JP2003194282A - Electrothermal mat - Google Patents

Electrothermal mat

Info

Publication number
JP2003194282A
JP2003194282A JP2001399614A JP2001399614A JP2003194282A JP 2003194282 A JP2003194282 A JP 2003194282A JP 2001399614 A JP2001399614 A JP 2001399614A JP 2001399614 A JP2001399614 A JP 2001399614A JP 2003194282 A JP2003194282 A JP 2003194282A
Authority
JP
Japan
Prior art keywords
electrothermal
wire
heating wire
heating
mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001399614A
Other languages
Japanese (ja)
Inventor
Kazunori Umeda
一徳 梅田
Keisuke Asakura
啓介 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2001399614A priority Critical patent/JP2003194282A/en
Publication of JP2003194282A publication Critical patent/JP2003194282A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • B29C65/348Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic with a polymer coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5224Joining tubular articles for forming fork-shaped connections, e.g. for making Y-shaped pieces
    • B29C66/52241Joining tubular articles for forming fork-shaped connections, e.g. for making Y-shaped pieces with two right angles, e.g. for making T-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Surface Heating Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrothermal mat capable of preventing adjacent electrothermal wires from shorting even if kink is generated, and winding up the electrothermal wires at a suitable interval according to wire diameters. <P>SOLUTION: This electrothermal mat for molding an electric welding joint spirally winds electrothermal wires 14 around a through hole provided on the center portion of a synthetic resin sheet. In this electrothermal mat, assuming that the wire expansion rate of the electrothermal wire is α, the diameter of the electrothermal wire is d, the diameter of the most outer peripheral portion of the electrothermal wire spirally wound is D, a temperature rise until the electrothermal wire stars buckling is ΔT, and a temperature deducting the ΔT from a temperature with which resin of a joining part is melted by heating of the electrothermal wire is ΔT', a value H is obtained from the below expression (1). H=/2[(d/4√αΔT+DαΔT)<SP>2</SP>(1+αΔT)<SP>2</SP>-(d/4√αΔT-DαΔT')<SP>2</SP>]<SP>1/2</SP>...(1) The interval W of the electrothermal wire in the most outer peripheral portion is set in a range indicated by the below expression (2). 2H>W>H...(2). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、電熱マットに関
し、詳しくは、合成樹脂管に分岐管等を設ける際に用い
られる電気融着継手のサドル部下面に一体的に融着され
る電熱マットに関する。 【0002】 【従来の技術】合成樹脂管に分岐管を設けるための分岐
管継手として、サドル部下面に埋設した電熱線に通電し
て発熱させ、周囲の樹脂を溶融させて融着接合する電気
融着継手が知られている。このような電気融着継手は、
あらかじめ電熱線を所定形状に埋め込んだ状態に形成し
た電熱マットを継手成形用金型にインサートして射出成
形することにより、サドル部下面の所定位置に電熱線を
埋設した状態に形成される。 【0003】前記電熱マットは、例えば、特許第292
9350公報や特開2001−82670号公報等に記
載されているように、通常、熱可塑性樹脂を射出成形し
て、その一面に渦巻状の溝を有する基板を形成し、前記
溝内に電熱線を埋め込むことにより形成される。 【0004】 【発明が解決しようとする課題】このような電熱マット
における電熱線の間隔は、接合時に周囲の樹脂を均一に
溶融させることができるように設定され、一般に、電熱
線の線径に応じて0.6〜5.0mmの範囲に設定され
ている。この電熱線の間隔が広すぎると樹脂の溶融が均
一に行えずに所定の接合強度が得られなくなるおそれが
あるので、通常は、電熱線の間隔を狭くすることが多
い。 【0005】一方、通電時の発熱により電熱線が膨張し
て局部的に座屈変形し、キンクと呼ばれる現象が発生す
ることがあり、電熱線の間隔を狭くした場合、このキン
クによって隣接する電熱線同士が短絡し、一部の電熱線
が発熱せずに樹脂溶融熱量が不十分となり、前記同様に
樹脂の溶融が均一に行えずに所定の接合強度が得られな
くなるおそれがある。このキンクの発生は、特に外周側
の電熱線で発生しやすい。また、電熱線の間隔を狭くす
ると、その分電熱線の長さが長くなって電熱線使用量が
増大するという問題もある。 【0006】そこで本発明は、キンクが発生しても隣接
する電熱線同士が短絡することを防止し、線径に応じた
最適な間隔で電熱線を巻回することができる電熱マット
を提供することを目的としている。 【0007】 【課題を解決するための手段】上記目的を達成するた
め、本発明の電熱マットは、合成樹脂シートの中央部に
設けられた貫通孔の周囲に渦巻き状に電熱線を巻回した
電気融着継手成形用の電熱マットにおいて、電熱線の線
膨張率をα、電熱線の直径をd、渦巻き状に巻回された
電熱線の最外周部の直径をD、電熱線が座屈を開始する
までの温度上昇をΔT、電熱線の発熱によって接合部分
の樹脂が溶融する温度から前記ΔTを差し引いた温度を
ΔT’として下記の式(1) 【数2】 ・・・(1) により求めた値Hに対して、最外周部における電熱線の
間隔Wを下記の式(2) 2H>W>H ・・・(2) で示す範囲に設定したことを特徴としている。 【0008】 【発明の実施の形態】図1は電熱マットの一例を示す平
面図、図2は電熱マットを使用して成形した電気融着継
手の一例を示す一部断面側面図、図3は電熱線における
キンクの発生状態を示す説明図である。 【0009】まず、図1に示すように、電熱マット11
は、合成樹脂シートからなる基板12の中央部に設けら
れた貫通孔13の周囲に渦巻き状に電熱線14を巻回し
たものであって、電熱線14を巻回する部分には、あら
かじめ電熱線埋め込み用の螺旋溝が設けられている。ま
た、電熱線14の両端には、図示しない端子が接続され
る。 【0010】このような電熱マット11を電気融着継手
成形用の金型にセットしてインサート成形することによ
り、図2に示すように、湾曲したサドル部15の下面に
電熱マット11を一体的に融着した電気融着継手16が
得られる。なお、本例では、基板12の形状を円形とし
たが、四角形等とすることもできる。 【0011】一般的に、前記基板12はポリエチレンや
ポリブテン等のポリオレフィン樹脂により形成され、通
常、厚みは1〜3mm程度である。また、前記電熱線1
4には、線径0.1〜1.5mmのニクロム線や銅ニッ
ケル線が用いられており、内周側から外周側まで略均一
の間隔で巻回されている。さらに、融着接合時の電熱線
14の発熱温度は350℃程度であり、樹脂の溶融によ
って座屈変形が開始する温度は、通常、120〜150
℃である。 【0012】このような電熱マット11において、図3
に示すようなキンク17が発生する場合、このキンク1
7の大きさ、すなわち、座屈長さ(Lk[mm])、座
屈部分の長さ(Ls[mm])、たわみ量(h[m
m])は、以下のようにして求めることができる。ま
ず、電熱線14が熱膨張することにより発生する圧縮応
力(σ)は、該電熱線の弾性率(E[N・m−2])、
線膨張率(α[/℃])、電熱線の温度上昇(ΔT
[℃])により、 σ=E・α・ΔT という式で求めることができる。 【0013】さらに、オイラーの座屈理論式から、電熱
線の座屈強度(σk)は、座屈長さ(Lk)と電熱線の
線径(直径:d[mm])とから求まる定数(λ)、す
なわち、λ=4Lk/dの定数(λ)と円周率(π)と
から、σk=π・E/λで求められるので、 【数3】 となる。 【0014】このとき、電熱線が発熱から座屈開始まで
に温度(ΔT)だけ上昇し、圧縮応力(σ)が電熱線の
座屈強度(σk)を越える瞬間に電熱線が座屈すると仮
定し、σ=σkとすると、 E・α・ΔT=π・E(d/4Lk) となるから、座屈長さ(Lk)は、 【数4】 という式で求められる。 【0015】このときの座屈部分の長さ(Ls)は、座
屈を生じた電熱線の両端が固定されていると仮定する
と、両固定端の間の電熱線の長さは、座屈が発生した部
分の電熱線の渦巻き直径(D[mm])と円周率(π)
とから求められるので、この部分における電熱線の熱膨
張による伸長分(π・D・α・ΔT)を加味すると、 Ls=(Lk+π・D・α・ΔT)/2 という式で求められる。 【0016】座屈発生後に電熱線の温度が更に温度(Δ
T’)上昇して融着接合温度(最高温度)になったと
き、すなわち、電熱線の発熱によって接合部分の樹脂が
溶融する温度から前記座屈開始持までの温度上昇(Δ
T)を差し引いた温度(ΔT’)だけ上昇したときの座
屈長さ(Lk’)、座屈部分の長さ(Ls’)及びたわ
み量(最大たわみ量:H[mm])は、 Lk’=Lk−π・D・α・ΔT’ Ls’=Ls(1+α・ΔT’) 【数5】 という式でそれぞれ求めることができる。 【0017】したがって、融着接合時に発生するキンク
の最大高さは、前記最大たわみ量(H)として求められ
るので、このたわみ量(H)よりも電熱線の間隔(W
[mm])を大きくしておけば、キンクの発生で電熱線
同士が短絡することを防止できることになる。そして、
キンクの発生は、渦巻き直径が大きな外周部により多く
発生するので、少なくとも最外周部における電熱線の間
隔(W)を前記たわみ量(H)よりも大きくし、一方、
電熱線の間隔(W)が広くなりすぎると接合面の樹脂を
十分に溶融させるのが困難になるので、電熱線の間隔
(W)は前記たわみ量(H)の2倍未満、すなわち、間
隔(W)がたわみ量(H)に対して、 2H>W>H の範囲、好ましくは、 1.5H>W>H の範囲になるように電熱線の間隔(W)設定すれば、キ
ンクによる短絡を防止しながら、必要十分な状態で樹脂
を溶融させることができるので、この電熱マットを使用
した継手の接合を確実に行えることになる。さらに、電
熱線の使用長さも必要最小限で済むので、電熱線に要す
るコストの削減も図れる。 【0018】 【実施例】電気融着継手として、サイズが50×30m
mのポリエチレン樹脂製分岐サドル継手(図2参照)を
射出成形するにあたり、厚さが1.5mmのポリエチレ
ン樹脂製基板に線径(d)が0.36mmの電熱線を渦
巻き状に巻回した電熱マット(図1参照)を成形した。
この電熱マットの設計条件として、電熱線の線膨張率
(α)を1.5×10−5/℃、渦巻き状に巻回した電
熱線の最外周部の直径(D)を84mm、電熱線の発熱
から座屈開始までの温度上昇(ΔT)を110℃、電熱
線の発熱によって接合部分の樹脂が溶融する温度から前
記温度上昇(ΔT)を差し引いた温度(ΔT’)を20
0℃と想定し、電熱線の最大たわみ量(H)を前記式
(1)を用いて求めた結果、2.06mmとなった。こ
の最大たわみ量2.06mmに対し、電熱線の間隔
(W)を3.0mmに設定した電熱マットを使用して前
記分岐サドル継手を成形した。この分岐サドル継手は、
ポリエチレン管との融着作業時に電熱線が短絡して融着
不良が発生することはなかった。一方、間隔(W)を
1.5mmに設定した場合は、一部の分岐サドル継手に
おいて電熱線の短絡が原因と思える融着不良が発生し
た。 【0019】 【発明の効果】以上説明したように、本発明の電熱マッ
トによれば、キンクが発生しても隣接する電熱線同士が
短絡することを防止できるとともに、線径に応じた最適
な間隔で電熱線を巻回することができる。また、電熱線
の使用長さの最適化も図れる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric heating mat, and more particularly, to an electric heating joint provided on a lower surface of a saddle portion of an electric fusion joint used for providing a branch pipe or the like to a synthetic resin pipe. The present invention relates to an electric heating mat that is integrally fused. 2. Description of the Related Art As a branch pipe joint for providing a branch pipe in a synthetic resin pipe, an electric wire buried in the lower surface of a saddle portion is energized to generate heat, and the surrounding resin is melted and fused and joined. Fusion joints are known. Such an electric fusion joint is
An electric heating mat, in which a heating wire is embedded in a predetermined shape in advance, is inserted into a joint molding die and injection-molded to form the heating wire at a predetermined position on the lower surface of the saddle portion. The electric heating mat is disclosed in, for example, Japanese Patent No. 292
As described in JP-A-9350 and JP-A-2001-82670, usually, a thermoplastic resin is injection-molded to form a substrate having a spiral groove on one surface thereof, and a heating wire is formed in the groove. Is formed by embedding. [0004] The distance between the heating wires in such an electric heating mat is set so that the surrounding resin can be uniformly melted at the time of joining. Accordingly, the distance is set in the range of 0.6 to 5.0 mm. If the distance between the heating wires is too large, the resin may not be uniformly melted and a predetermined bonding strength may not be obtained. Therefore, usually, the distance between the heating wires is often narrowed. On the other hand, the heating wire expands due to heat generated at the time of energization, and locally buckles and deforms, and a phenomenon called kink may occur. When the interval between the heating wires is reduced, the kink is adjacent to the heating wire. Heat wires are short-circuited, some of the heating wires do not generate heat, and the amount of heat for melting the resin becomes insufficient. As described above, there is a possibility that the resin cannot be melted uniformly and a predetermined bonding strength cannot be obtained. The generation of the kink tends to occur particularly on the outer heating wire. Further, when the interval between the heating wires is narrowed, there is a problem that the length of the heating wire is lengthened and the heating wire usage increases. Accordingly, the present invention provides an electric heating mat capable of preventing adjacent electric heating wires from being short-circuited even if a kink is generated, and winding the heating wires at an optimum interval according to a wire diameter. It is aimed at. In order to achieve the above object, in the electric heating mat of the present invention, a heating wire is spirally wound around a through hole provided in a central portion of a synthetic resin sheet. In the electric heating mat for forming the electric fusion joint, the coefficient of linear expansion of the heating wire is α, the diameter of the heating wire is d, the outermost diameter of the spirally wound heating wire is D, and the heating wire buckles. The temperature rise until the start of the heating is ΔT, and the temperature obtained by subtracting the ΔT from the temperature at which the resin at the bonding portion is melted by the heat generated by the heating wire is ΔT ′, and the following equation (1) is used. (1) The distance W between the heating wires at the outermost periphery is set to a range represented by the following expression (2) 2H>W> H (2) with respect to the value H obtained by (1). Features. FIG. 1 is a plan view showing an example of an electric heating mat, FIG. 2 is a partial cross-sectional side view showing an example of an electric fusion joint formed using the electric heating mat, and FIG. It is explanatory drawing which shows the generation state of the kink in a heating wire. First, as shown in FIG.
Is a spirally wound heating wire 14 around a through hole 13 provided at the center of a substrate 12 made of a synthetic resin sheet. A spiral groove for embedding heat rays is provided. Further, terminals (not shown) are connected to both ends of the heating wire 14. By setting such an electrothermal mat 11 in a mold for electrofusion joint molding and insert molding, the electrothermal mat 11 is integrally formed on the lower surface of the curved saddle portion 15 as shown in FIG. Is obtained. In the present example, the shape of the substrate 12 is circular, but may be square or the like. Generally, the substrate 12 is formed of a polyolefin resin such as polyethylene or polybutene, and usually has a thickness of about 1 to 3 mm. The heating wire 1
4, a nichrome wire or a copper nickel wire having a wire diameter of 0.1 to 1.5 mm is used, and is wound at substantially uniform intervals from the inner peripheral side to the outer peripheral side. Furthermore, the heat generation temperature of the heating wire 14 at the time of fusion bonding is about 350 ° C., and the temperature at which buckling deformation starts due to melting of the resin is usually 120 to 150 ° C.
° C. In such an electric heating mat 11, FIG.
When the kink 17 as shown in FIG.
7, the buckling length (Lk [mm]), the length of the buckling portion (Ls [mm]), the amount of deflection (h [m
m]) can be obtained as follows. First, the compressive stress (σ) generated by the thermal expansion of the heating wire 14 is determined by the elastic modulus (E [N · m −2 ]) of the heating wire,
Linear expansion coefficient (α [/ ° C]), temperature rise of heating wire (ΔT
[° C.]), it can be obtained by the equation of σ = E · α · ΔT. Further, from Euler's buckling theoretical formula, the buckling strength (σk) of the heating wire is a constant (Dk) obtained from the buckling length (Lk) and the wire diameter (diameter: d [mm]). λ), that is, σ k = π 2 · E / λ 2 from the constant (λ) of λ = 4Lk / d and the pi (π). It becomes. At this time, it is assumed that the heating wire rises by the temperature (ΔT) from heat generation to the start of buckling, and the heating wire buckles at the moment when the compressive stress (σ) exceeds the buckling strength (σk) of the heating wire. If σ = σk, then E · α · ΔT = π 2 · E (d / 4Lk) 2, and the buckling length (Lk) is given by: It is obtained by the formula. The length (Ls) of the buckled portion at this time is as follows, assuming that both ends of the buckled heating wire are fixed. Diameter of spiral wire (D [mm]) and pi (π)
Therefore, taking into account the extension (π · D · α · ΔT) of the heating wire in this part due to thermal expansion, it can be obtained by the following formula: Ls = (Lk + π · D · α · ΔT) / 2. After the occurrence of buckling, the temperature of the heating wire is further increased by the temperature (Δ
T ′) When the temperature rises to the fusion bonding temperature (maximum temperature), that is, the temperature rise from the temperature at which the resin at the bonding portion melts due to the heat generated by the heating wire to the time when the buckling starts (Δ)
T), the buckling length (Lk '), the length of the buckling portion (Ls'), and the amount of deflection (maximum deflection: H [mm]) when the temperature rises by the temperature (ΔT') minus Lk are Lk '= Lk-π · D · α · ΔT' Ls '= Ls (1 + α · ΔT') Can be obtained by the following equations. Therefore, since the maximum height of the kink generated at the time of fusion bonding is obtained as the maximum deflection (H), the distance (W) between the heating wires is larger than the maximum deflection (H).
If [mm]) is increased, short-circuiting between the heating wires due to generation of kink can be prevented. And
Since the occurrence of kink occurs more frequently in the outer peripheral portion where the spiral diameter is large, at least the interval (W) between the heating wires at the outermost peripheral portion is made larger than the deflection amount (H).
If the interval (W) between the heating wires is too wide, it becomes difficult to sufficiently melt the resin on the bonding surface. Therefore, the interval (W) between the heating wires is less than twice the amount of deflection (H), that is, the interval. If the interval (W) between the heating wires is set so that (W) is in the range of 2H>W> H, preferably 1.5H>W> H with respect to the deflection amount (H), kink Since the resin can be melted in a necessary and sufficient state while preventing a short circuit, joining of the joint using the electric heating mat can be surely performed. Further, since the required length of the heating wire can be minimized, the cost required for the heating wire can be reduced. [Embodiment] The size of the electrofusion joint is 50 × 30 m.
In order to injection-mold a polyethylene resin branch saddle joint (see FIG. 2), a heating wire having a wire diameter (d) of 0.36 mm was spirally wound around a polyethylene resin substrate having a thickness of 1.5 mm. An electric heating mat (see FIG. 1) was formed.
As the design conditions of the heating mat, the linear expansion coefficient (α) of the heating wire is 1.5 × 10 −5 / ° C., the outermost diameter (D) of the spirally wound heating wire is 84 mm, and the heating wire is The temperature rise (ΔT) from the heat generation to the start of buckling is 110 ° C., and the temperature (ΔT ′) obtained by subtracting the temperature rise (ΔT) from the temperature at which the resin at the joint is melted by the heat generated by the heating wire is 20.
Assuming that the temperature was 0 ° C., the maximum deflection (H) of the heating wire was calculated using the above equation (1), and as a result, it was 2.06 mm. The branch saddle joint was formed using an electric heating mat in which the distance (W) between the heating wires was set to 3.0 mm with respect to the maximum deflection amount of 2.06 mm. This branch saddle joint
During the fusion work with the polyethylene tube, the heating wire did not short-circuit and poor fusion did not occur. On the other hand, when the interval (W) was set to 1.5 mm, defective fusion occurred at some branch saddle joints, which could be caused by a short circuit of the heating wire. As described above, according to the electric heating mat of the present invention, it is possible to prevent the adjacent electric heating wires from being short-circuited even if a kink occurs, and to provide an optimum heating wire according to the wire diameter. The heating wire can be wound at intervals. Further, the use length of the heating wire can be optimized.

【図面の簡単な説明】 【図1】 電熱マットの一例を示す平面図である。 【図2】 電熱マットを使用して成形した電気融着継手
の一例を示す一部断面側面図である。 【図3】 電熱線におけるキンクの発生状態を示す説明
図である。 【符号の説明】 11…電熱マット、12…基板、13…貫通孔、14…
電熱線、15…サドル部、16…電気融着継手、17…
キンク、D…電熱線の渦巻き外径、H…最大たわみ量、
h…たわみ量、Lk,Lk’…座屈長さ、Ls,Ls’
…座屈部分の長さ、W…電熱線の間隔
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing an example of an electric heating mat. FIG. 2 is a partial cross-sectional side view showing an example of an electro-fusion joint formed using an electric heating mat. FIG. 3 is an explanatory diagram showing a state of occurrence of kink in a heating wire. [Description of Signs] 11 ... Electrothermal mat, 12 ... Substrate, 13 ... Through hole, 14 ...
Heating wire, 15 ... saddle part, 16 ... electric fusion joint, 17 ...
Kink, D: outer diameter of spiral of heating wire, H: maximum deflection,
h: Deflection amount, Lk, Lk '... Buckling length, Ls, Ls'
… Length of buckling part, W… Space of heating wire

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3H019 GA03 3K034 AA02 AA12 AA21 BB08 BB13 BC06 BC12 HA07 JA01 JA09 4F211 AD03 AG01 AG13 AH11 AH43 TA01 TC19 TC20 TH10 TN08 TN31    ────────────────────────────────────────────────── ─── Continuation of front page    F-term (reference) 3H019 GA03                 3K034 AA02 AA12 AA21 BB08 BB13                       BC06 BC12 HA07 JA01 JA09                 4F211 AD03 AG01 AG13 AH11 AH43                       TA01 TC19 TC20 TH10 TN08                       TN31

Claims (1)

【特許請求の範囲】 【請求項1】 合成樹脂シートの中央部に設けられた貫
通孔の周囲に渦巻き状に電熱線を巻回した電気融着継手
成形用の電熱マットにおいて、電熱線の線膨張率をα、
電熱線の直径をd、渦巻き状に巻回された電熱線の最外
周部の直径をD、電熱線が座屈を開始するまでの温度上
昇をΔT、電熱線の発熱によって接合部分の樹脂が溶融
する温度から前記ΔTを差し引いた温度をΔT’として
下記の式(1) 【数1】 ・・・(1) により求めた値Hに対して、最外周部における電熱線の
間隔Wを下記の式(2) 2H>W>H ・・・(2) で示す範囲に設定したことを特徴とする電熱マット。
Claims: 1. An electric heating mat for forming an electric fusion joint in which an electric heating wire is spirally wound around a through hole provided in a central portion of a synthetic resin sheet. The expansion rate is α,
The diameter of the heating wire is d, the diameter of the outermost peripheral portion of the spirally wound heating wire is D, the temperature rise until the heating wire starts to buckle is ΔT, and the resin at the joining portion is heated by the heating wire. The temperature obtained by subtracting the above ΔT from the melting temperature is defined as ΔT ′, and the following equation (1) is used. (1) The distance W between the heating wires at the outermost periphery is set to the range shown by the following expression (2) 2H>W> H (2) with respect to the value H obtained by (1). Characteristic electric heating mat.
JP2001399614A 2001-12-28 2001-12-28 Electrothermal mat Pending JP2003194282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001399614A JP2003194282A (en) 2001-12-28 2001-12-28 Electrothermal mat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399614A JP2003194282A (en) 2001-12-28 2001-12-28 Electrothermal mat

Publications (1)

Publication Number Publication Date
JP2003194282A true JP2003194282A (en) 2003-07-09

Family

ID=27604565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399614A Pending JP2003194282A (en) 2001-12-28 2001-12-28 Electrothermal mat

Country Status (1)

Country Link
JP (1) JP2003194282A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089599A (en) * 2009-10-23 2011-05-06 Mitsui Kagaku Sanshi Kk Electric heating mat
JP2015188962A (en) * 2014-03-28 2015-11-02 日本電気株式会社 Fusion cutting device and fusion cutting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089599A (en) * 2009-10-23 2011-05-06 Mitsui Kagaku Sanshi Kk Electric heating mat
JP2015188962A (en) * 2014-03-28 2015-11-02 日本電気株式会社 Fusion cutting device and fusion cutting method

Similar Documents

Publication Publication Date Title
EP1054206B1 (en) Apparatus and method for fusion joining a pipe and fittings
JP2007135398A (en) Elastic sleeve support and method of manufacturing the same
JPH05196187A (en) Connecting method of pipe and joint
JP2003194282A (en) Electrothermal mat
JPH0735879B2 (en) Coated exothermic wires for joints and sleeves and joints for joints
JP3261531B2 (en) Fusion joining method for hollow plastic members
JPH05187588A (en) Joint for thermal plastic resin pipe
JP4569880B2 (en) Manufacturing method of electroweld plastic pipe joint
JP2008267434A (en) Electrically fused joint
JPH112382A (en) Electric-fusion-type branch coupling
JP2023046656A (en) electric fusion joint
JPH0389095A (en) Thermoplastic pipe joint and manufacture thereof
JP3764522B2 (en) Electrofusion joint and its manufacturing method
JP4232124B2 (en) Electroweld plastic fittings
JPH09323359A (en) Ih resin heater and bonding device for convoluted pipe using the heater
JP3380006B2 (en) Fusion joint and method for joining fusion joint to pipe
JPH03129195A (en) Fittings for plastic pipes and how to join plastic pipes
JP2002501842A (en) Connection method of resin pipe by heat fusion
JPH11192665A (en) Control method of energization of electric fusion joint
JPH11141786A (en) Electric heating mat
JP2003042382A (en) Electric fusion joint
JP2863253B2 (en) Manufacturing method of electrofusion joint
JP3762554B2 (en) Electrofusion fitting
JPH0968296A (en) Electric fusion coupling
US20050126702A1 (en) Assembly for connecting two thermoplastic tubular elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226