JP2003188005A - Resistive element and voltage sensor using the same - Google Patents

Resistive element and voltage sensor using the same

Info

Publication number
JP2003188005A
JP2003188005A JP2001386234A JP2001386234A JP2003188005A JP 2003188005 A JP2003188005 A JP 2003188005A JP 2001386234 A JP2001386234 A JP 2001386234A JP 2001386234 A JP2001386234 A JP 2001386234A JP 2003188005 A JP2003188005 A JP 2003188005A
Authority
JP
Japan
Prior art keywords
voltage
resistance element
resistor
high voltage
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001386234A
Other languages
Japanese (ja)
Other versions
JP3829711B2 (en
Inventor
Taketoshi Hasegawa
武敏 長谷川
Masafumi Uenushi
雅史 植主
Tadahiro Yoshida
忠広 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001386234A priority Critical patent/JP3829711B2/en
Publication of JP2003188005A publication Critical patent/JP2003188005A/en
Application granted granted Critical
Publication of JP3829711B2 publication Critical patent/JP3829711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Details Of Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resistive element and a voltage sensor using the resistive element, of high mass-productivity, excellent temperature characteristics, with no degradation in measurement precision depending on changes of surface resistance caused by contamination, moisture absorption, etc., to measure the voltage of a high-voltage main circuit of a high-voltage distribution panel, etc. <P>SOLUTION: The resistive element is manufactured by integrally molding a high-voltage resistor showing a negative temperature coefficient, a terminal electrically connected to both ends of the high-voltage resistor, and a guard electrode provided around one of the terminals, using a thermosetting resin. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高圧配電盤等の高
電圧主回路の電圧を測定するための抵抗素子及びこれを
用いた電圧センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance element for measuring the voltage of a high voltage main circuit such as a high voltage switchboard and a voltage sensor using the resistance element.

【0002】[0002]

【従来の技術】従来の電力計は高負担であるため、高圧
配電盤等の高電圧主回路の電圧測定には計器用変圧器が
用いられてきたが、近年、低負担の電子式電力計の普及
により、抵抗素子等を用いた電圧センサが用いられるよ
うになってきた。
2. Description of the Related Art Since a conventional wattmeter has a heavy load, a transformer for an instrument has been used to measure the voltage of a high-voltage main circuit such as a high-voltage switchboard. With the widespread use, a voltage sensor using a resistance element or the like has come to be used.

【0003】図9は特開平11−283801号公報に
開示されている従来の電圧センサに用いられる抵抗素子
110の構成を示す断面図であり、図中111は抵抗
体、112は絶縁体、113は電極を示す。抵抗体11
1はポリプロピレン又はポリブチルテレフタレート等の
熱可塑性高分子材料に導電性材料、例えば導電性カーボ
ン又は金属粉末を均一に混合攪拌した後、熱可塑性高分
子材料を溶融し、円柱状に一体成形して構成する。その
軸方向の一端面全面にAl、Ag又はCu製の電極11
3を設け、抵抗体111の側周面の全面及び軸方向の他
端面の周縁部にわたって合成樹脂製の絶縁体112をい
ぐるみ形成して、抵抗素子110を構成する。測定対象
の電圧は、電極113を被測定導体に接続した抵抗素子
110の他端と接地間にインピーダンス要素を挿入し
て、この両端の電圧を測定し、分圧比で演算して求め
る。抵抗値の温度補正は、抵抗体111の温度をモニタ
リングして、予め測定された温度と抵抗値の関係から補
正演算する手段を用いている。
FIG. 9 is a sectional view showing the structure of a resistance element 110 used in a conventional voltage sensor disclosed in Japanese Patent Laid-Open No. 11-283801, in which 111 is a resistor, 112 is an insulator, and 113 is. Indicates an electrode. Resistor 11
1 is a thermoplastic polymer material such as polypropylene or polybutyl terephthalate. A conductive material, for example, conductive carbon or metal powder is uniformly mixed and stirred, and then the thermoplastic polymer material is melted and integrally molded into a cylindrical shape. Constitute. An electrode 11 made of Al, Ag, or Cu is formed on the entire one end face in the axial direction.
3 is provided, and an insulator 112 made of synthetic resin is stuffed around the entire side surface of the resistor 111 and the peripheral edge of the other end surface in the axial direction to form the resistor element 110. The voltage to be measured is obtained by inserting an impedance element between the other end of the resistance element 110 in which the electrode 113 is connected to the conductor to be measured and the ground, measuring the voltage at both ends, and calculating the voltage division ratio. The temperature correction of the resistance value uses a means for monitoring the temperature of the resistor 111 and performing a correction calculation from the relationship between the temperature and the resistance value measured in advance.

【0004】[0004]

【発明が解決しようとする課題】従来の電圧センサは、
専用の抵抗素子を製作する必要があるので量産性が低
く、また抵抗素子の抵抗値を温度補正するために補正演
算回路を設けなければならなかった。さらに、抵抗素子
の絶縁体の表面が汚損・吸湿して表面抵抗が低下した場
合、電圧センサの測定誤差になるなどの問題点があっ
た。
The conventional voltage sensor has the following problems.
Since it is necessary to manufacture a dedicated resistance element, mass productivity is low, and a correction calculation circuit has to be provided for temperature-correcting the resistance value of the resistance element. Further, when the surface of the insulator of the resistance element is contaminated and absorbs moisture to reduce the surface resistance, there is a problem such as a measurement error of the voltage sensor.

【0005】本発明は、上記のような問題点を解決する
ためになされたものであり、量産性が高く、かつ温度特
性に優れた抵抗素子を用いた電圧センサを提供すること
を目的としており、さらに、汚損・吸湿等による表面抵
抗の変化に対して測定精度が低下しない抵抗素子を用い
た電圧センサを提供することを目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a voltage sensor using a resistance element having high mass productivity and excellent temperature characteristics. Furthermore, it is an object of the present invention to provide a voltage sensor using a resistance element whose measurement accuracy does not decrease with respect to a change in surface resistance due to contamination, moisture absorption, or the like.

【0006】[0006]

【課題を解決するための手段】本発明のうち請求項1に
記載の抵抗素子は、負の温度係数を示す高電圧抵抗器を
熱硬化性樹脂でモールドしたものである。
The resistance element according to the first aspect of the present invention is a high voltage resistor having a negative temperature coefficient molded by a thermosetting resin.

【0007】また、本発明のうち請求項2に記載の抵抗
素子は、請求項1に記載の抵抗素子であって、負の温度
係数を示す高電圧抵抗器として20MΩ〜100MΩの
抵抗器を用いたものである。
The resistance element according to claim 2 of the present invention is the resistance element according to claim 1, wherein a resistor of 20 MΩ to 100 MΩ is used as the high voltage resistor exhibiting a negative temperature coefficient. It was what I had.

【0008】また、本発明のうち請求項3に記載の抵抗
素子は、請求項1又は2に記載の抵抗素子であって、熱
硬化性樹脂として熱硬化性樹脂に無機充填材を含有させ
たものを用いたものである。
The resistance element according to claim 3 of the present invention is the resistance element according to claim 1 or 2, wherein the thermosetting resin is a thermosetting resin containing an inorganic filler. It is the one using the thing.

【0009】また、本発明のうち請求項4に記載の抵抗
素子は、請求項1ないし3のいずれかに記載の抵抗素子
であって、高電圧抵抗器とこの高電圧抵抗器の両端に電
気的に接続された端子を一体にモールドするとともに、
端子のうち一方の端子の周囲にガード電極を設けたもの
である。
The resistance element according to claim 4 of the present invention is the resistance element according to any one of claims 1 to 3, wherein a high-voltage resistor and an electrical connection between both ends of this high-voltage resistor are provided. While integrally molding the terminals that are electrically connected,
A guard electrode is provided around one of the terminals.

【0010】また、本発明のうち請求項5に記載の抵抗
素子は、請求項4に記載の抵抗素子であって、周囲にガ
ード電極を設けた端子とガード電極間にサージアレスタ
を設けたものである。
The resistance element according to a fifth aspect of the present invention is the resistance element according to the fourth aspect, in which a surge arrester is provided between a terminal provided with a guard electrode on the periphery and the guard electrode. Is.

【0011】また、本発明のうち請求項6に記載の電圧
センサは、高電圧を印加する分圧抵抗として請求項1な
いし5のいずれかに記載の抵抗素子を用いたものであ
る。
The voltage sensor according to a sixth aspect of the present invention uses the resistance element according to any one of the first to fifth aspects as a voltage dividing resistor for applying a high voltage.

【0012】また、本発明のうち請求項7に記載の電圧
センサは、請求項1ないし5のいずれかに記載の抵抗素
子に高電圧を印加したとき、抵抗素子に流れる電流を電
流−電圧変換回路により電圧に変換して高電圧を測定す
るものである。
According to a seventh aspect of the present invention, in the voltage sensor of the first aspect, when a high voltage is applied to the resistance element, the current flowing through the resistance element is converted into current-voltage. The circuit measures the high voltage by converting it into a voltage.

【0013】[0013]

【発明の実施の形態】実施の形態1.図1は、本発明の
実施の形態1による抵抗素子の断面図である。図1にお
いて、1は高電圧抵抗器、2、3は端子であり、高電圧
抵抗器1と端子2、端子3は、例えば半田付けにより電
気的に接続されている。以下、本発明では高圧配電盤の
主回路高電圧側に接続される端子2を高圧端子と呼び、
抵抗素子の信号処理回路に接続される端子3を低圧端子
と呼ぶ。予め接続された高電圧抵抗器1、高圧端子2、
低圧端子3は金型にセットされて、熱硬化性樹脂4で一
体モールドされる。図2〜4は、高電圧抵抗器1、例え
ば多摩電気工業(株)製のGS形高電圧高抵抗厚膜抵抗
器の温度特性を、高電圧抵抗器1のみ(モールド前)
と、エポキシ樹脂で一体モールドした後について測定し
た結果であり、図2は20MΩ、図3は50MΩ、図4
は100MΩの特性である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. 1 is a sectional view of a resistance element according to a first embodiment of the present invention. In FIG. 1, 1 is a high voltage resistor, 2 and 3 are terminals, and the high voltage resistor 1 and the terminals 2 and 3 are electrically connected by, for example, soldering. Hereinafter, in the present invention, the terminal 2 connected to the high voltage side of the main circuit of the high voltage switchboard is referred to as a high voltage terminal,
The terminal 3 connected to the signal processing circuit of the resistance element is called a low voltage terminal. Pre-connected high voltage resistor 1, high voltage terminal 2,
The low voltage terminal 3 is set in a mold and integrally molded with the thermosetting resin 4. 2 to 4 show the temperature characteristics of a high voltage resistor 1, for example, a GS type high voltage high resistance thick film resistor manufactured by Tama Electric Industry Co., Ltd., showing only the high voltage resistor 1 (before molding).
2 is 20 MΩ, FIG. 3 is 50 MΩ, and FIG.
Is a characteristic of 100 MΩ.

【0014】図2〜4に示すように、抵抗値によって温
度特性が異なることが分かる。一般に、抵抗値の低い抵
抗器(20MΩ以下)の温度特性は金属の性質である、
温度が上がると抵抗値が上がる正の温度係数を示し、抵
抗値が高く(20MΩ以上)なると絶縁物の性質であ
る、温度が上がると抵抗値が下がる負の温度係数を示す
傾向にある。図2〜4の高電圧抵抗器1(モールド前)
の温度特性はその傾向が認められた。エポキシ樹脂(ナ
ガセケムテックス(株)製:XNR4153/XNH4
153)でモールドして、80℃×16時間+130℃
×16時間熱硬化した後の特性(図2〜4)は、それぞ
れの抵抗値においてモールド前の高電圧抵抗器と比較し
て、温度係数が30ppm〜50ppm減少する(10
0℃の温度変化に対して抵抗値が0.3%〜0.5%の
割合で減少する)ことを示している。これは、エポキシ
樹脂の熱収縮により高電圧抵抗器1に圧縮歪みが加わ
り、その結果生じた温度係数の減少であり、図2〜4に
示すように、エポキシ樹脂のガラス転移温度(Tg)よ
り低い温度でこの現象が現れる。高電圧抵抗器1のみで
負の温度係数を示す50MΩ(図3)と100MΩ(図
4)は、エポキシ樹脂でモールドすることにより、高電
圧抵抗器1のみより温度係数の小さい抵抗素子を得るこ
とができる。
As shown in FIGS. 2 to 4, it can be seen that the temperature characteristics differ depending on the resistance value. Generally, the temperature characteristic of a resistor having a low resistance value (20 MΩ or less) is a metal property,
When the temperature rises, the resistance value increases and shows a positive temperature coefficient, and when the resistance value rises (20 MΩ or more), it is a property of the insulator, and when the temperature rises, the resistance value tends to decrease. 2-4 high voltage resistor 1 (before molding)
This tendency was recognized in the temperature characteristics of. Epoxy resin (Nagase Chemtex Co., Ltd .: XNR4153 / XNH4)
153) and mold at 80 ℃ for 16 hours + 130 ℃
The characteristics after heat curing for 16 hours (FIGS. 2 to 4) have a temperature coefficient of 30 ppm to 50 ppm reduced in each resistance value as compared with the high voltage resistor before molding (10
The resistance value decreases at a rate of 0.3% to 0.5% with respect to a temperature change of 0 ° C.). This is a decrease in the temperature coefficient resulting from the compressive strain applied to the high-voltage resistor 1 due to the thermal contraction of the epoxy resin, and as shown in FIGS. 2 to 4, the glass transition temperature (Tg) of the epoxy resin This phenomenon appears at low temperatures. 50 MΩ (FIG. 3) and 100 MΩ (FIG. 4), which show a negative temperature coefficient only with the high-voltage resistor 1, are molded with epoxy resin to obtain a resistance element having a smaller temperature coefficient than the high-voltage resistor 1 alone. You can

【0015】高圧配電盤に使用される抵抗素子の電圧測
定精度は、絶対精度(20℃における精度)と温度係数
(5℃〜95℃の範囲)を含めて±1%以内が要求され
ている。高電圧抵抗器1の絶対精度±0.5%のものは
比較的安価に入手できる、例えば多摩電気工業(株)製
のGS形が使えるが、抵抗値によっては温度係数の大き
い場合もある。一方、温度係数の小さい抵抗器は高価で
ある。しかし、高電圧抵抗器1として抵抗値が20MΩ
〜100MΩのGS形抵抗器を使用し、エポキシ樹脂で
モールドすることによって、5℃〜95℃における抵抗
値の温度変化を±0.5%以内にすることができる。さ
らに図3に示すように、抵抗値が50MΩの場合はモー
ルド後の温度係数が非常に小さいものを製作可能であ
り、エポキシ樹脂で一体モールドして抵抗素子を得るに
は最適な抵抗値である。
The voltage measuring accuracy of the resistance element used in the high voltage switchboard is required to be within ± 1% including the absolute accuracy (accuracy at 20 ° C.) and the temperature coefficient (range of 5 ° C. to 95 ° C.). The high-voltage resistor 1 having an absolute accuracy of ± 0.5% can be obtained at a relatively low cost, for example, the GS type manufactured by Tama Electric Co., Ltd. can be used, but the temperature coefficient may be large depending on the resistance value. On the other hand, a resistor having a small temperature coefficient is expensive. However, the high voltage resistor 1 has a resistance value of 20 MΩ.
By using a GS type resistor of ˜100 MΩ and molding with an epoxy resin, the temperature change of the resistance value at 5 ° C. to 95 ° C. can be kept within ± 0.5%. Further, as shown in FIG. 3, when the resistance value is 50 MΩ, it is possible to manufacture one having a very small temperature coefficient after molding, which is the optimum resistance value for integrally molding with epoxy resin to obtain a resistance element. .

【0016】なお、熱硬化性樹脂4はエポキシ樹脂以外
のシリコーン樹脂、ポリウレタン樹脂、ポリエステル樹
脂のいずれかでもよい。また、熱硬化性樹脂は無機充填
材として二酸化ケイ素、アルミナ、水酸化アルミニウ
ム、炭酸カルシウム、ガラス短繊維(一般にはガラスチ
ョップとも呼ぶ)のいずれか、あるいはそれらの混合物
を含有してもよい。熱硬化性樹脂と無機充填材の配合比
を調整して、熱硬化後の高電圧抵抗器1に加わる圧縮歪
みを変化させることにより、モールド後の高電圧抵抗器
1の温度係数を自由に設定でき、最適な温度係数の抵抗
素子を得ることができる。
The thermosetting resin 4 may be any of silicone resin, polyurethane resin and polyester resin other than epoxy resin. Further, the thermosetting resin may contain any one of silicon dioxide, alumina, aluminum hydroxide, calcium carbonate, glass short fibers (also generally called glass chop), or a mixture thereof as an inorganic filler. By adjusting the compounding ratio of the thermosetting resin and the inorganic filler to change the compressive strain applied to the high voltage resistor 1 after thermosetting, the temperature coefficient of the high voltage resistor 1 after molding can be freely set. It is possible to obtain a resistance element having an optimum temperature coefficient.

【0017】実施の形態2.図5は、本発明の実施の形
態2による抵抗素子の断面図である。図1と同一または
相当部分は同一の符号を付している。図5において、5
はガード電極である。ガード電極5は低圧端子3の外周
を取り囲むように設けられ、熱硬化性樹脂4で高電圧抵
抗器1、高圧端子2、低圧端子3とともに一体モールド
されている。
Embodiment 2. FIG. 5 is a sectional view of a resistance element according to the second embodiment of the present invention. The same or corresponding parts as in FIG. 1 are designated by the same reference numerals. In FIG. 5, 5
Is a guard electrode. The guard electrode 5 is provided so as to surround the outer circumference of the low-voltage terminal 3, and is integrally molded with the high-voltage resistor 1, the high-voltage terminal 2 and the low-voltage terminal 3 with a thermosetting resin 4.

【0018】通常、気中高圧配電盤に使われる抵抗素子
は外気と遮断されておらず、外気による汚損(海岸隣接
地での塩害、排ガス中の窒素酸化物、工場排煙中の硫黄
酸化物や塵埃)と湿度の影響で、長い年月使用するとモ
ールド表面の絶縁抵抗が低下する場合がある。この絶縁
抵抗の低下は抵抗素子の抵抗値に誤差を生じる。本実施
の形態はその誤差を防ぐためのものであり、低圧端子3
の周囲にガード電極5を設けて低圧端子3をシールドす
ることにより、表面抵抗の影響をなくして抵抗値誤差を
小さくすることができる。
Normally, the resistance element used in the high-voltage switchboard in the air is not cut off from the outside air, and it is polluted by the outside air (salt damage in the land adjacent to the coast, nitrogen oxides in exhaust gas, sulfur oxides in factory flue gas, etc.). Due to the effects of dust and humidity, the insulation resistance of the mold surface may decrease after long-term use. This decrease in insulation resistance causes an error in the resistance value of the resistance element. This embodiment is for preventing the error, and the low voltage terminal 3
By shielding the low voltage terminal 3 by providing the guard electrode 5 around the area, the influence of the surface resistance can be eliminated and the resistance value error can be reduced.

【0019】なお、本実施の形態ではガード電極5を低
圧端子3と別に設けた場合について説明したが、市販の
一体型の同軸端子を低圧端子として用いても、同様の効
果が得られる。
Although the case where the guard electrode 5 is provided separately from the low voltage terminal 3 has been described in the present embodiment, the same effect can be obtained by using a commercially available integrated coaxial terminal as the low voltage terminal.

【0020】実施の形態3.図6は、本発明の実施の形
態3による抵抗素子の断面図である。図5と同一または
相当部分は同一の符号を付している。図6において、6
はサージアレスタである。サージアレスタ6は低圧端子
3とガード電極5の間に電気的に接続され、熱硬化性樹
脂4で一体モールドされている。
Embodiment 3. FIG. 6 is a sectional view of a resistance element according to a third embodiment of the present invention. The same or corresponding parts as in FIG. 5 are designated by the same reference numerals. In FIG. 6, 6
Is a surge arrester. The surge arrester 6 is electrically connected between the low voltage terminal 3 and the guard electrode 5 and is integrally molded with the thermosetting resin 4.

【0021】抵抗素子の高圧端子2は高圧配電盤の主回
路高電圧側に接続されるので、抵抗素子には雷によるイ
ンパルスサージ電圧、配電盤内の遮断器、断路器からの
開閉サージ電圧等の侵入がある。一方、低圧端子3は抵
抗素子の信号処理回路に接続されるので、前述のサージ
電圧に対する保護が必要になる。低圧端子3とガード電
極5の間にサージアレスタ6、例えば多摩電気工業
(株)製のNV形バリスタを用いると、低圧端子3とガ
ード電極5間の電圧は制限され、信号処理回路の保護が
可能になる。
Since the high-voltage terminal 2 of the resistance element is connected to the high voltage side of the main circuit of the high-voltage switchboard, impulse surge voltage due to lightning, breaker in the switchboard, and switching surge voltage from the disconnector intrude into the resistance element. There is. On the other hand, since the low voltage terminal 3 is connected to the signal processing circuit of the resistance element, it is necessary to protect the surge voltage. If a surge arrester 6 such as an NV type varistor manufactured by Tama Electric Industry Co., Ltd. is used between the low voltage terminal 3 and the guard electrode 5, the voltage between the low voltage terminal 3 and the guard electrode 5 is limited and the signal processing circuit is protected. It will be possible.

【0022】なお、本実施の形態ではガード電極5と低
圧端子3が別個の抵抗素子にサージアレスタ6を設けた
場合について説明したが、市販の一体型の同軸端子を低
圧端子として用い、同軸端子の中心導体と外部導体間に
サージアレスタを設けても、同様の効果が得られる。
In this embodiment, the case where the surge arrester 6 is provided in the resistance element in which the guard electrode 5 and the low voltage terminal 3 are separate has been described, but a commercially available integrated coaxial terminal is used as the low voltage terminal and the coaxial terminal is used. Even if a surge arrester is provided between the central conductor and the outer conductor, the same effect can be obtained.

【0023】実施の形態4.図7は、本発明の実施の形
態4による抵抗素子を用いた電圧センサの構成図であ
る。図5と同一または相当部分は同一の符号を付してい
る。図7において、7はシールド線(同軸ケーブル)、
8は演算増幅器(OPアンプ)、9はフィードバック抵
抗器であり、OPアンプ8とフィードバック抵抗器9で
電流−電圧(I−V)変換回路10を形成している。シ
ールド線の一端の中心導体を低圧端子3に、シースをガ
ード電極5に接続し、シールド線の他端の中心導体をO
Pアンプ8のインバース入力(−)に、シースをOPア
ンプ8の接地に接続する。
Fourth Embodiment FIG. 7 is a configuration diagram of a voltage sensor using a resistance element according to the fourth embodiment of the present invention. The same or corresponding parts as in FIG. 5 are designated by the same reference numerals. In FIG. 7, 7 is a shield wire (coaxial cable),
Reference numeral 8 is an operational amplifier (OP amplifier), 9 is a feedback resistor, and the OP amplifier 8 and the feedback resistor 9 form a current-voltage (IV) conversion circuit 10. The center conductor at one end of the shield wire is connected to the low voltage terminal 3, the sheath is connected to the guard electrode 5, and the center conductor at the other end of the shield wire is O.
The sheath is connected to the inverse input (-) of the P amplifier 8 and the ground of the OP amplifier 8.

【0024】抵抗素子による高圧配電盤の主回路高電圧
の測定は、従来の技術で述べたように、低圧端子3と接
地間にインピーダンス要素を挿入し、この両端の電圧を
測定して、分圧比から求める方法がある。高電圧を印加
する分圧抵抗として実施の形態1〜3で述べた抵抗素子
を用いれば、従来の技術と比べて温度特性に優れ、抵抗
素子の表面抵抗に影響されにくい測定ができる。しかし
この方法では、インピーダンス要素以外に部品の構成上
の、例えばインピーダンス要素から信号処理回路までの
信号線の浮遊インピーダンス等が含まれ、抵抗素子との
分圧の誤差になる。本実施の形態では、抵抗素子に流れ
る電流をOPアンプ8とフィードバック抵抗器9で構成
したI−V変換回路10により電圧に変換して測定する
ので、OPアンプ8の入力電圧(インバース入力(−)
と接地間の電圧)はほぼ0になる(OPアンプ8の増幅
率は100dB以上あるため、図7に示すフィードバッ
ク回路を構成すれば、入力電圧は出力電圧の1/10
0,000になり、ほぼ0と見なせる)。したがってシ
ールド線7の浮遊インピーダンス等は無視でき、抵抗素
子に流れる電流のみを正確に測定できる。
As described in the prior art, an impedance element is inserted between the low voltage terminal 3 and ground, and the voltage across the voltage is measured to measure the voltage division ratio. There is a method to ask from. If the resistance element described in the first to third embodiments is used as the voltage dividing resistance for applying a high voltage, it is possible to perform a measurement that is superior to the conventional technique in temperature characteristics and is less affected by the surface resistance of the resistance element. However, in this method, in addition to the impedance element, a floating impedance of a signal line from the impedance element to the signal processing circuit, for example, is included in the configuration of the component, which causes an error in voltage division with the resistance element. In the present embodiment, since the current flowing through the resistance element is converted into a voltage by the IV conversion circuit 10 including the OP amplifier 8 and the feedback resistor 9 and measured, the input voltage of the OP amplifier 8 (inverse input (- )
(The voltage between the ground and the ground) becomes almost 0 (the amplification factor of the OP amplifier 8 is 100 dB or more, so if the feedback circuit shown in FIG. 7 is configured, the input voltage is 1/10 of the output voltage.
It becomes 10,000 and can be regarded as almost 0). Therefore, the floating impedance of the shield wire 7 can be ignored, and only the current flowing through the resistance element can be accurately measured.

【0025】OPアンプ8として、例えばアナログ・デ
バイセズ(株)製のAD741、フィードバック抵抗器
9として、例えば多摩電気工業(株)製のJF形金属被膜
抵抗器(絶対精度±0.1%、温度係数±10ppm)
を用いてI−V変換回路10を構成すると、安価で精度
の良い信号処理回路が構成できる。この信号処理回路を
用いて電圧測定の精度を測定したところ、高圧配電盤の
電圧センサとして要求される±1%以内の精度が得られ
た。
The OP amplifier 8 is, for example, AD741 manufactured by Analog Devices Co., Ltd., and the feedback resistor 9 is, for example, a JF type metal film resistor manufactured by Tama Electric Co., Ltd. (absolute accuracy ± 0.1%, temperature). Coefficient ± 10ppm)
When the IV conversion circuit 10 is configured by using, the inexpensive and accurate signal processing circuit can be configured. When the accuracy of voltage measurement was measured using this signal processing circuit, the accuracy within ± 1% required for the voltage sensor of the high-voltage switchboard was obtained.

【0026】なお、本実施の形態では電流−電圧変換回
路として、OPアンプ8とフィードバック抵抗器9で構
成した回路について説明したが、抵抗素子に流れる電流
のみを正確に測定できれば、どのような電流−電圧変換
回路であってもよい。また、本実施の形態では実施の形
態2による抵抗素子を用いたが、他の実施の形態による
抵抗素子を用いてもよい。
In this embodiment, as the current-voltage conversion circuit, the circuit composed of the OP amplifier 8 and the feedback resistor 9 has been described. However, if only the current flowing through the resistance element can be accurately measured, what kind of current It may be a voltage conversion circuit. Although the resistance element according to the second embodiment is used in the present embodiment, the resistance element according to another embodiment may be used.

【0027】実施の形態5.図8は、本発明の実施の形
態5による抵抗素子を用いた電圧センサの構成図であ
る。図7と同一または相当部分は同一の符号を付してい
る。図8において、11はサージ保護素子、例えば金属
酸化物バリスタあるいはクランピングダイオードであ
り、OPアンプ8のインバース入力(−)と接地間に接
続する。
Embodiment 5. FIG. 8 is a configuration diagram of a voltage sensor using a resistance element according to the fifth embodiment of the present invention. The same or corresponding parts as in FIG. 7 are designated by the same reference numerals. In FIG. 8, 11 is a surge protection element, for example, a metal oxide varistor or a clamping diode, which is connected between the inverse input (-) of the OP amplifier 8 and the ground.

【0028】実施の形態3で述べたように、高圧配電盤
に用いられる抵抗素子には雷によるインパルスサージ電
圧、配電盤内の遮断器、断路器からの開閉サージ電圧等
が侵入するので、サージ保護素子11を用いてOPアン
プ8の入力電圧(インバース入力(−)と接地間の電
圧)を制限することにより、前述のサージ電圧から信号
処理回路を保護することができる。また、実施の形態4
で説明したように、OPアンプ8の入力電圧はほぼ0で
あるので、OPアンプ8の入力にサージ保護素子11を
挿入してもほとんど測定誤差にはならない。
As described in the third embodiment, the surge protection element is used because the impulse surge voltage due to lightning, the circuit breaker in the switchboard, the switching surge voltage from the disconnector, etc. enter the resistance element used in the high voltage switchboard. By limiting the input voltage (voltage between the inverse input (-) and the ground) of the OP amplifier 8 by using 11, it is possible to protect the signal processing circuit from the aforementioned surge voltage. In addition, the fourth embodiment
As described above, since the input voltage of the OP amplifier 8 is almost 0, even if the surge protection element 11 is inserted in the input of the OP amplifier 8, there is almost no measurement error.

【0029】サージ保護素子11として、例えば多摩電
気工業(株)製のNV形バリスタを用いると、OPアン
プ8の入力電圧は制限され、I−V変換回路10の保護
が可能になる。また、サージ保護素子11として、例え
ば三菱電機(株)製のダイオードMC−301を、順方
向電流のドロップ電圧でクランプするように、極性が互
いに逆になるように2個並列に接続したものをOPアン
プ8のインバース入力(−)と接地間に接続すれば、十
分な保護が可能になる。
If, for example, an NV type varistor manufactured by Tama Electric Industry Co., Ltd. is used as the surge protection element 11, the input voltage of the OP amplifier 8 is limited and the IV conversion circuit 10 can be protected. As the surge protection element 11, for example, two diodes MC-301 manufactured by Mitsubishi Electric Corp. are connected in parallel so that their polarities are opposite to each other so that they are clamped by a drop voltage of a forward current. If it is connected between the inverse input (-) of the OP amplifier 8 and the ground, sufficient protection becomes possible.

【0030】なお、実施の形態3による抵抗素子を用い
て、実施の形態4による電圧センサを構成しても、同様
の効果が得られる。
Even if the resistance element according to the third embodiment is used to form the voltage sensor according to the fourth embodiment, the same effect can be obtained.

【0031】[0031]

【発明の効果】本発明のうち請求項1に係る抵抗素子に
よれば、負の温度係数を示す高電圧抵抗器を熱硬化性樹
脂でモールドしたので、高電圧抵抗器のみより温度係数
の小さい抵抗素子を得ることができる。
According to the resistance element of the first aspect of the present invention, since the high voltage resistor exhibiting a negative temperature coefficient is molded with the thermosetting resin, the temperature coefficient is smaller than that of only the high voltage resistor. A resistance element can be obtained.

【0032】また、本発明のうち請求項2に係る抵抗素
子によれば、負の温度係数を示す高電圧抵抗器として2
0MΩ〜100MΩの抵抗器を用いたので、5℃〜95
℃における抵抗値の温度変化を±0.5%以内にするこ
とができる。
According to the second aspect of the present invention, the resistance element according to the second aspect is a high voltage resistor having a negative temperature coefficient.
Since a resistor of 0 MΩ to 100 MΩ was used, 5 ° C to 95
The temperature change of the resistance value at ℃ can be kept within ± 0.5%.

【0033】また、本発明のうち請求項3に係る抵抗素
子によれば、熱硬化性樹脂として熱硬化性樹脂に無機充
填材を含有させたものを用いたので、熱硬化性樹脂と無
機充填材の配合比を調整して、最適な温度係数の抵抗素
子を得ることができる。
According to the third aspect of the present invention, since the thermosetting resin containing the inorganic filler is used as the thermosetting resin, the thermosetting resin and the inorganic filling material are used. By adjusting the compounding ratio of the materials, it is possible to obtain a resistance element having an optimum temperature coefficient.

【0034】また、本発明のうち請求項4に係る抵抗素
子によれば、高電圧抵抗器とこの高電圧抵抗器の両端に
電気的に接続された端子を一体にモールドするととも
に、端子のうち一方の端子の周囲にガード電極を設けた
ので、モールド表面の絶縁抵抗の低下による抵抗素子の
抵抗値誤差を小さくすることができる。
According to a fourth aspect of the present invention, the high voltage resistor and the terminals electrically connected to both ends of the high voltage resistor are integrally molded, and Since the guard electrode is provided around one of the terminals, it is possible to reduce the error in the resistance value of the resistance element due to the decrease in the insulation resistance on the mold surface.

【0035】また、本発明のうち請求項5に係る抵抗素
子によれば、周囲にガード電極を設けた端子とガード電
極間にサージアレスタを設けたので、低圧端子とガード
電極間の電圧は制限され、信号処理回路の保護が可能に
なる。
Further, according to the resistance element of the fifth aspect of the present invention, since the surge arrester is provided between the terminal provided with the guard electrode on the periphery and the guard electrode, the voltage between the low voltage terminal and the guard electrode is limited. As a result, the signal processing circuit can be protected.

【0036】また、本発明のうち請求項6に係る電圧セ
ンサによれば、高電圧を印加する分圧抵抗として請求項
1ないし5のいずれかに記載の抵抗素子を用いたので、
温度変化の影響が少ない精度の高い測定ができる。
According to the voltage sensor of the sixth aspect of the present invention, the resistive element according to any one of the first to fifth aspects is used as the voltage dividing resistor for applying a high voltage.
Highly accurate measurement with little influence of temperature change can be performed.

【0037】また、本発明のうち請求項7に係る電圧セ
ンサによれば、抵抗素子に高電圧を印加したとき、抵抗
素子に流れる電流を電流−電圧変換回路により電圧に変
換して高電圧を測定するので、信号線の浮遊インピーダ
ンス等を無視でき、より精度の高い測定ができる。
According to the voltage sensor of the seventh aspect of the present invention, when a high voltage is applied to the resistance element, the current flowing through the resistance element is converted into a voltage by the current-voltage conversion circuit to generate the high voltage. Since the measurement is performed, the floating impedance of the signal line can be ignored, and the measurement can be performed with higher accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1による抵抗素子の断面
図である。
FIG. 1 is a sectional view of a resistance element according to a first embodiment of the present invention.

【図2】 20MΩの高電圧抵抗器のモールド前とモー
ルド後の温度特性図である。
FIG. 2 is a temperature characteristic diagram of a 20 MΩ high voltage resistor before and after molding.

【図3】 50MΩの高電圧抵抗器のモールド前とモー
ルド後の温度特性図である。
FIG. 3 is a temperature characteristic diagram of a high voltage resistor of 50 MΩ before and after molding.

【図4】 100MΩの高電圧抵抗器のモールド前とモ
ールド後の温度特性図である。
FIG. 4 is a temperature characteristic diagram of a 100 MΩ high voltage resistor before and after molding.

【図5】 本発明の実施の形態2による抵抗素子の断面
図である。
FIG. 5 is a sectional view of a resistance element according to a second embodiment of the present invention.

【図6】 本発明の実施の形態3による抵抗素子の断面
図である。
FIG. 6 is a sectional view of a resistance element according to a third embodiment of the present invention.

【図7】 本発明の実施の形態4による抵抗素子を用い
た電圧センサの構成図である。
FIG. 7 is a configuration diagram of a voltage sensor using a resistance element according to a fourth embodiment of the present invention.

【図8】 本発明の実施の形態5による抵抗素子を用い
た電圧センサの構成図である。
FIG. 8 is a configuration diagram of a voltage sensor using a resistance element according to a fifth embodiment of the present invention.

【図9】 従来の抵抗素子の断面図である。FIG. 9 is a sectional view of a conventional resistance element.

【符号の説明】[Explanation of symbols]

1 高電圧抵抗器、2 端子、3 端子、4 熱硬化性
樹脂、5 ガード電極、6 サージアレスタ、10 電
流−電圧変換回路。
1 high voltage resistor, 2 terminal, 3 terminal, 4 thermosetting resin, 5 guard electrode, 6 surge arrester, 10 current-voltage conversion circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 忠広 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 2G025 AA02 AA09 AB05 AC04 2G035 AA03 AA06 AB08 AC01 AC03 AD10 AD20 AD54 5E028 BB01 BB15 EA13 5E034 BA09 BB01 BB04 BC01 DA02 DE05 GA04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tadahiro Yoshida             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. F-term (reference) 2G025 AA02 AA09 AB05 AC04                 2G035 AA03 AA06 AB08 AC01 AC03                       AD10 AD20 AD54                 5E028 BB01 BB15 EA13                 5E034 BA09 BB01 BB04 BC01 DA02                       DE05 GA04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 負の温度係数を示す高電圧抵抗器を熱硬
化性樹脂でモールドしたことを特徴とする抵抗素子。
1. A resistance element characterized in that a high voltage resistor having a negative temperature coefficient is molded with a thermosetting resin.
【請求項2】 負の温度係数を示す高電圧抵抗器として
20MΩ〜100MΩの抵抗器を用いたことを特徴とす
る請求項1に記載の抵抗素子。
2. The resistance element according to claim 1, wherein a resistor having a resistance of 20 MΩ to 100 MΩ is used as the high voltage resistor having a negative temperature coefficient.
【請求項3】 熱硬化性樹脂として熱硬化性樹脂に無機
充填材を含有させたものを用いたことを特徴とする請求
項1又は2に記載の抵抗素子。
3. The resistance element according to claim 1 or 2, wherein a thermosetting resin containing an inorganic filler is used as the thermosetting resin.
【請求項4】 高電圧抵抗器とこの高電圧抵抗器の両端
に電気的に接続された端子を一体にモールドするととも
に、前記端子のうち一方の端子の周囲にガード電極を設
けたことを特徴とする請求項1ないし3のいずれかに記
載の抵抗素子。
4. A high voltage resistor and terminals electrically connected to both ends of the high voltage resistor are integrally molded, and a guard electrode is provided around one of the terminals. The resistance element according to any one of claims 1 to 3.
【請求項5】 周囲にガード電極を設けた端子とガード
電極間にサージアレスタを設けたことを特徴とする請求
項4に記載の抵抗素子。
5. The resistance element according to claim 4, wherein a surge arrester is provided between the terminal around which a guard electrode is provided and the guard electrode.
【請求項6】 高電圧を印加する分圧抵抗として請求項
1ないし5のいずれかに記載の抵抗素子を用いたことを
特徴とする電圧センサ。
6. A voltage sensor using the resistance element according to claim 1 as a voltage dividing resistance for applying a high voltage.
【請求項7】 請求項1ないし5のいずれかに記載の抵
抗素子に高電圧を印加したとき、前記抵抗素子に流れる
電流を電流−電圧変換回路により電圧に変換して前記高
電圧を測定することを特徴とする電圧センサ。
7. When a high voltage is applied to the resistance element according to claim 1, the current flowing through the resistance element is converted into a voltage by a current-voltage conversion circuit to measure the high voltage. A voltage sensor characterized in that
JP2001386234A 2001-12-19 2001-12-19 Resistance element and voltage sensor using the resistance element Expired - Fee Related JP3829711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386234A JP3829711B2 (en) 2001-12-19 2001-12-19 Resistance element and voltage sensor using the resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386234A JP3829711B2 (en) 2001-12-19 2001-12-19 Resistance element and voltage sensor using the resistance element

Publications (2)

Publication Number Publication Date
JP2003188005A true JP2003188005A (en) 2003-07-04
JP3829711B2 JP3829711B2 (en) 2006-10-04

Family

ID=27595439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386234A Expired - Fee Related JP3829711B2 (en) 2001-12-19 2001-12-19 Resistance element and voltage sensor using the resistance element

Country Status (1)

Country Link
JP (1) JP3829711B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277100A (en) * 2004-03-24 2005-10-06 Nippon Chemicon Corp Electronic component
US7554631B2 (en) 2004-12-16 2009-06-30 Sharp Kabushiki Kaisha Liquid crystal display device
JP2009246114A (en) * 2008-03-31 2009-10-22 Koa Corp Electronic component and method of forming coating film on electronic component
CN111830306A (en) * 2020-07-21 2020-10-27 深圳市瑞麟科技有限公司 Resin electrode frame capable of measuring interelectrode voltage of electrolytic cell in deuterium generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935853A (en) * 1972-08-09 1974-04-03
JPS4935852A (en) * 1972-08-09 1974-04-03
JPH05275030A (en) * 1992-03-27 1993-10-22 Toshiba Corp Element to be built in electron tube
JP2000128641A (en) * 1998-10-27 2000-05-09 Tokai Konetsu Kogyo Co Ltd Ceramic resistor and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935853A (en) * 1972-08-09 1974-04-03
JPS4935852A (en) * 1972-08-09 1974-04-03
JPH05275030A (en) * 1992-03-27 1993-10-22 Toshiba Corp Element to be built in electron tube
JP2000128641A (en) * 1998-10-27 2000-05-09 Tokai Konetsu Kogyo Co Ltd Ceramic resistor and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277100A (en) * 2004-03-24 2005-10-06 Nippon Chemicon Corp Electronic component
US7554631B2 (en) 2004-12-16 2009-06-30 Sharp Kabushiki Kaisha Liquid crystal display device
JP2009246114A (en) * 2008-03-31 2009-10-22 Koa Corp Electronic component and method of forming coating film on electronic component
CN111830306A (en) * 2020-07-21 2020-10-27 深圳市瑞麟科技有限公司 Resin electrode frame capable of measuring interelectrode voltage of electrolytic cell in deuterium generator

Also Published As

Publication number Publication date
JP3829711B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
CN101075490B (en) 12kV fixed-sealed resistant voltage divider
KR101293400B1 (en) Circuit protection device having thermally coupled mov overvoltage element and pptc overcurrent element
AU2002228247B2 (en) Electrical insulators, materials and equipment
WO2011102811A3 (en) Excess voltage circuit-breaker with a rotational disc and an electronic assembly to improve operation reliability
US6657128B2 (en) Hydrophobic properties of polymer housings
JP2003188005A (en) Resistive element and voltage sensor using the same
US20080100981A1 (en) Over-current and over-voltage protection assembly apparatus
JP2005024385A (en) Pressure sensitive sensor
JPS6230278Y2 (en)
CN211479792U (en) Protective device
JPS6158186A (en) High voltage arrester
JPS5923050B2 (en) Lightning resistant bushing
JPH0121527Y2 (en)
JPH0121526Y2 (en)
KR820001862Y1 (en) Lighting discharge
JPH025504A (en) Voltage non-linear resistor
JPS626643Y2 (en)
AU2002240119B2 (en) Improved hydrophobic properties of polymer housings
KR810000920B1 (en) Non-linear resistors
JPH0325364Y2 (en)
JPH0231881Y2 (en)
JPS6013231Y2 (en) Power cable sheath protection device
CN118102581A (en) Overvoltage circuit protection device
JPH0421318B2 (en)
JPH0132714Y2 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees