JP2003187803A - Lithium secondary cell - Google Patents

Lithium secondary cell

Info

Publication number
JP2003187803A
JP2003187803A JP2002305397A JP2002305397A JP2003187803A JP 2003187803 A JP2003187803 A JP 2003187803A JP 2002305397 A JP2002305397 A JP 2002305397A JP 2002305397 A JP2002305397 A JP 2002305397A JP 2003187803 A JP2003187803 A JP 2003187803A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002305397A
Other languages
Japanese (ja)
Inventor
Hiroshi Nemoto
宏 根本
Masanobu Kito
賢信 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002305397A priority Critical patent/JP2003187803A/en
Publication of JP2003187803A publication Critical patent/JP2003187803A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary cell which has a high output and a high capacity by reducing the resistance of a positive electrode active substance by controlling the structure thereof. <P>SOLUTION: The lithium secondary cell has the positive electrode active substance, having the cubic spinel structure with Li and Mn as main components and constituted of secondary particles aggregated from primary particles, wherein the primary particle has a predetermined shape close to an octahedron having flat crystal surfaces, an average diameter of which particle is not less than 1 μm nor more than 20 μm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、正極活物質の粒
子形態を制御することにより、正極活物質の抵抗低減、
ひいては内部抵抗の低減を実現し、大電流放電を可能な
らしめたリチウム二次電池に関する。
TECHNICAL FIELD The present invention relates to reducing the resistance of a positive electrode active material by controlling the particle morphology of the positive electrode active material,
As a result, the present invention relates to a lithium secondary battery that realizes reduction of internal resistance and enables large current discharge.

【0002】[0002]

【従来の技術】 近年、携帯電話、VTR、ノート型コ
ンピュータ等の携帯型電子機器の小型軽量化が加速度的
に進行しており、その電源用電池としては、正極活物質
にリチウム遷移金属複合酸化物を、負極活物質に炭素質
材料を、電解液にLiイオン電解質を有機溶媒に溶解し
た有機電解液を用いた二次電池が用いられるようになっ
てきている。
2. Description of the Related Art In recent years, portable electronic devices such as mobile phones, VTRs, and notebook computers have been rapidly reduced in size and weight. As batteries for power supplies thereof, lithium transition metal composite oxide is used as a positive electrode active material. Secondary batteries using a carbonaceous material as a negative electrode active material and an organic electrolytic solution in which a Li ion electrolyte is dissolved in an organic solvent as an electrolytic solution have been used.

【0003】 このような電池は、一般的にリチウム二
次電池、またはリチウムイオン電池と称せられており、
エネルギー密度が大きく、また単電池電圧も約4V程度
と高い特徴を有することから、前記携帯型電子機器のみ
ならず、最近の環境問題を背景に、低公害車として積極
的な一般への普及が図られている電気自動車(EV)あ
るいはハイブリッド電気自動車(HEV)のモータ駆動
電源としても注目を集めている。
Such a battery is generally called a lithium secondary battery or a lithium ion battery,
Since the energy density is large and the cell voltage is as high as about 4V, not only the portable electronic device but also the low-pollution vehicle is actively spread to the general public due to recent environmental problems. It is also attracting attention as a motor drive power source for electric vehicles (EVs) or hybrid electric vehicles (HEVs) being designed.

【0004】 ここで、EV等のモータを駆動させるた
めには、100V以上、好ましくは200V以上の電圧
が不可欠とされるが、リチウム二次電池の単電池電圧は
電池を構成する材料により決まっており、その電圧は開
回路電圧で高々4.2V程度、実際の使用電圧は3V〜
4V程度であることから、複数の単電池を直列に接続し
て用いる必要がある。
Here, in order to drive a motor such as an EV, a voltage of 100 V or higher, preferably 200 V or higher is indispensable, but the unit cell voltage of the lithium secondary battery is determined by the material constituting the battery. The open circuit voltage is 4.2V at most, and the actual operating voltage is 3V ~
Since it is about 4V, it is necessary to connect and use a plurality of unit cells in series.

【0005】 また、EV等において所定の加速性能、
登坂性能等を得るために、リチウム二次電池には、大容
量、高出力といった特性が要求される。例えば、HEV
では、加速時にはモータが出力をアシストするモードと
なっているため、モータを駆動させるリチウム二次電池
には高出力が必要とされる。ここで、出力が大きいこと
は大電流が流れることを意味し、100A以上の電流が
流れることが頻繁に起こり得、また、500Aもの電流
が短時間ではあっても流れる場合がある。このとき、上
述の通り、単電池は直列に接続されているため、各単電
池には同じ大きさの電流が流れることとなる。
Further, a predetermined acceleration performance in EV etc.,
In order to obtain climbing performance and the like, lithium secondary batteries are required to have characteristics such as large capacity and high output. For example, HEV
However, since the motor is in a mode that assists the output during acceleration, a high output is required for the lithium secondary battery that drives the motor. Here, a large output means that a large current flows, a current of 100 A or more can frequently flow, and a current of 500 A may flow even for a short time. At this time, as described above, since the unit cells are connected in series, the same amount of current flows in each unit cell.

【0006】 さらに、EV等において同じ電池容量の
場合に継続走行距離を長くするためには、放電時のジュ
ール熱等による損失を低減する必要がある。また、充放
電の繰り返しによる電池容量の低下を抑え、長期信頼
性、すなわちサイクル特性を良好に維持することも重視
される。
Further, in the case where the EV and the like have the same battery capacity, in order to increase the continuous traveling distance, it is necessary to reduce loss due to Joule heat and the like during discharging. In addition, it is important to suppress a decrease in battery capacity due to repeated charging and discharging and maintain good long-term reliability, that is, cycle characteristics.

【0007】[0007]

【発明が解決しようとする課題】 このような大電流を
安定して放電し、あるいは充放電時の損失を低減するた
めには、単電池の内部抵抗を低減することが必要であ
る。そこで、内部抵抗に占める各構成部材毎の抵抗を解
析したところ、正極活物質の抵抗が大きいことが分かっ
てきた。そこで、従来、正極活物質にアセチレンブラッ
ク等の導電性微粒子を添加して導電性を改良し、電池の
内部抵抗を低抵抗化する試みがなされている。これは、
正極活物質として用いられているコバルト酸リチウム
(LiCoO2)やマンガン酸リチウム(LiMn
24)、ニッケル酸リチウム(LiNiO2)等は、リ
チウムイオン伝導性と電子伝導性とを併せ持つ混合導電
体であって、その電子伝導性は必ずしも大きなものでは
ないことによる。
In order to stably discharge such a large current or to reduce the loss during charging / discharging, it is necessary to reduce the internal resistance of the unit cell. Therefore, when the resistance of each constituent member to the internal resistance was analyzed, it was found that the resistance of the positive electrode active material was large. Therefore, it has been conventionally attempted to add conductive fine particles such as acetylene black to the positive electrode active material to improve the conductivity and reduce the internal resistance of the battery. this is,
Lithium cobalt oxide (LiCoO 2 ) and lithium manganate (LiMn) used as the positive electrode active material.
This is because 2 O 4 ), lithium nickel oxide (LiNiO 2 ) and the like are mixed conductors having both lithium ion conductivity and electronic conductivity, and their electron conductivity is not necessarily large.

【0008】 ここで、アセチレンブラックを添加しな
い場合には、正極活物質粉体間の接触が悪くなって電池
の内部抵抗が増大し、また、正極活物質の利用率が低下
し、総じて電池特性が低下する。このことから、アセチ
レンブラックの添加が電池の内部抵抗の低減やサイクル
特性の向上に寄与していることは明らかであるが、アセ
チレンブラックの添加は、正極活物質の充填量を減少さ
せるため、電池容量を低下させることとなる。したがっ
て、アセチレンブラックの添加量は、内部抵抗の低減と
いうプラスの効果と、電池容量の低下というマイナスの
効果を比較して、適量に設定されることとなる。
Here, when acetylene black is not added, the contact between the powders of the positive electrode active material deteriorates, the internal resistance of the battery increases, and the utilization rate of the positive electrode active material decreases, resulting in generally poor battery characteristics. Is reduced. From this, it is clear that the addition of acetylene black contributes to the reduction of the internal resistance of the battery and the improvement of the cycle characteristics, but the addition of acetylene black reduces the filling amount of the positive electrode active material, and This will reduce the capacity. Therefore, the addition amount of acetylene black is set to an appropriate amount by comparing the positive effect of reducing the internal resistance with the negative effect of decreasing the battery capacity.

【0009】 しかし、正極活物質の導電性の向上を図
るためには、正極活物質自体の電気抵抗を低減し、あく
までアセチレンブラックの添加は補助的な導電性の改善
の効果を期待するに止めることが好ましいと考えられ
る。
However, in order to improve the conductivity of the positive electrode active material, the electric resistance of the positive electrode active material itself is reduced, and addition of acetylene black is expected only to expect an effect of auxiliary conductivity improvement. It is considered preferable.

【0010】 一般に、正極活物質の結晶性が高いと、
荷電粒子であるところのリチウムイオンや電子の移動度
は良くなると考えられる。つまり、正極活物質の結晶性
を高くすることで、正極活物質の導電性を大きくするこ
とができると考えられる。しかしながら、この結晶性を
調べる通常の手段であるX線回折法では、ピーク位置や
幅から結晶性の差異を明確に論ずることは困難である。
一方、SEM(走査型電子顕微鏡)による正極活物質の
モルフォロジー(形態)観察では、X線回折法と異な
り、結晶性の差異を明確に判断することができる。
Generally, when the crystallinity of the positive electrode active material is high,
It is considered that the mobility of lithium ions and electrons in the charged particles is improved. That is, it is considered that the conductivity of the positive electrode active material can be increased by increasing the crystallinity of the positive electrode active material. However, it is difficult to clearly discuss the difference in crystallinity from the peak position and the width by the X-ray diffraction method which is a usual means for investigating the crystallinity.
On the other hand, in morphology (morphology) observation of the positive electrode active material by SEM (scanning electron microscope), the difference in crystallinity can be clearly determined, unlike the X-ray diffraction method.

【0011】[0011]

【課題を解決するための手段】 本発明は、上述した従
来技術の問題点に鑑みてなされたものであり、その目的
とするところは、正極活物質の形態を制御することによ
り、正極活物質自体の低抵抗化を図り、大出力、高容量
のリチウム二次電池を提供することにある。すなわち、
本発明によれば、LiとMnを主成分とし、立方晶スピ
ネル構造を有するとともに、一次粒子が凝集した二次粒
子から構成された正極活物質を用いてなるリチウム二次
電池であって、前記一次粒子が、平坦な結晶面から構成
された下記で定義される略八面体形状を有するととも
に、その平均粒径が、1μm以上20μm以下であるこ
とを特徴とするリチウム二次電池、が提供される。略八
面体形状:平滑な結晶面が互いに交差して明瞭な稜線が
形成され立方晶スピネル構造の自形である八面体に近い
形状、八面体の4面が交差して形成される頂点が完全に
は形成されずに面または稜の形で形成された形状、八面
体の2面が交差して形成される稜の部分に他の結晶面が
現れている形状、およびこれらの形状の一部が欠けた形
状のいずれかの形状(ただし、前記形状の一次粒子どう
しが結晶面を共有しまたは一次粒子の表面の一部から他
の一次粒子結晶が成長している場合、および一次粒子ど
うしが複雑に結晶面を共有して八面体を構成単位とする
多面体を形成している場合を含む)
Means for Solving the Problems The present invention has been made in view of the problems of the above-mentioned conventional techniques, and an object of the present invention is to control the morphology of the positive electrode active material to obtain the positive electrode active material. It is intended to provide a high-output, high-capacity lithium secondary battery by lowering its resistance. That is,
According to the present invention, there is provided a lithium secondary battery comprising Li and Mn as main components, having a cubic spinel structure, and using a positive electrode active material composed of secondary particles in which primary particles are aggregated. Provided is a lithium secondary battery characterized in that primary particles have a substantially octahedral shape defined below, which is composed of flat crystal faces, and the average particle size is 1 μm or more and 20 μm or less. It Substantial octahedron shape: Shapes close to octahedron, which is the automorphism of cubic spinel structure, with smooth crystal planes intersecting each other to form clear ridges, and the apex formed by intersecting four octahedron surfaces is perfect Shape not formed on the surface but formed in the shape of a face or a ridge, a shape in which another crystal face appears at the ridge portion formed by intersecting two faces of an octahedron, and a part of these shapes Any of the shapes lacking (however, if the primary particles of the shape share a crystal plane or other primary particle crystals are grown from a part of the surface of the primary particles, and the primary particles are (Including the case of forming a polyhedron with an octahedron as a structural unit by sharing a crystal face intricately)

【0012】 ここで、本発明のリチウム二次電池にお
いては、この正極活物質に、平坦な結晶面の少なくとも
一辺の長さが0.2μm以上、より好ましくは1μm以
上である一次粒子が含まれていることが好ましい。正極
活物質の一次粒子の平均粒径は1μm以上20μm以下
である。また、正極活物質におけるLi/Mn比は0.
5より大きいことが好ましい。このような特性を有する
一次粒子からなる二次粒子の最大粒径は50μm以下と
することが好ましい。なお、このような正極活物質に
は、従来と同様にアセチレンブラックを導電補助材とし
て添加して用いることが好ましい。本発明による正極活
物質を用いたリチウム二次電池の電池容量は、好適には
2Ah以上とされ、リチウム二次電池の好適な用途とし
ては、電気自動車またはハイブリッド電気自動車のモー
タ駆動用電源が挙げられる。
Here, in the lithium secondary battery of the present invention, the positive electrode active material contains primary particles having at least one side of a flat crystal plane of 0.2 μm or more, and more preferably 1 μm or more. Preferably. The average particle diameter of the primary particles of the positive electrode active material is 1 μm or more and 20 μm or less. Further, the Li / Mn ratio in the positive electrode active material is 0.
It is preferably larger than 5. The maximum particle size of the secondary particles composed of the primary particles having such characteristics is preferably 50 μm or less. In addition, it is preferable to add acetylene black as a conductive auxiliary material to such a positive electrode active material as in the conventional case. The battery capacity of the lithium secondary battery using the positive electrode active material according to the present invention is preferably 2 Ah or more, and a suitable application of the lithium secondary battery is a power source for driving a motor of an electric vehicle or a hybrid electric vehicle. To be

【0013】[0013]

【発明の実施の形態】 まず、本発明のリチウム二次電
池に用いられる正極活物質について以下に説明する。正
極活物質には、LiとMnを主成分とし、立方晶スピネ
ル構造を有するマンガン酸リチウム(化学量論組成:L
iMn24)を用いる。ただし、本発明のリチウム二次
電池に用いられるLiMn24は、このような化学量論
組成を有するものに限定されるものではなく、結晶構造
が維持される限度において、陽イオンが欠損しあるいは
過剰に存在し、一方、酸素イオンが欠損しあるいは過剰
に存在していても構わない。LiMn24は材料が安価
である点で汎用電池用材料として好ましく、また出力密
度が大きい点で特に電気自動車等のモータ駆動用電源と
して好適である等の優れた特徴を有している。
BEST MODE FOR CARRYING OUT THE INVENTION First, the positive electrode active material used in the lithium secondary battery of the present invention will be described below. The positive electrode active material contains lithium and manganese as main components and has a cubic spinel structure lithium manganate (stoichiometric composition: L
iMn 2 O 4 ) is used. However, LiMn 2 O 4 used in the lithium secondary battery of the present invention is not limited to those having such a stoichiometric composition, and cations are deficient as long as the crystal structure is maintained. Alternatively, it may be present in excess, while oxygen ions may be deficient or present in excess. LiMn 2 O 4 has excellent characteristics such that it is preferable as a material for general-purpose batteries because it is inexpensive, and that it is particularly suitable as a power source for driving a motor for electric vehicles and the like because it has a high output density.

【0014】 なお、LiとMnを主成分とするとは、
Mnの一部を他の元素、例えば、Li、Fe、Mn、N
i、Mg、Zn、B、Al、Co、Cr、Si、Ti、
Sn、P、V、Sb、Nb、Ta、Mo、W等の置換元
素Mの中から選ばれた1種類以上の陽イオンで一部置換
したものであってもよく、また、置換元素としてではな
く添加材として、例えば、B、MoやWを含有するもの
であっても構わないことを意味する。
It should be noted that having Li and Mn as main components means that
A part of Mn may be replaced with other elements such as Li, Fe, Mn, and N.
i, Mg, Zn, B, Al, Co, Cr, Si, Ti,
It may be partially substituted with one or more kinds of cations selected from substitutional elements M such as Sn, P, V, Sb, Nb, Ta, Mo and W, and as a substitutional element, It means that the additive may contain B, Mo, or W as an additive.

【0015】 ここで、上述したLiMn24の中で
も、特に、Li/Mn比が0.5より大きいものを用い
ると、化学量論組成のものを用いた場合と比較して、内
部抵抗がさらに低減され、高出力電池を得ることがで
き、好ましい。Li/Mn比が0.5より大きいものの
例としては、Mnの一部をLiで置換したLi(LiX
Mn2-X)O4(Xは置換量)や、Mnの一部をLi以外
の前記置換元素Mで置換したLiMXMn2-X4等を挙
げることができる。前者のLi/Mn比は(1+X)/
(2−X)、後者のLi/Mn比は1/(2−X)でそ
れぞれ与えられるので、X>0の場合には両者のLi/
Mn比は0.5より必ず大きくなる。
Here, among the LiMn 2 O 4 described above, in particular, when Li / Mn ratio is larger than 0.5, internal resistance is higher than that in the case of using stoichiometric composition. Furthermore, it is possible to obtain a high output battery, which is further reduced, which is preferable. As an example of a Li / Mn ratio of more than 0.5, Li (Li x
Examples thereof include Mn 2-X ) O 4 (X is a substitution amount), LiM X Mn 2-X O 4 in which a part of Mn is substituted with the substitution element M other than Li, and the like. The former Li / Mn ratio is (1 + X) /
The Li / Mn ratios of (2-X) and the latter are given by 1 / (2-X), respectively, so that when X> 0, both Li / Mn ratios are
The Mn ratio is always greater than 0.5.

【0016】 そして、このような組成と結晶構造を有
する正極活物質は、さらに、図1のSEM観察による写
真(以下、「SEM写真」という。)に観られる粒子構
造(粒子形態)の通り、一次粒子が主に平坦な結晶面か
ら構成され、ほとんどの一次粒子が略八面体形状を有す
る。つまり、一次粒子の表面は、平滑な結晶面が互いに
交差して明瞭な稜線が形成され、その形状は立方晶スピ
ネル構造の自形である八面体に近い形状を有している。
Further, the positive electrode active material having such a composition and crystal structure further has a particle structure (particle morphology) as shown in the SEM observation photograph of FIG. 1 (hereinafter referred to as “SEM photograph”). The primary particles are mainly composed of flat crystal faces, and most of the primary particles have a substantially octahedral shape. That is, on the surface of the primary particle, smooth crystal planes intersect with each other to form a clear ridge, and the shape thereof is close to that of an octahedron which is the automorphism of the cubic spinel structure.

【0017】 ここで、図1に観察される一次粒子に
は、八面体の4面が交差して形成される頂点が完全には
形成されずに、面または稜の形で形成されているもの
や、八面体の2面が交差して形成される稜の部分に他の
結晶面が現れているもの、さらには、ある一次粒子どう
しが結晶面を共有し、あるいは一次粒子の表面の一部か
ら他の一次粒子結晶が成長しているものも観察される。
しかしながら、このような一次粒子の形状は、完全な八
面体ではないものの、概略、八面体形状とみなすことが
できる。つまり、本発明における「略八面体形状」に
は、このような種々の形状が含まれることはいうまでも
なく、これらの形状の一部が欠けて、あるいは一次粒子
どうしが複雑に結晶面を共有して多面体を形成している
ものも含まれる。
Here, in the primary particles observed in FIG. 1, the vertices formed by intersecting the four faces of the octahedron are not completely formed, but are formed in the shape of faces or edges. Or, another crystal plane appears at the edge formed by intersecting two faces of the octahedron, and further, some primary particles share a crystal plane, or a part of the surface of the primary particle From this, it is also observed that other primary particle crystals are growing.
However, although the shape of such primary particles is not a perfect octahedron, it can be generally regarded as an octahedron shape. That is, it goes without saying that the "substantially octahedral shape" in the present invention includes such various shapes, and some of these shapes are missing, or the primary particles have complicated crystal planes. Those that share a polyhedron are also included.

【0018】 なお、本発明のリチウム二次電池の正極
活物質は、主に上記形態を有する一次粒子からなること
を特徴とするものであって、全ての一次粒子が略八面体
形状を有していなければならないわけではない(ただ
し、製造時における通常の誤差分布の範囲で生じる形状
以外のものは含まない)。このことは、一般的に、結晶
面の成長が、原料粒径、原料中不純物、合成時の炉内温
度分布等の影響を受けて一様に起こらない場合が生じ得
ることからも、理解されるべきである。
The positive electrode active material of the lithium secondary battery of the present invention is mainly composed of primary particles having the above-mentioned form, and all the primary particles have a substantially octahedral shape. It does not have to be (but does not include anything other than the shape that occurs within the normal error distribution range during manufacturing). This is also understood from the fact that, in general, the growth of crystal planes may not occur uniformly under the influence of the grain size of raw materials, impurities in the raw materials, temperature distribution in the furnace during synthesis, etc. Should be.

【0019】 さて、上述した正極活物質には、平坦な
結晶面の少なくとも一辺の長さが0.2μm以上、より
好ましくは1μm以上である一次粒子が含まれているこ
とがことが好ましい。また、正極活物質の一次粒子の平
均粒径は1μm以上20μm以下である。さらに、一次
粒子からなる二次粒子の最大粒径は50μm以下とする
ことが好ましい。また、一次粒子の最小粒径は0.05
μm以上、二次粒子の最小粒径は1μm以上であると好
ましい。なお、ここでの一次粒子の粒径は、一次粒子を
単離して測定することができないため、SEM像上で画
像解析を行って得られる粒径で表され、一方、二次粒子
径はレーザ回折法等により求められる値である。
The positive electrode active material described above preferably contains primary particles in which at least one side of a flat crystal plane has a length of 0.2 μm or more, more preferably 1 μm or more. The average particle diameter of the primary particles of the positive electrode active material is 1 μm or more and 20 μm or less. Further, the maximum particle size of the secondary particles composed of the primary particles is preferably 50 μm or less. The minimum particle size of primary particles is 0.05.
It is preferable that the average particle size of the secondary particles is 1 μm or more, and the minimum particle size of the secondary particles is 1 μm or more. Note that the particle size of the primary particles here is represented by the particle size obtained by performing image analysis on the SEM image because the primary particles cannot be isolated and measured, while the secondary particle size is the laser particle size. It is a value obtained by a diffraction method or the like.

【0020】 このような粒径の制限は以下のような理
由による。すなわち、正極活物質を用いてリチウム二次
電池を作製する場合、一般的に、正極活物質はプレス成
形法により板状に成形され、あるいは、バインダを溶解
した溶剤に正極活物質と導電補助剤を添加してなるスラ
リーを金属箔表面に塗工して層状に成形されるが、一次
粒子の平均粒径が0.1μm以下と小さい場合には、正
極活物質に添加するバインダ量を増大させなければなら
ず、また、スラリーを作製する場合には正極活物質の凝
集を抑制して分散性を良好に維持するために他の解膠剤
や分散剤を添加する必要が生ずる等して、結果的に作製
される電池のエネルギー密度が低下を招くため好ましく
ない。また、粒径が小さいと電池における電流効率が低
下するという問題もある。
The reason for limiting the particle size is as follows. That is, when a lithium secondary battery is manufactured using a positive electrode active material, generally, the positive electrode active material is molded into a plate shape by a press molding method, or a positive electrode active material and a conductive auxiliary agent are dissolved in a solvent in which a binder is dissolved. Is added to the surface of the metal foil to form a layer, and when the average primary particle size is 0.1 μm or less, the amount of binder added to the positive electrode active material is increased. In addition, when preparing a slurry, it is necessary to add another peptizer or a dispersant in order to suppress aggregation of the positive electrode active material and maintain good dispersibility. As a result, the energy density of the produced battery is lowered, which is not preferable. There is also a problem that the current efficiency in the battery is lowered when the particle size is small.

【0021】 一方、正極活物質の粒径が大きいと、プ
レス成形では十分な充填密度、機械的強度が得られず、
また、スラリーを作製する場合には、スラリー中での粒
子の沈降が起こり易くなって均一な塗工が行えなくなる
他、形成する正極活物質層の厚みは高々100μm程度
であることから、二次粒子の平均粒径が50μm超の正
極活物質を用いた場合には、2個の粒子で正極活物質層
の厚みとなり、平坦性、均質性が低下し、充填率も上が
らないという問題を招く。
On the other hand, if the particle size of the positive electrode active material is large, sufficient filling density and mechanical strength cannot be obtained by press molding,
In addition, when a slurry is prepared, particles are likely to settle in the slurry and uniform coating cannot be performed, and the thickness of the positive electrode active material layer to be formed is at most about 100 μm. When a positive electrode active material having an average particle size of more than 50 μm is used, the thickness of the positive electrode active material layer is formed by two particles, resulting in a problem that flatness and homogeneity are deteriorated and the filling rate is not increased. .

【0022】 なお、このような好適な正極活物質の粒
径の範囲を、全ての粒子が満足していなければならない
わけではなく、破砕された欠片や凝集粉等の規定範囲外
粒径を有する一次粒子や二次粒子が、上述した理由に悪
影響を及ぼさない範囲で、しかも上記粒径測定方法では
通常は測定されない程度に混入していることが許容され
る、ということが理解されるべきである。
It should be noted that not all particles have to satisfy the range of the particle size of such a suitable positive electrode active material, and the particle size is out of the specified range such as crushed fragments or agglomerated powder. It should be understood that the primary particles and the secondary particles are allowed to be mixed in a range that does not adversely affect the above-mentioned reason, and to the extent that they are not usually measured by the above-mentioned particle size measuring method. is there.

【0023】 さて、このような本発明の正極活物質の
作製は、原料として、所定比に調整された各元素(L
i、Mnおよび必要に応じて置換元素や添加元素を含
む)の塩および/または酸化物の混合物を、酸化雰囲
気、700℃〜900℃の範囲で、5時間〜50時間か
けて焼成することで行われる。
Now, in manufacturing such a positive electrode active material of the present invention, each element (L
i, Mn and, if necessary, a mixture of salts and / or oxides (including a substitution element and an additional element) in an oxidizing atmosphere in a range of 700 ° C. to 900 ° C. for 5 hours to 50 hours. Done.

【0024】 ここで、焼成温度(合成温度)が低い場
合には、粒成長が起こり難く、所望の粒径ならびに形状
を有する一次粒子からなる正極活物質を得ることが困難
となる。一方、合成温度が高い場合には、個々の一次粒
子は粒成長して大きくなるが、それと同時に一次粒子間
にネック成長が始まり、ネックの部分が丸みを帯びると
ともに、所望の粒径、形状が得られなくなる。実際に、
一次粒子径を20μm以上にしようとすると、このネッ
ク成長により略八面体形状の一次粒子を得ることができ
ない。また、正極活物質は粉体として用いる必要がある
が、このようなネック成長、すなわち焼結が始まった場
合には、合成後に粉砕処理が必要となるデメリットがあ
り、さらに、高温では立方晶以外への結晶相へ変化する
可能性もあり、好ましくない。
Here, when the firing temperature (synthesis temperature) is low, grain growth does not easily occur, and it becomes difficult to obtain a positive electrode active material composed of primary particles having a desired particle size and shape. On the other hand, when the synthesis temperature is high, individual primary particles grow by grain growth, and at the same time, neck growth starts between the primary particles, the neck portion becomes rounded, and the desired particle size and shape are You won't get it. actually,
If the primary particle diameter is set to 20 μm or more, it is impossible to obtain substantially octahedral primary particles due to the neck growth. Further, the positive electrode active material needs to be used as a powder, but when such neck growth, that is, sintering starts, there is a demerit that a pulverization process is required after the synthesis. It is not preferable because it may change to a crystalline phase.

【0025】 これらのことから、逆に、原料組成や焼
成条件を適宜好適な条件に設定することで、一次粒子の
平均粒径を調整し、さらには、一次粒子の形態を変化さ
せることが可能である。例えば、後述する比較例2のB
23を添加した正極活物質では、粒成長が顕著に観察さ
れ、一次粒子全体が丸みを帯びたものとなっているが、
ここで合成温度を下げ、および/または、合成時間を短
くすることによって粒成長を抑制し、略八面体形状の一
次粒子を有する正極活物質を得ることも可能である。
From these facts, conversely, it is possible to adjust the average particle diameter of the primary particles and further change the morphology of the primary particles by appropriately setting the raw material composition and the firing conditions. Is. For example, B of Comparative Example 2 described later
In the positive electrode active material to which 2 O 3 was added, grain growth was remarkably observed, and the entire primary particles were rounded.
It is also possible to suppress the grain growth by lowering the synthesis temperature and / or shortening the synthesis time to obtain a positive electrode active material having substantially octahedral primary particles.

【0026】 ところで、本発明のリチウム二次電池の
作製に使用される正極活物質以外の材料は、特に限定さ
れるものではなく、従来公知の種々の材料を用いること
ができる。例えば、負極活物質としては、ソフトカーボ
ンやハードカーボンといったアモルファス系炭素質材料
や、人造黒鉛や天然黒鉛といった高黒鉛化炭素質材料等
が用いられ、セパレータとしては、マイクロポアを有す
るリチウムイオン透過性のポリエチレンフィルムを、多
孔性のリチウムイオン透過性のポリプロピレンフィルム
で挟んだ三層構造としたものが好適に用いられる。
By the way, materials other than the positive electrode active material used for producing the lithium secondary battery of the present invention are not particularly limited, and various conventionally known materials can be used. For example, as the negative electrode active material, an amorphous carbonaceous material such as soft carbon or hard carbon, or a highly graphitized carbonaceous material such as artificial graphite or natural graphite is used, and the separator is a lithium ion permeable material having micropores. A polyethylene film having a three-layer structure sandwiched between porous polypropylene films permeable to lithium ions is preferably used.

【0027】 また、有機電解液としては、エチレンカ
ーボネート(EC)、ジエチルカーボネート(DE
C)、ジメチルカーボネート(DMC)といった炭酸エ
ステル系のもの、プロピレンカーボネート(PC)やγ
−ブチロラクトン、テトラヒドロフラン、アセトニトリ
ル等の有機溶媒の単独溶媒または混合溶媒に、電解質と
してのLiPF6やLiBF4等のリチウム錯体フッ素化
合物、あるいはLiClO4といったリチウムハロゲン
化物等を1種類または2種類以上を溶解したものを用い
ることができる。
Further, as the organic electrolytic solution, ethylene carbonate (EC), diethyl carbonate (DE
C), carbonate-based compounds such as dimethyl carbonate (DMC), propylene carbonate (PC) and γ
-Dissolve one or more kinds of lithium complex fluorine compounds such as LiPF 6 and LiBF 4 as electrolytes or lithium halides such as LiClO 4 in a single solvent or a mixed solvent of organic solvents such as butyrolactone, tetrahydrofuran and acetonitrile. What was done can be used.

【0028】 このような正極活物質を用いた場合に
は、後述する実施例に示すように、正極活物質層の抵抗
の低減が図られ、この場合、導電助剤の添加量を増量す
る必要がなくなり、正極活物質自体の充填量を増量する
ことができる利点があり、このような効果は電池容量が
2Ah以上の電池、すなわち、ある程度の多くの正極活
物質の充填を行う電池において顕著に得られる。また、
本発明の正極活物質を用いた場合には、良好なサイクル
特性が得られ、このような特性を考慮した場合、本発明
のリチウム二次電池は、EVまたはHEVのモータ駆動
用電源として好適に用いられる。
When such a positive electrode active material is used, the resistance of the positive electrode active material layer can be reduced as shown in Examples described later, and in this case, it is necessary to increase the addition amount of the conductive additive. Has the advantage that the filling amount of the positive electrode active material itself can be increased, and such an effect is remarkable in a battery having a battery capacity of 2 Ah or more, that is, a battery in which a large amount of positive electrode active material is filled. can get. Also,
When the positive electrode active material of the present invention is used, good cycle characteristics are obtained, and in consideration of such characteristics, the lithium secondary battery of the present invention is suitable as a motor driving power source for EV or HEV. Used.

【0029】[0029]

【実施例】 以下、本発明を実施例により、さらに詳細
に説明するが、本発明が以下の実施例に限定されるもの
でないことはいうまでもない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to the following Examples.

【0030】 (正極活物質の準備)まず、実施例に係
る正極活物質は、表1の実施例に示す組成となるよう
に、出発原料として市販のLi2CO3、MnO2、Ti
2、NiOの粉末を用いて秤量・混合し、酸化雰囲
気、800℃で24時間焼成することで作製した。得ら
れた正極活物質は、図1に示すような一次粒子が略八面
体形状を有するものであった。また、比較例1として市
販のLiMn24を用いた。その粒子構造(微構造)は
図2のSEM写真に示すように、0.2μm程度の一次
粒子が凝集して不定形の二次粒子を形成しているもので
あった。さらに、比較例2としては、出発原料として市
販のLi2CO3、MnO2、B23の粉末を用いてL
i:Mn:B=1:2:0.03のモル比組成となるよ
うに秤量、混合したものを、酸化雰囲気、800℃で2
4時間焼成して得られた正極活物質を用いた。この比較
例2の正極活物質の粒子構造(微構造)は図3のSEM
写真に示されるように、略八面体形状の平坦な結晶面を
一部に残しつつ、稜や頂点が曲面で形成された、全体的
に丸みを帯びた形状であった。
(Preparation of Positive Electrode Active Material) First, in the positive electrode active materials according to the examples, commercially available Li 2 CO 3 , MnO 2 , and Ti were used as starting materials so as to have the compositions shown in the examples of Table 1.
It was produced by weighing and mixing powders of O 2 and NiO, and firing at 800 ° C. for 24 hours in an oxidizing atmosphere. The obtained positive electrode active material had primary particles having a substantially octahedral shape as shown in FIG. Further, as Comparative Example 1, commercially available LiMn 2 O 4 was used. As shown in the SEM photograph of FIG. 2, the particle structure (microstructure) was such that primary particles of about 0.2 μm were aggregated to form amorphous secondary particles. Further, as the comparative example 2, using a commercially available Li 2 CO 3, powder of MnO 2, B 2 O 3 as starting material L
i: Mn: B = 1: 2: 0.03 were weighed and mixed to have a molar ratio composition, and the mixture was mixed in an oxidizing atmosphere at 800 ° C. for 2
The positive electrode active material obtained by firing for 4 hours was used. The particle structure (microstructure) of the positive electrode active material of Comparative Example 2 is the SEM of FIG.
As shown in the photograph, while leaving a substantially octahedral-shaped flat crystal face in a part, the ridges and vertices were formed into curved surfaces, and the shape was generally rounded.

【0031】[0031]

【表1】 [Table 1]

【0032】 (電池(コインセル)の作製)まず、表
1記載の種々の正極活物質のそれぞれについて、正極活
物質に、導電材たるアセチレンブラックと、結着材たる
ポリフッ化ビニリデン(PVDF)を、重量比で50:
2:3の比で混合し、正極材料を作製した。その正極材
料0.02gを300kg/cm2の圧力で直径20m
mφの円板状にプレス成形し、正極とした。次に、作製
した正極と、ECとDECが等体積比で混合された有機
溶媒に電解質としてのLiPF6を1mol/Lの濃度
となるように溶解して作製した電解液と、カーボンから
なる負極、および正極と負極を隔てるセパレータを用い
てコインセルを作製した。
(Production of Battery (Coin Cell)) First, for each of the various positive electrode active materials shown in Table 1, acetylene black as a conductive material and polyvinylidene fluoride (PVDF) as a binder were used as positive electrode active materials. Weight ratio 50:
The mixture was mixed at a ratio of 2: 3 to prepare a positive electrode material. 0.02 g of the positive electrode material has a diameter of 20 m at a pressure of 300 kg / cm 2.
A positive electrode was formed by press molding into a disk shape of mφ. Next, the prepared positive electrode, an electrolytic solution prepared by dissolving LiPF 6 as an electrolyte in an organic solvent in which EC and DEC are mixed at an equal volume ratio to a concentration of 1 mol / L, and a negative electrode made of carbon. , And a separator separating the positive electrode and the negative electrode were used to produce a coin cell.

【0033】 (電池の内部抵抗の測定と結果)作製し
たコインセルについて、正極活物質の容量に応じて1C
レートの定電流−定電圧で4.1Vまで充電し、同じく
1Cレートの定電流で2.5Vまで放電させる充放電試
験を1サイクルのみ行い、充電終了後の休止状態での電
圧と、放電開始直後での電圧との差(電圧差)を放電電
流で除することにより、電池の内部抵抗を求めた。そし
て、各電池の内部抵抗を、比較例1の正極活物質を用い
て作製した電池の内部抵抗で除した値を内部抵抗率と規
定した。したがって、比較例1では、その内部抵抗率は
100%となる。結果を表1に並記する。実施例と比較
例2の双方で内部抵抗が大きく低減されており、特に比
較例2の正極活物質で抵抗低減の効果が大きく現れてい
るが、比較例2では、後述するサイクル特性が悪いとい
う問題がある。
(Measurement and Results of Internal Resistance of Battery) The prepared coin cell was 1 C depending on the capacity of the positive electrode active material.
Rate constant current-constant voltage charge up to 4.1V and discharge at 1C rate constant current up to 2.5V. Only one cycle of charge / discharge test is performed. The internal resistance of the battery was obtained by dividing the difference with the voltage immediately after that (voltage difference) by the discharge current. Then, a value obtained by dividing the internal resistance of each battery by the internal resistance of the battery manufactured using the positive electrode active material of Comparative Example 1 was defined as the internal resistivity. Therefore, in Comparative Example 1, the internal resistivity is 100%. The results are shown in Table 1. The internal resistance is greatly reduced in both the example and the comparative example 2, and in particular, the positive electrode active material of the comparative example 2 shows a great effect of reducing the resistance, but in the comparative example 2, the cycle characteristic described later is poor. There's a problem.

【0034】 (サイクル運転試験)次いで、サイクル
特性を調べるために、各電池について、正極活物質の容
量に応じて1Cレートの定電流−定電圧で4.1Vまで
の充電と、同じく1Cレートの定電流で2.5Vまでの
放電を繰り返すサイクル運転試験を行った。ここで、1
00回のサイクル終了後の電池の放電容量を、初回の電
池の放電容量で除した値を容量維持率と定義し、その値
を表1に並記した。この割合が大きいほど、電池の放電
容量の減少が少ないこととなるが、実施例においては、
86%という高い容量維持率が得られた。比較例2は内
部抵抗率は小さかったものの、容量維持率が低く、充放
電を繰り返し行う二次電池としての用途には問題があ
る。
(Cycle Operation Test) Next, in order to examine cycle characteristics, each battery was charged at a constant current of 1 C rate-4.1 V at a constant voltage and a 1 C rate according to the capacity of the positive electrode active material. A cycle operation test was performed in which discharge up to 2.5 V was repeated at a constant current. Where 1
A value obtained by dividing the discharge capacity of the battery after the completion of the 00th cycle by the discharge capacity of the first battery was defined as a capacity retention rate, and the values are shown in Table 1. The larger this ratio, the smaller the decrease in the discharge capacity of the battery, but in the examples,
A high capacity retention rate of 86% was obtained. Although Comparative Example 2 had a small internal resistivity, it had a low capacity retention rate and had a problem in use as a secondary battery in which charging and discharging are repeated.

【0035】 上述した実施例と比較例1・2との対比
から、正極活物質の一次粒子の形態が電池の内部抵抗や
サイクル特性に大きな影響を与えているということがで
きる。さらに、実施例と比較例2との対比から、合成条
件を同じとしても、組成を変化させることにより、一次
粒子の形態を変化させることができる。従って、正極活
物質の一次粒子の形態が、内部抵抗の低減やサイクル特
性の向上といった効果を得るための重要な要素であり、
上記実施例の組成や焼成条件は、所望の一次粒子形態を
有する一例に過ぎず、本発明が実施例の組成や焼成条件
に限定されるものでないことはいうまでもない。
From the comparison between the above-mentioned Examples and Comparative Examples 1 and 2, it can be said that the morphology of the primary particles of the positive electrode active material has a great influence on the internal resistance and cycle characteristics of the battery. Furthermore, from the comparison between Example and Comparative Example 2, even if the synthesis conditions are the same, the morphology of the primary particles can be changed by changing the composition. Therefore, the morphology of the primary particles of the positive electrode active material is an important factor for obtaining effects such as reduction of internal resistance and improvement of cycle characteristics,
Needless to say, the compositions and firing conditions of the above examples are merely examples having a desired primary particle morphology, and the present invention is not limited to the compositions and firing conditions of the examples.

【0036】 (捲回型内部電極体を用いた電池の作製
と評価)次に、実施例および比較例1の組成の正極活物
質を用い、捲回型内部電極体を有する電池を以下の手順
により作製した。まず、正極活物質に所定量のアセチレ
ンブラックを添加したものを、ノルマルメチルピロリド
ン(NMP)にPVDFを溶解した溶液に分散させ、ス
ラリーとした。次に、このスラリーを厚さ20μm、長
さ3600mm、幅200mmのアルミ箔にロールコー
タ法を用いて両面塗工し、片側塗工厚みをロールプレス
により100μmに調整した正極板を作製した。
(Production and Evaluation of Battery Using Wound Internal Electrode Body) Next, using the positive electrode active material having the composition of Example and Comparative Example 1, a battery having a wound internal electrode body was prepared by the following procedure. It was produced by. First, a positive electrode active material to which a predetermined amount of acetylene black was added was dispersed in a solution of PVDF dissolved in normal methylpyrrolidone (NMP) to obtain a slurry. Next, this slurry was applied on both sides of an aluminum foil having a thickness of 20 μm, a length of 3600 mm and a width of 200 mm by using a roll coater method, and a positive electrode plate having a one-side coating thickness adjusted to 100 μm by a roll press was produced.

【0037】 一方、負極板については、負極活物質と
して高黒鉛化炭素繊維を用い、これをPVDFを溶解さ
せたNMP溶液に所定量ほど添加してスラリーを作製
し、作製したスラリーを、厚さ10μm、長さ4000
mm、幅200mmの銅箔に両面塗工し、片側塗工厚み
を80μmに調整することで作製した。
On the other hand, for the negative electrode plate, a highly graphitized carbon fiber was used as a negative electrode active material, and a predetermined amount of this was added to an NMP solution in which PVDF was dissolved to prepare a slurry, and the prepared slurry had a thickness of 10 μm, length 4000
It was prepared by double-sided coating on a copper foil having a width of 200 mm and a width of 200 mm and adjusting the coating thickness on one side to 80 μm.

【0038】 こうして作製した正極板および負極板
を、互いに接触しないように、ポリエチレンフィルムを
ポリプロピレンフィルムで挟んだ3層構造のマイクロポ
ーラスセパレータ(厚み:25μm、長さ:4500m
m、幅:220mm)を介して捲回しつつ、集電用タブ
を超音波溶接により各電極板に取り付けて捲回型内部電
極体を作製し、これを電池ケースに挿入した後、ECと
DECの混合溶媒に電解質としてのLiPF6を溶解し
た電解液を充填して、最後に電池ケースを封止すること
で、外形直径50mmφ、長さ240mmの電池を作製
した。
A microporous separator (thickness: 25 μm, length: 4500 m) having a three-layer structure in which a polyethylene film is sandwiched between polypropylene films so that the positive electrode plate and the negative electrode plate thus produced do not contact each other
m, width: 220 mm), the current collecting tab was attached to each electrode plate by ultrasonic welding to produce a wound type internal electrode body, which was inserted into a battery case, and then EC and DEC The mixed solvent of was filled with an electrolytic solution in which LiPF 6 as an electrolyte was dissolved, and finally the battery case was sealed to produce a battery having an outer diameter of 50 mmφ and a length of 240 mm.

【0039】 作製した電池の充電は、10A定電流−
4.1V定電圧充電により満充電した。満充電時の電池
容量は、実施例、比較例1の電池で、それぞれ22A
h、25Ahであった。そして、上述したコインセルの
試験と同様に、但し、充放電時のレートを0.2Cとし
て内部抵抗率および容量維持率を求めた結果、コインセ
ルの場合と同等の結果が得られた。
The battery thus prepared was charged at a constant current of 10 A
It was fully charged by 4.1V constant voltage charging. The battery capacity when fully charged was 22 A for the batteries of Example and Comparative Example 1, respectively.
h, 25 Ah. Then, as in the case of the coin cell test described above, except that the rate during charge / discharge was 0.2 C, the internal resistivity and the capacity retention rate were obtained, and as a result, the same result as that of the coin cell was obtained.

【0040】[0040]

【発明の効果】 上述の通り、一次粒子が略八面体形状
を有する所定の形態の正極活物質を用いた本発明のリチ
ウム二次電池においては、内部抵抗の大幅な低減が実現
されるとともに、良好なサイクル特性が得られるという
顕著な効果が得られる。これにより導電助剤の添加量を
多くする必要がなくなり、正極活物質の充填量を多くし
て電池容量、エネルギー密度を大きくすることができる
効果をも奏する。
As described above, in the lithium secondary battery of the present invention using the positive electrode active material having the predetermined shape in which the primary particles have a substantially octahedral shape, the internal resistance is significantly reduced, and A remarkable effect that good cycle characteristics are obtained can be obtained. As a result, there is no need to increase the amount of the conductive additive added, and there is an effect that the amount of the positive electrode active material filled can be increased to increase the battery capacity and energy density.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のリチウム二次電池に好適に用いられ
る正極活物質の粒子構造の一形態を示すSEM写真であ
る。
FIG. 1 is an SEM photograph showing one form of a particle structure of a positive electrode active material which is preferably used in the lithium secondary battery of the present invention.

【図2】 正極活物質の粒子構造の別の形態を示すSE
M写真である。
FIG. 2 SE showing another form of the particle structure of the positive electrode active material.
It is an M photograph.

【図3】 正極活物質の粒子構造のさらに別の形態を示
すSEM写真である。
FIG. 3 is an SEM photograph showing yet another form of the particle structure of the positive electrode active material.

フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AJ06 AK03 AL06 AL07 AL08 AM02 AM03 AM04 AM05 AM07 BJ14 DJ17 EJ04 EJ12 HJ02 HJ04 HJ05 HJ19 5H050 AA07 AA08 AA12 BA17 CA09 CB07 CB08 CB09 EA10 EA24 FA05 FA19 HA02 HA04 HA05 HA19 Continued front page    F term (reference) 5H029 AJ03 AJ05 AJ06 AK03 AL06                       AL07 AL08 AM02 AM03 AM04                       AM05 AM07 BJ14 DJ17 EJ04                       EJ12 HJ02 HJ04 HJ05 HJ19                 5H050 AA07 AA08 AA12 BA17 CA09                       CB07 CB08 CB09 EA10 EA24                       FA05 FA19 HA02 HA04 HA05                       HA19

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 LiとMnを主成分とし、立方晶スピネ
ル構造を有するとともに、一次粒子が凝集した二次粒子
から構成された正極活物質を用いてなるリチウム二次電
池であって、 前記一次粒子が、平坦な結晶面から構成された下記で定
義される略八面体形状を有するとともに、その平均粒径
が、1μm以上20μm以下であることを特徴とするリ
チウム二次電池。略八面体形状:平滑な結晶面が互いに
交差して明瞭な稜線が形成され立方晶スピネル構造の自
形である八面体に近い形状、八面体の4面が交差して形
成される頂点が完全には形成されずに面または稜の形で
形成された形状、八面体の2面が交差して形成される稜
の部分に他の結晶面が現れている形状、およびこれらの
形状の一部が欠けた形状のいずれかの形状(ただし、前
記形状の一次粒子どうしが結晶面を共有しまたは一次粒
子の表面の一部から他の一次粒子結晶が成長している場
合、および一次粒子どうしが複雑に結晶面を共有して八
面体を構成単位とする多面体を形成している場合を含
む)
1. A lithium secondary battery comprising Li and Mn as main components, having a cubic spinel structure, and using a positive electrode active material composed of secondary particles in which primary particles are aggregated. A lithium secondary battery characterized in that the particles have a substantially octahedral shape defined below, which is composed of flat crystal faces, and the average particle size is 1 μm or more and 20 μm or less. Substantial octahedron shape: Shapes close to octahedron, which is the automorphism of cubic spinel structure, with smooth crystal planes intersecting each other to form clear ridges, and the apex formed by intersecting four octahedron surfaces is perfect Shape not formed on the surface but formed in the shape of a face or a ridge, a shape in which another crystal face appears at the ridge portion formed by intersecting two faces of an octahedron, and a part of these shapes Any of the shapes lacking (however, if the primary particles of the shape share a crystal plane or other primary particle crystals are grown from a part of the surface of the primary particles, and the primary particles are (Including the case of forming a polyhedron with an octahedron as a structural unit by sharing a crystal face intricately)
【請求項2】 前記正極活物質に、前記平坦な結晶面の
少なくとも一辺の長さが0.2μm以上である前記一次
粒子が含まれることを特徴とする請求項1に記載のリチ
ウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the positive electrode active material contains the primary particles having a length of at least one side of the flat crystal plane of 0.2 μm or more. .
【請求項3】 前記正極活物質に、前記平坦な結晶面の
少なくとも一辺の長さが1μm以上である前記一次粒子
が含まれることを特徴とする請求項2に記載のリチウム
二次電池。
3. The lithium secondary battery according to claim 2, wherein the positive electrode active material contains the primary particles in which at least one side of the flat crystal surface has a length of 1 μm or more.
【請求項4】 前記正極活物質におけるLi/Mn比が
0.5より大きいことを特徴とする請求項1〜3のいず
れか一項に記載のリチウム二次電池。
4. The lithium secondary battery according to claim 1, wherein the Li / Mn ratio in the positive electrode active material is larger than 0.5.
【請求項5】 前記二次粒子の最大粒径が50μm以下
であることを特徴とする請求項1〜4のいずれか一項に
記載のリチウム二次電池。
5. The lithium secondary battery according to claim 1, wherein the maximum particle size of the secondary particles is 50 μm or less.
【請求項6】 2Ah以上の電池容量を有することを特
徴とする請求項1〜5のいずれか一項に記載のリチウム
二次電池。
6. The lithium secondary battery according to claim 1, which has a battery capacity of 2 Ah or more.
【請求項7】 電気自動車またはハイブリッド電気自動
車に用いられることを特徴とする請求項1〜6のいずれ
か一項に記載のリチウム二次電池。
7. The lithium secondary battery according to claim 1, which is used in an electric vehicle or a hybrid electric vehicle.
JP2002305397A 2002-10-21 2002-10-21 Lithium secondary cell Pending JP2003187803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305397A JP2003187803A (en) 2002-10-21 2002-10-21 Lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305397A JP2003187803A (en) 2002-10-21 2002-10-21 Lithium secondary cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29455998A Division JP3375898B2 (en) 1998-10-01 1998-10-01 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2003187803A true JP2003187803A (en) 2003-07-04

Family

ID=27606702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305397A Pending JP2003187803A (en) 2002-10-21 2002-10-21 Lithium secondary cell

Country Status (1)

Country Link
JP (1) JP2003187803A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135691A (en) * 2003-10-29 2005-05-26 Nichia Chem Ind Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery
JP2005251684A (en) * 2004-03-08 2005-09-15 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2007172972A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, lithium secondary battery, and method of manufacturing negative active material for lithium secondary battery
JP2007294119A (en) * 2006-04-21 2007-11-08 National Institute Of Advanced Industrial & Technology Single crystal particle of oxide for lithium secondary battery electrode and its manufacturing method, and lithium secondary battery using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135691A (en) * 2003-10-29 2005-05-26 Nichia Chem Ind Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery
JP2005251684A (en) * 2004-03-08 2005-09-15 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2007172972A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, lithium secondary battery, and method of manufacturing negative active material for lithium secondary battery
JP2007294119A (en) * 2006-04-21 2007-11-08 National Institute Of Advanced Industrial & Technology Single crystal particle of oxide for lithium secondary battery electrode and its manufacturing method, and lithium secondary battery using it

Similar Documents

Publication Publication Date Title
JP3375898B2 (en) Lithium secondary battery
JP7191342B2 (en) Positive electrode active material for secondary battery, manufacturing method thereof, and lithium secondary battery including the same
KR102539694B1 (en) Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
JP6517331B2 (en) Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP6523444B2 (en) Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP4644895B2 (en) Lithium secondary battery
JP5741908B2 (en) Positive electrode active material for lithium ion secondary battery
JP2023134475A (en) Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material
JP2000277116A (en) Lithium secondary battery
KR102481802B1 (en) Manufacturing method of positive electrode active material precursor, and positive electrode active material precursor
JP4734684B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, lithium secondary battery using the same, and aging treatment method for the secondary battery
CN115004416B (en) Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery comprising positive electrode active material
KR20200047117A (en) Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR20080031470A (en) Positive electrode active material, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2022501789A (en) Positive electrode active material for secondary batteries, its manufacturing method and lithium secondary batteries containing it
US20220393156A1 (en) Irreversible Additive, Positive Electrode Material Including Irreversible Additive, and Lithium Secondary Battery Including Positive Electrode Material
JP2023526639A (en) Positive electrode active material precursor for lithium secondary battery, positive electrode active material, and positive electrode containing the same
JP2023507314A (en) Method for producing positive electrode active material precursor for lithium secondary battery, positive electrode active material precursor, positive electrode active material produced using the same, positive electrode, and lithium secondary battery
JP2023027385A (en) Positive electrode active material and lithium secondary battery comprising the same
JP2022122997A (en) Positive electrode active material and lithium secondary battery including the same
TWI499580B (en) Nimn composite oxalate powder, lithium transition metal oxide powder and lithium ion secondary battery
JP7460258B2 (en) Positive electrode active material precursor and method for producing same
JP7167540B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP7225415B2 (en) METHOD FOR MANUFACTURING POSITIVE ACTIVE MATERIAL FOR SECONDARY BATTERY
JP2023066395A5 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424