JP2003191133A - Electrochemical machining electrode for dynamic pressure groove and method for machining dynamic pressure groove using it - Google Patents

Electrochemical machining electrode for dynamic pressure groove and method for machining dynamic pressure groove using it

Info

Publication number
JP2003191133A
JP2003191133A JP2001393737A JP2001393737A JP2003191133A JP 2003191133 A JP2003191133 A JP 2003191133A JP 2001393737 A JP2001393737 A JP 2001393737A JP 2001393737 A JP2001393737 A JP 2001393737A JP 2003191133 A JP2003191133 A JP 2003191133A
Authority
JP
Japan
Prior art keywords
dynamic pressure
machining
workpiece
electrode
pressure groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001393737A
Other languages
Japanese (ja)
Other versions
JP3829300B2 (en
Inventor
Yasuhiro Kobayashi
康裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2001393737A priority Critical patent/JP3829300B2/en
Publication of JP2003191133A publication Critical patent/JP2003191133A/en
Application granted granted Critical
Publication of JP3829300B2 publication Critical patent/JP3829300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical machining electrode for a dynamic pressure groove capable of stably maintaining a predetermined machining accuracy for a long period of time; and a method for machining the dynamic pressure groove using it. <P>SOLUTION: In order to form a machining pattern (electric conductive part 10a) corresponding to a shape of the dynamic pressure groove 11b on a surface of an electrode tool 1, a recessed part 10b having a depth D of 0.1 mm or higher is formed at an area other than the machining pattern. By this structure, a workpiece 11 surface (land part 11a) opposed to the recessed part 10b does not almost receive an elution action by an electrochemical machining and it is not required that a film by an insulator is formed thereon. Accordingly, a failure of the machined shape caused by a peeling off of the insulator, an electric short circuit or the like does not occur and a predetermined machining accuracy can be stably maintained for a long period of time. Since a slight current also flows in the land part 11a of the workpiece 11 opposed to the recessed part 10b and a fine projection or the like is selectively removed, an effect of improving a surface roughness of the surface of the workpiece 11 can be also exhibited. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、所定の加工精度を
長期間維持することができる動圧溝の電解加工用電極お
よびそれを用いた動圧溝の加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electrolytically machining a dynamic pressure groove capable of maintaining a predetermined machining accuracy for a long period of time, and a method for machining a dynamic pressure groove using the electrode.

【0002】[0002]

【従来の技術】ハードディスク装置等の高速および高精
度の回転が要求される機構に用いられる軸受装置とし
て、近年、動圧軸受装置が多用されている。動圧軸受
は、一般に、軸と軸受の間に作動流体を注入するととも
に、軸および軸受のいずれか一方に動圧溝を形成し、軸
と軸受の相対回転により生じるポンピング作用等によっ
て作動流体の圧力を上昇させ、その動圧力によって軸受
に対して軸を相対回転自在に支持する。
2. Description of the Related Art In recent years, a dynamic pressure bearing device has been widely used as a bearing device used in a mechanism such as a hard disk device that requires high-speed and high-precision rotation. In a dynamic pressure bearing, in general, a working fluid is injected between the shaft and the bearing, and a dynamic pressure groove is formed in either one of the shaft and the bearing. The pressure is increased, and the dynamic pressure supports the shaft so that the shaft can rotate relative to the bearing.

【0003】動圧軸受に形成される動圧溝は、例えばス
パイラルパターン、Vパターン、あるいはヘリングボー
ンパターン等が採用されており、その溝深さを±0.5
μm程度の高精度のものとするには、従来、主として電
解加工法が採用されている。
The dynamic pressure groove formed in the dynamic pressure bearing adopts, for example, a spiral pattern, a V pattern, or a herringbone pattern, and the groove depth is ± 0.5.
In order to achieve high precision of about μm, the electrolytic processing method has been mainly used conventionally.

【0004】図4は、動圧溝を形成するのに用いられる
電解加工装置の全体構成を模式的に表した図である。動
圧溝が形成されるべき被加工物11は、所定の加工対象
面に、電極(以下、電極工具と記述する)2を所定の距
離をおいて対向させた状態で加工槽21内に配置され
る。加工槽21には、電解液槽22と通じる液流入管2
2aと液排出管22bが配置されており、ポンプ23の
駆動により、被加工物11と電極工具2の間(加工すき
間30)に電解液が流れるようになっている。被加工物
11には加工用電源24の正極が接続される一方、電極
工具2には同じく加工用電源24の負極が接続され、こ
れらの被加工物11と電極工具2の間に電解液を流した
状態で、例えばパルス状の電流が流される。電極工具2
の被加工物11との対向面には、所定の加工パターン
(導電部10a)が形成されており、電解液を介在させ
た状態で、加工用電源24からの電流が、導電部10a
と被加工物11との間に流れることで、電気化学反応に
より導電部10aに対向する部位の被加工物11が溶出
し、被加工物11の表面に電極工具2の導電パターンと
同等のパターンの動圧溝が転写形成されることになる。
FIG. 4 is a diagram schematically showing the overall structure of an electrolytic processing apparatus used to form a dynamic pressure groove. The workpiece 11 on which the dynamic pressure groove is to be formed is arranged in the processing tank 21 with the electrode (hereinafter, referred to as an electrode tool) 2 facing a predetermined surface to be processed at a predetermined distance. To be done. The processing tank 21 has a liquid inflow pipe 2 communicating with the electrolytic solution tank 22.
2a and a liquid discharge pipe 22b are arranged so that the electrolytic solution flows between the workpiece 11 and the electrode tool 2 (machining gap 30) by driving the pump 23. A positive electrode of a machining power source 24 is connected to the workpiece 11, while a negative electrode of the machining power source 24 is similarly connected to the electrode tool 2, and an electrolytic solution is provided between the workpiece 11 and the electrode tool 2. In the flowing state, for example, a pulsed current is passed. Electrode tool 2
A predetermined processing pattern (conductive portion 10a) is formed on the surface of the workpiece 11 facing the workpiece 11, and the current from the processing power supply 24 causes the conductive portion 10a to flow with the electrolytic solution interposed.
Flowing between the workpiece 11 and the workpiece 11 elutes the workpiece 11 at a portion facing the conductive portion 10a by an electrochemical reaction, and a pattern equivalent to the conductive pattern of the electrode tool 2 on the surface of the workpiece 11 Thus, the dynamic pressure groove of is transferred and formed.

【0005】このような動圧溝の電解加工に用いられる
電極工具としては、一般に、金属製の基体の表面に、加
工パターンで金属部分が露出するように、そのパターン
を除く領域を隠蔽すべく非導電性材料(絶縁体)で被覆
した構造のものが用いられている。
As an electrode tool used for the electrolytic machining of such a dynamic pressure groove, generally, the surface of a metal base is concealed in a region other than the pattern so that the metal part is exposed in the pattern. A structure coated with a non-conductive material (insulator) is used.

【0006】図5に、動圧溝の電解加工に用いられる従
来の電極工具の構成例を模式的に示す。電極工具の構成
としては、図5(a)に示すような、金属製の基体10
の表面に非導電性材料からなる一様なレジスト膜を形成
した後、フォトリソグラフィの技術を用いて加工パター
ン部分を除去して絶縁体12を形成し、基体10の露出
面を導電部10aとして用いる構造の電極工具2、ある
いは、図5(b)に示すような、基体10の表面の加工
パターンを除く領域をエッチング等によって削り落と
し、形成された凹部10bに非導電性材料を埋め込んで
絶縁体13を形成し、基体10の露出面を導電部10a
として用いる構造の電極工具3、が主に用いられてい
る。
FIG. 5 schematically shows a structural example of a conventional electrode tool used for electrolytic machining of dynamic pressure grooves. The structure of the electrode tool includes a metal base 10 as shown in FIG.
After a uniform resist film made of a non-conductive material is formed on the surface of the substrate, the processed pattern portion is removed by using a photolithography technique to form the insulator 12, and the exposed surface of the substrate 10 is used as the conductive portion 10a. The electrode tool 2 having the structure to be used, or a region of the surface of the substrate 10 excluding the processing pattern as shown in FIG. 5B is scraped off by etching or the like, and a non-conductive material is embedded in the formed recess 10b for insulation. The body 13 is formed, and the exposed surface of the base 10 is connected to the conductive portion 10a.
The electrode tool 3 having a structure used as is mainly used.

【0007】[0007]

【発明が解決しようとする課題】ところで、以上のよう
な動圧溝の電解加工に用いられる電極(電極工具)にお
いては、加工パターン以外の領域の被覆に用いられる非
導電性材料(絶縁体)の基体に対する密着力が弱く、電
解加工中に加工すき間に流される電解液の影響により、
この絶縁体が剥離してしまうという問題があった。
By the way, in the electrode (electrode tool) used for the electrolytic machining of the dynamic pressure groove as described above, the non-conductive material (insulator) used for covering the region other than the machining pattern is used. Has a weak adhesion to the substrate, and due to the influence of the electrolyte flowing in the machining gap during electrolytic machining,
There was a problem that this insulator would peel off.

【0008】動圧溝の形成に用いられる電解加工は、加
工すべき形状が微細なため、電極工具と被加工物との加
工すき間を狭く設定して行われる。そのため、この加工
すき間に流される電解液の流速も速くなり、絶縁体が電
解液から受ける流体抵抗が大きくなる。従来例で示した
電極工具2のように、絶縁体12が表面より突出したタ
イプの電極工具の場合は、加工パターンが微細になるほ
ど基体10と絶縁体12との密着力が弱くなり、絶縁体
の剥離の発生率が高くなる。また、電極工具3のよう
に、削り落とされた凹部10bに絶縁体13が埋め込ま
れ、表面が略平坦であるタイプの電極工具の場合も、電
極工具2に比べ電解液からの影響は受けにくいものの、
最終的には絶縁体13が剥離するという問題は避けられ
ない。
The electrolytic machining used for forming the dynamic pressure groove is performed by setting a narrow machining gap between the electrode tool and the workpiece because the shape to be machined is minute. Therefore, the flow velocity of the electrolytic solution that flows in the processing gap also increases, and the fluid resistance that the insulator receives from the electrolytic solution increases. In the case of an electrode tool of a type in which the insulator 12 protrudes from the surface like the electrode tool 2 shown in the conventional example, the finer the processing pattern, the weaker the adhesive force between the base body 10 and the insulator 12, and The rate of occurrence of peeling is increased. Further, like the electrode tool 3, in the case of an electrode tool of a type in which the insulator 13 is embedded in the recessed portion 10b that has been scraped off and the surface is substantially flat, it is less affected by the electrolytic solution than the electrode tool 2. Though
The problem that the insulator 13 eventually peels off is unavoidable.

【0009】このような絶縁体の剥離が発生すると、正
確な加工パターンを被加工物に転写することができなく
なるうえ、絶縁体の剥離片が電極工具と被加工物との加
工すき間を詰まらせてしまうという問題も発生する。こ
の剥離片の詰まりは、電解液の流れを部分的に阻害し、
その部分の加工形状の不良を発生させるばかりでなく、
最悪の場合、何らかの形で電気的短絡を引き起こし、電
極工具と被加工物の両者に損傷を生じさせることもあ
る。
When such peeling of the insulator occurs, an accurate machining pattern cannot be transferred to the workpiece, and the peeling piece of the insulator clogs the machining gap between the electrode tool and the workpiece. There is also the problem of being lost. The clogging of the peeling piece partially obstructs the flow of the electrolytic solution,
Not only does it cause defects in the processed shape of that part,
In the worst case, it can cause some form of electrical short circuit, causing damage to both the electrode tool and the work piece.

【0010】本発明は、このような課題に対処するため
になされたもので、所定の加工精度を長期にわたって安
定して維持することのできる動圧溝の電解加工用電極お
よびそれを用いた動圧溝の加工方法を提供することを目
的としている。
The present invention has been made in order to address such a problem, and it is intended to provide an electrolytic machining electrode having a dynamic pressure groove capable of stably maintaining a predetermined machining accuracy for a long period of time, and a dynamic electrode using the same. It is an object of the present invention to provide a method for processing a pressure groove.

【0011】[0011]

【課題を解決するための手段】前記の目的を達成するた
めに、請求項1に記載の発明は、表面に動圧溝を形成す
べき被加工物と、所定パターンの導電部が表面に形成さ
れてなる電極とを、電解液中に対向させて浸漬するとと
もに、この電解液を被加工物と電極との間に流動させつ
つ、これら被加工物と電極とを加工用電源の正極および
負極にそれぞれ接続して電流を流すことによって、被加
工物表面に電極の導電部のパターンに対応した形状の動
圧溝を形成する電解加工用電極において、前記電極は導
電性材料のみで構成され、かつ、その表面には上記所定
パターン以外の領域に深さが0.1mm以上の凹部が形
成されていることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is to form a dynamic pressure groove on the surface of a workpiece and a conductive portion of a predetermined pattern on the surface. The electrode thus formed is immersed in an electrolytic solution so as to face it, and while the electrolytic solution is caused to flow between the workpiece and the electrode, the workpiece and the electrode are positive and negative electrodes of a power source for processing. In each of the electrodes for electrolytic processing in which a dynamic pressure groove having a shape corresponding to the pattern of the conductive portion of the electrode is formed on the surface of the workpiece by connecting and flowing an electric current, the electrode is composed only of a conductive material, In addition, a recess having a depth of 0.1 mm or more is formed on the surface in a region other than the predetermined pattern.

【0012】ここで、本発明の動圧溝の加工方法は、前
記電極の導電部と被加工物の表面とのすき間を、0.0
5mm以上0.2mm以下に設定した状態で、これら電
極と被加工物との間に150A/cm2以下の電流を流
す方法によって電解加工することを特徴とする(請求項
2)。
Here, in the method for machining a dynamic pressure groove of the present invention, the gap between the conductive portion of the electrode and the surface of the workpiece is 0.0
Electrolytic machining is performed by a method in which a current of 150 A / cm 2 or less is passed between these electrodes and the workpiece in a state of being set to 5 mm or more and 0.2 mm or less (claim 2).

【0013】本発明は、電極工具表面における加工パタ
ーン以外の領域を非導電性材料(絶縁体)で覆うことに
代えて、当該領域に所定の深さの凹部を形成し、この電
極工具を用いて電解加工を行うことによって、所期の目
的を達成しようとするものである。すなわち、本発明に
おいては、電極工具表面に、動圧溝形状に対応した加工
パターンを形成するため、加工パターン以外の領域に深
さ0.1mm以上の凹部を形成する。一般に、電解加工
における時間あたりの加工量は、他の条件を一定のもの
とした場合、被加工物(陽極)表面の電流密度に比例す
る。また、この被加工物表面の電流密度は、他の条件を
一定のものとした場合、電極工具表面の加工に関与する
部分と被加工物表面の距離(加工間隙)と相関があり、
その距離とともに逐次低下してゼロに漸近することが知
られている。このような電気化学的法則を基に、発明者
は鋭意研究した結果、溝深さが数μmから数十μmレベ
ルの動圧溝の電解加工を行う場合、その電極工具表面に
深さが0.1mm以上の凹部を形成すると、この凹部に
対向する被加工物表面は電解加工による溶出作用(彫り
込み加工)をほとんど受けないことを見出した。
According to the present invention, instead of covering a region other than the machining pattern on the surface of the electrode tool with a non-conductive material (insulator), a recess having a predetermined depth is formed in the region, and this electrode tool is used. By carrying out electrolytic processing, the intended purpose is achieved. That is, in the present invention, since a machining pattern corresponding to the dynamic pressure groove shape is formed on the surface of the electrode tool, a recess having a depth of 0.1 mm or more is formed in a region other than the machining pattern. Generally, the amount of processing per time in electrolytic processing is proportional to the current density on the surface of the workpiece (anode) when the other conditions are constant. Further, the current density on the surface of the workpiece has a correlation with the distance (machining gap) between the portion involved in the machining of the electrode tool surface and the surface of the workpiece when other conditions are constant,
It is known that it gradually decreases with the distance and gradually approaches zero. As a result of diligent research based on such an electrochemical law, the present inventors have found that when electrolytically machining a dynamic pressure groove having a groove depth of several μm to several tens of μm, the depth of the electrode tool surface is zero. It has been found that when a recess of 1 mm or more is formed, the surface of the workpiece facing the recess is hardly subjected to the elution action (engraving) by electrolytic processing.

【0014】そして、電極工具にこの凹部を形成するこ
とにより、加工パターン以外の領域を、動圧溝の彫り込
み加工にほとんど関与しない距離まで遠ざけ、従来必要
とされた電極工具表面の非導電性材料(絶縁体)による
被覆を廃止することができる。このことにより、絶縁体
の剥離に起因する加工形状の不良や電気的短絡等を完全
に無くすことができ、従って所定の加工精度を長期にわ
たって安定して維持できる電極工具を得ることができ
る。
By forming this recess in the electrode tool, the region other than the machining pattern is moved to a distance that is hardly involved in the engraving of the dynamic pressure groove, and the non-conductive material on the surface of the electrode tool that has been conventionally required. The covering with (insulator) can be eliminated. As a result, it is possible to completely eliminate defective machining shapes, electrical short circuits and the like due to the peeling of the insulator, and thus it is possible to obtain an electrode tool that can maintain a predetermined machining accuracy stably for a long period of time.

【0015】また、上記凹部を絶縁体で被覆しないこと
によって、この凹部に対向する被加工物表面にも、動圧
溝の形成に関与しない程度の微弱な電流が流れることに
なる。このことにより、動圧溝以外の被加工物表面にあ
る微小な突起等が除去されるため、本発明の電極工具
は、被加工物表面の面粗度を改善する効果も併せて奏す
ることができる。
Further, since the recess is not covered with an insulator, a weak current that does not participate in the formation of the dynamic pressure groove flows on the surface of the workpiece facing the recess. As a result, minute projections and the like on the surface of the workpiece other than the dynamic pressure grooves are removed, so that the electrode tool of the present invention can also achieve the effect of improving the surface roughness of the surface of the workpiece. it can.

【0016】一方、本発明の動圧溝の加工方法は、動圧
軸受の部材に形成される動圧溝を電解加工によって形成
する際に、電極工具の導電部と被加工物の表面とのすき
間(加工間隙)を、0.05mm以上0.2mm以下に
設定した状態で、これら電極工具と被加工物との間に1
50A/cm2以下の電流を流す。
On the other hand, according to the method of machining a dynamic pressure groove of the present invention, when the dynamic pressure groove formed in the member of the dynamic pressure bearing is formed by electrolytic machining, the conductive portion of the electrode tool and the surface of the workpiece are processed. With the clearance (machining gap) set to 0.05 mm or more and 0.2 mm or less, 1 is set between the electrode tool and the workpiece.
A current of 50 A / cm 2 or less is passed.

【0017】動圧溝の加工に最適な加工間隙が上記の範
囲であることを考慮した場合、動圧溝の高い加工精度と
動圧溝形状の再現性を維持するためには、150A/c
2以下の低電流密度でパルス状電流を複数回に分けて
印加しながら加工を行う方法が好適である。
Considering that the optimum machining gap for machining the hydrodynamic groove is in the above range, in order to maintain high machining accuracy of the hydrodynamic groove and reproducibility of the hydrodynamic groove shape, 150 A / c.
It is preferable to use a method in which a pulsed current is applied in a plurality of times at a low current density of m 2 or less and the processing is performed.

【0018】[0018]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は、本発明の実施の
形態における電極工具の構成を示す模式図であり、図2
は、そのP部拡大図ある。また、図3は、動圧溝を形成
するのに用いられる本発明の電解加工装置の全体構成を
模式的に表した図である。なお、図4および図5に示し
た従来例と同様の機能を有する構成部材には、同じ符号
を付記する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a configuration of an electrode tool according to an embodiment of the present invention.
Is an enlarged view of the P portion. Further, FIG. 3 is a diagram schematically showing the overall configuration of the electrolytic processing apparatus of the present invention used to form the dynamic pressure grooves. Note that constituent members having the same functions as those of the conventional example shown in FIGS. 4 and 5 are denoted by the same reference numerals.

【0019】図1に示すように、本実施の形態において
使用される電極工具1の構成は、金属製の基体10の表
面における加工パターンを除く領域に、深さDが0.1
mm以上の凹部10bが形成されていることを特徴とす
る。この凹部10bの形成方法には、電解加工、エッチ
ング、機械加工等の方法を用いることが可能であり、比
較的深い溝形状を正確に彫り込みできることから、レー
ザー加工、放電加工が好適に採用される。また、この凹
部10bの形成により、被加工物11の加工に関与する
導電部10aを所定の形状にパターニングすることがで
きる。
As shown in FIG. 1, the structure of the electrode tool 1 used in the present embodiment has a depth D of 0.1 in the region of the surface of the metal base 10 excluding the processing pattern.
It is characterized in that a recess 10b having a size of not less than mm is formed. As a method of forming the recess 10b, it is possible to use a method such as electrolytic processing, etching, or mechanical processing. Since a relatively deep groove shape can be accurately carved, laser processing or electric discharge processing is preferably adopted. . Further, by forming the recess 10b, the conductive portion 10a involved in the processing of the workpiece 11 can be patterned into a predetermined shape.

【0020】次に、上記の電極工具1を用いた動圧溝の
加工方法について説明する。図3に示す本発明の電解加
工装置も、従来例と同様の基本構成を有する。動圧溝が
形成されるべき被加工物11は、所定の加工対象面に、
電極工具1を0.05mm以上0.2mm以下の間隙を
おいて対向させた状態で、加工槽21内に配置される。
加工槽21には電解液槽22と通じる液流入管22aと
液排出管22bが配置されており、ポンプ23の駆動に
より、被加工物11と電極工具1の間(加工すき間3
0)に電解液が流れるようになっている。使用される電
解液の種類は、特に限定されるものではないが、一般に
硝酸ナトリウム(NaNO3)30重量%以下の水溶液
が好適に用いられる。
Next, a method of processing the dynamic pressure groove using the electrode tool 1 will be described. The electrolytic processing apparatus of the present invention shown in FIG. 3 also has the same basic configuration as the conventional example. The workpiece 11 on which the dynamic pressure groove is to be formed is
The electrode tool 1 is placed in the processing tank 21 in a state of being opposed to each other with a gap of 0.05 mm or more and 0.2 mm or less.
A liquid inflow pipe 22a and a liquid discharge pipe 22b communicating with the electrolytic solution tank 22 are arranged in the processing tank 21, and by driving the pump 23, a space between the workpiece 11 and the electrode tool 1 (processing gap 3
Electrolyte is allowed to flow in 0). The type of electrolytic solution used is not particularly limited, but in general, an aqueous solution containing 30% by weight or less of sodium nitrate (NaNO 3 ) is preferably used.

【0021】被加工物11には、加工用電源24の正極
が接続される一方、電極工具1には同じく加工用電源2
4の負極が接続され、これらの被加工物11と電極工具
1の間に電解液を流した状態で電流が流される。加工用
電源24にはパルス電源が好適に採用され、150A/
cm2以下の電流密度のパルス状電流を複数回印加する
ことで、総印加電気量を制御しながら加工が行われる。
A positive electrode of a machining power source 24 is connected to the work piece 11, while a machining power source 2 is similarly connected to the electrode tool 1.
The negative electrode 4 is connected, and an electric current is passed between the workpiece 11 and the electrode tool 1 while the electrolytic solution is flowing. A pulse power source is preferably adopted as the processing power source 24,
By applying a pulsed current having a current density of cm 2 or less a plurality of times, processing is performed while controlling the total amount of applied electricity.

【0022】ここで、図1に示すように、電極工具1と
被加工物11との加工間隙Lを所定の距離(例えば0.
1mm)に設定した状態で電流を流すと、この電流は、
主に電極工具1表面の導電部10aと、この導電部10
aに対向する被加工物11表面との間にだけ流れること
になる。そして、電流による電気化学反応により導電部
10aに対向する部位の被加工物11のみが溶出し、そ
の表面に導電部10aと同等のパターンの動圧溝11b
が形成される。また同時に、電極工具1の凹部10bに
対向する被加工物11表面は、丘部11aとして電解加
工されずに残ることになる。
Here, as shown in FIG. 1, the machining gap L between the electrode tool 1 and the workpiece 11 is separated by a predetermined distance (for example, 0.
1mm), when the current is passed in the state, this current becomes
The conductive portion 10a mainly on the surface of the electrode tool 1 and the conductive portion 10a
It will flow only between the surface of the workpiece 11 facing a. Then, only the workpiece 11 in the portion facing the conductive portion 10a is eluted by the electrochemical reaction due to the electric current, and the dynamic pressure groove 11b having the same pattern as the conductive portion 10a is formed on the surface thereof.
Is formed. At the same time, the surface of the workpiece 11 facing the recess 10b of the electrode tool 1 remains as a hill 11a without being electrolytically machined.

【0023】以上詳述したように、本実施の形態におけ
る電極工具1は、その表面の加工パターン以外の領域
に、深さDが0.1mm以上の凹部10bが形成されて
いることにより、この凹部10bは動圧溝11bの彫り
込み加工にほとんど関与せず、従って従来の電極工具で
用いていたような非導電性材料による被覆を形成する必
要がない。
As described in detail above, the electrode tool 1 according to the present embodiment is provided with the concave portion 10b having the depth D of 0.1 mm or more in the area other than the processing pattern on the surface thereof. The recess 10b has almost no involvement in the engraving process of the dynamic pressure groove 11b, and therefore it is not necessary to form a coating of a non-conductive material as used in the conventional electrode tool.

【0024】また、被加工物11の丘部11aが電解加
工されなかったことにより、その表面には、図2に示す
ような微小突起11dが残存している可能性がある。し
かし、本発明の電極工具1は非導電性材料による被覆を
行わないため、凹部10bに対向する丘部11aにも、
動圧溝11bの形成に関与しない程度の微弱な電流が流
れ、丘部11a表面にある微小突起11dのみが選択的
に除去される。このことにより、本発明の電極工具1は
丘部11aの表面を滑らかにし、被加工物11表面の面
粗度を向上させることができる。更に、この丘部11a
に流れる微弱な電流は、導電部10aからの電流により
比較的大きなR形状となっていた丘部11aの上縁両側
の角隅部11cを、更に滑らかにする効果もある。
Further, since the hill portion 11a of the workpiece 11 has not been electrolytically machined, there is a possibility that minute projections 11d as shown in FIG. 2 remain on the surface thereof. However, since the electrode tool 1 of the present invention does not cover with the non-conductive material, the hill portion 11a facing the recess 10b is
A weak current that does not contribute to the formation of the dynamic pressure groove 11b flows, and only the minute protrusion 11d on the surface of the hill portion 11a is selectively removed. As a result, the electrode tool 1 of the present invention can smooth the surface of the hill 11a and improve the surface roughness of the surface of the workpiece 11. Furthermore, this hill 11a
The weak current that flows through the conductive layer 10a also has the effect of smoothing the corner portions 11c on both sides of the upper edge of the hill portion 11a, which has a relatively large R shape due to the current from the conductive portion 10a.

【0025】そして、本実施の形態における動圧溝の加
工方法は、電極工具1の導電部10aと被加工物11表
面との加工間隙Lを、0.05mm以上0.2mm以下
に設定した状態で、これら電極工具1と被加工物11と
の間に150A/cm2以下の電流を流して加工を行う
ことにより、微細な形状の動圧溝11bを高精度にかつ
再現性良く形成することができる。
Then, in the method for machining the dynamic pressure groove according to the present embodiment, the machining gap L between the conductive portion 10a of the electrode tool 1 and the surface of the workpiece 11 is set to 0.05 mm or more and 0.2 mm or less. Then, by applying a current of 150 A / cm 2 or less between the electrode tool 1 and the workpiece 11 to perform machining, the dynamic pressure groove 11b having a fine shape can be formed with high accuracy and reproducibility. You can

【0026】なお、数μm〜数十μmの溝深さの動圧溝
を±0.5μm程度の高精度で加工するには、電極工具
1と被加工物11の距離(加工間隙L)を一定の範囲と
し、低電流密度で電流を流しながら加工を行うことが望
ましい。すなわち、このような動圧溝加工においては、
加工間隙Lを0.05mm未満とした場合、所要の動圧
溝形状以外の被加工物11表面も彫り込み加工されてし
まうため、正確な動圧溝形状を再現することができな
い。また、加工間隙Lが0.2mmを超える場合は、加
工するために高い電流密度を必要とし、加工された動圧
溝形状が幅広となってしまうため、精密な彫り込み加工
には不向きである。そのため、加工間隙Lが0.05m
m以上0.2mm以下の範囲で動圧溝の形成を行うこと
が最適範囲となる。
In order to process a dynamic pressure groove having a groove depth of several μm to several tens of μm with high accuracy of about ± 0.5 μm, the distance between the electrode tool 1 and the workpiece 11 (processing gap L) is set. It is desirable that the processing is performed within a fixed range while flowing a current at a low current density. That is, in such dynamic pressure groove machining,
If the processing gap L is less than 0.05 mm, the surface of the workpiece 11 other than the required dynamic pressure groove shape will also be engraved, and an accurate dynamic pressure groove shape cannot be reproduced. If the processing gap L exceeds 0.2 mm, a high current density is required for processing, and the processed dynamic pressure groove shape becomes wide, which is not suitable for precision engraving processing. Therefore, the processing gap L is 0.05m
The optimum range is to form the dynamic pressure groove in the range of m or more and 0.2 mm or less.

【0027】また、この電解加工は表面に非導電性材料
による被膜を持たない電極工具1を用いて行われるた
め、電極工具1に起因するトラブルの発生が少ない。こ
のことにより、用意する予備の電極工具1の個数を削減
できるとともに、稼動中の電極工具1の交換回数も削減
できることから、上記の効果と併せて電解加工の効率ア
ップを達成することができる。
Further, since this electrolytic processing is carried out by using the electrode tool 1 which does not have a coating made of a non-conductive material on its surface, there are few troubles caused by the electrode tool 1. As a result, the number of spare electrode tools 1 to be prepared can be reduced, and the number of exchanges of the electrode tool 1 in operation can be reduced, so that the efficiency of electrolytic processing can be increased in addition to the above effects.

【0028】なお、以上の実施の形態では、パルス状の
電流を複数回印加することで電解加工を行ったが、加工
用電源24の種類や総印加電気量の制御方法については
特に限定されず、どのようなタイプの電源や制御方法を
用いても良い。
In the above embodiment, the electrolytic machining is performed by applying the pulsed current a plurality of times, but the type of the machining power source 24 and the method of controlling the total applied electricity amount are not particularly limited. Any type of power source or control method may be used.

【0029】また、本発明における動圧溝の電解加工装
置の構成については、本実施の形態に限られることな
く、他の任意の構成に対しても、全く同様に本発明を適
用し得ることは勿論である。
Further, the configuration of the electrodynamic machining apparatus for the dynamic pressure groove according to the present invention is not limited to the present embodiment, and the present invention can be applied to other arbitrary configurations in the same manner. Of course.

【0030】[0030]

【発明の効果】以上のように、本発明によれば、電極工
具表面における加工パターン以外の領域に、深さが0.
1mm以上の凹部を形成することにより、この凹部に対
向する被加工物表面は彫り込み加工されることがない。
このことにより、電極工具表面に導電部のパターニング
のための絶縁体を形成する必要がなく、絶縁体の剥離に
起因する加工形状の不良や電気的短絡等の発生もあり得
ない。従って、本発明の電極工具は、所定の加工精度を
長期にわたって安定して維持することができる。
As described above, according to the present invention, the depth of 0.
By forming a recess of 1 mm or more, the surface of the workpiece facing the recess is not engraved.
As a result, it is not necessary to form an insulator for patterning the conductive portion on the surface of the electrode tool, and there is no possibility of a defective machining shape or an electrical short circuit due to peeling of the insulator. Therefore, the electrode tool of the present invention can stably maintain a predetermined machining accuracy for a long period of time.

【0031】また、電極工具表面における加工パターン
以外の領域を絶縁体で被覆しないことによって、当該領
域に対向する被加工物表面にも動圧溝の形成に関与しな
い程度の微弱な電流が流れる。この微弱な電流は、被加
工物表面にある微小な突起等を選択的に除去する作用を
持つため、本発明の電極工具は被加工物表面を滑らかに
し、面粗度を改善する効果も併せて奏することができ
る。
By not covering the area other than the machining pattern on the surface of the electrode tool with the insulator, a weak current that does not contribute to the formation of the dynamic pressure groove also flows on the surface of the workpiece facing the area. This weak current has the effect of selectively removing minute projections and the like on the surface of the workpiece, so the electrode tool of the present invention also has the effect of smoothing the surface of the workpiece and improving the surface roughness. Can be played.

【0032】そして、本発明の電極工具を用いて、電極
工具の導電部と被加工物表面とのすき間を0.05mm
以上0.2mm以下に設定した状態で、これら電極工具
と被加工物との間に150A/cm2以下の電流を流し
て加工を行うことにより、微細な形状の動圧溝を高精度
に、かつ、再現性良く形成することができる。また、加
工精度低下やトラブルによる電極工具の交換回数も減少
することから、上記の効果と併せて、動圧溝の電解加工
の効率アップを達成することができる。
Using the electrode tool of the present invention, the gap between the conductive portion of the electrode tool and the surface of the workpiece is 0.05 mm.
By setting an electric current of 150 A / cm 2 or less between the electrode tool and the workpiece to perform machining in the state of being set to 0.2 mm or less, the dynamic pressure groove with a fine shape can be highly accurately formed. In addition, it can be formed with good reproducibility. Further, since the number of times of exchanging the electrode tool due to a decrease in processing accuracy or a trouble is reduced, the efficiency of electrolytic processing of the dynamic pressure groove can be increased in addition to the above effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における動圧溝の電解加工
用電極工具の構成を示す模式図的断面図である。
FIG. 1 is a schematic cross-sectional view showing the configuration of an electrode tool for electrolytically machining a dynamic pressure groove according to an embodiment of the present invention.

【図2】図1のP部拡大模式図である。FIG. 2 is an enlarged schematic view of a P portion of FIG.

【図3】本発明の実施の形態における動圧溝の電解加工
装置の全体構成を示す模式図である。
FIG. 3 is a schematic diagram showing an overall configuration of an electrolytic processing apparatus for a dynamic pressure groove according to an embodiment of the present invention.

【図4】動圧溝の電解加工に用いられる従来の電解加工
装置の全体構成を示す模式図である。
FIG. 4 is a schematic diagram showing an overall configuration of a conventional electrolytic processing apparatus used for electrolytic processing of dynamic pressure grooves.

【図5】動圧溝の電解加工に用いられる従来の電極工具
の構成例を示す模式図的断面図である。
FIG. 5 is a schematic cross-sectional view showing a configuration example of a conventional electrode tool used for electrolytic machining of dynamic pressure grooves.

【符号の説明】[Explanation of symbols]

1,2,3 電極工具 10 基体 10a 導電部 10b 凹部 11 被加工物 11a 丘部 11b 動圧溝 11c 角隅部 11d 微小突起 12,13 絶縁体 21 加工槽 22 電解液槽 22a 液流入管 22b 配排出管 23 ポンプ 24 加工用電源 30 加工すき間 D 深さ L 加工間隙 1,2,3 electrode tool 10 Base 10a conductive part 10b recess 11 Workpiece 11a hill 11b Dynamic pressure groove 11c corner 11d Small protrusion 12,13 insulator 21 Processing tank 22 Electrolyte tank 22a Liquid inflow pipe 22b Distribution pipe 23 pumps 24 Processing power supply 30 Processing gap D depth L processing gap

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面に動圧溝を形成すべき被加工物と、
所定パターンの導電部が表面に形成されてなる電極と
を、電解液中に対向させて浸漬するとともに、この電解
液を被加工物と電極との間に流動させつつ、これら被加
工物と電極とを加工用電源の正極および負極にそれぞれ
接続して電流を流すことによって、被加工物表面に電極
の導電部のパターンに対応した形状の動圧溝を形成する
電解加工用電極において、 前記電極は導電性材料のみで構成され、かつ、その表面
には上記所定パターン以外の領域に深さが0.1mm以
上の凹部が形成されていることを特徴とする電解加工用
電極。
1. A workpiece on which a dynamic pressure groove is to be formed,
An electrode having a conductive portion of a predetermined pattern formed on its surface is immersed in an electrolytic solution so as to face the electrolytic solution, and while the electrolytic solution is caused to flow between the workpiece and the electrode, the workpiece and the electrode are processed. In the electrode for electrolytic processing in which a dynamic pressure groove having a shape corresponding to the pattern of the conductive portion of the electrode is formed on the surface of the workpiece by connecting and to the positive electrode and the negative electrode of the processing power source, respectively, and applying a current, the electrode Is an electrode for electrolytic processing, characterized in that it is composed only of a conductive material, and a recess having a depth of 0.1 mm or more is formed in a region other than the predetermined pattern on the surface thereof.
【請求項2】 前記電極の導電部と被加工物の表面との
すき間を、0.05mm以上0.2mm以下に設定した
状態で、これら電極と被加工物との間に150A/cm
2以下の電流を流すことによって電解加工することを特
徴とする動圧溝の加工方法。
2. A gap between the conductive portion of the electrode and the surface of the workpiece is set to 0.05 mm or more and 0.2 mm or less, and 150 A / cm between the electrode and the workpiece.
A method for processing a dynamic pressure groove, characterized in that electrolytic processing is performed by applying an electric current of 2 or less.
JP2001393737A 2001-12-26 2001-12-26 Dynamic pressure groove machining method Expired - Fee Related JP3829300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393737A JP3829300B2 (en) 2001-12-26 2001-12-26 Dynamic pressure groove machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393737A JP3829300B2 (en) 2001-12-26 2001-12-26 Dynamic pressure groove machining method

Publications (2)

Publication Number Publication Date
JP2003191133A true JP2003191133A (en) 2003-07-08
JP3829300B2 JP3829300B2 (en) 2006-10-04

Family

ID=27600654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393737A Expired - Fee Related JP3829300B2 (en) 2001-12-26 2001-12-26 Dynamic pressure groove machining method

Country Status (1)

Country Link
JP (1) JP3829300B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280509A1 (en) * 2010-05-17 2011-11-17 Samsung Electro-Mechanics Co., Ltd. Spindle motor
JP2016532835A (en) * 2013-08-21 2016-10-20 エムアーゲー イーアーエス ゲーエムベーハー Sliding surface
JP2017505230A (en) * 2013-12-04 2017-02-16 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Method for forming brazing joint gap and method for brazing or soldering

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110280509A1 (en) * 2010-05-17 2011-11-17 Samsung Electro-Mechanics Co., Ltd. Spindle motor
US8454237B2 (en) * 2010-05-17 2013-06-04 Samsung Electro-Mechanics Co., Ltd. Spindle motor
JP2016532835A (en) * 2013-08-21 2016-10-20 エムアーゲー イーアーエス ゲーエムベーハー Sliding surface
JP2017505230A (en) * 2013-12-04 2017-02-16 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Method for forming brazing joint gap and method for brazing or soldering

Also Published As

Publication number Publication date
JP3829300B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
US6638414B2 (en) Electrode design for electrochemical machining of grooves
Datta Microfabrication by electrochemical metal removal
US8741113B2 (en) Method and electrode for defining and replicating structures in conducting materials
JP3245017B2 (en) High-speed electrochemical electrolytic cell for flattening DLM structure
JP2524458B2 (en) Electrochemical micromachining method
US7311811B2 (en) Device providing electrical contact to the surface of a semiconductor workpiece during processing
JP2006281333A (en) Electro-chemical machining electrode tool and manufacturing method thereof
US7887678B2 (en) Electrode tool for electrochemical machining and method for manufacturing same
JP3829300B2 (en) Dynamic pressure groove machining method
JPH10202431A (en) Machining method for workpiece having insulating ceramic coat
WO2002058113A3 (en) Electrochemical methods for polishing copper films on semiconductor substrates
JP2005231023A (en) Electrode tool for electrochemical machining and its manufacturing method
JP2003340648A (en) Electrochemical machining electrode and dynamic pressure bearing manufactured using the electrode
CN114101818A (en) Method for processing surface microtexture by maskless electrolysis
JP2002079425A (en) Hydrodynamic groove machining device for hydrodynamic bearing
Datta Microfabrication by high rate anodic dissolution: fundamentals and applications
JPH11209898A (en) Plating anode
JP2003211324A (en) Electro-chemical machining electrode and electro- chemical machining method using the electro-chemical machining electrode
Datta Microfabrication by through-mask electrochemical micromachining
JP3241299B2 (en) Method and apparatus for micro-electrochemical machining of inner surface of hole
Mouliprasanth et al. Multiresponse optimization of electrochemical micro-machining process parameters of micro-dimple using TOPSIS approach
JP2003191134A (en) Electrode for electrochemical machining and manufacturing method therefor
Datta Micromachining by electrochemical dissolution
JPS5930623A (en) Machining of magnetic disk base board
JP2004050351A (en) Electro-chemical machining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Effective date: 20051122

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060630

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees