

【0045】このため、第二ハーフミラー144では、
ブロックゲージ128の脇を通過してきた第三ハーフミ
ラー150からのレーザ光(光路L)と第一参照鏡1
46からのレーザ光(第一参照光)とを重ね合わせて干
渉させる。この第一基準干渉光は、第一スクリーン14
8で第一基準干渉縞として観測される。この観測と同時
に、この第二ハーフミラー144では、第二ハーフミラ
ー144によりブロックゲージ128の左端面128a
に向けて出射され、該左端面128aで反射し、再度第
二ハーフミラー144に戻った光(光路L)と、第一
参照鏡146からのレーザ光(第一参照光)とを重ね合
わせて干渉させる。この第一測定干渉光は第一スクリー
ン148に入射され、第一スクリーン148で第一測定
干渉縞として、第一基準干渉縞と同時に観測される。
Therefore, in the second half mirror 144,
The laser beam (optical path L 2 ) from the third half mirror 150 that has passed by the block gauge 128 and the first reference mirror 1
The laser light (first reference light) from 46 is overlapped and interfered. This first reference interference light is transmitted to the first screen 14
8 is observed as the first reference interference fringe. At the same time as this observation, the second half mirror 144 causes the second half mirror 144 to move the left end surface 128a of the block gauge 128.
The light (optical path L 1 ) that is emitted toward the laser beam, is reflected by the left end surface 128a, and returns to the second half mirror 144 again, and the laser light (first reference light) from the first reference mirror 146 is superimposed. To interfere. The first measurement interference light is incident on the first screen 148 and is observed on the first screen 148 as first measurement interference fringes at the same time as the first reference interference fringes.

【0046】一方、第二スクリーン154では、前記位
相差(ε−ε)が観測される。
On the other hand, on the second screen 154, the phase difference (ε 4 −ε 3 ) is observed.

【0047】すなわち、第三ハーフミラー150によ
り、第二参照鏡152に向けて照射された光は、第二参
照鏡152で反射し、再度第三ハーフミラー150に戻
る。
That is, the light emitted toward the second reference mirror 152 by the third half mirror 150 is reflected by the second reference mirror 152 and returns to the third half mirror 150 again.

【0048】このため、第三ハーフミラー150では、
ブロックゲージ128の脇を通過してきた第二ハーフミ
ラー144からのレーザ光(光路L)と第二参照鏡1
52からの反射光(第二参照光)を重ね合わせて干渉さ
せる。この第二基準干渉光は、第二スクリーン154に
入射され、第二スクリーン154で第二基準干渉縞とし
て観測される。この観測と同時に、この第三ハーフミラ
ー150では、第三ハーフミラー150によりブロック
ゲージ128の右端面128bに向けて出射され、該右
端面128bで反射し、再度第三ハーフミラー150に
戻った光(光路L)と、第二参照鏡152からのレー
ザ光(第二参照光)とを重ね合わせて干渉させる。この
第二測定干渉光は第二スクリーン154に入射され、第
二スクリーン154で第二測定干渉縞として、第二基準
干渉縞と同時に観測される。
Therefore, in the third half mirror 150,
The laser beam (optical path L 4 ) from the second half mirror 144 that has passed by the side of the block gauge 128 and the second reference mirror 1
The reflected light (second reference light) from 52 is superimposed and interfered. The second reference interference light is incident on the second screen 154 and is observed on the second screen 154 as second reference interference fringes. At the same time as this observation, in the third half mirror 150, the light emitted toward the right end surface 128b of the block gauge 128 by the third half mirror 150, reflected by the right end surface 128b, and returned to the third half mirror 150 again. The (optical path L 3 ) and the laser light (second reference light) from the second reference mirror 152 are superposed and interfered with each other. The second measurement interference light is incident on the second screen 154 and is observed on the second screen 154 as second measurement interference fringes at the same time as the second reference interference fringes.

【0049】このように本実施形態では、各光学系構成
部材を前述のように配置することにより、第一スクリー
ン148での基準干渉縞及び測定干渉縞の観察と、第二
スクリーン154での基準干渉縞及び測定干渉縞の観察
とを同時に行っている。
As described above, in this embodiment, by arranging the respective optical system constituent members as described above, the reference interference fringes and the measurement interference fringes on the first screen 148 are observed and the reference interference fringes on the second screen 154 are observed. The interference fringes and the measurement interference fringes are observed at the same time.

【0050】ところで、従来の非密着光波干渉計を用い
た測長装置では、ブロックゲージの測長方向の左端面と
右端面の測定を、それぞれシャッタを切り換えて2回に
分けて行う必要がある。しかしながら、このように測定
を2回に分けて行っていたのでは、測定に時間がかかり
面倒であった。特に異なる波長での測定を行なう際は、
この問題は特に深刻であった。
By the way, in the conventional length measuring apparatus using the non-contact optical wave interferometer, it is necessary to perform the measurement of the left end face and the right end face of the block gauge in the length-measuring direction separately by switching the shutter. . However, if the measurement is performed twice in this way, the measurement takes time and is troublesome. Especially when measuring at different wavelengths,
This problem was particularly serious.

【0051】これに対し、本実施形態では、前述のよう
に第一ハーフミラー142の後段の一方にブロックゲー
ジ128の左端面128aの干渉縞を測定するための、
第二ハーフミラー144、第一参照鏡146、第一スク
リーン148を設けている。かつその他方にブロックゲ
ージ128の右端面128bの干渉縞を測定するため
の、第三ハーフミラー150、第二参照鏡152、第二
スクリーン154を設けている。
On the other hand, in the present embodiment, as described above, the interference fringes on the left end face 128a of the block gauge 128 are measured at one of the subsequent stages of the first half mirror 142.
A second half mirror 144, a first reference mirror 146, and a first screen 148 are provided. On the other side, a third half mirror 150, a second reference mirror 152, and a second screen 154 for measuring the interference fringes of the right end surface 128b of the block gauge 128 are provided.

【0052】このため、本実施形態では、第一スクリー
ン148での干渉縞の観測と第二スクリーン154での
干渉縞の観測を同時に行うことができるので、従来の非
密着光波干渉計を用いた測長装置に比較し、測定回数を
大幅に低減することができる。これにより、リンギング
を必要とせず高精度ではあるが、従来の非密着干渉計を
用いた測長装置では極めて困難であった、測定時間の大
幅な短縮化と操作性の向上を図ることができる。
Therefore, in this embodiment, the observation of the interference fringes on the first screen 148 and the observation of the interference fringes on the second screen 154 can be carried out simultaneously, so that the conventional non-contact optical wave interferometer is used. The number of measurements can be significantly reduced compared to a length measuring device. As a result, although ringing is not required and the accuracy is high, it is possible to significantly reduce the measurement time and improve the operability, which was extremely difficult with the conventional length measuring device using the non-contact interferometer. .

【0053】また、両側を同時に観測することにより、
両側で測定される結果が同じ環境によるものとなり、測
定中の環境変化の影響を受けることなく、高精度な測定
が行える。
By observing both sides simultaneously,
The results measured on both sides are based on the same environment, and high-precision measurement can be performed without being affected by environmental changes during measurement.

【0054】さらに、従来の非密着光波干渉計を用いた
測長装置では、光学系の構成上の問題により環状干渉計
の時計周りの光と半時計周りの光の干渉を防ぐことがで
きないため、各測定が適正に行えない場合がある。これ
に対し、本実施形態では、環状干渉計の時計周りの光と
半時計周りの光の測定は、第一干渉手段と第二干渉手段
が完全にセパレートしているので、これらの光の干渉が
問題になることはない。これにより測定がより適正に行
える。
Further, in the conventional length measuring device using the non-contact optical wave interferometer, it is impossible to prevent the interference between the clockwise light and the counterclockwise light of the annular interferometer due to a problem in the structure of the optical system. , Each measurement may not be performed properly. On the other hand, in the present embodiment, in the measurement of the clockwise light and the counterclockwise light of the annular interferometer, since the first interfering means and the second interfering means are completely separated, the interference of these lights Does not matter. As a result, the measurement can be performed more appropriately.

【0055】以下、ブロックゲージの予備値と、前述の
ようにして同時期に観測された第一スクリーンでの各干
渉縞及び第二スクリーンでの各干渉縞とに基づいて、ブ
ロックゲージ128の寸法Lを求める方法について説
明する。
The size of the block gauge 128 will be described below based on the preliminary value of the block gauge and the interference fringes on the first screen and the second fringe observed on the same time period as described above. A method of obtaining L B will be described.

【0056】すなわち、本実施形態では、第一スクリー
ン148の後段に第一読取手段170を設けている。そ
して、第一読取手段170は、図3(A)に示すように
第一スクリーン148で観察された第一基準干渉縞18
4と第一測定干渉縞186との位相差(b/a)を読
取り、その読取結果はコンピュータ172の演算手段1
74に入力され、前記位相差情報(ε−ε)情報と
して測定データ記憶部176に記憶される。
That is, in this embodiment, the first reading means 170 is provided at the subsequent stage of the first screen 148. Then, the first reading unit 170 causes the first reference interference fringes 18 observed on the first screen 148 as shown in FIG.
4 and the first measurement interference fringe 186, the phase difference (b 1 / a) is read, and the read result is the calculation means 1 of the computer 172.
The phase difference information (ε 2 −ε 1 ) is input to the measurement data storage unit 176.

【0057】また、本実施形態では、第二スクリーン1
54の後段に第二読取手段178を設けている。そし
て、第二読取手段178は、同図(B)に示すように第
二スクリーン154で観察された第二基準干渉縞188
と第二測定干渉縞190との位相差(b/a)を同時
に読取る。その読取結果は演算手段174に入力され、
前記位相差情報(ε−ε)情報として測定データ記
憶部176に記憶される。
Further, in this embodiment, the second screen 1
A second reading unit 178 is provided after 54. Then, the second reading unit 178 causes the second reference interference fringes 188 observed on the second screen 154 as shown in FIG.
And the phase difference (b 2 / a) between the second measurement interference fringe 190 are read at the same time. The read result is input to the calculating means 174,
It is stored in the measurement data storage unit 176 as the phase difference information (ε 4 −ε 3 ) information.

【0058】また、本実施形態では、コンピュータ17
2が、演算情報記憶部180を備え、前記ブロックゲー
ジの予備値の情報や、後述する合致法を行うためのプロ
グラム等が予め格納されている。例えば第一ハーフミラ
ー142と第二ハーフミラー144間の光路長をa、第
二ハーフミラー144とブロックゲージ128の左端面
128a間の光路長をb、第一ハーフミラー142と第
三ハーフミラー150間の光路長をc、第三ハーフミラ
ー150とブロックゲージ128の右端面128b間の
光路長をdとしている。
Further, in this embodiment, the computer 17
2 includes a calculation information storage unit 180, which stores in advance information on the preliminary value of the block gauge, a program for performing the matching method described later, and the like. For example, the optical path length between the first half mirror 142 and the second half mirror 144 is a, the optical path length between the second half mirror 144 and the left end surface 128a of the block gauge 128 is b, the first half mirror 142 and the third half mirror 150. The optical path length between them is c, and the optical path length between the third half mirror 150 and the right end surface 128b of the block gauge 128 is d.

【0059】そして、演算手段174は、演算情報記憶
部180に格納してあるブロックゲージの予備値の情報
等と、前記測定データ記憶部176に格納してある前記
位相差情報(ε−ε),(ε−ε)に、例えば
合致法を用いてブロックゲージ128の測長方向の相対
向する端面間の寸法Lを以下のように求める。
Then, the calculating means 174 stores information such as the preliminary value of the block gauge stored in the calculation information storage unit 180 and the phase difference information (ε 4 −ε) stored in the measurement data storage unit 176. 3 ) and (ε 2 −ε 1 ), the dimension L B between the end faces of the block gauge 128 that face each other in the lengthwise direction is determined by using, for example, the matching method as follows.

【0060】すなわち、第一ハーフミラー142と第二
ハーフミラー144間の光路長をa、第二ハーフミラー
144とブロックゲージ128の左端面128a間の光
路長をb、第一ハーフミラー142と第三ハーフミラー
150間の光路長をc、第三ハーフミラー150とブロ
ックゲージ128の右端面128b間の光路長をdとす
ると、前記光路長L〜Lは次のように表せる。
That is, the optical path length between the first half mirror 142 and the second half mirror 144 is a, the optical path length between the second half mirror 144 and the left end face 128a of the block gauge 128 is b, and the first half mirror 142 and the first half mirror 142 are Letting c be the optical path length between the three half mirrors 150 and d be the optical path length between the third half mirror 150 and the right end surface 128b of the block gauge 128, the optical path lengths L 1 to L 4 can be expressed as follows.

【0061】 L=a+2b … (1) L=b+c+d+L … (2) L=c+2d … (3) L=a+b+d+L … (4) 上記数式1,2より L−L=(b+c+d+L)−(a+2b) … (5) 上記数式3,4より L−L=(a+b+d+L)−(c+2d) … (6) 上記数式5,6より L−L+L−L=(a+2b+c+2d+2L) −(a+2b+c+2d)=2L … (7)L 1 = a + 2b (1) L 2 = b + c + d + L B (2) L 3 = c + 2d (3) L 4 = a + b + d + L B (4) From the above formulas 1 and 2, L 2 -L 1 = ( b + c + d + L B ) − (a + 2b) (5) From the above formulas 3 and 4, L 4 −L 3 = (a + b + d + L B ) − (c + 2d) (6) From the above formulas 5 and 6, L 2 −L 1 + L 4 −L 3 = (a + 2b + c + 2d + 2L B) - (a + 2b + c + 2d) = 2L B ... (7)

【0062】これを変形すると、ブロックゲージ128
の測長方向の相対向する左端面128aと右端面128
b間の寸法Lは、下記の数式で表せる。 L=1/2{(L−L)+(L−L)} … (8) ただし、L:第一ハーフミラー142から第二ハーフ
ミラー144、ブロックゲージ128の左端面128
a、第二ハーフミラー144までの光路 L:第一ハーフミラー142から第三ハーフミラー1
50、ブロックゲージ128の脇、第二ハーフミラー1
44までの光路 L:第一ハーフミラー142から第三ハーフミラー1
50、ブロックゲージ128の右端面128b、第三ハ
ーフミラー150までの光路 L:第一ハーフミラー142から第二ハーフミラー1
44、ブロックゲージ128の脇、第三ハーフミラー1
50まで光路
When this is deformed, the block gauge 128
Of the left end surface 128a and the right end surface 128 which face each other in the length measuring direction
The dimension L B between b can be expressed by the following mathematical formula. L B = 1/2 {(L 2 −L 1 ) + (L 4 −L 3 )} (8) where L 1 : the first half mirror 142 to the second half mirror 144, the left end surface of the block gauge 128. 128
a, optical path L 2 to second half mirror 144: first half mirror 142 to third half mirror 1
50, beside block gauge 128, second half mirror 1
Optical path L 3 up to 44: first half mirror 142 to third half mirror 1
50, the right end surface 128b of the block gauge 128, the optical path L 4 to the third half mirror 150: second half mirror 1 from the first half mirror 142
44, beside block gauge 128, third half mirror 1
Optical path up to 50

【0063】したがって、前記光路L,L,L
の光路長は、下記の数式で表せる。 L=λ(N+ε) … (9) L=λ(N+ε) …(10) L=λ(N+ε) …(11) L=λ(N+ε) …(12) ただし、λ:前記レーザ光の波長 N〜N:前記各光路長Lを波長λで割ったときの
商の自然数 ε〜ε:前記各光路長Lを波長λで割ったときの
商の端数(位相) (ε−ε): 前記測定データ記憶部に格納してあ
る、第一スクリーン148で観察された各干渉縞のずれ
(b/a)より求めた位相差情報 (ε−ε):測定データ記憶部に格納してある、第
二スクリーン154で観察された各干渉縞のずれ(b
/a)より求めた位相差情報
Therefore, the optical paths L 1 , L 2 , L 3 ,
The optical path length of L 4 can be expressed by the following formula. L 1 = λ (N 1 + ε 1 ) ... (9) L 2 = λ (N 2 + ε 2 ) ... (10) L 3 = λ (N 3 + ε 3 ) ... (11) L 4 = λ (N 4 + ε) 4 ) (12) where λ: wavelengths N 1 to N 4 of the laser light: natural numbers of quotients ε 1 to ε 4 when dividing each optical path length L i by the wavelength λ: each optical path length L i Is the fraction (phase) of the quotient when λ is divided by the wavelength λ (ε 2 −ε 1 ): The shift (b 1 / b 1 ) of each interference fringe observed on the first screen 148 stored in the measurement data storage unit. Phase difference information (ε 4 −ε 3 ) obtained from a): deviation of each interference fringe observed on the second screen 154 (b 2 stored in the measurement data storage unit)
/ A) Phase difference information obtained from

【0064】数式8に数式9〜12を代入すると、下記
の数式で表せる。 L=(1/2)・(L−L+L−L) =(1/2)・{λ(N+ε)−λ(N+ε)+λ(N+ε)− λ(N+ε)} =(λ/2)・{N−N+N−N+(ε−ε)+(ε−ε)} …(13)
By substituting the expressions 9 to 12 into the expression 8, the following expression can be obtained. L B = (1/2) · ( L 4 -L 3 + L 2 -L 1) = (1/2) · {λ (N 4 + ε 4) -λ (N 3 + ε 3) + λ (N 2 + ε 2 ) −λ (N 1 + ε 1 )} = (λ / 2) · {N 4 −N 3 + N 2 −N 1 + (ε 4 −ε 3 ) + (ε 2 −ε 1 )} (13)

【0065】したがって、ブロックゲージ128の寸法
は、前記第一スクリーン148で観測された各干渉
縞より求めた位相差情報(ε−ε)と第二スクリー
ン154で観測された各干渉縞より求めた位相差情報
(ε−ε)と、既知の測定波長λと、ブロックゲー
ジの予備値を用い、上数式13により得られる。
Therefore, the size L B of the block gauge 128 is determined by the phase difference information (ε 2 −ε 1 ) obtained from each interference fringe observed on the first screen 148 and each interference observed on the second screen 154. The phase difference information (ε 4 −ε 3 ) obtained from the stripes, the known measurement wavelength λ, and the preliminary value of the block gauge are used to obtain the above Expression 13.

【0066】以上のように本実施形態にかかる測長装置
110によれば、ブロックゲージ128の周囲の時計周
りの光と半時計周りの光の干渉が問題になることはな
く、第一スクリーンでの干渉縞の観察と、第二スクリー
ンでの観察を同時期に行うことができる。
As described above, according to the length measuring apparatus 110 of the present embodiment, the interference between the clockwise light around the block gauge 128 and the counterclockwise light does not pose a problem, and the first screen can be used. The observation of the interference fringes and the observation on the second screen can be performed at the same time.

【0067】したがって、各スクリーンで観測された各
干渉縞より求められた各位相差と、ブロックゲージの予
備値に基づいて、ブロックゲージの両端面間の寸法、平
行度を実時間で測定することができる。これにより、リ
ンギングを行う必要がない非密着光波干渉系を用いた測
定装置では、従来極めて困難であった作業性の向上、測
定時間の高速化を図ることができる。
Therefore, the dimension and parallelism between both end faces of the block gauge can be measured in real time on the basis of each phase difference obtained from each interference fringe observed on each screen and the preliminary value of the block gauge. it can. As a result, in the measuring device using the non-contact optical wave interference system that does not require ringing, it is possible to improve workability and speed up the measuring time, which were extremely difficult in the past.

【0068】また、両側を同時に観測することにより、
両側で測定される結果が同じ環境によるものとなり、測
定中の環境変化の影響を受けることなく、高精度な測定
が行える。
By observing both sides simultaneously,
The results measured on both sides are based on the same environment, and high-precision measurement can be performed without being affected by environmental changes during measurement.

【0069】さらに、従来の非密着光波干渉計を用いた
測長装置では、光学系の構成上の問題により環状干渉計
の時計周りの光と半時計周りの光の干渉を防ぐことがで
きないため、各測定が適正に行えない場合がある。これ
に対し、本実施形態では、環状干渉計の時計周りの光と
半時計周りの光の測定は、第一干渉手段と第二干渉手段
が完全にセパレートしているので、これらの光の干渉が
問題になることはない。これにより測定がより適正に行
える。
Further, in the conventional length measuring device using the non-contact optical wave interferometer, it is not possible to prevent the interference between the clockwise light and the counterclockwise light of the annular interferometer due to a problem in the structure of the optical system. , Each measurement may not be performed properly. On the other hand, in the present embodiment, in the measurement of the clockwise light and the counterclockwise light of the annular interferometer, since the first interfering means and the second interfering means are completely separated, the interference of these lights Does not matter. As a result, the measurement can be performed more appropriately.

【0070】また、一のレーザ光115を、一の第一ハ
ーフミラー142で二分割し、ブロックゲージ128の
左端面の測定と右端面の測定の同時測定に用いているの
で、同一条件の可干渉光をこれらの同時測定に用いるこ
とができる。
Further, since one laser beam 115 is divided into two by the one first half mirror 142 and is used for simultaneous measurement of the left end face and the right end face of the block gauge 128, the same conditions can be satisfied. Interfering light can be used for these simultaneous measurements.

【0071】また、本実施形態のような非密着光波干渉
系を用いた測長装置を用いることにより、ベースプレー
トにブロックゲージをリンギングする必要がないので、
勿論、高精度な測定が行なえる。
By using the length measuring device using the non-contact optical wave interference system as in this embodiment, it is not necessary to ring the block gauge on the base plate.
Of course, highly accurate measurement can be performed.

【0072】なお、本発明は前記構成に限定されるもの
ではなく、発明の要旨の範囲内で種々の変形が可能であ
る。
It should be noted that the present invention is not limited to the above-mentioned structure, and various modifications can be made within the scope of the gist of the invention.

【0073】例えば、前記構成では、予備値等の概略値
が分かっているブロックゲージの寸法を測定した例につ
いて説明したが、そのほか、任意の被測定物に適用する
ことができる。
For example, in the above-mentioned configuration, an example in which the dimensions of a block gauge whose rough value such as a preliminary value is known is measured has been described, but the invention can be applied to any other object to be measured.

【0074】また、前記構成では、一の被測定寸法を用
いた例について説明したが、そのほか、前記干渉縞よ
り、端面の平面度、及び端面間の平行度の測定に適用す
ることもできる。
Further, in the above-mentioned configuration, an example in which one measured dimension is used has been described, but in addition, it can be applied to the measurement of the flatness of the end faces and the parallelism between the end faces from the interference fringes.

【0075】また、前記構成では、スクリーンで観察さ
れた干渉縞を読取る例について説明したが、一般的に
は、前記スクリーンに代えて、CCDカメラ、或いはそ
の他の光電変換手段により干渉縞を読取るものを適用す
ることができる。
In the above configuration, an example of reading the interference fringes observed on the screen has been described. Generally, instead of the screen, a CCD camera or other photoelectric conversion means is used to read the interference fringes. Can be applied.

【0076】また、前記構成では、測長に単一波長のレ
ーザ光を用いた例について説明したが、安定な測定をす
るために、別の波長を用いることも好ましい。例えば複
数の異なる波長のレーザを切り換えて測定を行なう。或
いは多波長レーザを用いることができる。
Further, in the above-mentioned configuration, the example in which the laser beam having a single wavelength is used for the length measurement has been described, but it is also preferable to use another wavelength for stable measurement. For example, a plurality of lasers having different wavelengths are switched to perform measurement. Alternatively, a multi-wavelength laser can be used.

【0077】この場合、第一ハーフミラー142と第三
ハーフミラー150の間に補正板(光軸補正手段)14
5を設けることが特に好ましい。
In this case, the correction plate (optical axis correction means) 14 is provided between the first half mirror 142 and the third half mirror 150.
It is particularly preferable to provide 5.

【0078】このとき、レーザ光115の波長によっ
て、参照鏡146,152の反射面の傾きを微調整する
か、参照鏡146,152の前段に同様の補正板を設け
ることも好ましい。
At this time, it is also preferable to finely adjust the inclination of the reflecting surfaces of the reference mirrors 146 and 152 or to provide a similar correction plate before the reference mirrors 146 and 152 according to the wavelength of the laser light 115.

【0079】このように複数の異なる波長を用いて測定
を行うことにより、単一の波長のみで測定を行った場合
に比較し、安定な測定が行える。しかも、第一ハーフミ
ラー142と第三ハーフミラー150の間に補正板14
5を設けることにより、異なる波長毎に、参照鏡14
6,152の反射面の傾きの調整が不要となり、効率的
な測定が行える。
By performing measurement using a plurality of different wavelengths in this way, stable measurement can be performed as compared with the case where measurement is performed using only a single wavelength. Moreover, the correction plate 14 is provided between the first half mirror 142 and the third half mirror 150.
5, the reference mirror 14 is provided for each different wavelength.
It is not necessary to adjust the inclination of the reflecting surfaces of 6,152, and efficient measurement can be performed.

【0080】また、前記構成では、第一スクリーンで観
察された各干渉縞と第二スクリーンで観察された各干渉
縞から得られた位相差(ε−ε)+(ε−ε
の方向を決めるため、また得られた干渉縞より被測定物
端面の平面度を求めるため、参照ミラー152(14
6)には、図4(A)に示すような微動機構192、或
いは同図(B)に示すような微動機構193を設けるこ
とが好ましい。
Further, in the above configuration, the phase difference (ε 4 −ε 3 ) + (ε 2 −ε 1 ) obtained from each interference fringe observed on the first screen and each interference fringe observed on the second screen. )
Of the reference mirror 152 (14) in order to determine the direction of
6), it is preferable to provide a fine movement mechanism 192 as shown in FIG. 4A or a fine movement mechanism 193 as shown in FIG.

【0081】同図(A)に示す微動機構192は、駆動
部194と、駆動回路196と、コンピュータ172を
備える。そして、コンピュータ172からの指示が駆動
回路196に与えられると、駆動回路196は参照鏡1
52(146)を光軸方向の、図中i方向に微動し、所
望の位置に位置決めすることができるように、駆動部1
94の動作を制御する。
The fine movement mechanism 192 shown in FIG. 9A includes a drive section 194, a drive circuit 196, and a computer 172. When an instruction from the computer 172 is given to the drive circuit 196, the drive circuit 196 causes the reference mirror 1 to operate.
The drive unit 1 is configured so that the 52 (146) can be finely moved in the optical axis direction, i direction in the figure, and positioned at a desired position.
Control the operation of 94.

【0082】同図(B)に示す微動機構193は、参照
鏡152(146)の前段に設置された光学楔198
と、駆動部202と、駆動回路204と、コンピュータ
172を備える。そして、コンピュータ172からの指
示が駆動回路204に与えられると、駆動回路204
は、光学楔198を光軸と直交する方向の、図中j方向
に微動し、所望の位置に位置決めすることができるよう
に、駆動部202の動作を制御する。
The fine movement mechanism 193 shown in FIG. 11B is an optical wedge 198 installed in front of the reference mirror 152 (146).
A drive unit 202, a drive circuit 204, and a computer 172. When an instruction from the computer 172 is given to the drive circuit 204, the drive circuit 204
Controls the operation of the drive unit 202 so that the optical wedge 198 can be finely moved in the direction j in the drawing, which is a direction orthogonal to the optical axis, and positioned at a desired position.

【0083】同図(A)に示すような微動機構192、
或いは同図(B)に示すような微動機構193を設ける
ことにより、第一スクリーンで観察された各干渉縞と第
二スクリーンで観察された各干渉縞から得られた位相差
(ε−ε)+(ε−ε )の方向を正確に決める
ことができる。或いは得られた干渉縞より被測定物端面
の平面度を正確に求めることができる。
A fine movement mechanism 192 as shown in FIG.
Alternatively, a fine movement mechanism 193 as shown in FIG.
Therefore, each interference fringe observed on the first screen and
Phase difference obtained from each interference fringe observed on two screens
Four−εThree) + (ΕTwo−ε 1) To determine the correct direction
be able to. Or from the obtained interference fringes
The flatness of can be accurately determined.

【0084】[0084]

【発明の効果】以上説明したように本発明にかかる測長
装置によれば、被測定物の測長軸と一致した光軸を有
し、且つ所定離隔距離をおいて配置された第一干渉手段
及び第二干渉手段と、前記各干渉手段でそれぞれ形成さ
れる干渉光の位相差を観察可能な第一観察手段及び第二
観察手段と、を備え、該第一観察手段での基準干渉縞及
び測定干渉縞の観察と、第二観察手段での基準干渉縞及
び測定干渉縞の観察とを同時に行うこととしたので、従
来極めて困難であった高精度な被測定物の相対向する端
面間の実際の測長を短時間で及び容易に行える。また、
両側を同時に観測することにより、両側で測定される結
果が同じ環境によるものとなり、測定中の環境変化の影
響を受けることなく、高精度な測定が行える。さらに、
本発明においては、一の光分割手段により二分割された
光のうちの、一方を第一干渉手段及び観察手段の測定に
用い、他方を第二干渉手段及び観察手段の測定に用いる
ことにより、測長をより適正に行える。また、本発明に
おいては、前記各観察手段で観察された干渉縞の位相差
を読取る読取手段と、読取られた各干渉縞の位相差、及
び被測定物の相対向する端面間の予備値に基づいて、前
記被測定物の相対向する端面間の寸法を求める演算手段
を備えることにより、測長を短時間で及び容易に得るこ
とができる。さらに、本発明においては、前記光源は、
複数の異なる波長の可干渉光を出射し、前記可干渉光の
波長に応じて、光分割手段と干渉手段間の光軸のずれを
補正する光軸補正手段を備えることにより、前記測長が
安定して行える。
As described above, according to the length measuring apparatus of the present invention, the first interference having the optical axis coinciding with the length measuring axis of the object to be measured and arranged at a predetermined distance. Means and a second interfering means, and a first observing means and a second observing means capable of observing the phase difference of the interference light respectively formed by the respective interfering means, and the reference interference fringes in the first observing means Since the observation of the measurement interference fringes and the observation of the reference interference fringes and the measurement interference fringes by the second observing means are performed at the same time, it is difficult to measure the high precision between the facing end faces of the object to be measured. The actual length measurement of can be performed easily in a short time. Also,
By observing both sides at the same time, the results measured on both sides are based on the same environment, and high-precision measurement can be performed without being affected by environmental changes during measurement. further,
In the present invention, of the light divided into two by one light splitting means, one is used for the measurement of the first interference means and the observation means, and the other is used for the measurement of the second interference means and the observation means, The length can be measured more appropriately. Further, in the present invention, the reading means for reading the phase difference of the interference fringes observed by each of the observation means, the phase difference of each read interference fringes, and the preliminary value between the opposite end faces of the measured object. On the basis of the above, by providing the calculating means for calculating the dimension between the end faces of the object to be measured, the length measurement can be easily obtained in a short time. Further, in the present invention, the light source is
The coherent light of a plurality of different wavelengths is emitted, and the optical axis correction means for correcting the deviation of the optical axis between the light splitting means and the interfering means is provided according to the wavelength of the coherent light. You can do it stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的な測長装置の概略構成の説明図である。FIG. 1 is an explanatory diagram of a schematic configuration of a general length measuring device.

【図2】本発明の一実施形態にかかる測長装置の概略構
成の説明図である。
FIG. 2 is an explanatory diagram of a schematic configuration of a length measuring device according to an embodiment of the present invention.

【図3】本発明の一実施形態にかかる測長装置の観察手
段で観測された基準干渉縞と測定干渉縞の一例である。
FIG. 3 is an example of a reference interference fringe and a measurement interference fringe observed by an observing unit of the length measuring apparatus according to the embodiment of the present invention.

【図4】本発明の一実施形態にかかる測長装置の光学系
構成部材の配置の変形例である。
FIG. 4 is a modification of the arrangement of the optical system constituent members of the length measuring device according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

110 測長装置 112 単一波長レーザ(光照射手段、光源) 114 コリメータレンズ(光照射手段) 115 レーザ光(可干渉光) 128 ブロックゲージ(被測定物) 144 第二ハーフミラー(第一干渉手段) 145 補正板(光軸補正手段) 146 第一参照鏡(第一干渉手段) 148 第一スクリーン(第一観測手段) 150 第三ハーフミラー(第二干渉手段) 152 第二参照鏡(第一干渉手段) 154 第二スクリーン(第二観測手段) 170 第一読取手段 172 コンピュータ 174 演算手段 176 測定データ記憶部 178 第二読取手段 180 演算情報記憶部 110 length measuring device 112 Single wavelength laser (light irradiation means, light source) 114 Collimator lens (light irradiation means) 115 Laser light (coherent light) 128 block gauge (measurement object) 144 Second half mirror (first interference means) 145 Correction plate (optical axis correction means) 146 First reference mirror (first interference means) 148 First screen (first observation means) 150 Third half mirror (second interference means) 152 Second reference mirror (first interference means) 154 Second screen (second observation means) 170 First reading means 172 computer 174 computing means 176 Measurement data storage 178 Second reading means 180 Calculation information storage unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 守正 神奈川県川崎市高津区坂戸1−20−1 株 式会社ミツトヨ内 (72)発明者 栗山 豊 茨城県つくば市上横場430番地の1 株式 会社ミツトヨ内 (72)発明者 横山 雄一郎 茨城県つくば市上横場430番地の1 株式 会社ミツトヨ内 Fターム(参考) 2F064 AA01 BB00 EE01 FF01 FF05 FF06 FF08 GG22 HH03 HH08 2F065 AA22 CC00 FF51 GG04 GG22 GG23 HH03 HH13 LL00 LL04 LL35    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Morimasa Ueda             1-20-1 Sakado, Takatsu-ku, Kawasaki City, Kanagawa Prefecture             Ceremony company Mitutoyo (72) Inventor Yutaka Kuriyama             1 stock at 430 Kamikoyokoba, Tsukuba, Ibaraki             Company Mitutoyo (72) Inventor Yuichiro Yokoyama             1 stock at 430 Kamikoyokoba, Tsukuba, Ibaraki             Company Mitutoyo F term (reference) 2F064 AA01 BB00 EE01 FF01 FF05                       FF06 FF08 GG22 HH03 HH08                 2F065 AA22 CC00 FF51 GG04 GG22                       GG23 HH03 HH13 LL00 LL04                       LL35

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 予備値が既知の被測定物の相対向する端
面間の寸法を測定する測長装置において、 前記被測定物の測長軸と一致した光軸を有し、且つ所定
離隔距離をおいて配置された第一干渉手段及び第二干渉
手段と、 前記各干渉手段でそれぞれ形成される干渉光の位相差を
観察可能な第一観察手段及び第二観察手段と、を備え、 前記第一干渉手段は、所定のビーム径及び波長を持つ可
干渉光を前記被測定物の測長方向に出射し、その一部を
該被測定物の一端に入射させて反射光を戻し、且つその
残りを該被測定物の脇を通過させて第二干渉手段に入射
させ、 前記第二干渉手段は、前記可干渉光と同じビーム径及び
波長を持つ可干渉光を前記被測定物の測長方向に出射
し、その一部を該被測定物の他端に入射させて反射光を
戻し、且つその残りを該被測定物の脇を通過させて前記
第一干渉手段に入射させ、 また前記第一干渉手段は、前記被測定物の脇を通過して
きた第二干渉手段からの可干渉光と、可干渉光である第
一参照光とを重ね合わせて基準干渉光を得、且つ該第一
干渉手段からの可干渉光を前記被測定物の一端に照射し
て得られた反射光と、可干渉光である第一参照光とを重
ね合わせて測定干渉光を得、 また前記第二干渉手段は、前記被測定物の脇を通過して
きた第一干渉手段からの可干渉光と、可干渉光である第
二参照光とを重ね合わせて基準干渉光を得、且つ該第二
干渉手段からの可干渉光を前記被測定物の他端に照射し
て得られた反射光と、可干渉光である第二参照光とを重
ね合わせて測定干渉光を得、 前記第一観察手段は、前記第一干渉手段で得られた基準
干渉光及び測定干渉光をそれぞれ干渉縞として同時に観
察し、 前記第二観察手段は、前記第二干渉手段で得られた基準
干渉光及び測定干渉光をそれぞれ干渉縞として、前記第
一観察手段での観察と同時に観察し、 前記被測定物の相対向する端面間の予備値、並びに、前
記第一観察手段で観察された基準干渉縞と測定干渉縞と
の位相差、及び前記第二観察手段で観察された基準干渉
縞と測定干渉縞との位相差に基づいて、前記被測定物の
相対向する端面間の寸法を求めることを特徴とする測長
装置。
1. A length measuring device for measuring a dimension between opposed end faces of an object to be measured whose preliminary value is known, which has an optical axis coincident with the length measuring axis of the object to be measured and has a predetermined separation distance. A first interfering means and a second interfering means arranged at, and a first observing means and a second observing means capable of observing the phase difference of the interference light formed by each of the interfering means, The first interference means emits coherent light having a predetermined beam diameter and wavelength in the length measuring direction of the object to be measured, makes part of the light incident on one end of the object to be measured, and returns reflected light. The rest of the light passes through the side of the object to be measured and is incident on the second interference means, and the second interference means measures coherent light having the same beam diameter and wavelength as the coherent light to the object to be measured. The light is emitted in the long direction, a part of the light is made incident on the other end of the DUT to return the reflected light, and Is passed through the side of the object to be measured and is incident on the first interference means, and the first interference means is coherent light from the second interference means that has passed through the side of the object to be measured, A reference interference light is obtained by superimposing the first reference light, which is a coherent light, and a reflected light obtained by irradiating one end of the measured object with the coherent light from the first interference means, A first reference light, which is an interference light, is superimposed to obtain a measurement interference light, and the second interference means is a coherent light from the first interference means that has passed by the side of the object to be measured, and a coherent light. A reference interference light is obtained by superimposing a second reference light, which is a light, and a coherent light from the second interference means is applied to the other end of the object to be measured, and the reflected light is obtained. A measurement interference light is obtained by superimposing a second reference light which is light, and the first observation means is a reference interference obtained by the first interference means. The light and the measurement interference light are simultaneously observed as interference fringes, and the second observation means is the reference interference light and the measurement interference light obtained by the second interference means as interference fringes, respectively, in the first observation means. Observing at the same time as the observation, the preliminary value between the end faces of the object to be measured facing each other, and the phase difference between the reference interference fringes and the measurement interference fringes observed by the first observing means, and the second observing means. A length measuring apparatus, wherein a dimension between end faces of the object to be measured facing each other is obtained based on a phase difference between an observed reference interference fringe and a measured interference fringe.
【請求項2】 請求項1記載の測長装置において、 前記所定のビーム径及び波長を持つ可干渉光を出射する
一の光照射手段と、 前記光照射手段からの可干渉光を二分割し、一方の分割
光を前記第一干渉手段に入射させ、他方の分割光を前記
第二干渉手段に入射させる一の光分割手段と、 を備え、前記一の光照射手段、前記第一干渉手段及び前
記第二干渉手段で環状の干渉計を構成したことを特徴と
する測長装置。
2. The length measuring apparatus according to claim 1, wherein one light irradiation unit that emits the coherent light having the predetermined beam diameter and wavelength, and the coherent light from the light irradiation unit are split into two. A light splitting means for causing one split light to enter the first interference means and another split light for the second interference means, the one light irradiation means, the first interference means And a second interferometer, which constitutes an annular interferometer.
【請求項3】 請求項2記載の測長装置において、 前記光分割手段から前記第一干渉手段、前記被測定物の
一端、前記第一干渉手段までの光路長をLとし、 前記光分割手段から前記第二干渉手段、前記第一干渉手
段までの光路長をLとし、 前記光分割手段から前記第二干渉手段、前記被測定物の
他端、前記第二干渉手段までの光路長をLとし、 前記光分割手段から前記第一干渉手段、前記第二干渉手
段までの光路長をLとすると、 前記被測定物の相対向する端面間の寸法Lは、下記の
数式で表せることを特徴とする測長装置。 【数1】L=λ/2{N−N+N−N+(ε
−ε)+(ε−ε)} ただし、L:λ(N+ε) L:λ(N+ε) L:λ(N+ε) L:λ(N+ε) λ:前記光の波長 N(i=1〜4):前記光路長Liを前記可干渉光の
波長λで割ったときの商の自然数 ε(i=1〜4):前記光路長Liを前記可干渉光の
波長λで割ったときの商の端数である位相 (ε−ε):前記第一観察手段で観察された基準干
渉縞と測定干渉縞との位相差 (ε−ε):前記第二観察手段で観察された基準干
渉縞と測定干渉縞との位相差
3. The length measuring apparatus according to claim 2, wherein an optical path length from the light splitting means to the first interference means, one end of the object to be measured, and the first interference means is L 1 , and the light splitting is performed. Let L 2 be the optical path length from the means to the second interference means and the first interference means, and the optical path length from the light splitting means to the second interference means, the other end of the DUT, and the second interference means. It was a L 3, wherein the said light splitting means first interference means, when the optical path length to the second interference means to L 4, the dimension L B between the end faces facing each of the object to be measured, the following equation A length measuring device that can be represented by. L B = λ / 2 {N 4 −N 3 + N 2 −N 1 + (ε
4 −ε 3 ) + (ε 2 −ε 1 )} where L 1 : λ (N 1 + ε 1 ) L 2 : λ (N 2 + ε 2 ) L 3 : λ (N 3 + ε 3 ) L 4 : λ (N 4 + ε 4) λ : wavelength N i (i = 1~4) of the light: natural number quotient when the optical path length Li divided by the wavelength lambda of the coherent light ε i (i = 1~4 ): Phase (ε 2 −ε 1 ) which is a fraction of the quotient when the optical path length Li is divided by the wavelength λ of the coherent light: Reference interference fringes and measurement interference fringes observed by the first observation means Phase difference (ε 4 −ε 3 ): the phase difference between the reference interference fringes observed by the second observation means and the measured interference fringes
【請求項4】 請求項1〜3のいずれかに記載の測長装
置において、 前記各観察手段で観察された干渉縞の位相差を読取る読
取手段と、 前記読取手段で得られた各干渉縞の位相差、及び前記被
測定物の相対向する端面間の予備値に基づいて、前記被
測定物の相対向する端面間の寸法を求める演算手段と、 を備えたことを特徴とする測長装置。
4. The length measuring device according to claim 1, wherein the reading unit reads the phase difference of the interference fringes observed by the observation unit, and the interference fringes obtained by the reading unit. And a calculation means for calculating a dimension between the end faces of the object to be measured based on the phase difference between the end faces of the object to be measured and a preliminary value between the end faces of the object to be measured. apparatus.
【請求項5】 請求項1〜4のいずれかに記載の測長装
置において、 前記光源は、複数の異なる波長の可干渉光を発射し、 前記光分割手段と干渉手段間の光軸上に設けられ、前記
可干渉光の波長に応じて、該光軸のずれを補正する光軸
補正手段を備えたことを特徴とする測長装置。
5. The length measuring apparatus according to claim 1, wherein the light source emits a plurality of coherent light beams having different wavelengths, and is on an optical axis between the light splitting unit and the interference unit. A length measuring apparatus provided with an optical axis correcting means for correcting the deviation of the optical axis according to the wavelength of the coherent light.
JP2001390089A 2001-12-21 2001-12-21 Measuring device Expired - Fee Related JP3851160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001390089A JP3851160B2 (en) 2001-12-21 2001-12-21 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001390089A JP3851160B2 (en) 2001-12-21 2001-12-21 Measuring device

Publications (2)

Publication Number Publication Date
JP2003194523A true JP2003194523A (en) 2003-07-09
JP3851160B2 JP3851160B2 (en) 2006-11-29

Family

ID=27598120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390089A Expired - Fee Related JP3851160B2 (en) 2001-12-21 2001-12-21 Measuring device

Country Status (1)

Country Link
JP (1) JP3851160B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275883A (en) * 2005-03-30 2006-10-12 Mitsutoyo Corp Dimension measuring method, and both-end face interferometer
JP2007285783A (en) * 2006-04-14 2007-11-01 Mitsutoyo Corp Dimensional difference measuring method and its instrument
JP2008525801A (en) * 2004-12-23 2008-07-17 コーニング インコーポレイテッド Overlapping common optical path interferometer for two-plane measurement
JP2009276189A (en) * 2008-05-14 2009-11-26 Mitsutoyo Corp Holder of block gauge
JP2011519040A (en) * 2008-04-30 2011-06-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical apparatus for irradiating the object to be measured, and interference measuring apparatus for measuring the surface of the object to be measured
CN102216736A (en) * 2008-08-26 2011-10-12 格拉斯哥大学理事会 Uses of electromagnetic interference patterns
JP2012078269A (en) * 2010-10-05 2012-04-19 Naoyuki Furuyama Ranging method and laser ranging device
JP2014077707A (en) * 2012-10-11 2014-05-01 Mitsutoyo Corp Phase correction value measuring method and measuring method of inter-end dimension of end measure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525801A (en) * 2004-12-23 2008-07-17 コーニング インコーポレイテッド Overlapping common optical path interferometer for two-plane measurement
JP2006275883A (en) * 2005-03-30 2006-10-12 Mitsutoyo Corp Dimension measuring method, and both-end face interferometer
JP2007285783A (en) * 2006-04-14 2007-11-01 Mitsutoyo Corp Dimensional difference measuring method and its instrument
JP2011519040A (en) * 2008-04-30 2011-06-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical apparatus for irradiating the object to be measured, and interference measuring apparatus for measuring the surface of the object to be measured
US8913249B2 (en) 2008-04-30 2014-12-16 Robert Bosch Gmbh Optical system for illuminating a measured object and interferometric system for measuring surfaces of a measured object
JP2009276189A (en) * 2008-05-14 2009-11-26 Mitsutoyo Corp Holder of block gauge
CN102216736A (en) * 2008-08-26 2011-10-12 格拉斯哥大学理事会 Uses of electromagnetic interference patterns
JP2012500989A (en) * 2008-08-26 2012-01-12 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ グラスゴー Use of electromagnetic interference patterns
US9618369B2 (en) 2008-08-26 2017-04-11 The University Court Of The University Of Glasgow Uses of electromagnetic interference patterns
JP2012078269A (en) * 2010-10-05 2012-04-19 Naoyuki Furuyama Ranging method and laser ranging device
JP2014077707A (en) * 2012-10-11 2014-05-01 Mitsutoyo Corp Phase correction value measuring method and measuring method of inter-end dimension of end measure

Also Published As

Publication number Publication date
JP3851160B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
US6208424B1 (en) Interferometric apparatus and method for measuring motion along multiple axes
TWI568991B (en) Encoder interferometry system, lithography system, and encoder interferometry method
US5067817A (en) Method and device for noncontacting self-referencing measurement of surface curvature and profile
TWI457537B (en) Interferometric heterodyne optical encoder system
JP3774476B2 (en) Interferometer system using two wavelengths and lithographic apparatus comprising such a system
TW201140002A (en) Interferometric encoder systems
WO2003064977A2 (en) Multiple degree of freedom interferometer
JP6553967B2 (en) Instantaneous phase shift interferometer
CN113701640B (en) Three-axis grating ruler
KR20190031550A (en) Lattice measuring device
WO2013070848A1 (en) Low coherence interferometry using encoder systems
JP2003194523A (en) Length measuring apparatus
JP4427632B2 (en) High-precision 3D shape measuring device
de Groot et al. Concepts and geometries for the next generation of precision heterodyne optical encoders
US9678436B2 (en) Irradiation module for a measuring apparatus
US10488228B2 (en) Transparent-block encoder head with isotropic wedged elements
US20200240770A1 (en) Device and Method for Calibrating a Measuring Apparatus Using Projected Patterns and a Virtual Plane
Sommargren et al. Sub-nanometer interferometry for aspheric mirror fabrication
Tang et al. Influence of tilt on collinear calibration of a laser interferometer
JP2003269909A (en) Method of measuring shape, instrument for measuring interference, method of manufacturing projection optical system, and projection exposure unit
JP3986903B2 (en) Dimension measuring device
DE GROOT et al. Leslie L. Deck
JP2001227929A (en) Angle measuring method and apparatus
US11879721B2 (en) Interferometric measurement method and interferometric measurement arrangement
EP1443304A2 (en) Interferometric plural-dimensional displacement measuring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

R150 Certificate of patent or registration of utility model

Ref document number: 3851160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees