JP2003189294A - Image monitoring device - Google Patents
Image monitoring deviceInfo
- Publication number
- JP2003189294A JP2003189294A JP2001380258A JP2001380258A JP2003189294A JP 2003189294 A JP2003189294 A JP 2003189294A JP 2001380258 A JP2001380258 A JP 2001380258A JP 2001380258 A JP2001380258 A JP 2001380258A JP 2003189294 A JP2003189294 A JP 2003189294A
- Authority
- JP
- Japan
- Prior art keywords
- value
- image
- pixel
- reference value
- monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Closed-Circuit Television Systems (AREA)
- Studio Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光学的な画像に基
づいて監視対象領域を監視する画像監視装置に関し、特
に画像を取得するカメラ等のレンズや監視窓などに付着
する汚れ等を検知し、それに対する対処を容易とする技
術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image monitoring apparatus for monitoring an area to be monitored based on an optical image, and more particularly to detecting stains or the like attached to a lens of a camera or the like for acquiring an image or a monitoring window. , Technology that makes it easy to deal with it.
【0002】[0002]
【従来の技術】従来より、監視対象領域に向けてカメラ
を設置し、それにより取得される光学的な画像に基づい
て、侵入者の出現等を検出する画像監視装置がある。こ
の画像監視装置のカメラが設置される監視対象領域は様
々である。そのため、カメラのレンズ面やカメラの収納
ケースに設けられた監視窓の表面が、屋内においては例
えばタバコのヤニ等で汚れることがあり、また屋外にお
いては例えば風雨で埃や泥などで汚れることがある。こ
のような汚れは、画像をぼやけさせたり霞ませて不鮮明
なものとし、その画像に基づく監視の妨げとなり得る。2. Description of the Related Art Conventionally, there is an image monitoring apparatus in which a camera is installed toward an area to be monitored and the appearance of an intruder is detected based on an optical image acquired by the camera. There are various monitoring target areas in which the cameras of the image monitoring apparatus are installed. Therefore, the lens surface of the camera and the surface of the monitoring window provided in the camera storage case may be contaminated indoors with, for example, a cigarette tar, or outdoors with dust and mud due to wind and rain, for example. is there. Such stains can blur or smear an image, making it unclear and obstructing surveillance based on the image.
【0003】このような汚れを、カメラにより取得され
た画像に基づいて検出する従来技術として、特開200
1−119614号公報に開示される技術がある。当該
従来技術では、汚れにより画像が不鮮明になると、画像
内の被写体同士の境界等の被写体の外縁を示す部分(い
わゆる、エッジ)における画素値の変化の急峻さ(エッ
ジ量と称する)が低下することを利用し、エッジ量が所
定値以下になったことに基づいてレンズ面等の汚れを検
知している。As a conventional technique for detecting such dirt on the basis of an image acquired by a camera, Japanese Patent Laid-Open No. 200-200200
There is a technique disclosed in Japanese Patent Laid-Open No. 1-119614. In the related art, when an image becomes unclear due to stains, the steepness of change in pixel value (referred to as edge amount) in a portion (so-called edge) indicating an outer edge of an object such as a boundary between objects in the image decreases. By utilizing this fact, the dirt on the lens surface or the like is detected based on the fact that the edge amount becomes equal to or less than the predetermined value.
【0004】[0004]
【発明が解決しようとする課題】しかし、この従来の技
術では、画像全体のエッジ量が低下することを以て、汚
れ付着を判定し検知しているため、例えば、監視対象領
域が暗いときのように画像全体のコントラストが低くな
った場合を汚れ付着と判定することがあるという問題が
あった。However, in this conventional technique, since the stain amount is determined and detected by the decrease in the edge amount of the entire image, for example, when the monitoring target area is dark. There is a problem that it may be determined that stains are attached when the contrast of the entire image is low.
【0005】本発明は上記問題点を解決するためになさ
れたもので、カメラが設置された環境に影響されにく
く、汚れ等の監視障害物を検知することができる画像監
視装置を提供することを目的とする。The present invention has been made in order to solve the above problems, and it is an object of the present invention to provide an image monitoring apparatus which is hardly affected by the environment in which a camera is installed and which can detect a monitoring obstacle such as dirt. To aim.
【0006】[0006]
【課題を解決するための手段】本願発明者は、上記問題
点を解決する画像監視装置の実現のために研究を行い、
その実験の結果、カメラのレンズ面等に汚れが付着する
と、画像にてエッジ量が大きな領域の減少が比較的大き
く、一方、エッジ量が小さな部分の領域の減少は比較的
小さいこと、これに対し、照明変動などでは、通常程度
のエッジ量の部分及びそれより大きなエッジ量の部分が
同程度で変化することが判明した。本発明はこの知見を
利用したものである。The inventor of the present application has conducted research to realize an image monitoring apparatus that solves the above problems,
As a result of the experiment, if dirt adheres to the lens surface of the camera, the reduction of the area where the edge amount is large in the image is relatively large, while the reduction of the area where the edge amount is small is relatively small. On the other hand, it has been found that, due to illumination fluctuations, a portion with a normal edge amount and a portion with a larger edge amount change at the same degree. The present invention utilizes this knowledge.
【0007】本発明に係る画像監視装置は、監視対象領
域の光学像に対応した画像を生成する撮像手段と、前記
画像の各画素について、当該画素の周辺画素との画素値
の差分に基づいた画素値変化強度を算出する画素値変化
強度算出手段と、第1の閾値を越える前記画素値変化強
度を有する前記各画素についての当該画素値変化強度を
合計した第1基準値と、前記第1の閾値より大きい第2
の閾値を越える前記画素値変化強度を有する前記各画素
についての当該画素値変化強度を合計した第2基準値と
を求め、前記第1基準値に対する前記第2基準値の相対
的な大きさに応じた比較評価値を算出する比較手段と、
前記比較評価値が所定の判定基準値より小さいことに基
づいて、前記監視対象領域と前記撮像手段との間の光路
内における半透明の監視障害物を検知する障害物検知手
段とを有するものである。An image monitoring apparatus according to the present invention is based on an image pickup means for generating an image corresponding to an optical image of a monitoring target area, and for each pixel of the image, based on a difference in pixel value between the pixel and a peripheral pixel of the pixel. A pixel value change strength calculating means for calculating a pixel value change strength; a first reference value obtained by summing the pixel value change strengths of the respective pixels having the pixel value change strength exceeding a first threshold value; Second greater than the threshold of
A second reference value obtained by summing the pixel value change intensities of the pixels having the pixel value change intensities exceeding the threshold value of, and determining the relative magnitude of the second reference value with respect to the first reference value. Comparing means for calculating a corresponding comparative evaluation value,
An obstacle detection unit that detects a semi-transparent monitoring obstacle in the optical path between the monitoring target region and the imaging unit based on the comparison evaluation value being smaller than a predetermined determination reference value. is there.
【0008】他の本発明に係る画像監視装置は、監視対
象領域の光学像に対応した画像を生成する撮像手段と、
前記画像の各画素について、当該画素の周辺画素との画
素値の差分に基づいた画素値変化強度を算出する画素値
変化強度算出手段と、第1の閾値を越える前記画素値変
化強度を有する前記画素の数である第1基準値と、前記
第1の閾値より大きい第2の閾値を越える前記画素値変
化強度を有する前記画素の数である第2基準値とを求
め、前記第1基準値に対する前記第2基準値の相対的な
大きさに応じた比較評価値を算出する比較手段と、前記
比較評価値が所定の判定基準値より小さいことに基づい
て、前記監視対象領域と前記撮像手段との間の光路内に
おける半透明の監視障害物を検知する障害物検知手段と
を有するものである。Another image monitoring apparatus according to the present invention is an image pickup means for generating an image corresponding to an optical image of a monitoring target area,
For each pixel of the image, a pixel value change strength calculating means for calculating a pixel value change strength based on a difference in pixel value with a peripheral pixel of the pixel, and the pixel value change strength exceeding a first threshold value. A first reference value, which is the number of pixels, and a second reference value, which is the number of pixels having the pixel value change intensity exceeding a second threshold value that is larger than the first threshold value, are obtained, and the first reference value is calculated. Comparing means for calculating a comparative evaluation value according to the relative size of the second reference value with respect to the monitoring target area and the imaging means based on the comparative evaluation value being smaller than a predetermined determination reference value. And an obstacle detection means for detecting a semi-transparent surveillance obstacle in the optical path between the and.
【0009】これらの本発明によれば、画素値変化強度
がエッジ量を表す。相対的に低い第1の閾値と相対的に
高い第2の閾値とが設定され、画素値変化強度が第1の
閾値を越える画素の数又はそれらの画素での画素変化強
度の合計値である第1の基準値と、画素値変化強度が第
2の閾値を越える画素の数又はそれらの画素での画素変
化強度の合計値である第2の基準値とに対して、上記知
見を適用して、画像のぼやけや霞みの原因となるレンズ
の汚れ等の半透明の監視障害物を検知する。すなわち、
ここで検知しようとする監視障害物が監視対象領域と撮
像手段との間の光路に存在すると、第2基準値は比較的
大きく減少するのに対し、第1基準値の減少は比較的小
さい。一方、照明が暗いような場合には、第2基準値も
第1基準値も一様に減少する。このように、半透明の監
視障害物が存在する場合と、照明が暗い等のコントラス
ト低減要因による場合とでは、第1基準値に対する第2
基準値の相対的な大きさが異なる。そこでこの相対的な
大きさに対応した比較評価値に対し、適当な判定基準値
を設定して、レンズの汚れ等の監視障害物が存在して画
像がぼやけている場合と、照明が暗いといった監視障害
物に起因しない要因によりコントラストが低下した場合
とを判別することができる。According to these aspects of the present invention, the pixel value change intensity represents the edge amount. A first threshold value that is relatively low and a second threshold value that is relatively high are set, and this is the number of pixels whose pixel value change intensity exceeds the first threshold value or the total value of the pixel change intensities of those pixels. The above knowledge is applied to the first reference value and the second reference value that is the number of pixels whose pixel value change strength exceeds the second threshold value or the total value of the pixel change strengths of those pixels. Thus, a semi-transparent monitoring obstacle such as dirt on the lens that causes blurring or haze of an image is detected. That is,
If the monitoring obstacle to be detected is present in the optical path between the monitoring target area and the image pickup device, the second reference value decreases relatively greatly, whereas the decrease of the first reference value relatively small. On the other hand, when the illumination is dark, both the second reference value and the first reference value decrease uniformly. As described above, in the case where there is a semi-transparent monitoring obstacle and the case where the illumination is dark or the like due to a contrast reduction factor, the second reference value with respect to the first reference value is used.
The relative size of the reference value is different. Therefore, an appropriate judgment reference value is set for the comparative evaluation value corresponding to this relative size, and when the image is blurred due to the presence of a monitoring obstacle such as dirt on the lens, or when the illumination is dark. It is possible to determine that the contrast is reduced due to a factor that is not caused by the monitoring obstacle.
【0010】本発明の好適な態様は、前記比較評価値
が、前記第1基準値に対する前記第2基準値の比である
画像監視装置である。A preferred aspect of the present invention is the image monitoring apparatus, wherein the comparison evaluation value is a ratio of the second reference value to the first reference value.
【0011】半透明の監視障害物は、光路内に存在する
タバコの煙などでもよいが、本発明の好適な態様は、前
記障害物検知手段が、前記監視障害物として、前記光路
上に配置される透明部材又は反射鏡に付着した汚れを検
知する画像監視装置である。The semi-transparent surveillance obstacle may be cigarette smoke or the like existing in the optical path, but in a preferred aspect of the present invention, the obstacle detecting means is arranged on the optical path as the surveillance obstacle. The image monitoring device detects a stain attached to the transparent member or the reflecting mirror.
【0012】また、実験により経験的に、前記第1の閾
値を、前記監視障害物が存在しない状態で取得された前
記画像にて、前記監視対象領域内に位置する検出目的物
の輪郭に対応して生じる前記画素値変化強度に応じた値
とし、前記第2の閾値を、前記第1の閾値の2倍に応じ
た値とするのが好適である。Empirically through experiments, the first threshold value corresponds to the contour of the detection target object located in the monitoring target area in the image acquired in the absence of the monitoring obstacle. It is preferable that the second threshold value has a value corresponding to twice the first threshold value, and the second threshold value has a value corresponding to the pixel value change intensity.
【0013】本発明に係る画像監視装置においては、前
記障害物検知手段は、前記比較評価値が前記判定基準値
より小さい状態が所定時間継続すると、前記汚れが付着
したと判定する。レンズ等に付着した汚れ等の監視障害
物により比較評価値が低下する場合は、その状態が持続
する。そのような持続性の監視障害物に対しては、例え
ば、監視センタ等から対処員を派遣して除去作業を行う
必要がある。一方、煙や霧のような一過性のものに対し
ては、敢えて除去作業を行う必要性は低い。本発明によ
れば、持続性の監視障害物を検知し、例えば、その検知
結果に基づいて監視センタ等への通報が行われる。In the image monitoring apparatus according to the present invention, the obstacle detecting means determines that the dirt is attached when the comparison evaluation value is smaller than the determination reference value for a predetermined time. If the comparative evaluation value decreases due to a monitoring obstacle such as dirt adhering to the lens or the like, that state continues. For such a persistent monitoring obstacle, it is necessary to dispatch a coping person from the monitoring center or the like to perform the removal work. On the other hand, it is not necessary to dare to remove transient materials such as smoke and fog. According to the present invention, a persistent monitoring obstacle is detected, and, for example, a notification is sent to a monitoring center or the like based on the detection result.
【0014】[0014]
【発明の実施の形態】次に、本発明の実施形態である侵
入者監視装置について図面を参照して説明する。BEST MODE FOR CARRYING OUT THE INVENTION Next, an intruder monitoring apparatus according to an embodiment of the present invention will be described with reference to the drawings.
【0015】[実施形態1]図1は、本発明に係る侵入
者監視装置の概略のブロック構成図である。本装置は、
監視対象領域を撮影可能なカメラ2と、カメラ2から得
られた監視画像を処理する画像処理装置4とから構成さ
れる。[First Embodiment] FIG. 1 is a schematic block diagram of an intruder monitoring apparatus according to the present invention. This device
It is composed of a camera 2 capable of capturing a surveillance target area and an image processing device 4 for processing a surveillance image obtained from the camera 2.
【0016】画像処理装置4は、監視画像に基づいて監
視対象領域に人影があるか否かを判断する侵入者検知処
理部10に加えて、監視画像に基づいてカメラ2のレン
ズ等の光学部品や監視窓に付着するタバコのヤニや埃等
の汚れを検知する汚れ検知処理部12を有する。In addition to the intruder detection processing unit 10 which determines whether or not there is a shadow in the monitored area based on the monitoring image, the image processing apparatus 4 also includes optical components such as the lens of the camera 2 based on the monitoring image. It also has a stain detection processing unit 12 for detecting stains such as tars and dusts of cigarettes attached to the monitoring window.
【0017】侵入者検知処理部10は、従来より用いら
れている各種の画像認識技術に基づいて侵入者を検知
し、監視員へ侵入者検知を通報する。一方、汚れ検知処
理部12も汚れを検知すると、監視員へそれを通報す
る。侵入者検知処理部10、汚れ検知処理部12は、例
えば、中央処理ユニット(CPU:Central Processing
Unit)を用いて構成することができ、それら各処理部
はこのCPU上で実行されるプログラムとして実現する
ことができる。以下、本装置の特徴的部分である汚れ検
知処理部12について詳しく説明する。The intruder detection processing section 10 detects an intruder based on various image recognition techniques that have been conventionally used, and notifies the inspector of the intruder detection. On the other hand, when the dirt detection processing unit 12 also detects dirt, the dirt detection processing unit 12 reports it to an observer. The intruder detection processing unit 10 and the dirt detection processing unit 12 are, for example, central processing units (CPU: Central Processing Unit).
Unit), and each of these processing units can be realized as a program executed on this CPU. Hereinafter, the dirt detection processing unit 12, which is a characteristic part of the present device, will be described in detail.
【0018】図2は、汚れ検知処理部12の処理を示す
処理フロー図である。また、図3〜図5は、汚れ検知処
理部12の処理内容を説明する説明図であり、図3は監
視対象領域の模式図である。また、図4、図5はそれぞ
れ、図3に示した走査線Lに沿った輝度値の変動の様子
を示す模式的なグラフ(図4(a),図5(a))及び
輝度値の空間的変化量の走査線Lに沿った変動を示す模
式的なグラフ(図4(b),図5(b))を表す。図4
はカメラ2のレンズ面等に汚れが付着していない状態を
表す図であり、一方、図5は汚れが付着しコントラスト
が低下した状態を表す図である。また、図4(a),図
5(a)において横軸が走査線方向の画素の並びを表
し、縦軸が輝度値を表す。図4(b),図5(b)にお
いては、横軸が走査線方向の画素の並びを表し、縦軸は
輝度値変化量であり、この輝度値変化量の絶対値がエッ
ジ量として定義される。FIG. 2 is a processing flow chart showing the processing of the dirt detection processing section 12. 3 to 5 are explanatory diagrams for explaining the processing contents of the stain detection processing unit 12, and FIG. 3 is a schematic diagram of the monitoring target area. Further, FIGS. 4 and 5 are schematic graphs (FIGS. 4A and 5A) showing the state of fluctuation of the luminance value along the scanning line L shown in FIG. 3 and the luminance value, respectively. 5 is a schematic graph (FIGS. 4B and 5B) showing a variation of the spatial variation along the scanning line L. FIG. Figure 4
FIG. 5 is a diagram showing a state where dirt is not attached to the lens surface of the camera 2, while FIG. 5 is a diagram showing a state where dirt is attached and the contrast is lowered. In addition, in FIGS. 4A and 5A, the horizontal axis represents the arrangement of pixels in the scanning line direction, and the vertical axis represents the luminance value. In FIG. 4B and FIG. 5B, the horizontal axis represents the arrangement of pixels in the scanning line direction, the vertical axis represents the brightness value change amount, and the absolute value of this brightness value change amount is defined as the edge amount. To be done.
【0019】汚れ検知処理部12による汚れ検知ロジッ
クは一定時間おきに開始され実行される(S100)。
汚れ検知処理部12は、カメラ2から入力された画像デ
ータを取得し(S105)、各画素のエッジ量を算出す
る(S110)。ある画素におけるエッジ量は、当該画
素近傍における輝度値の変化量に基づいて求められる。
例えば、エッジ量算出にはSobelフィルタを用いること
ができる。The dirt detection logic by the dirt detection processing unit 12 is started and executed at regular intervals (S100).
The dirt detection processing unit 12 acquires the image data input from the camera 2 (S105) and calculates the edge amount of each pixel (S110). The edge amount at a certain pixel is obtained based on the amount of change in the brightness value near the pixel.
For example, a Sobel filter can be used to calculate the edge amount.
【0020】汚れ検知処理部12には、エッジ量に関し
実験的に定められた2つの閾値TH1,TH2が設定されてい
る。ここでTH1<TH2であり、第1の閾値であるTH1を通
常閾値、第2の閾値であるTH2を高閾値と称する。例え
ば、TH1は、カメラ2に汚れが付着していない状態で取
得された画像にて、監視対象領域内に現れる侵入者の輪
郭が明確となるような輝度値変化量に応じたものであ
る。一方、TH2は通常はTH1の2倍前後、例えば1.5〜
3倍といった範囲内の値に設定することが好適である。Two thresholds TH1 and TH2, which are experimentally determined for the edge amount, are set in the dirt detection processing unit 12. Here, TH1 <TH2, and the first threshold TH1 is called a normal threshold and the second threshold TH2 is called a high threshold. For example, TH1 corresponds to the amount of change in the brightness value that makes the contour of the intruder appearing in the monitoring target area clear in the image acquired when the camera 2 is not contaminated. On the other hand, TH2 is usually around twice as much as TH1, for example 1.5-
It is preferable to set the value within the range of three times.
【0021】汚れ検知処理部12は、画像を構成する画
素のうち、TH1を越えるエッジ量を有する画素の数M
(通常閾値エッジ数と称する)及び、TH2を越えるエッ
ジ量を有する画素の数N(高閾値エッジ数と称する)を
それぞれカウントして求める(S115,S120)。
ちなみに、高閾値エッジ数としてカウントされた画素
は、空間的な輝度変化が大きい画素、すなわちコントラ
ストが強い画素に相当する。The stain detection processing unit 12 determines the number M of pixels having an edge amount exceeding TH1 among the pixels forming the image.
(Normally referred to as the threshold edge number) and the number N of pixels having an edge amount exceeding TH2 (referred to as the high threshold edge number) are counted and obtained (S115, S120).
By the way, the pixel counted as the high threshold edge number corresponds to a pixel having a large spatial luminance change, that is, a pixel having a strong contrast.
【0022】M,Nが求まると、それらの比N/Mで定
義される高閾値エッジ比率Aを比較評価値として算出す
る(S125)。When M and N are obtained, a high threshold edge ratio A defined by the ratio N / M is calculated as a comparative evaluation value (S125).
【0023】なお、通常閾値エッジ数Mが0の場合には
比N/Mの計算において零割りを生じる。またMが非常
に小さい場合は、M及びNの統計的なばらつきに起因し
たAの誤差が大きくなり、後述する判定に用いることが
不適切となる。そこで、比N/Mの算出処理S125
は、Mが所定の閾値TH3より大きい場合にのみ行い、M
がTH3以下である場合には比N/Mは計算しない(S1
30)。このようにMが非常に小さい値となるというこ
とは、一般に画像全体が輝度変化に乏しいことを意味す
る。その要因として、(1)もともと監視対象領域が輝度
変化に乏しい、(2)カメラのレンズ面等の汚れがひど
く、何も見えなくなっている、(3)カメラの前方に故意
に障害物が置かれ、監視が妨げられている、といったこ
とが挙げられる。これらのうち、特に要因(2)及び(3)は
侵入者を検知できず不都合である。そのため、MがTH3
以下の場合の高閾値エッジ比率Aには、後述する判定処
理で異常として検知されるような値、例えば0が付与さ
れる(S135)。なお、閾値TH3は実験等に基づいて
経験的に定めることができる。When the number of threshold edges M is 0, a division by zero occurs in the calculation of the ratio N / M. Further, when M is very small, the error of A due to the statistical variation of M and N becomes large, which makes it inappropriate to use for the determination described later. Therefore, the calculation process S125 of the ratio N / M is performed.
Is performed only when M is larger than a predetermined threshold TH3, and M
Is less than TH3, the ratio N / M is not calculated (S1
30). Such a very small value of M generally means that the brightness of the entire image is poor. This is because (1) the area to be monitored originally has little change in brightness, (2) the lens surface of the camera is heavily soiled, and nothing is visible. He said that surveillance was hindered. Among these, the factors (2) and (3) are inconvenient because the intruder cannot be detected. Therefore, M is TH3
In the following cases, the high threshold edge ratio A is given a value such as 0, which is detected as an abnormality in the determination process described later (S135). The threshold TH3 can be empirically determined based on experiments and the like.
【0024】高閾値エッジ比率Aは、輝度変化があった
画素のうち高い輝度変化があった画素の割合を表し、良
好なコントラストが得られている画像ほど高い値をと
る。例えば、これは、汚れが付着していない場合の画像
に対応した図4(b)と、汚れが付着した場合の画像に
対応した図5(b)とを対比することによって具体的に
理解される。すなわち、図4(b)に示すように、コン
トラストの高い画像では、被写体の輪郭近傍の比較的少
数の限られた画素において、絶対値がTH2を越えるよう
な大きな輝度値変化量が生じるのに対し、図5(b)に
示すように、汚れによってぼやけたコントラストの低い
画像では、被写体の輪郭に対応した輝度値の変化が比較
的多くの画素に分散する。そのため、汚れが付着した場
合には、高閾値TH2を越える画素数Nが減少する。その
一方で、TH2より小さなエッジ量を有する画素が増加
し、これがMを増加させる方向に作用する。よって、汚
れが付着した場合の高閾値エッジ比率Aは、汚れが付着
していない場合の高閾値エッジ比率Aに比べて通常は低
下する。The high threshold edge ratio A represents the ratio of pixels having a high brightness change among the pixels having a brightness change, and takes a higher value for an image having a better contrast. For example, this is specifically understood by comparing FIG. 4 (b), which corresponds to the image without stains, with FIG. 5 (b), which corresponds to the image with stains. It That is, as shown in FIG. 4B, in a high-contrast image, a large amount of change in luminance value whose absolute value exceeds TH2 occurs in a relatively small number of limited pixels near the contour of the subject. On the other hand, as shown in FIG. 5B, in a low-contrast image that is blurred due to stains, the change in the brightness value corresponding to the contour of the subject is dispersed in a relatively large number of pixels. Therefore, when dirt adheres, the number N of pixels exceeding the high threshold value TH2 decreases. On the other hand, the number of pixels having an edge amount smaller than TH2 increases, which acts to increase M. Therefore, the high threshold edge ratio A when dirt is attached is usually lower than the high threshold edge ratio A when dirt is not attached.
【0025】ちなみに、照度低下によりコントラストが
低下した場合には、高閾値TH2を越える画素数Nは低下
するが、輪郭に対応して輝度値変化を生じる画素数の増
加は基本的に生じず、ひいては通常閾値エッジ数Mの増
加率は汚れ付着の場合ほどには大きくなりにくい。その
ため、この場合の高閾値エッジ比率Aの減少は、汚れ付
着の場合より小さくなり、コントラスト低下という点で
は同じであっても、高閾値エッジ比率Aに基づいて汚れ
付着の場合と照度低下の場合とを弁別することが可能と
なる。By the way, when the contrast decreases due to the decrease in illuminance, the number N of pixels exceeding the high threshold value TH2 decreases, but basically the increase in the number of pixels causing a brightness value change corresponding to the contour does not occur. As a result, the increase rate of the number of threshold edges M is not likely to be as large as that in the case of adhesion of dirt. Therefore, the decrease in the high threshold edge ratio A in this case is smaller than that in the case of stain adhesion, and even if the same in terms of contrast reduction, in the case of stain adhesion and the illuminance decrease based on the high threshold edge ratio A. It is possible to distinguish between and.
【0026】この汚れ付着の場合と照度低下の場合との
弁別を可能とするように、判定基準値TH4が実験等に基
づいて設定される。高閾値エッジ比率AがTH4より大き
い場合には(S140)、汚れ付着は生じていないと判
断され、汚れカウントタイマはゼロクリアされる(S1
45)。一方、高閾値エッジ比率AがTH4以下である場
合には、汚れ付着が生じているか、上述のMが非常に小
さい場合であり、この場合には、汚れカウントタイマが
カウントアップされる(S150)。ちなみに、汚れカ
ウントタイマは、本装置の起動時にはゼロクリアされる
が、一定時間おきに繰り返される汚れ検知ロジックの終
了によってはゼロクリアされない。The judgment reference value TH4 is set based on experiments or the like so as to enable discrimination between the case where the stain is attached and the case where the illuminance is decreased. If the high threshold edge ratio A is larger than TH4 (S140), it is determined that no dirt is attached and the dirt count timer is cleared to zero (S1).
45). On the other hand, when the high threshold edge ratio A is equal to or less than TH4, it means that the dirt adheres or the above-mentioned M is very small. In this case, the dirt count timer is counted up (S150). . By the way, the dirt count timer is cleared to zero when the apparatus is started up, but is not cleared to zero when the dirt detection logic that is repeated at regular intervals ends.
【0027】汚れカウントタイマは、ゼロクリアされな
い限り、汚れ検知ロジックの間隔においても所定クロッ
クにしたがって計時するように構成することもできる
し、各汚れ検知ロジックで例えば1ずつカウントアップ
するように構成することもできる。いずれにしても、汚
れカウントタイマの値が所定の閾値T秒(例えば60
秒)以上に相当する値となった場合には(S155)、
高閾値エッジ比率Aの閾値TH4以下への低下が、外乱光
等の影響による一時的なものではなく、レンズ面等に付
着した汚れ等の持続性を有する異常状態であるとして、
監視員等への発報が行われる(S160)。一方、汚れ
カウントタイマの値がT秒相当未満である場合には、今
回の汚れ検知ロジックでは異常とは判断せずに(S16
5)、当該汚れ検知ロジックを終了する。The dirt count timer can be configured to count according to a predetermined clock even at the interval of the dirt detection logic unless it is cleared to zero, or to be incremented by 1, for example, in each dirt detection logic. You can also In any case, the value of the dirt count timer is a predetermined threshold value T seconds (for example, 60 seconds).
If the value is equal to or more than (seconds) (S155),
Assuming that the decrease of the high threshold edge ratio A to the threshold TH4 or less is not temporary due to the influence of ambient light or the like, but is an abnormal state having persistence such as dirt adhering to the lens surface,
An alert is sent to the observer (S160). On the other hand, when the value of the dirt count timer is less than T seconds, the dirt detection logic this time does not determine that there is an abnormality (S16).
5) Then, the dirt detection logic is ended.
【0028】なお、上述の構成では、高閾値エッジ比率
Aは通常閾値TH1を越える画素数Mに対する高閾値TH2を
越える画素数Nの比と定義したが、通常閾値TH1を越え
る画素でのエッジ量の積算値SUM1と高閾値TH2を越える
画素でのエッジ量の積算値SUM2とをそれぞれ処理S11
5,S120にて算出し、それらを用いて処理S125
においてA=SUM2/SUM1を算出し、そして、このAを比
較評価値として処理S140での判定を行ってもよい。In the above configuration, the high threshold edge ratio A is defined as the ratio of the number N of pixels exceeding the high threshold TH2 to the number M of pixels exceeding the normal threshold TH1, but the edge amount at the pixels exceeding the normal threshold TH1 is defined. And the integrated value SUM2 of the edge amount at the pixels exceeding the high threshold value TH2 are respectively processed S11.
5, calculated in S120, using them, processing S125
In step S140, A = SUM2 / SUM1 may be calculated, and the determination in step S140 may be performed using this A as a comparative evaluation value.
【0029】[実施形態2]第2の実施形態に係る侵入
者監視装置は図1に示す第1の実施形態の装置と同様の
ブロック構成を有し、また、処理内容も図2に示す第1
の実施形態の装置の処理内容と共通するところが多い。
そこで、以下、第1の実施形態と同様の構成要素及び処
理ステップについては同一の符号を付して説明の簡素化
を図る。[Embodiment 2] The intruder monitoring apparatus according to the second embodiment has the same block configuration as that of the apparatus according to the first embodiment shown in FIG. 1, and the processing content is also shown in FIG. 1
There are many points in common with the processing contents of the apparatus of the above embodiment.
Therefore, hereinafter, the same components and processing steps as those in the first embodiment are designated by the same reference numerals to simplify the description.
【0030】図6、図7は、第2の実施形態の侵入者監
視装置における汚れ検知処理部12の処理を示す処理フ
ロー図であり、図6は汚れ付着判定の基準値設定に係る
処理内容を示すフロー図である。また、図7は汚れ検知
ロジックの処理内容を示すフロー図である。FIGS. 6 and 7 are process flow charts showing the process of the dirt detection processing unit 12 in the intruder monitoring apparatus of the second embodiment, and FIG. 6 shows the processing contents related to the setting of the reference value for the dirt adhesion determination. FIG. FIG. 7 is a flowchart showing the processing contents of the dirt detection logic.
【0031】まず、図6に基づいて、汚れ付着判定の基
準値設定について説明する。例えば、汚れ検知処理部1
2は汚れ判定処理を開始すると、以下に説明する処理S
205〜S235からなる判定基準値パラメータ設定処
理を行って、汚れ付着判定の基準値の設定に利用される
判定基準値パラメータBを決定した後、汚れ検知ロジッ
クS240の反復を開始する。First, referring to FIG. 6, the setting of the reference value for the dirt adhesion determination will be described. For example, the dirt detection processing unit 1
2 starts the stain determination process, and the process S described below is performed.
After performing the determination reference value parameter setting process of 205 to S235 to determine the determination reference value parameter B used to set the reference value for the stain adhesion determination, the stain detection logic S240 is started to be repeated.
【0032】判定基準値パラメータ設定処理は、基本的
には、汚れが付着していない状態での画像に基づいた高
閾値エッジ比率Aの決定処理S105〜S135と同様
である。すなわち、汚れ検知処理部12はカメラ2から
適当なタイミングで画像データを取得し(S205)、
この画像に対して、エッジ量算出処理S210を行い、
通常閾値エッジ数M、高閾値エッジ数Nを求め(S21
5,S220)、さらに高閾値エッジ比率N/Mを算出
して、これを判定基準値パラメータBとする(S22
5)。なお、Mが閾値TH3以下の場合には(S23
0)、B=0にセットする(S235)。The determination reference value parameter setting processing is basically the same as the determination processing S105 to S135 of the high threshold edge ratio A based on the image in the state where no dirt is attached. That is, the dirt detection processing unit 12 acquires image data from the camera 2 at an appropriate timing (S205),
Edge amount calculation processing S210 is performed on this image,
The normal threshold edge number M and the high threshold edge number N are calculated (S21
5, S220), a higher threshold edge ratio N / M is calculated, and this is used as the determination reference value parameter B (S22).
5). If M is less than or equal to the threshold TH3 (S23
0) and B = 0 are set (S235).
【0033】判定基準値パラメータBが決定されると、
以降、汚れ検知ロジックS240が一定時間おきに繰り
返される。次に、図7に基づいて、汚れ検知ロジックを
説明する。本装置の汚れ検知ロジックが、上記第1の実
施形態の汚れ検知ロジックと異なる点は、処理S12
5,S135で得られた高閾値エッジ比率Aに基づく汚
れ付着判定処理S300にある。すなわち、処理S30
0において高閾値エッジ比率Aと比較される判定基準値
は、判定基準値パラメータBに所定の倍率Rを乗じて定
められる点が処理S140と異なる。When the judgment reference value parameter B is determined,
After that, the dirt detection logic S240 is repeated at regular intervals. Next, the dirt detection logic will be described with reference to FIG. The stain detection logic of this apparatus is different from the stain detection logic of the first embodiment in that the process S12 is different.
5, the dirt adhesion determination processing S300 based on the high threshold edge ratio A obtained in S135. That is, the process S30
The determination reference value compared with the high threshold edge ratio A at 0 is different from the processing S140 in that it is determined by multiplying the determination reference value parameter B by a predetermined scale factor R.
【0034】第1の実施形態の判定処理S140で判定
基準値として用いられる閾値TH4は、個々の監視対象領
域に対応したものではないのに対し、この判定処理S3
00で判定基準値として用いられる積(R・B)は、パ
ラメータBが個々の監視対象領域に応じて定められるの
で、Rを調整することによって、誤検出を抑制しつつ汚
れ検知の感度を向上させることが容易となる。Although the threshold value TH4 used as the determination reference value in the determination processing S140 of the first embodiment does not correspond to each monitoring target area, this determination processing S3
The product (R · B) used as the determination reference value in 00 is determined by the parameter B in accordance with each monitoring target area. Therefore, by adjusting R, the sensitivity of dirt detection is improved while suppressing erroneous detection. It becomes easy to do.
【0035】ここでは、判定基準値パラメータ設定処理
を汚れ検知処理部12の起動時の初期処理として行うこ
ととしたが、その後の適当なタイミング(汚れが付着し
ていない状態)にて行うようにしてもよい。特に監視対
象領域のレイアウト変更等により、侵入者等の移動体が
存在しない状態にてカメラ2から得られる背景画像が変
化した場合には、判定基準値パラメータ設定処理を改め
て行い、パラメータBを更新することが好ましい。Here, the judgment reference value parameter setting process is performed as an initial process at the time of starting the dirt detection processing unit 12, but it may be carried out at an appropriate timing thereafter (a state where dirt is not attached). May be. Especially, when the background image obtained from the camera 2 is changed in the absence of a moving body such as an intruder due to the layout change of the monitoring target area or the like, the determination reference value parameter setting process is performed again and the parameter B is updated. Preferably.
【0036】[0036]
【発明の効果】本発明の画像監視装置によれば、カメラ
のレンズ面等への汚れ等の監視障害物が精度良く検知さ
れる。According to the image monitoring apparatus of the present invention, a monitoring obstacle such as dirt on the lens surface of a camera can be detected with high accuracy.
【図1】 本発明に係る侵入者監視装置の概略のブロッ
ク構成図である。FIG. 1 is a schematic block configuration diagram of an intruder monitoring device according to the present invention.
【図2】 第1の実施形態に係る汚れ検知処理部の処理
を示す処理フロー図である。FIG. 2 is a processing flowchart showing processing of a stain detection processing unit according to the first embodiment.
【図3】 監視対象領域を撮した画像の模式図である。FIG. 3 is a schematic diagram of an image of a monitored area.
【図4】 カメラのレンズ面等に汚れが付着していない
状態での輝度値及び輝度値変化量の一例を示すグラフで
ある。FIG. 4 is a graph showing an example of a brightness value and a brightness value change amount in a state where dirt is not attached to a lens surface or the like of a camera.
【図5】 カメラのレンズ面等に汚れが付着した状態で
の輝度値及び輝度値変化量の一例を示すグラフである。FIG. 5 is a graph showing an example of a brightness value and a brightness value change amount in a state where dirt is attached to a lens surface or the like of a camera.
【図6】 汚れ付着判定の基準値設定に係る処理内容を
示すフロー図である。FIG. 6 is a flowchart showing the contents of processing relating to setting of a reference value for dirt adhesion determination.
【図7】 第2の実施形態に係る汚れ検知処理部の処理
を示す処理フロー図である。FIG. 7 is a process flow diagram showing a process of a stain detection processing unit according to the second embodiment.
2 カメラ、4 画像処理装置、10 侵入者検知処理
部、12 汚れ検知処理部。2 camera, 4 image processing device, 10 intruder detection processing unit, 12 stain detection processing unit.
Claims (6)
生成する撮像手段と、 前記画像の各画素について、当該画素の周辺画素との画
素値の差分に基づいた画素値変化強度を算出する画素値
変化強度算出手段と、 第1の閾値を越える前記画素値変化強度を有する前記各
画素についての当該画素値変化強度を合計した第1基準
値と、前記第1の閾値より大きい第2の閾値を越える前
記画素値変化強度を有する前記各画素についての当該画
素値変化強度を合計した第2基準値とを求め、前記第1
基準値に対する前記第2基準値の相対的な大きさに応じ
た比較評価値を算出する比較手段と、 前記比較評価値が所定の判定基準値より小さいことに基
づいて、前記監視対象領域と前記撮像手段との間の光路
内における半透明の監視障害物を検知する障害物検知手
段と、 を有することを特徴とした画像監視装置。1. An image pickup unit that generates an image corresponding to an optical image of a monitoring target region, and for each pixel of the image, a pixel value change intensity is calculated based on a difference in pixel value between a peripheral pixel of the pixel. A pixel value change intensity calculation means, a first reference value obtained by summing the pixel value change intensities of the pixels having the pixel value change intensity exceeding a first threshold value, and a second reference value larger than the first threshold value. A second reference value obtained by summing the pixel value change intensities of the respective pixels having the pixel value change intensities exceeding a threshold value is calculated, and the first reference value is calculated.
Comparing means for calculating a comparative evaluation value according to the relative size of the second reference value with respect to the reference value; and the monitoring target area and the monitoring target area based on the comparison evaluation value being smaller than a predetermined judgment reference value. An image monitoring apparatus comprising: an obstacle detection unit that detects a semi-transparent monitoring obstacle in an optical path between the image pickup unit and the image pickup unit.
生成する撮像手段と、 前記画像の各画素について、当該画素の周辺画素との画
素値の差分に基づいた画素値変化強度を算出する画素値
変化強度算出手段と、 第1の閾値を越える前記画素値変化強度を有する前記画
素の数である第1基準値と、前記第1の閾値より大きい
第2の閾値を越える前記画素値変化強度を有する前記画
素の数である第2基準値とを求め、前記第1基準値に対
する前記第2基準値の相対的な大きさに応じた比較評価
値を算出する比較手段と、 前記比較評価値が所定の判定基準値より小さいことに基
づいて、前記監視対象領域と前記撮像手段との間の光路
内における半透明の監視障害物を検知する障害物検知手
段と、 を有することを特徴とした画像監視装置。2. An image pickup means for generating an image corresponding to an optical image of a monitoring target area, and for each pixel of the image, a pixel value change strength is calculated based on a difference in pixel value between a peripheral pixel of the pixel. Pixel value change strength calculation means, a first reference value that is the number of pixels having the pixel value change strength that exceeds a first threshold value, and the pixel value change that exceeds a second threshold value that is greater than the first threshold value. Comparison means for obtaining a second reference value, which is the number of pixels having intensity, and calculating a comparison evaluation value according to the relative size of the second reference value with respect to the first reference value; An obstacle detection unit that detects a semi-transparent monitoring obstacle in the optical path between the monitoring target region and the imaging unit based on a value being smaller than a predetermined determination reference value; Image monitoring device.
装置において、 前記比較評価値は、前記第1基準値に対する前記第2基
準値の比であることを特徴とする画像監視装置。3. The image monitoring device according to claim 1, wherein the comparison evaluation value is a ratio of the second reference value to the first reference value.
の画像監視装置において、 前記障害物検知手段は、前記監視障害物として、前記光
路上に配置される透明部材又は反射鏡に付着した汚れを
検知することを特徴とする画像監視装置。4. The image monitoring apparatus according to claim 1, wherein the obstacle detecting means is attached to a transparent member or a reflecting mirror arranged on the optical path as the monitoring obstacle. An image monitoring device characterized by detecting stains.
の画像監視装置において、 前記第1の閾値は、前記監視障害物が存在しない状態で
取得された前記画像にて、前記監視対象領域内に位置す
る検出目的物の輪郭に対応して生じる前記画素値変化強
度に応じた値であり、 前記第2の閾値は、前記第1の閾値の2倍に応じた値で
あること、 を特徴とする画像監視装置。5. The image monitoring device according to claim 1, wherein the first threshold is the image acquired in a state where the monitoring obstacle does not exist, and the first target is the monitoring target. A value according to the pixel value change intensity that occurs corresponding to the contour of the detection target object located in the region, wherein the second threshold value is a value corresponding to twice the first threshold value, An image monitoring device characterized by.
値より小さい状態が所定時間継続すると、前記汚れが付
着したと判定することを特徴とする画像監視装置。6. The image monitoring apparatus according to claim 4, wherein the obstacle detection unit determines that the stain is attached when the state where the comparative evaluation value is smaller than the determination reference value continues for a predetermined time. Characteristic image monitoring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001380258A JP4087600B2 (en) | 2001-12-13 | 2001-12-13 | Image monitoring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001380258A JP4087600B2 (en) | 2001-12-13 | 2001-12-13 | Image monitoring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003189294A true JP2003189294A (en) | 2003-07-04 |
JP4087600B2 JP4087600B2 (en) | 2008-05-21 |
Family
ID=27591386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001380258A Expired - Fee Related JP4087600B2 (en) | 2001-12-13 | 2001-12-13 | Image monitoring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4087600B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007293672A (en) * | 2006-04-26 | 2007-11-08 | Toyota Motor Corp | Photographing apparatus for vehicle and soiling detection method for photographing apparatus for vehicle |
JP2012099940A (en) * | 2010-10-29 | 2012-05-24 | Canon Inc | Photographic obstruction detection method, obstruction detection device, and monitoring camera system |
WO2013129361A1 (en) * | 2012-03-02 | 2013-09-06 | 日産自動車株式会社 | Three-dimensional object detection device |
JP2014030188A (en) * | 2012-07-03 | 2014-02-13 | Clarion Co Ltd | Lens attached substance detection apparatus, lens attached substance detection method, and vehicle system |
WO2019026513A1 (en) * | 2017-08-01 | 2019-02-07 | パナソニックIpマネジメント株式会社 | Image monitoring device, image monitoring method, image monitoring program, and recording medium |
JP2021181893A (en) * | 2020-05-18 | 2021-11-25 | シャープ株式会社 | Railway facility measurement device, control method of railway facility measurement device, railway facility measurement program and recording medium |
JP2022529300A (en) * | 2020-02-18 | 2022-06-20 | 深▲セン▼市商▲湯▼科技有限公司 | Violation event detection methods and devices, electronic devices and storage media |
SE2150168A1 (en) * | 2021-02-16 | 2022-08-17 | Husqvarna Ab | Robotic work tool system and method for determining whether there is an interfering object on a camera unit of a robotic work tool |
JPWO2023079593A1 (en) * | 2021-11-02 | 2023-05-11 | ||
EP4379331A3 (en) * | 2017-11-09 | 2024-07-31 | Rebellion Photonics, Inc. | Window obscuration sensors for mobile gas and chemical imaging cameras |
-
2001
- 2001-12-13 JP JP2001380258A patent/JP4087600B2/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007293672A (en) * | 2006-04-26 | 2007-11-08 | Toyota Motor Corp | Photographing apparatus for vehicle and soiling detection method for photographing apparatus for vehicle |
JP2012099940A (en) * | 2010-10-29 | 2012-05-24 | Canon Inc | Photographic obstruction detection method, obstruction detection device, and monitoring camera system |
WO2013129361A1 (en) * | 2012-03-02 | 2013-09-06 | 日産自動車株式会社 | Three-dimensional object detection device |
CN104106105A (en) * | 2012-03-02 | 2014-10-15 | 日产自动车株式会社 | Three-dimensional object detection device |
JPWO2013129361A1 (en) * | 2012-03-02 | 2015-07-30 | 日産自動車株式会社 | Three-dimensional object detection device |
US9754172B2 (en) | 2012-03-02 | 2017-09-05 | Nissan Motor Co., Ltd. | Three-dimenisional object detection device |
JP2014030188A (en) * | 2012-07-03 | 2014-02-13 | Clarion Co Ltd | Lens attached substance detection apparatus, lens attached substance detection method, and vehicle system |
US20200084356A1 (en) * | 2017-08-01 | 2020-03-12 | Panasonic Intellectual Property Management Co., Ltd. | Image monitoring device, image monitoring method, and recording medium |
WO2019026513A1 (en) * | 2017-08-01 | 2019-02-07 | パナソニックIpマネジメント株式会社 | Image monitoring device, image monitoring method, image monitoring program, and recording medium |
US10791252B2 (en) | 2017-08-01 | 2020-09-29 | Panasonic Intellectual Property Management Co., Ltd. | Image monitoring device, image monitoring method, and recording medium |
EP4379331A3 (en) * | 2017-11-09 | 2024-07-31 | Rebellion Photonics, Inc. | Window obscuration sensors for mobile gas and chemical imaging cameras |
JP2022529300A (en) * | 2020-02-18 | 2022-06-20 | 深▲セン▼市商▲湯▼科技有限公司 | Violation event detection methods and devices, electronic devices and storage media |
JP2021181893A (en) * | 2020-05-18 | 2021-11-25 | シャープ株式会社 | Railway facility measurement device, control method of railway facility measurement device, railway facility measurement program and recording medium |
SE2150168A1 (en) * | 2021-02-16 | 2022-08-17 | Husqvarna Ab | Robotic work tool system and method for determining whether there is an interfering object on a camera unit of a robotic work tool |
JPWO2023079593A1 (en) * | 2021-11-02 | 2023-05-11 | ||
WO2023079593A1 (en) * | 2021-11-02 | 2023-05-11 | 三菱電機ビルソリューションズ株式会社 | Stain determination device, stain determination method, and stain determination program |
JP7455284B2 (en) | 2021-11-02 | 2024-03-25 | 三菱電機ビルソリューションズ株式会社 | Dirt determination device |
Also Published As
Publication number | Publication date |
---|---|
JP4087600B2 (en) | 2008-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4353127B2 (en) | Rain sensor | |
KR100659781B1 (en) | Smoke Detecting Method and System using CCD Image | |
JP6257792B2 (en) | Camera covering state recognition method, camera system, and automobile | |
CN106599783B (en) | Video occlusion detection method and device | |
US10791252B2 (en) | Image monitoring device, image monitoring method, and recording medium | |
JP4542929B2 (en) | Image signal processing device | |
CN111860120A (en) | Automatic shielding detection method and device for vehicle-mounted camera | |
EP3113107B1 (en) | Static soiling detection and correction | |
JP2006261761A (en) | Image signal processing apparatus | |
JP2003189294A (en) | Image monitoring device | |
JP4245452B2 (en) | Lens dirt determination method and apparatus | |
US8224060B2 (en) | Image processing method, paint inspection method and paint inspection system | |
JP2006254206A (en) | Image signal processing apparatus | |
JP2002304677A (en) | Method and device for detecting intruder | |
JP2021052237A (en) | Deposit detection device and deposit detection method | |
JP6970911B2 (en) | Control method of dirt detection device and dirt detection device | |
JP2020107232A (en) | Adhering matter detection device and adhering matter detection method | |
JP4925942B2 (en) | Image sensor | |
JP7243546B2 (en) | Attached matter detection device and attached matter detection method | |
JPH0337356B2 (en) | ||
EP3282420B1 (en) | Method and apparatus for soiling detection, image processing system and advanced driver assistance system | |
JP2001169270A (en) | Image supervisory device and image supervisory method | |
KR101592732B1 (en) | Apparatus for removing snow rain image in camera images and method for removing snow rain image using the same | |
JP2003168118A (en) | Image processor and mobile body monitoring device | |
JP2020160735A (en) | Vehicle and capturing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041129 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20041129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080221 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4087600 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140228 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |