JP2003192360A - Die for glass molding and method for manufacturing glass optical element - Google Patents

Die for glass molding and method for manufacturing glass optical element

Info

Publication number
JP2003192360A
JP2003192360A JP2001394910A JP2001394910A JP2003192360A JP 2003192360 A JP2003192360 A JP 2003192360A JP 2001394910 A JP2001394910 A JP 2001394910A JP 2001394910 A JP2001394910 A JP 2001394910A JP 2003192360 A JP2003192360 A JP 2003192360A
Authority
JP
Japan
Prior art keywords
molding
silicon carbide
glass
mold
molding die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001394910A
Other languages
Japanese (ja)
Other versions
JP4004286B2 (en
Inventor
Shinichiro Hirota
慎一郎 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2001394910A priority Critical patent/JP4004286B2/en
Publication of JP2003192360A publication Critical patent/JP2003192360A/en
Application granted granted Critical
Publication of JP4004286B2 publication Critical patent/JP4004286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/24Carbon, e.g. diamond, graphite, amorphous carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/34Intermediate layers, e.g. graded zone of base/top material of ceramic or cermet material, e.g. diamond-like carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/72Barrel presses or equivalent, e.g. of the ring mould type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die good in precision of a formed surface, without a fear for long term reliability, and capable of preventing occurance of a detect of a glass element. <P>SOLUTION: The die 1 is polished after ground around forming faces 2a, 3a made of silicon carbide, and worked into a spherical surface of aspherical surface with a predetermined shape precision and a surface roughness R<SB>max</SB>of ≤25 nm, then subjected to 1,500-2,000°C heat treatment. Thereby the forming surface 2a, 3a, or other materials used around them can be strengthened. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガラスのプレス成
形に使用する成形型と、それを用いたガラス光学素子の
製造方法とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold used for press molding of glass and a method for manufacturing a glass optical element using the mold.

【0002】[0002]

【従来の技術】ガラス素材を成形型内でプレス成形して
高精度のガラス光学素子を製造するための技術について
は種々の検討がなされている。例えば、ガラス素材をプ
レス成形するための成形型として、成形面が炭化ケイ素
(SiC)や窒化ケイ素等から成る成形型が知られてい
る。また特公平4−61816号公報は、炭化ケイ素から成る
成形型の表面にスパッタ法で硬質炭素膜を形成した成形
型を開示している。さらに特開平2−199036号公報に
は、表面がCVD法により成膜した炭化ケイ素から成る
基盤上に、イオンプレーティング法によりi−カーボン
膜を被覆した成形型が開示されている。また特開平6−1
91864号公報には、i−カーボン膜と、硬質炭素膜を順
次積層した成形型の加工面が開示されている。
2. Description of the Related Art Various studies have been made on a technique for manufacturing a glass optical element with high precision by press-molding a glass material in a molding die. For example, as a mold for press-molding a glass material, a mold whose molding surface is made of silicon carbide (SiC), silicon nitride, or the like is known. Japanese Patent Publication No. 4-61816 discloses a mold having a hard carbon film formed on the surface of a mold made of silicon carbide by a sputtering method. Further, JP-A-2-199036 discloses a molding die in which an i-carbon film is coated by an ion plating method on a substrate made of silicon carbide whose surface is formed by a CVD method. In addition, JP-A 6-1
Japanese Patent No. 91864 discloses a processed surface of a molding die in which an i-carbon film and a hard carbon film are sequentially laminated.

【0003】[0003]

【発明が解決しようとする課題】炭化ケイ素、窒化ケイ
素等は、高温硬度、高温強度等の優れた材料であり、成
形型の素材として適している。例えばCVD法で成形型
の表面を製作すれば、気孔等の欠陥がなく緻密であり、
研磨することにより非常に平滑な鏡面を得ることができ
る。こうした素材は、高温での耐酸化性が高い。耐酸化
性が高いというのは、その極表面が酸化し、それが深さ
方向に進行しにくいものである。しかしながら、その極
表面に数10オングストローム程度の酸化物の層が生成
し、プレス成形のために軟化したガラス素材により、ガ
ラスの融着が発生しやすい問題がある。更に、プレス成
形後の冷却の際に成形型のところどころに応力集中が起
こるため、成形型の表層がスポット状にえぐり取られる
現象(以下、この現象をプルアウトと呼ぶ)が発生する
ことがある。
Silicon carbide, silicon nitride, and the like are excellent materials such as high temperature hardness and high temperature strength, and are suitable as a material for a molding die. For example, if the surface of the mold is manufactured by the CVD method, it is dense without defects such as pores,
A very smooth mirror surface can be obtained by polishing. Such materials have high resistance to oxidation at high temperatures. High resistance to oxidation means that the extreme surface is oxidized and it is difficult for it to progress in the depth direction. However, there is a problem in that an oxide layer having a thickness of about several tens of angstroms is formed on the extreme surface thereof, and the glass material softened by press molding easily causes glass fusion. Furthermore, when cooling after press molding, stress concentration occurs in places of the mold, so that a phenomenon in which the surface layer of the mold is spotted in a spot shape (hereinafter, this phenomenon is referred to as pull-out) may occur.

【0004】前記特公平4−61816号公報や特開平2−199
036号公報に開示されたように、スパッタ法やイオンプ
レーティング法により炭素系薄膜で成形型の炭化ケイ素
または窒化ケイ素表面を被膜することは、離型性を向上
し、融着及びプルアウトを防ぐために有効な手段であ
る。炭化ケイ素や窒化ケイ素と炭素系薄膜の付着力は強
い。そして、非酸化性雰囲気中で軟化ガラスをプレスす
ると、炭素系薄膜に対してガラスの融着が起きず、離型
性がよい。このため、炭素系薄膜を被覆した成形型はプ
レスレンズ用成形型として有効に使用される。しかしな
がら、成膜技術で常に問題になるのは成形型のプレス成
形面の全面にわたって、無欠陥で完全な成膜を行うこと
が生産技術上難しいことである。ミクロ的に見ると数ヶ
所に異物の付着があったり、膜ヌケが存在したりする。
このため、プルアウトを完全には防ぎきれない。
[0004] Japanese Patent Publication No. 4-61816 and JP-A-2-199
As disclosed in Japanese Patent No. 036, coating the surface of a silicon carbide or silicon nitride of a mold with a carbon-based thin film by a sputtering method or an ion plating method improves mold releasability and prevents fusion and pullout. It is an effective means for The adhesion between silicon carbide and silicon nitride and the carbon thin film is strong. Then, when the softened glass is pressed in a non-oxidizing atmosphere, the glass is not fused to the carbon-based thin film and the releasability is good. Therefore, the mold coated with the carbon-based thin film is effectively used as a mold for press lenses. However, a problem with the film forming technique is that it is difficult in terms of production technology to form a defect-free complete film over the entire press-molded surface of the mold. From a microscopic point of view, foreign matter may be attached at several places, or film blanks may be present.
Therefore, pull-out cannot be completely prevented.

【0005】更に、プレスを繰り返すうちに、炭素系薄
膜は酸化されて消耗する。すなわち、プレス成形の雰囲
気を非酸化性雰囲気にした場合でも、ガラス内外の水分
や酸素による酸化を完全に防ぐことは困難なため、炭素
系薄膜の酸化、消耗が起き、これがプルアウトの原因と
なる。そこで、ある期間、或いはあるプレス回数の経過
後、炭素系薄膜を剥離除去して、新たな炭素系薄膜を形
成する再生作業を行う必要がある。こうした努力を行っ
ても、ある確率でプルアウトが発生することになる。
Further, as the pressing is repeated, the carbon thin film is oxidized and consumed. That is, even if the press molding atmosphere is set to a non-oxidizing atmosphere, it is difficult to completely prevent oxidation due to moisture and oxygen inside and outside the glass, so that the carbon-based thin film is oxidized and consumed, which causes pull-out. . Therefore, after a certain period of time or a certain number of pressings, it is necessary to peel off the carbon-based thin film and perform a reclaiming operation to form a new carbon-based thin film. Even with such efforts, there is a certain probability that pullout will occur.

【0006】また、ガラス成分が炭素系薄膜に拡散して
SiCとの付着力が弱まり、膜剥離を起こす可能性もあ
る。膜剥離を起こすとプレスによってガラスがSiCに
融着し、冷却時の応力発生によってSiCがスポット状
にえぐり取られるプルアウトが起きる。プルアウトが発
生すると、得られたガラス光学素子は欠陥を有して不良
品となる。また、高価な成形型は最早使用できなくな
る。尚、特開平8-277127号公報はガラスの組成や特性面
からプルアウト低減を目指したものである。
Further, the glass component may diffuse into the carbon-based thin film to weaken the adhesive force with SiC and cause film peeling. When the film is peeled off, the glass is fused to the SiC by the press, and stress is generated during cooling, so that the SiC is spotted and pulled out. When pullout occurs, the obtained glass optical element has a defect and becomes a defective product. Also, expensive molds can no longer be used. Incidentally, JP-A-8-277127 aims at reduction of pull-out from the viewpoint of the composition and characteristics of glass.

【0007】上記のとおり、炭素系薄膜やガラス組成に
より、ある程度の融着やプルアウトの現象を抑えること
はできるが、依然としてガラス光学素子の不良品を防ぐ
ためには、炭素系薄膜の再生等の型メンテナンスを相当
頻度で行ったとしても、早晩融着やプルアウトが発生
し、精度の高い光学素子の生産性上の問題となってい
た。また、プルアウトが起きてしまうと、炭素系薄膜を
再生しても、型自体が使用に耐えなくなるため、生産コ
ストの面でも大きな課題であった。
As described above, the carbon-based thin film and the glass composition can suppress the phenomenon of fusion and pull-out to some extent. However, in order to prevent defective glass optical elements, the carbon-based thin film must be regenerated. Even if the maintenance is performed frequently, fusion and pull-out occur early and late, which has been a problem in terms of productivity of highly accurate optical elements. In addition, if pull-out occurs, the mold itself cannot be used even if the carbon-based thin film is regenerated, which is a big problem in terms of production cost.

【0008】元来、SiCはガラスに比してはるかに強
度が高い。にもかかわらず、上述したように例えばガラ
スが融着した際、又は冷却によって応力が集中した際に
ガラスに負けてえぐりとられる現象が起き、成形精度や
型寿命を損なう。この点につき、本発明者は以下を見出
した。例えばCVD法により作られたSiC(以下、C
VD−SiCと記す)をダイヤモンド等で研削及び/又
は研磨すると、研削キズや研磨キズが見られる。キズの
下にはわずかにマイクロクラックがあり、またCVD−
SiCは粒成長しているため粒界もあるものとみられ
た。こうした微細なキズやマイクロクラックは、型素
材、例えばSiCの表面強度に影響し、力がかかった場
合にSiC表面がえぐりとられてしまう。ホットプレス
法による炭化ケイ素においても、同種の問題が存在し、
粒子脱落による型の劣化が著しい。
Originally, SiC is much stronger than glass. Nevertheless, as described above, for example, when the glass is fused or stress concentrates due to cooling, the phenomenon of losing the glass and being dug out occurs, which deteriorates the molding accuracy and the mold life. In this regard, the present inventor has found out the following. For example, SiC (hereinafter referred to as C
When VD-SiC) is ground and / or polished with diamond or the like, grinding scratches and polishing scratches are observed. There are slight microcracks under the scratches, and CVD-
It seems that SiC has grain boundaries because of grain growth. Such minute scratches and microcracks affect the surface strength of the die material, for example, SiC, and the SiC surface is dug when a force is applied. The same kind of problem exists in silicon carbide by hot pressing,
The mold is remarkably deteriorated due to particles falling off.

【0009】本発明は、このような知見に基づいて成さ
れたものであり、成形面又はその近傍に用いられる素材
の表面自体を強化することによって上記の課題を解決
し、成形されるガラス素子の欠陥を防止すると共に、成
形面の精度を良好に維持しながら、成形型の耐用期間を
向上させることを目的としている。
The present invention has been made on the basis of such findings, and solves the above problems by strengthening the surface itself of the material used for the molding surface or in the vicinity thereof, and a glass element to be molded. The object of the invention is to improve the service life of the molding die while preventing the defects of No. 1 and maintaining the precision of the molding surface in good condition.

【0010】[0010]

【課題を解決するための手段】本発明者は、鋭意検討の
結果、下記の成形型およびガラス光学素子の製造方法に
より、プルアウトの発生が抑えられ、成形型の寿命が飛
躍的に延びるとともに、形状精度及び面精度の高いガラ
ス光学素子を効率良く生産できることを見出した。
Means for Solving the Problems As a result of earnest studies, the present inventor has suppressed the occurrence of pull-out and drastically prolonging the life of the molding die by the following molding die and glass optical element manufacturing method. It was found that a glass optical element with high shape accuracy and surface accuracy can be efficiently produced.

【0011】すなわち、本発明の第1の態様によれば、
少なくとも成形面又は成形面近傍が、炭化ケイ素又は窒
化ケイ素から成るガラス成形体用の成形型であって、前
記炭化ケイ素又は窒化ケイ素から成る部分が、研削後研
磨され、所定の形状精度とR maxで25nm以下の表面
粗さの球面又は非球面に加工された後、1500〜20
00℃の熱処理を施されたものであることを特徴とする
成形型が提供される。
That is, according to the first aspect of the present invention,
At least the molding surface or the vicinity of the molding surface is silicon carbide or nitrogen.
A mold for a glass molded body made of silicon oxide, comprising:
The part made of silicon carbide or silicon nitride is
Polished to a certain shape accuracy and R maxSurface of less than 25nm
1500-20 after being processed into a spherical or aspherical surface
Characterized by being subjected to heat treatment at 00 ° C
A mold is provided.

【0012】また、本発明の第2の態様によれば、少な
くとも成形面又は成形面近傍が、炭化ケイ素又は窒化ケ
イ素から成るガラス成形体用の成形型であって、前記炭
化ケイ素又は窒化ケイ素から成る部分が、研削により所
定の形状精度とRmaxで100nm以下の表面粗さの球
面又は非球面に加工された後、1500〜2000℃の
熱処理を施され、冷却された後に、該球面又は非球面を
研磨されることによりRmaxで25nm以下の炭化ケイ
素面又は窒化ケイ素面が作製されたものであることを特
徴とする成形型が提供される。
Further, according to the second aspect of the present invention, there is provided a mold for a glass molded body, wherein at least the molding surface or the vicinity of the molding surface is made of silicon carbide or silicon nitride, and the molding die is made of silicon carbide or silicon nitride. The formed part is processed into a spherical surface or an aspherical surface having a predetermined shape accuracy and a surface roughness of 100 nm or less by R max by grinding, then heat-treated at 1500 to 2000 ° C., and cooled, and then the spherical surface or the non-spherical surface. Provided is a mold characterized in that a silicon carbide surface or a silicon nitride surface having an R max of 25 nm or less is produced by polishing a spherical surface.

【0013】また、本発明の第3の態様によれば、少な
くとも成形面又は成形面近傍が、炭化ケイ素又は窒化ケ
イ素から成るガラス成形体用の成形型であって、前記炭
化ケイ素又は窒化ケイ素から成る部分が、研削及び研磨
により所定の形状精度とRma xで50nm以下の表面粗
さの球面又は非球面に加工された後、1500〜200
0℃の熱処理を施され、冷却された後に、該球面又は非
球面を研磨されることによりRmaxで25nm以下の炭
化ケイ素面又は窒化ケイ素面が作製されたものであるこ
とを特徴とする成形型が提供される。
According to a third aspect of the present invention, there is provided a molding die for a glass molded body, at least the molding surface or the vicinity of the molding surface of which is made of silicon carbide or silicon nitride. part comprising, after being processed into a spherical or aspherical surface roughness of not more than 50nm in grinding and a predetermined shape accuracy and R ma x by polishing, 1500-200
Molding characterized in that a silicon carbide surface or a silicon nitride surface having a R max of 25 nm or less is produced by polishing the spherical surface or aspherical surface after heat treatment at 0 ° C. and cooling. A mold is provided.

【0014】また、本発明の第4の態様によれば、第1
〜第3のいずれかの態様による成形型において、前記成
形面又は成形面近傍が、炭化ケイ素から成ることを特徴
とする成形型が提供される。
According to a fourth aspect of the present invention, the first aspect
A molding die according to any one of the third to third aspects, wherein the molding surface or the vicinity of the molding surface is made of silicon carbide.

【0015】また、本発明の第5の態様によれば、第4
の態様による成形型において、前記成形面又は成形面近
傍が、CVD法により作られた炭化ケイ素から成ること
を特徴とする成形型が提供される。
According to the fifth aspect of the present invention, the fourth aspect
In the molding die according to the above aspect, there is provided a molding die characterized in that the molding surface or the vicinity of the molding surface is made of silicon carbide produced by a CVD method.

【0016】また、本発明の第6の態様によれば、第1
〜第5のいずれかの態様による成形型において、前記熱
処理が非酸化雰囲気下で行われたことを特徴とする成形
型が提供される。
According to a sixth aspect of the present invention, the first aspect
A molding die according to any one of the fifth to fifth aspects, wherein the heat treatment is performed in a non-oxidizing atmosphere.

【0017】また、本発明の第7の態様によれば、第1
〜第6のいずれかの態様による成形型において、前記成
形面に炭素系薄膜が形成されていることを特徴とする成
形型が提供される。
According to a seventh aspect of the present invention, the first aspect
A molding die according to any one of the sixth to sixth aspects, wherein a carbon-based thin film is formed on the molding surface.

【0018】また、本発明の第8の態様によれば、少な
くとも成形面又は成形面近傍が、CVD法で作られた炭
化ケイ素から成るガラス成形体用の成形型であって、前
記炭化ケイ素から成る部分が、1500〜2000℃の
熱処理を施されたものであることを特徴とする成形型が
提供される。
According to an eighth aspect of the present invention, there is provided a molding die for a glass molded body, at least a molding surface of which or a vicinity of the molding surface is made of a silicon carbide produced by a CVD method. A forming die is provided, wherein the forming part is heat-treated at 1500 to 2000 ° C.

【0019】また、本発明の第9の態様によれば、第1
〜第8のいずれかの態様による成形型を用いて、加熱軟
化した被成形ガラス素材を加圧成形することにより、前
記成形型の成形面を前記被成形ガラス素材に転写する工
程を含むガラス光学素子の製造方法も提供される。
According to a ninth aspect of the present invention, the first aspect
Glass optical including a step of transferring the molding surface of the mold to the glass material to be molded by press-molding the glass material to be molded that has been softened by heating using the mold according to any one of the eighth to eighth aspects. A method of manufacturing the device is also provided.

【0020】ここで、成形面とは、被成形ガラス素子が
接する、成形型の面をいう。
Here, the molding surface means the surface of the molding die with which the glass element to be molded is in contact.

【0021】成形面又は成形面近傍が炭化ケイ素又は窒
化ケイ素から成る、との意味は、成形面が炭化ケイ素又
は窒化ケイ素から成っていてもよく、炭化ケイ素又は窒
化ケイ素から成る部分の上に更に製法の異なる炭化ケイ
素や窒化ケイ素、又は他の組成による層や膜が施されて
いても良いということである。好ましくは、成形型の表
面に炭素系薄膜を施すことにより、離型性が向上するば
かりでなく、融着やプルアウトが更に防止される。
The meaning that the molding surface consists of silicon carbide or silicon nitride in or near the molding surface may mean that the molding surface consists of silicon carbide or silicon nitride, and on top of the part consisting of silicon carbide or silicon nitride. This means that a layer or film made of silicon carbide or silicon nitride having a different manufacturing method, or another composition may be applied. Preferably, by applying a carbon-based thin film to the surface of the mold, not only the releasability is improved, but also fusion and pullout are further prevented.

【0022】本発明では、少なくとも成形面又は成形面
近傍がCVD法で作られた炭化ケイ素から成ることが好
ましい。成形面又は成形面近傍のみがCVD法による炭
化ケイ素から成っていてもよく、また成形型の基盤自体
もCVD法による炭化ケイ素から成っていてもよい。前
者の場合には、CVD法による炭化ケイ素から成る部分
以外の成形型の素材に特に限定はなく、公知のものを適
宜使用できる。例えば、超硬合金などの基盤材料上に直
接又は中間層を介して炭化ケイ素からなる薄膜をCVD
法によって成膜してもよい。超硬合金としては、炭化タ
ングステンなどがある。型の基盤を焼結SiCとし、成
形面近傍をCVD−SiCとする態様もある。好ましく
は、CVD法による炭化ケイ素から成る基盤材料を用
い、その成形面には上記した炭素系薄膜が施されている
ことが好適である。
In the present invention, at least the molding surface or the vicinity of the molding surface is preferably made of silicon carbide produced by the CVD method. Only the molding surface or the vicinity of the molding surface may be made of silicon carbide by the CVD method, and the base of the molding die itself may be made of silicon carbide by the CVD method. In the former case, the material of the molding die other than the portion made of silicon carbide by the CVD method is not particularly limited, and known materials can be appropriately used. For example, a thin film of silicon carbide is CVD-deposited directly or through an intermediate layer on a base material such as cemented carbide.
You may form into a film by the method. Examples of the cemented carbide include tungsten carbide. There is also a mode in which the base of the mold is sintered SiC and the vicinity of the molding surface is CVD-SiC. Preferably, a base material made of silicon carbide by the CVD method is used, and the molding surface thereof is preferably provided with the above-mentioned carbon-based thin film.

【0023】炭化ケイ素以外の基盤材料上にCVD法に
よる炭化ケイ素薄膜を形成する場合、その膜厚を0.0
2[μm]〜2[μm]とするのが好ましい。また炭化
ケイ素焼結体上にCVD法で厚膜を形成してもよい。
When a silicon carbide thin film is formed by a CVD method on a base material other than silicon carbide, its thickness is 0.0
The thickness is preferably 2 [μm] to 2 [μm]. A thick film may be formed on the silicon carbide sintered body by the CVD method.

【0024】前記炭素系薄膜は、非晶質および/または
結晶質の、グラファイト構造および/またはダイヤモン
ド構造の単一成分層または混合層からなる炭素薄膜が融
着防止性に特に優れているので好ましい。スパッタ法、
イオンプレーティング法などにより施されることができ
る。重層構造にしても良い。好ましくは、イオンプレー
ティング法によるiカーボン層に、スパッタ法による硬
質炭素膜を積層して成形膜を作製する。
The above-mentioned carbon-based thin film is preferably a carbon thin film composed of an amorphous and / or crystalline single-component layer or a mixed layer having a graphite structure and / or a diamond structure, because it is particularly excellent in fusion preventing property. . Sputtering method,
It can be applied by an ion plating method or the like. You may make it a multilayer structure. Preferably, a hard carbon film formed by a sputtering method is laminated on an i carbon layer formed by an ion plating method to form a formed film.

【0025】前記炭素系薄膜の膜厚は、消耗しにくく、
効果が長続きする点から、0.02[μm]以上が好ま
しい。また、厚すぎると剥離しやすくなるので、0.5
[μm]以下が好ましい。上記した積層の場合には、そ
の合計がこの範囲に入ることが好ましい。このとき、i
-カーボンの膜厚は、0.01[μm]〜0.49[μ
m]が好ましく、更には0.2[μm]以下が好まし
い。これは、0.01[μm]以上のときに、非常に均
一な膜生成が可能となり、0.2[μm]以下であるこ
とにより、歪のない、特に型密着性の良い膜が得られる
からである。硬質炭素膜の膜厚は、0.005[μm]
〜0.2[μm]とするのが好ましい。その理由は、上
記同様、最も膜質が高いからである。
The thickness of the carbon-based thin film is less likely to be consumed,
From the viewpoint of long-lasting effect, 0.02 [μm] or more is preferable. Also, if it is too thick, peeling easily occurs, so 0.5
[Μm] or less is preferable. In the case of the above-mentioned laminated layers, it is preferable that the total is within this range. At this time, i
-The carbon film thickness is 0.01 [μm] to 0.49 [μ]
m] is preferable, and 0.2 [μm] or less is more preferable. This is because when it is 0.01 [μm] or more, a very uniform film can be formed, and when it is 0.2 [μm] or less, a film having no distortion and particularly good mold adhesion can be obtained. Because. The thickness of the hard carbon film is 0.005 [μm]
It is preferable to be set to 0.2 [μm]. The reason is that, like the above, the film quality is the highest.

【0026】本発明の型を用いて、ガラス光学素子を成
形する際は、炭化ケイ素又は窒化ケイ素部分、好ましく
はCVD法で作られた炭化ケイ素部分を研削及び/又は
研磨して、所定の形状精度と表面粗さを有する球面また
は非球面に加工している。ここで所定の形状精度とは、
光学レンズとして要求される面精度のことで、例えばニ
ュートン±3本、アス、クセが0.5本以内である。
When molding a glass optical element using the mold of the present invention, a silicon carbide or silicon nitride portion, preferably a silicon carbide portion formed by a CVD method is ground and / or polished to have a predetermined shape. It is processed into a spherical surface or an aspherical surface with precision and surface roughness. Here, the predetermined shape accuracy is
The surface accuracy required as an optical lens is, for example, Newton ± 3, and ass and habit are within 0.5.

【0027】また、表面粗さはRmax25[nm]以下
としてから本発明の熱処理を行う、又はRmax100
[nm]以下としてから本発明の熱処理を行い、冷却後
に成形面の研磨によりRmax25[nm]以下の面を作
製すると、高精度の成形面を作製することが可能であ
る。高精度の成形面の表面粗さは、好ましくは、10
[nm]以下、更に好ましくは5[nm]以下である。
The surface roughness is set to R max 25 [nm] or less before the heat treatment of the present invention, or R max 100
If the heat treatment of the present invention is performed after the thickness is [nm] or less and the surface having R max of 25 [nm] or less is manufactured by cooling the molding surface after cooling, it is possible to manufacture a highly accurate molding surface. The surface roughness of the molding surface with high precision is preferably 10
[Nm] or less, more preferably 5 [nm] or less.

【0028】ここでいう表面粗さRmaxは、JISの定
義に従ったものを指す。すなわち、Rmaxは、表面粗さ
規格のうち最大高さによるものを表わす。最大高さと
は、断面曲線から基準長だけ抜き取った部分の平均線に
平行な2直線で抜き取り部分を挟んだとき、この2直線の
間隔を断面曲線の縦倍率の方向に測定した値を表わす。
但し、通常はマイクロメートル(μm)の単位で表記す
るが、本願では数値が小さいためナノメートル(nm)
の単位で表記した。尚、本発明実施例においては、接触
式の測定機により測定した。
The surface roughness R max as used herein refers to that according to the definition of JIS. That is, R max represents the maximum height of the surface roughness standards. The maximum height refers to a value obtained by measuring the distance between two straight lines when the extracted portions are sandwiched by two straight lines parallel to the average line of the reference length extracted from the sectional curve in the longitudinal magnification direction of the sectional curve.
However, it is usually expressed in units of micrometer (μm), but in this application, the numerical value is small, so nanometer (nm)
It is expressed in units. In the examples of the present invention, measurement was carried out by a contact type measuring machine.

【0029】本発明の成形型および製造方法により成形
される被成形ガラス素材に特に限定されないが、バリウ
ムホウケイ酸塩光学ガラスなどが、特に有効に用いられ
る。これらのガラス素材は、融着やプルアウトを起こし
やすいが、本発明により、型寿命を損なうことなく、高
精度での成形が可能となったものの例である。
The glass material to be molded by the molding die and the manufacturing method of the present invention is not particularly limited, but barium borosilicate optical glass or the like is particularly effectively used. These glass materials are likely to cause fusion or pull-out, but the present invention is an example of a glass material that can be molded with high accuracy without impairing the mold life.

【0030】ガラス組成は例えば、ガラス成分として、
SiO2を30〜55wt%、B23を5〜30wt%
(但しSiO2とB23との合量が56〜70wt%で
SiO2/B23の重量比が1.3〜12.0)、Li2
Oを7〜12wt%(但し7wt%は含まない)、Na
2Oを0〜5wt%、K2Oを0〜5wt%(但しLi2
OとNa2OとK2Oとの合量が7〜12wt%(但し7
wt%は含まない))、BaOを10〜30wt%、M
gOを0〜10wt%、CaOを0〜20wt%、Sr
Oを0〜20wt%、ZnOを0〜20wt%(但しB
aOとMgOとCaOとSrOとZnOとの合量が10
〜30wt%)、含有するガラスであって、前記ガラス
成分のうちSiO2、B23、Li2OおよびBaOの合
量が72wt%以上であり、TeO2を含まないことを
特徴とする光学ガラスが好適に用いられる。
The glass composition is, for example, as a glass component,
30 to 55 wt% of SiO 2 and 5 to 30 wt% of B 2 O 3
(However, the total amount of SiO 2 and B 2 O 3 is 56 to 70 wt% and the weight ratio of SiO 2 / B 2 O 3 is 1.3 to 12.0), Li 2
O of 7 to 12 wt% (excluding 7 wt%), Na
0 to 5 wt% of 2 O and 0 to 5 wt% of K 2 O (however, Li 2
The total amount of O, Na 2 O, and K 2 O is 7 to 12 wt% (however, 7
wt% is not included)), 10 to 30 wt% of BaO, M
0 to 10 wt% gO, 0 to 20 wt% CaO, Sr
0 to 20 wt% O, 0 to 20 wt% ZnO (however, B
The total amount of aO, MgO, CaO, SrO, and ZnO is 10
˜30 wt%), and the total content of SiO 2 , B 2 O 3 , Li 2 O, and BaO in the glass components is 72 wt% or more, and TeO 2 is not contained. Optical glass is preferably used.

【0031】又は、上記のガラスであって更に、Al2
3を1〜7.5wt%、P25を0〜3wt%、La2
3を0〜15wt%、Y23を0〜5wt%、Gd2
3を0〜5wt%、TiO2を0〜3wt%、Nb25
0〜3wt%、ZrO2を0〜5wt%、PbOを0〜
5wt%、を含有するガラスが好適に用いられる。
Alternatively, in the above glass, further, Al 2
O 3 is 1 to 7.5 wt%, P 2 O 5 is 0 to 3 wt%, La 2
0 to 15 wt% O 3 , 0 to 5 wt% Y 2 O 3 , Gd 2 O
3 to 0 to 5 wt%, TiO 2 to 0 to 3 wt%, Nb 2 O 5 to 0 to 3 wt%, ZrO 2 to 0 to 5 wt%, PbO to 0 to
Glass containing 5 wt% is preferably used.

【0032】具体的な被成形ガラス素材としては、Si
2を37.8wt%、B23を24.0wt%、Al2
3を5.3wt%、Li2Oを8.5wt%、CaOを
5.0wt%、BaOを16.1wt%、La23
3.3wt%、As23を0.5wt%、Sb23
0.2wt%を含み、ガラス転移点Tgが500℃のも
のがある。
As a specific glass material to be molded, Si is used.
O 2 is 37.8 wt%, B 2 O 3 is 24.0 wt%, Al 2
O 3 5.3 wt%, Li 2 O 8.5 wt%, CaO 5.0 wt%, BaO 16.1 wt%, La 2 O 3 3.3 wt%, As 2 O 3 0.5 wt% , Sb 2 O 3 of 0.2 wt% and a glass transition point T g of 500 ° C.

【0033】また、具体的な被成形ガラス素材として
は、SiO2を47.2wt%、B2 3を11.5wt
%、Al23を3.2wt%、Li2Oを7.3wt
%、K2Oを1.8wt%、BaOを21.8wt%、
ZnOを5.0wt%、La23を2.2wt%、As
23を0.5wt%含み、ガラス転移点Tgが495℃
のもの等がある。
Further, as a concrete glass material to be molded
Is SiO247.2 wt%, B2O 311.5 wt
%, Al2O33.2 wt%, Li2O is 7.3 wt
%, K2O is 1.8 wt%, BaO is 21.8 wt%,
5.0 wt% ZnO, La2O32.2 wt%, As
2O3Containing 0.5 wt% of glass transition point TgIs 495 ° C
There are things such as

【0034】本発明において熱処理は、1500℃〜2
000℃で行なわれる。1500℃以上の熱処理によ
り、拡散接合によるプルアウト防止効果が有為に認めら
れ、また2000℃以下とすることで、成形型の外径寸
法、成形面形状などを損なうことなく熱処理の効果が得
られる。更に、本発明の熱処理は、1500℃〜200
0℃で行うが、好ましくは1600℃〜1800℃であ
る。
In the present invention, the heat treatment is performed at 1500 ° C. to 2 ° C.
It is carried out at 000 ° C. A pull-out prevention effect by diffusion bonding is significantly recognized by heat treatment at 1500 ° C or higher, and a heat treatment effect can be obtained without deteriorating the outer diameter dimension and molding surface shape of the mold by setting the temperature to 2000 ° C or lower. . Further, the heat treatment of the present invention is performed at 1500 ° C to 200 ° C.
The temperature is 0 ° C., preferably 1600 ° C. to 1800 ° C.

【0035】本発明の成形型および製造方法は、製造す
るガラス光学素子の形状に特に限定はなく、広範囲の形
状および用途に適用できる。特に、コバの薄い扁平な形
状の凸メニスカスレンズに有効に用いられる。また、用
途としては、例えばビデオカメラ用、デジタルカメラ用
の光学素子が挙げられる。
The molding die and manufacturing method of the present invention are not particularly limited in the shape of the glass optical element to be manufactured, and can be applied to a wide range of shapes and uses. In particular, it is effectively used for a convex meniscus lens having a flat shape with a thin edge. Further, examples of applications include optical elements for video cameras and digital cameras.

【0036】本発明の熱処理は、非酸化性雰囲気で行わ
れることが好ましい。非酸化性雰囲気としては、例えば
アルゴン、窒素、水素等を使用できる。
The heat treatment of the present invention is preferably performed in a non-oxidizing atmosphere. As the non-oxidizing atmosphere, for example, argon, nitrogen, hydrogen or the like can be used.

【0037】[0037]

【発明の実施の形態】以下に、本発明の実施例を説明す
るが、本発明はこれらに限定されない。図1は、実施例
による成形型を示す断面概略図であり、(a)はプレス
直前の状態を示し、(b)はプレス中の状態を示す。こ
の成形型1では、上型2の成形面2aが非球面、下型3
の成形面3aが球面となっている。これら一対の型2,
3は、いずれもCVD法によるSiCから成り、その成
形面2a,3aにはそれぞれ、i−カーボン膜21,3
1、及び硬質炭素膜22,32がこの順に積層されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the present invention will be described below, but the present invention is not limited thereto. 1A and 1B are schematic cross-sectional views showing a molding die according to an example, where FIG. 1A shows a state immediately before pressing, and FIG. 1B shows a state during pressing. In this mold 1, the molding surface 2a of the upper mold 2 is an aspherical surface, and the lower mold 3 is
The molding surface 3a is a spherical surface. These pair of molds 2,
3 is made of SiC by the CVD method, and the molding surfaces 2a and 3a thereof have i-carbon films 21 and 3 respectively.
1 and the hard carbon films 22 and 32 are laminated in this order.

【0038】尚、図1において、符号4は一対の型2,
3を案内する案内型であり、符号5は、被成形ガラス素
材である。また、図1(b)中に付してあるように、一
対の型2,3のサイズは直径17[mm]であり、プレ
ス中においては、熱軟化された被成形ガラス素材5が略
直径15[mm]にまで伸延される。以下、この図1に
基づいて実施例1〜3について説明する。 〔実施例1〕 (1)成形型の作製方法 全体がCVD法で作られた等方晶系のβ型SiCの上型
および下型形状に外径加工し、この一対の型の一方を非
球面に加工し、他の一方を球面に加工した。
In FIG. 1, reference numeral 4 is a pair of molds 2,
The reference numeral 5 is a glass material to be molded. Further, as shown in FIG. 1 (b), the size of the pair of molds 2 and 3 is 17 [mm], and during the pressing, the heat-softened glass material 5 to be molded has a substantially diameter. It is extended to 15 [mm]. Hereinafter, Examples 1 to 3 will be described with reference to FIG. [Example 1] (1) Manufacturing method of a molding die Outer diameter processing was performed on upper and lower mold shapes of isotropic β-type SiC, which was entirely manufactured by a CVD method, and one of the pair of molds was non-machined. It was processed into a spherical surface and the other one was processed into a spherical surface.

【0039】まず非球面型の加工方法について説明す
る。最初に球面研削盤においてメタルボンドのダイヤモ
ンド砥石を用いて、平面の状態から非球面に近似の球面
に加工した後、非球面研削盤において、球面から非球面
に加工した。このときの形状精度は10[μm]程度で
ある。つぎにレジンボンドの砥石を用いて形状精度0.
1[μm]に仕上げた。そして最後に非球面研磨機にお
いてダイヤモンドペーストを用いて研削痕を除去した
後、形状を維持しながら表面粗さがRmaxで5[nm]
以下になるように研磨した。
First, an aspherical surface processing method will be described. First, using a metal-bonded diamond grindstone in a spherical grinder, a flat surface was processed into an approximate spherical surface, and then, in an aspherical grinder, processing was performed from a spherical surface to an aspherical surface. The shape accuracy at this time is about 10 [μm]. Next, using a resin-bonded grindstone, the shape accuracy was reduced to 0.
It was finished to 1 [μm]. And finally, after removing the grinding marks by using diamond paste in the aspherical polishing machine, the surface roughness is R max of 5 [nm] while maintaining the shape.
Polished as follows.

【0040】次に球面型の加工方法について説明する。
まず、球面研削盤においてメタルボンドのダイヤモンド
砥石を用いて、平面の状態から球面に加工した後、非球
面研削盤において球面の形状精度が2[μm]〜3[μ
m]になるように加工を行った。次に球面研磨機におい
て、ダイヤモンドスラリーを用い手前加工のキズ等を除
去しながら所定の曲率半径および形状になるようにし、
更にアス・クセが0.5本以内になる形状にして曲率半
径を規格公差内に入れるとともに、表面粗さがRmax
5[nm]以下になるように研磨加工を行った。
Next, a method of processing a spherical mold will be described.
First, after using a metal-bonded diamond grindstone in a spherical grinder to machine a flat surface into a spherical surface, the aspherical grinder has a spherical shape accuracy of 2 [μm] to 3 [μm].
m] was processed. Next, in a spherical polishing machine, while using diamond slurry to remove scratches and the like in the foreground process, a predetermined radius of curvature and shape were obtained,
Further, the radius of curvature was set within the standard tolerance by making the shape such that the as-habit was 0.5 or less, and polishing was performed so that the surface roughness was 5 [nm] or less in R max .

【0041】以上のようにして作製した非球面型および
球面型をAr(アルゴン)雰囲気下において、2時間で
1600℃に昇温し、1時間保持した後、室温まで放冷
した。このとき表面粗さはRmaxで10[nm]であっ
た。そして、これらの型をプレス成形に供した。
The aspherical surface type and the spherical surface type manufactured as described above were heated to 1600 ° C. in 2 hours in an Ar (argon) atmosphere, held for 1 hour, and then allowed to cool to room temperature. At this time, the surface roughness was R max of 10 [nm]. Then, these molds were subjected to press molding.

【0042】一方、比較例用のサンプルとして、熱処理
を施さないこと以外は、上記と同様にして作製した非球
面及び球面型を用意した。
On the other hand, as comparative samples, aspherical and spherical molds prepared in the same manner as above except that no heat treatment was performed were prepared.

【0043】(2)プレス成形 上記の方法で本実施例および比較例用の非球面型および
球面型を多数作製し、公知の方法で、iカーボン膜2
1,31とスパッタ法による硬質炭素膜22,32とを
積層させてなる炭素系薄膜を設け、バリウムホウケイ酸
塩ガラス(SiO 2:37.8[wt%]、B23:2
4.0[wt%]、Al23:5.3[wt%]、Li
2O:8.5[wt%]、CaO:5.0[wt%]、
BaO:16.1[wt%]、La23:3.3[wt
%]、As23:0.5[wt%]、Sb23:0.2
[wt%]、ガラス転移点Tgが495℃)からなる被
成形ガラス素材5を窒素雰囲気中において加熱軟化し、
610℃でプレス成形を繰り返した。ここでは、プレス
成形500回毎に炭素系薄膜を一旦除去し、新たに炭素系
薄膜を成膜することを繰り返した。
(2) Press molding By the above method, the aspherical type for this example and the comparative example and
A large number of spherical molds were produced and the i-carbon film 2 was formed by a known method.
1,31 and the hard carbon film 22,32 by the sputtering method
A carbon-based thin film is formed by laminating barium borosilicate
Salt glass (SiO 2: 37.8 [wt%], B2O3: 2
4.0 [wt%], Al2O3: 5.3 [wt%], Li
2O: 8.5 [wt%], CaO: 5.0 [wt%],
BaO: 16.1 [wt%], La2O3: 3.3 [wt
%], As2O3: 0.5 [wt%], Sb2O3: 0.2
[Wt%], glass transition point TgOf 495 ° C)
The molded glass material 5 is heated and softened in a nitrogen atmosphere,
Press molding was repeated at 610 ° C. Here press
The carbon-based thin film is removed once every 500 moldings, and a new carbon-based
The film formation was repeated.

【0044】その結果、比較例による成形型ではプレス
回数平均10,000回でプルアウトが発生したのに対し、本
実施例による成形型では平均15,000回までプルアウトの
発生が起きず、型寿命が延びた。また、この成形型の成
形面を被成形ガラス素材に高精度に連続して転写でき
た。
As a result, in the molding die according to the comparative example, pull-out occurred after averaging 10,000 presses, whereas in the molding die according to this example, the pull-out did not occur up to 15,000 times on average, and the die life was extended. Further, the molding surface of this molding die could be continuously transferred to the glass material to be molded with high accuracy.

【0045】〔実施例2〕 (1)型の作製方法 非球面型、球面型とも熱処理前までの加工工程は実施例
1と同様である。実施例1では熱処理を1600℃で行
ったが、実施例2では1800℃で行った。熱処理後に
おいて表面粗さがRmaxで25[nm]であった。非球
面型は再度非球面研磨機において形状を崩さずかつ表面
粗さがRmaxで5[nm]以下になるように研磨を行い
加工終了とした。一方、球面型は再度球面研磨機におい
て、形状・曲率を崩さずかつ表面粗さRmaxで5[n
m]以下になるように研磨を行い加工終了とした。
Example 2 (1) Manufacturing Method of Mold For both the aspherical surface type and the spherical surface type, the processing steps before the heat treatment are the same as in the first embodiment. In Example 1, the heat treatment was performed at 1600 ° C, but in Example 2, it was performed at 1800 ° C. After the heat treatment, the surface roughness R max was 25 [nm]. The aspherical surface type was again polished in an aspherical surface polishing machine so that the surface roughness was 5 [nm] or less at R max and the processing was completed. On the other hand, the spherical type is again in the spherical polishing machine and the surface roughness R max is 5 [n without deteriorating the shape and curvature.
m] or less, and the processing was completed.

【0046】(2)プレス成形 実施例1と同様の方法でプレス成形を行ったところ、プ
ルアウトが発生するプレス回数は平均20,000回まで延長
され、型寿命がさらに延びた。
(2) Press molding When press molding was carried out in the same manner as in Example 1, the number of presses at which pullout occurred was extended to an average of 20,000, and the die life was further extended.

【0047】(3)エッチング後のAFM観察 熱処理後研磨したものと、熱処理しないものをフッ酸で
エッチングし、表面をAFM(原子間力顕微鏡)で観察し
たところ、熱処理して研磨したものは、熱処理しないも
のに比べて加工キズが浅くなっていることが観察され
た。CVD−SiCの表面のマイクロクラックが拡散接
合されたとみられる。
(3) AFM Observation After Etching After polishing after heat treatment and after polishing with heat treatment, the surface was etched with hydrofluoric acid and the surface was observed with AFM (atomic force microscope). It was observed that the processing flaws were shallower than those without heat treatment. It seems that the micro-cracks on the surface of the CVD-SiC were diffusion bonded.

【0048】〔実施例3〕実施例2では、非球面および
球面を研削後、Rmaxで5[nm]になるまで研磨を行
った後に熱処理したが、本実施例では、熱処理前は研削
工程のみ実施し、研磨は行わずに、実施例2と同様の熱
処理を行い、その後にRmaxで5[nm]までの研磨を
行った。プレス成形の結果、実施例2と同様の結果が得
られた。
[Embodiment 3] In Embodiment 2, after grinding the aspherical surface and the spherical surface, polishing is carried out until R max becomes 5 [nm], and then heat treatment is carried out. However, the same heat treatment as in Example 2 was performed, and then polishing was performed up to R max of 5 [nm]. As a result of press molding, the same results as in Example 2 were obtained.

【0049】[0049]

【発明の効果】以上のように本発明によれば、成形型の
表面に生じる融着やプルアウトが防止され、結果として
成形型の寿命を大幅にのばすことができる。これによ
り、成形型のメンテナンス性が向上し、面精度の優れた
ガラス光学素子を効率良く製造できるようになる。
As described above, according to the present invention, fusion and pull-out that occur on the surface of the molding die can be prevented, and as a result, the life of the molding die can be significantly extended. As a result, the maintainability of the molding die is improved, and the glass optical element having excellent surface accuracy can be efficiently manufactured.

【0050】また、本発明の成形型では熱処理を行う際
にCVD‐SiCの表面などに生じた僅かな研削キズや
研磨キズの下に生じているマイクロクラック等が拡散接
合されるので、成形面の表面強度が向上する。これによ
り、プレスによる融着及びプルアウトが抑制される。更
に、かかるプルアウト防止効果によって、精密プレスに
よって成形するガラス素材の選択肢が広がり、製造の自
由度を広げることができる。
Further, in the molding die of the present invention, slight grinding scratches generated on the surface of CVD-SiC during heat treatment and microcracks generated under polishing scratches are diffusion-bonded, so that the molding surface Surface strength is improved. This suppresses fusion and pull-out due to pressing. Further, due to the pull-out prevention effect, the choice of glass materials to be molded by the precision press is expanded, and the degree of freedom in manufacturing can be expanded.

【0051】成形型の表面に離型膜を設けることは、融
着やプルアウトを防止する上で有効であるが、本発明で
は型の素材自体を強化することで、更に融着やプルアウ
トが抑制され、また炭素系薄膜を設けた場合にはその離
型効果を更に高めることができる。また、仮に炭素系薄
膜が消耗しても、プルアウトが防止されているため、炭
素系薄膜を再生すれば何度も繰り返し型の使用が可能と
なる。すなわち、炭素系薄膜を用いた場合には、炭素系
薄膜と本発明の熱処理による型素材の強化が、相互に協
働し、型の寿命をいっそう長くすることができる。
Providing a mold release film on the surface of the molding die is effective in preventing fusion and pullout, but in the present invention, by further strengthening the material of the die itself, fusion and pullout are further suppressed. Further, when the carbon-based thin film is provided, the releasing effect can be further enhanced. Further, even if the carbon-based thin film is exhausted, pull-out is prevented, so that if the carbon-based thin film is regenerated, it is possible to repeatedly use the carbon-based thin film. That is, when a carbon-based thin film is used, the carbon-based thin film and the strengthening of the die material by the heat treatment of the present invention cooperate with each other, and the life of the die can be further extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例による成形型を示す断面概略図であり、
(a)はプレス直前の状態を示し、(b)はプレス中の
状態を示す。
FIG. 1 is a schematic cross-sectional view showing a mold according to an embodiment,
(A) shows the state immediately before pressing, and (b) shows the state during pressing.

【符号の説明】[Explanation of symbols]

1 成形型 2a、3a 成形面 5 被成形ガラス素材 21、31 i−カーボン膜(炭素系薄膜) 22、32 硬質炭素膜(炭素系薄膜) 1 Mold 2a, 3a Molded surface 5 Molded glass material 21, 31 i-carbon film (carbon-based thin film) 22, 32 Hard carbon film (Carbon thin film)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】少なくとも成形面又は成形面近傍が、炭化
ケイ素又は窒化ケイ素から成るガラス成形体用の成形型
であって、 前記炭化ケイ素又は窒化ケイ素から成る部分が、研削後
研磨され、所定の形状精度とRmaxで25nm以下の表
面粗さの球面又は非球面に加工された後、1500〜2
000℃の熱処理を施されたものであることを特徴とす
る成形型。
1. A molding die for a glass molded body, wherein at least a molding surface or the vicinity of the molding surface is made of silicon carbide or silicon nitride, and the portion made of silicon carbide or silicon nitride is ground and polished to a predetermined shape. After being processed into a spherical surface or an aspherical surface having a surface roughness of 25 nm or less in shape accuracy and R max , 1500-2
A mold which has been heat-treated at 000 ° C.
【請求項2】少なくとも成形面又は成形面近傍が、炭化
ケイ素又は窒化ケイ素から成るガラス成形体用の成形型
であって、 前記炭化ケイ素又は窒化ケイ素から成る部分が、研削に
より所定の形状精度とRmaxで100nm以下の表面粗
さの球面又は非球面に加工された後、1500〜200
0℃の熱処理を施され、冷却された後に、該球面又は非
球面を研磨されることによりRmaxで25nm以下の炭
化ケイ素面又は窒化ケイ素面が作製されたものであるこ
とを特徴とする成形型。
2. A molding die for a glass molded body, at least the molding surface or the vicinity of the molding surface of which is made of silicon carbide or silicon nitride, wherein the portion made of silicon carbide or silicon nitride has a predetermined shape accuracy by grinding. After being processed into a spherical surface or an aspherical surface having a surface roughness of R max of 100 nm or less, 1500 to 200
Molding characterized in that a silicon carbide surface or a silicon nitride surface having a R max of 25 nm or less is produced by polishing the spherical surface or aspherical surface after heat treatment at 0 ° C. and cooling. Type.
【請求項3】少なくとも成形面又は成形面近傍が、炭化
ケイ素又は窒化ケイ素から成るガラス成形体用の成形型
であって、 前記炭化ケイ素又は窒化ケイ素から成る部分が、研削及
び研磨により所定の形状精度とRmaxで50nm以下の
表面粗さの球面又は非球面に加工された後、1500〜
2000℃の熱処理を施され、冷却された後に、該球面
又は非球面を研磨されることによりRmaxで25nm以
下の炭化ケイ素面又は窒化ケイ素面が作製されたもので
あることを特徴とする成形型。
3. A molding die for a glass molded body, at least the molding surface or near the molding surface of which is made of silicon carbide or silicon nitride, wherein the portion made of silicon carbide or silicon nitride has a predetermined shape by grinding and polishing. After being processed into a spherical surface or an aspherical surface having a surface roughness of 50 nm or less with accuracy and R max ,
Molding characterized in that a silicon carbide surface or a silicon nitride surface having an R max of 25 nm or less is produced by polishing the spherical surface or aspherical surface after heat treatment at 2000 ° C. and cooling. Type.
【請求項4】前記成形面又は成形面近傍が、炭化ケイ素
から成ることを特徴とする請求項1〜3のいずれか一項
に記載の成形型。
4. The molding die according to claim 1, wherein the molding surface or the vicinity of the molding surface is made of silicon carbide.
【請求項5】前記成形面又は成形面近傍が、CVD法に
より作られた炭化ケイ素から成ることを特徴とする請求
項4に記載の成形型。
5. The mold according to claim 4, wherein the molding surface or the vicinity of the molding surface is made of silicon carbide produced by a CVD method.
【請求項6】前記熱処理が非酸化雰囲気下で行われたこ
とを特徴とする請求項1〜5のいずれか一項に記載の成
形型。
6. The mold according to claim 1, wherein the heat treatment is performed in a non-oxidizing atmosphere.
【請求項7】前記成形面に炭素系薄膜が形成されている
ことを特徴とする請求項1〜6のいずれか一項に記載の
成形型。
7. The molding die according to claim 1, wherein a carbon-based thin film is formed on the molding surface.
【請求項8】少なくとも成形面又は成形面近傍が、CV
D法で作られた炭化ケイ素から成るガラス成形体用の成
形型であって、 前記炭化ケイ素から成る部分が、1500〜2000℃
の熱処理を施されたものであることを特徴とする成形
型。
8. A CV at least on the molding surface or in the vicinity of the molding surface.
A molding die for a glass molded body made of silicon carbide produced by a method D, wherein the portion made of silicon carbide is 1500 to 2000 ° C.
Molding die characterized by being subjected to the heat treatment of.
【請求項9】請求項1〜8のいずれか一項に記載の成形
型を用いて、加熱軟化した被成形ガラス素材を加圧成形
することにより、前記成形型の成形面を前記被成形ガラ
ス素材に転写する工程を含むガラス光学素子の製造方
法。
9. A molding surface of the mold is formed by press-molding a glass material to be molded, which has been softened by heating, by using the molding die according to any one of claims 1 to 8. A method for manufacturing a glass optical element including a step of transferring to a material.
JP2001394910A 2001-12-26 2001-12-26 Mold for molding glass molded body, and method for producing glass optical element using the same Expired - Fee Related JP4004286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001394910A JP4004286B2 (en) 2001-12-26 2001-12-26 Mold for molding glass molded body, and method for producing glass optical element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001394910A JP4004286B2 (en) 2001-12-26 2001-12-26 Mold for molding glass molded body, and method for producing glass optical element using the same

Publications (2)

Publication Number Publication Date
JP2003192360A true JP2003192360A (en) 2003-07-09
JP4004286B2 JP4004286B2 (en) 2007-11-07

Family

ID=27601500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001394910A Expired - Fee Related JP4004286B2 (en) 2001-12-26 2001-12-26 Mold for molding glass molded body, and method for producing glass optical element using the same

Country Status (1)

Country Link
JP (1) JP4004286B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507972A (en) * 2005-09-14 2009-02-26 イーテーエン ナノヴェイション アクチェンゲゼルシャフト Layer or coating and composition for its production
JP2010265152A (en) * 2009-05-18 2010-11-25 Olympus Corp Molding die for optical element, method for manufacturing molding die for optical element, and method for manufacturing optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507972A (en) * 2005-09-14 2009-02-26 イーテーエン ナノヴェイション アクチェンゲゼルシャフト Layer or coating and composition for its production
JP2010265152A (en) * 2009-05-18 2010-11-25 Olympus Corp Molding die for optical element, method for manufacturing molding die for optical element, and method for manufacturing optical element

Also Published As

Publication number Publication date
JP4004286B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP5160043B2 (en) Glass material for mold press and method for producing glass optical element
JP3820486B2 (en) Manufacturing method of glass optical element
JP5085049B2 (en) Glass material for mold press, method for producing glass material, and method for producing glass optical element
TWI687375B (en) Molds for shaping glass-based materials and methods for making the same
JP4897072B2 (en) Glass material for press molding, method for producing glass optical element using the glass material, and glass optical element
WO2007119565A1 (en) Method for manufacturing glass optical element
JP6054548B2 (en) Glass mold and method for producing the same
CN107507632B (en) Method for manufacturing glass substrate for magnetic disk
WO2011081031A1 (en) Glass material for press molding, process for production of glass material for press molding, and process for production of optical element
JP5081385B2 (en) Manufacturing method of glass optical lens
JP4603767B2 (en) Manufacturing method of glass optical element
TWI499563B (en) Method for producing glass preform, and
JP2005213091A (en) Method for manufacturing glass optical element
JP2003192360A (en) Die for glass molding and method for manufacturing glass optical element
JP2012041195A (en) Material for forming optical element and process for producing the same
JPS62202824A (en) Production of pressed lens
JP2003063831A (en) Glass substrate for hard disk and method for manufacturing the same
JPH08277127A (en) Production of glass optical element
JPH021780B2 (en)
JP3341520B2 (en) Optical lens manufacturing method
JP3185299B2 (en) Glass lens molding die and glass lens molding device
JPH021781B2 (en)
JPH11236225A (en) Method for forming glass element
JPH07109131A (en) Production of glass product
JP5386429B2 (en) Manufacturing method of glass blank, manufacturing method of magnetic recording medium substrate, and manufacturing method of magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees