JP2003186393A - Altitude value interpolation method and altitude data generated thereby and method for preparing contour map prepared by altitude data and contour map - Google Patents

Altitude value interpolation method and altitude data generated thereby and method for preparing contour map prepared by altitude data and contour map

Info

Publication number
JP2003186393A
JP2003186393A JP2001385782A JP2001385782A JP2003186393A JP 2003186393 A JP2003186393 A JP 2003186393A JP 2001385782 A JP2001385782 A JP 2001385782A JP 2001385782 A JP2001385782 A JP 2001385782A JP 2003186393 A JP2003186393 A JP 2003186393A
Authority
JP
Japan
Prior art keywords
intersection
distance
point
contour
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001385782A
Other languages
Japanese (ja)
Inventor
Ryuzo Yokoyama
隆三 横山
Oky Dicky Prima
オキ ディッキ プリマ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKKAIDO CHIZU KK
Original Assignee
HOKKAIDO CHIZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKKAIDO CHIZU KK filed Critical HOKKAIDO CHIZU KK
Priority to JP2001385782A priority Critical patent/JP2003186393A/en
Publication of JP2003186393A publication Critical patent/JP2003186393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instructional Devices (AREA)
  • Processing Or Creating Images (AREA)
  • Complex Calculations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely interpolate an latitude value into a basic contour map represented by known contour lines. <P>SOLUTION: The method is composed of a first step for dividing the basic contour map 20 represented by the known contour lines 10 into a plurality of meshes 12 at a constant interval in which the central points thereof are the lattice points 13; a second step for calculating the distance from a specified interpolation point 14 and the altitude value in which the specified interpolation point 14 is selected from the plurality of lattice points 13, and four points of intersection 16 which define the least distance from the specified interpolation point 14 are obtained by searching the nearest and the next nearest contour lines 10, at the sides of high and low altitude values crossing over extension lines 15 drawn from the specified interpolation point 14 in 16 directions; and a third step for reading the altitude value of the specified interpolation point 14 from a graph, in which the steepest geographical section including the specified interpolation point 14 is represented by a linear graph or a higher order curve graph, on the basis of the altitude values of the four points of intersections 16 and the distance from the specified interpolation point 14. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、標高値の内挿方法及び
その標高データ、並びに等高線図の作成方法及びその等
高線図に係るものである。即ち、一定の等高線間隔で標
高又は深度の等しい地点を結んで表した公知の基本等高
線図又は基本等深線図に於いて、既存の等高線間に格子
状に標高値を高精度に内挿し、信頼性の高い標高データ
を得るものである。また、この標高データを基に、公知
の基本等高線図又は基本等深線図に、密な等高線を内装
し、実際の地形の再現性に優れた詳細な等高線図又は等
深線図を得るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of interpolating elevation values, elevation data thereof, a method of creating a contour map and a contour map thereof. That is, in a known basic contour map or basic contour map that connects points of equal altitude or depth at constant contour intervals, the altitude values are interpolated with high accuracy in a grid pattern between existing contour lines to improve reliability. To obtain high altitude data. Further, based on this elevation data, a detailed contour map or a contour map with excellent reproducibility of actual topography is obtained by incorporating a dense contour line in a known basic contour map or basic contour map.

【0002】[0002]

【従来の技術】従来、等高線図に標高値を内挿するアル
ゴリズム(方法)が存在し、この従来公知のアルゴリズム
で作成した標高データ(DEM)は、目的の地形に関する
諸現象のモデル化、解析、表示に有効なものであり、地
球科学や工学分野に於いて、様々な方面での応用のため
の基礎データを多数提供している。また、この標高デー
タを基礎として、等高線間隔100m、20m、10
m、5m等高線図、その他の公知の基本等高線図に於い
て、基本等高線間を更に細分化して密な等高線を内挿
し、より詳細な等高線図を得ようとする従来技術も存在
する。その作成工程は、図12〜図15に示す如く、ま
ず基本等高線図に格子状に配置した格子点から任意の格
子点を選出して着目内挿点pとする。この着目内挿点p
から縦横及び斜め45°の8方位方向に延長線を引く。
そして、この8方位方向への延長線と、最近隣の等高線
との交点の中で、最短距離をなす交点q1を探索する。
次に、この交点q1の反対側に、q1の存在する等高線と
は異なる標高値の等高線と延長線との交点q2を探索す
る。
2. Description of the Related Art Conventionally, there is an algorithm (method) for interpolating elevation values in contour maps, and elevation data (DEM) created by this conventionally known algorithm is used to model and analyze various phenomena related to a target topography. It is effective for display, and provides a lot of basic data for application in various fields in the field of earth science and engineering. Also, based on this elevation data, contour line intervals 100m, 20m, 10
In the m, 5 m contour maps and other known basic contour maps, there is a conventional technique for further subdividing the basic contour lines and interpolating dense contour lines to obtain a more detailed contour map. In the creating process, as shown in FIGS. 12 to 15, first, an arbitrary grid point is selected from grid points arranged in a grid on the basic contour map and set as a target interpolation point p. This focused interpolation point p
Draw an extension line in the eight azimuth directions of 45 ° vertically and horizontally.
Then, among the intersections of the extension lines in the eight azimuth directions and the nearest contour lines, the intersection q 1 forming the shortest distance is searched for.
Next, on the opposite side of the intersection q 1 , an intersection q 2 between the contour line having an elevation value different from the contour line where q 1 exists and the extension line is searched.

【0003】この2つの交点を探索したら、着目内挿点
pから等高線に至る距離、即ちpと交点q1間の距離l1
と、pとq2間の距離l2との比例配分により、q1とq2
の存在する等高線の標高を比例して、着目内挿点pの標
高値を算出する。そして、既存の等高線図に設定した複
数の着目内挿点pについて標高値を算出し、これらの標
高値を基に、粗間隔の等高線間に、密な等高線を内挿す
るものである。また、着目内挿点pから縦横4方位方向
のみに延長線を引いて、等高線を内挿する方法も存在し
た。
[0003] After searching the two intersections, the distance to reach the contours from interest in interpolated point p, that is, the distance l 1 between the p and the intersection q 1
When, by prorating the distance l 2 between p and q 2, q 1 and q 2
The altitude value of the target interpolation point p is calculated in proportion to the altitude of the existing contour line. Then, the elevation values are calculated for a plurality of target interpolation points p set in the existing contour map, and based on these elevation values, dense contour lines are interpolated between the contour lines at coarse intervals. There has also been a method of drawing contour lines from the target interpolation point p only in the four horizontal and vertical directions to interpolate contour lines.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この従
来の4方位又は8方位方向への延長線を用いた内挿方法
では、基本の等高線が複雑であったり、特殊な形状をし
ている場合は、着目内挿点pの標高値が不正確となった
り誤認識される場合があった。例えば、図12に示す着
目内挿点p(1)は、両側に急斜面を持ち、中央がややな
だらかな尾根に存在する。この着目内挿点p(1)から8
方位方向に延長線(2)Q1〜Q4を引いて、近隣の等高線
(3)との交点(4)q1、q2を探索する場合、延長線(2)
は等高線(3)C2とは交差するが、標高が異なる等高線
(3)C3を検出できず、着目内挿点p(1)は平地に存在
すると誤認識される。
However, in the conventional interpolation method using the extension lines in the four or eight azimuth directions, when the basic contour lines are complicated or have a special shape. In some cases, the altitude value of the interpolation point p of interest may be inaccurate or may be erroneously recognized. For example, the interpolated point p (1) of interest shown in FIG. 12 has steep slopes on both sides, and the center is located on a slightly gentle ridge. From this focused interpolation point p (1) to 8
Draw an extension line (2) Q 1 to Q 4 in the azimuth direction to draw contour lines in the neighborhood.
When searching for intersections (4) q 1 and q 2 with (3), extension lines (2)
Is a contour line (3) that intersects with C 2 , but at different elevations
(3) C 3 cannot be detected, and the interpolation point p (1) of interest is erroneously recognized as existing on a flat ground.

【0005】また、上記従来方法では、着目内挿点p
(1)からの延長線(2)と交差する等高線(3)を、上下に
1本ずつ探索しているが、上下に2本の等高線(3)を探
索する従来方法も存在する。その探索方法は、図13に
示す如く、着目内挿点p(1)から8方位方向に引いた延
長線(2)のうち、着目内挿点p(1)の最近隣の等高線
(3)C2と最短距離をなす延長線(2)Q2上に、図13に
示す如く、等高線(3)との交点(4)をq1、q2、q3
4を設定する。そして、q1−q2間、p(1)−q 2間、
p(1)−q3間、q3−q4間の各距離l1、l2、l3、l
4、及び各交点(4)q1、q2、q3、q4が存在する等高
線(3)C1、C2、C3、C4の標高値を基に、着目内挿点
p(1)の標高値を算出するものである。このように、標
高値の算出のための基準データを多くして、着目内挿点
p(1)の標高値の信頼性を高めようとしていた。
Further, in the above conventional method, the interpolation point p of interest is
The contour line (3) that intersects the extension line (2) from (1)
We are searching one by one, but we are searching for two contour lines (3) above and below.
There are also conventional methods of searching. The search method is shown in FIG.
As shown, the extension point drawn in the eight azimuth directions from the interpolation point p (1) of interest.
Of the long lines (2), the contour line closest to the interpolation point p (1) of interest
(3) C2Extension line that forms the shortest distance with (2) Q2Above, in Figure 13
As shown, set the intersection (4) with the contour line (3) to q1, Q2, Q3,
qFourTo set. And q1-Q2, P (1) -q 2while,
p (1) -q3While q3-QFourEach distance between1, L2, L3, L
Four, And each intersection (4) q1, Q2, Q3, QFourIs present
Line (3) C1, C2, C3, CFourInterpolation point of interest based on the elevation value of
The altitude value of p (1) is calculated. Thus,
Increase the reference data for calculating the high price
I was trying to increase the reliability of the altitude of p (1).

【0006】しかしながら、同一の延長線(2)Q2上に
4つの交点(4)q1〜q4を探索しているので、これら4
つの交点(4)q1〜q4が形成する地形断面が必ずしも最
急勾配とはならない場合がある。即ち、図13の例で
は、延長線(2)Q2は等高線(3)C4を検索できず、4つ
の交点(4)q1〜q4を結んだグラフが最急勾配線となら
ないため、着目内挿点p(1)の標高値に誤差を生じ易か
った。また、図12に示す地形で4つの交点(4)検索に
よる標高値の算出を行ったとしても、8方位方向への延
長線(2)では、等高線(3)C3、C4を探索する事ができ
ず、着目内挿点p(1)が平地と認識される問題の解決に
はならない。
However, since four intersections (4) q 1 to q 4 are searched for on the same extension line (2) Q 2 , these 4
The topographical cross section formed by the four intersections (4) q 1 to q 4 may not always have the steepest slope. That is, in the example of FIG. 13, the extension line (2) Q 2 cannot search the contour line (3) C 4 and the graph connecting the four intersections (4) q 1 to q 4 is not the steepest slope line. , It was easy to cause an error in the elevation value of the interpolation point p (1) of interest. Even if the elevation value is calculated by searching the four intersections (4) in the terrain shown in FIG. 12, the contour lines (3) C 3 and C 4 are searched for in the extension line (2) in the eight azimuth directions. This is not a solution to the problem that the focused interpolation point p (1) is recognized as a flat ground.

【0007】また、着目内挿点p(1)が屈曲の大きい谷
部又は尾根に存在する場合も、従来方法では平地に存在
すると誤認識される事がある。即ち、図14に示す如
く、着目内挿点p(1)が屈曲の大きい谷部に存在する場
合、着目内挿点p(1)から8方位に引いた延長線(2)
は、何れも尾根側の等高線(3)C3、C2を検出できる
が、谷底側の等高線(3)C4を検出できず、着目内挿点
p(1)が平地に存在すると誤認識される。また、図15
に示す如く、鞍部又は峠などにある着目内挿点p(1)で
は、2つの交点(4)探索の場合は、等高線(3)C2は探
索できるが、標高値の異なる等高線(3)C3を検出でき
ず、着目内挿点p(1)は平地に存在すると誤認識され
る。また、4つの交点(4)探索の場合でも、等高線(3)
2、C1は探索できるが、C3やC4を探索する事はでき
ず、着目内挿点p(1)の標高値の信頼性を高める事はで
きない。
Further, when the interpolation point p (1) of interest exists in a valley or ridge having a large bend, the conventional method may be erroneously recognized as existing in the flat ground. That is, as shown in FIG. 14, when the target interpolation point p (1) exists in a valley portion having a large bend, an extension line (2) drawn from the target interpolation point p (1) in eight directions.
Can detect the contour lines (3) C 3 and C 2 on the ridge side, but cannot detect the contour line (3) C 4 on the valley bottom side, and misrecognize that the focused interpolation point p (1) exists on the flat ground. To be done. In addition, FIG.
As shown in, at the interpolation point p (1) of interest in the saddle or pass, in the case of searching for two intersections (4), the contour line (3) C 2 can be searched, but the contour lines (3) with different elevation values Since C 3 cannot be detected, the focused interpolation point p (1) is erroneously recognized as existing on the flat ground. Also, in the case of searching for four intersections (4), contour lines (3)
C 2 and C 1 can be searched, but C 3 and C 4 cannot be searched, and the reliability of the elevation value of the interpolation point p (1) of interest cannot be improved.

【0008】上述の如き問題点があるため、従来技術で
実際の等高線図に等高線を内挿すると、図16〜図18
に示す如き不自然な等高線図が作成された。図中の黒太
線は等高線間隔を10mとする既存の等高線であり、黒
細線が従来公知の技術で新たに内挿された等高線間隔1
mの等高線である。まず、図16は、両側に急斜面を持
ち、中央がややなだらかな尾根を有する地形に、従来方
法で等高線を内挿したものであり、尾根部分に不自然な
傾斜を有する等高線が形成された。また、図17は屈曲
の激しい等高線を有する地形の例で、不自然で滑らかさ
を欠いた等高線図が形成された。更に、図18は、屈曲
した谷で囲まれた山頂及び鞍部を有する複雑な地形の例
であり、谷部及び鞍部に不自然な等高線が内挿された。
このように、等高線が入り組んで複雑であったり、地形
が特殊な形状をしている場合には、従来技術の内挿方法
では、不自然で円滑さを欠く等高線が内挿され、実際の
地形の再現性には乏しかった。
Due to the above-mentioned problems, when contour lines are interpolated in an actual contour map in the prior art, FIGS.
An unnatural contour map was created as shown in. The thick black line in the figure is an existing contour line having a contour interval of 10 m, and the black thin line is a contour interval 1 newly interpolated by a conventionally known technique.
It is a contour line of m. First, in FIG. 16, contour lines are interpolated by a conventional method on a terrain having steep slopes on both sides and a ridge with a gentle slope in the center, and contour lines having an unnatural slope are formed on the ridge portion. In addition, FIG. 17 is an example of a terrain having contour lines with sharp bends, and an unnatural contour map lacking smoothness was formed. Further, FIG. 18 is an example of a complicated terrain having a mountain top and a saddle portion surrounded by curved valleys, and unnatural contour lines are interpolated in the valley portion and the saddle portion.
In this way, if the contour lines are complicated and complicated, or if the terrain has a special shape, the conventional interpolation method interpolates the contour lines that are unnatural and lack smoothness, and Was poor in reproducibility.

【0009】本発明は上述の如き課題を解決しようとす
るものであって、公知の等高線で表した基本等高線図
に、高精度に標高値を内挿する事が可能な内挿方法を得
るものである。そして、等高線が入り組んだ複雑な地形
や特殊な地形であっても、高精度に標高値を内挿して、
地球科学や工学分野などの様々な方面への貢献度の高
い、優れた標高データ(DEM)を得るものである。ま
た、この内挿方法により得た高精度な標高データを基
に、公知の基本等高線図に、密な間隔で高精度な等高線
を内挿して、地形の起伏の再現性が高く、学術的にも品
質的にも優れた等高線図を得るものである。
The present invention is intended to solve the above problems and provides an interpolation method capable of highly accurately interpolating elevation values to a known contour map represented by contour lines. Is. And even if the terrain is complicated or special terrain with complicated contour lines, the elevation value is interpolated with high accuracy,
It obtains excellent elevation data (DEM) with a high degree of contribution to various fields such as earth science and engineering. In addition, based on the highly accurate elevation data obtained by this interpolation method, the known basic contour map is interpolated with highly accurate contour lines at close intervals, and the reproducibility of the terrain topography is high. The contour map is excellent in terms of quality and quality.

【0010】尚、等高線図とは、一定間隔で値の等しい
地点を結んで表した等値線図の一つであり、本明細書中
で述べる等高線図とは、地形の起伏を一定の等高線間隔
で標高の等しい地点を結んで表した等高線図は勿論、海
や湖などを一定の等深線間隔で深度の等しい地点を結ん
で表した等深線図も含むものである。
The contour map is one of the contour maps that connect points having the same value at regular intervals, and the contour map described in the present specification is a contour map in which undulations of terrain are constant. Not only the contour map that connects points with the same elevation at intervals, but also the contour map that shows points with the same depth at fixed contour intervals such as the sea and lake are included.

【0011】[0011]

【課題を解決するための手段】本発明は上述の如き課題
を解決するため、第1の発明は、公知の等高線で表した
基本等高線図を、一定間隔で複数のメッシュに区分し、
各メッシュの中心を格子点とする第1工程と、第1工程
で得られた複数のメッシュで決まる格子点の中から一つ
を選出して着目内挿点とし、この着目内挿点から16方
位に引いた延長線と交差する最近隣の等高線群を、標高
値の高い側と低い側に各々2本ずつ探索して、着目内挿
点との最短距離をなす4つの交点を得て、着目内挿点か
らの距離及び標高値を算出する第2工程と、第2工程で
得た4つの交点の標高値及び着目内挿点からの距離を基
に、着目内挿点を含む最急地形断面を直線グラフ又は高
次曲線グラフにて表し、このグラフから当該着目内挿点
の標高値を読み取る第3工程とから成る標高値の内挿方
法である。
To solve the above problems, the first invention is to divide a basic contour map represented by known contour lines into a plurality of meshes at regular intervals,
From the first step in which the center of each mesh is used as a grid point, and one of the grid points determined by the plurality of meshes obtained in the first step is selected as a focused interpolation point, The nearest contour group that intersects the extension line drawn in the azimuth direction is searched for two each on the high side and the low side of the elevation value, and four intersections that form the shortest distance to the interpolation point of interest are obtained, The second step of calculating the distance and the elevation value from the interpolation point of interest, and the steepest including the interpolation point of interest based on the elevation values of the four intersections obtained in the second step and the distance from the interpolation point of interest This is a method of interpolating the elevation value, which comprises a topographical cross-section represented by a straight line graph or a higher-order curve graph and a third step of reading the elevation value of the interpolation point of interest from the graph.

【0012】また、第2の発明は、公知の等高線で表し
た基本等高線図を、一定間隔で複数のメッシュに区分
し、各メッシュの中心を格子点とする第1工程と、第1
工程で得られた複数のメッシュで決まる格子点の中から
一つを選出して着目内挿点とし、この着目内挿点から1
6方位に引いた延長線と交差する最近隣の等高線群を、
標高値の高い側と低い側に各々2本ずつ探索して、着目
内挿点との最短距離をなす4つの交点を得て、着目内挿
点からの距離及び標高値を算出する第2工程と、第2工
程で得た4つの交点の標高値及び着目内挿点からの距離
を基に、着目内挿点を含む最急地形断面を直線グラフ又
は高次曲線グラフにて表し、このグラフから当該着目内
挿点の標高値を読み取る第3工程と、前記第2工程及び
第3工程を全てのメッシュの格子点に施して得た標高デ
ータである。
A second aspect of the invention is to divide a basic contour map represented by known contour lines into a plurality of meshes at regular intervals, and to make the center of each mesh a grid point.
One of the grid points determined by a plurality of meshes obtained in the process is selected as a focused interpolation point, and 1 is selected from this focused interpolation point.
The nearest contour line group that intersects the extension line drawn in 6 directions,
A second step in which two lines are searched for each of the high and low altitude values to obtain four intersections that form the shortest distance to the target interpolation point, and the distance from the target interpolation point and the altitude value are calculated. And, based on the elevation value of the four intersections obtained in the second step and the distance from the target interpolation point, the steepest terrain cross section including the target interpolation point is represented by a straight line graph or a higher-order curve graph. It is elevation data obtained by applying the third step of reading the elevation value of the interpolation point of interest from, and the second step and the third step to the grid points of all meshes.

【0013】また、第3の発明は、公知の等高線で表し
た基本等高線図を、一定間隔で複数のメッシュに区分
し、各メッシュの中心を格子点とする第1工程と、第1
工程で得られた複数のメッシュで決まる格子点の中から
一つを選出して着目内挿点とし、この着目内挿点から1
6方位に引いた延長線と交差する最近隣の等高線群を、
標高値の高い側と低い側に各々2本ずつ探索して、着目
内挿点との最短距離をなす4つの交点を得て、着目内挿
点からの距離及び標高値を算出する第2工程と、第2工
程で得た4つの交点の標高値及び着目内挿点からの距離
を基に、着目内挿点を含む最急地形断面を直線グラフ又
は高次曲線グラフにて表し、このグラフから当該着目内
挿点の標高値を読み取る第3工程と、前記第2工程及び
第3工程を全てのメッシュの格子点に施して得た標高デ
ータを基に、前記粗間隔の等高線間に、等高線を内挿す
る第4工程とから成る等高線図の作成方法である。
A third aspect of the present invention is to divide a basic contour map represented by publicly known contour lines into a plurality of meshes at regular intervals, and to make the center of each mesh a grid point.
One of the grid points determined by a plurality of meshes obtained in the process is selected as a focused interpolation point, and 1 is selected from this focused interpolation point.
The nearest contour line group that intersects the extension line drawn in 6 directions,
A second step in which two lines are searched for each of the high and low altitude values to obtain four intersections that form the shortest distance to the target interpolation point, and the distance from the target interpolation point and the altitude value are calculated. And, based on the elevation value of the four intersections obtained in the second step and the distance from the target interpolation point, the steepest terrain cross section including the target interpolation point is represented by a straight line graph or a higher-order curve graph. Based on the elevation data obtained by applying the third step of reading the elevation value of the interpolation point of interest from above, and the second step and the third step to the grid points of all meshes, between the contour lines of the coarse intervals, It is a method of creating a contour map including a fourth step of interpolating the contour lines.

【0014】また、第4の発明は、公知の等高線で表し
た基本等高線図を、一定間隔で複数のメッシュに区分
し、各メッシュの中心を格子点とする第1工程と、第1
工程で得られた複数のメッシュで決まる格子点の中から
一つを選出して着目内挿点とし、この着目内挿点から1
6方位に引いた延長線と交差する最近隣の等高線群を、
標高値の高い側と低い側に各々2本ずつ探索して、着目
内挿点との最短距離をなす4つの交点を得て、着目内挿
点からの距離及び標高値を算出する第2工程と、第2工
程で得た4つの交点の標高値及び着目内挿点からの距離
を基に、着目内挿点を含む最急地形断面を直線グラフ又
は高次曲線グラフにて表し、このグラフから当該着目内
挿点の標高値を読み取る第3工程と、前記第2工程及び
第3工程を全てのメッシュの格子点に施して得た標高デ
ータを基に、前記粗間隔の等高線間に、等高線を内挿す
る第4工程とによって得られる等高線図である。
A fourth aspect of the present invention is to divide a basic contour map represented by known contour lines into a plurality of meshes at regular intervals, and to make the center of each mesh a grid point, and a first step.
One of the grid points determined by a plurality of meshes obtained in the process is selected as a focused interpolation point, and 1 is selected from this focused interpolation point.
The nearest contour line group that intersects the extension line drawn in 6 directions,
A second step in which two lines are searched for each of the high and low altitude values to obtain four intersections that form the shortest distance to the target interpolation point, and the distance from the target interpolation point and the altitude value are calculated. And, based on the elevation value of the four intersections obtained in the second step and the distance from the target interpolation point, the steepest terrain cross section including the target interpolation point is represented by a straight line graph or a higher-order curve graph. Based on the elevation data obtained by applying the third step of reading the elevation value of the interpolation point of interest from above, and the second step and the third step to the grid points of all meshes, between the contour lines of the coarse intervals, It is a contour map obtained by the 4th process of interpolating a contour line.

【0015】また、着目内挿点は、16方位への延長線
と最近隣の等高線との16の交点の標高値が全て等しい
訳ではない場合には、着目内挿点を傾斜地格子点とし、
この傾斜地格子点から16方位への延長線と最近隣の等
高線と最短距離をなす交点を第1交点とし、傾斜地格子
点からの距離及び標高値を算出し、第1交点から16方
位への延長線と交差する等高線との最短距離をなす交点
を第2交点とし、第1交点からの距離及び標高値を算出
するとともに、前記傾斜地格子点からの16方位への延
長線と交差し第1交点の存在する等高線とは標高の異な
る等高線上に第3交点を探索し、傾斜地格子点からの距
離及び標高値を算出するとともに、第3交点からの16
方位への延長線と交差する等高線と最短距離をなす交点
を第4交点とし、第3交点からの距離及び標高値を算出
しても良い。
If the elevation values of the 16 intersections of the extension line to the 16 azimuth and the nearest contour line are not all equal, the interpolation point of interest is an inclined ground grid point,
The first intersection is the intersection that forms the shortest distance from the extension line from this inclined grid point to the 16th direction and the nearest contour line, and the distance from the inclined ground lattice point and the elevation value are calculated, and the extension from the first intersection to the 16th direction The intersection that forms the shortest distance from the contour line that intersects the line is defined as the second intersection, and the distance from the first intersection and the elevation value are calculated, and the first intersection is intersected with the extension line extending from the inclined ground grid point to 16 directions. The third intersection is searched for on a contour line whose altitude is different from the existing contour line, and the distance from the inclined ground grid point and the altitude value are calculated, and
It is possible to calculate the distance from the third intersection and the altitude value by setting the intersection having the shortest distance to the contour line intersecting the extension line to the azimuth as the fourth intersection.

【0016】また、着目内挿点は、16方位への延長線
と最近隣の等高線との16の交点の標高値が全て等しい
場合には、着目内挿点からの16方位への延長線と最近
隣の等高線と最短距離をなす交点を第1交点とし、傾斜
地格子点からの距離及び標高値を算出し、第1交点から
の16方位への延長線と交差する等高線と最短距離をな
す交点を第2交点とし、第1交点からの距離及び標高値
を算出するとともに、標高値算出済みの最近隣の他の格
子点を傾斜地格子点とし、この傾斜地格子点で探索済み
の4つの交点のうち、第1交点の存在する等高線とは標
高の異なる側に探索した2つの交点を各々第3、第4交
点とし算出済みの距離と標高値を採用するとともに、第
3交点の距離に着目内挿点と傾斜地格子点間の距離を加
算して第3交点の着目内挿点からの距離を再計算しても
良い。
If the elevation values of the 16 intersections of the extension line to the 16 azimuth and the nearest contour line are all the same, the interest interpolation point is an extension line to the 16 azimuth from the interest interpolation point. The first intersection is the intersection that forms the shortest distance with the nearest contour line, and the distance from the sloping ground grid point and the elevation value are calculated, and the intersection that forms the shortest distance with the contour line that intersects the extension line from the first intersection to the 16 bearings Is the second intersection, the distance from the first intersection and the elevation value are calculated, and the other nearest neighbor grid point for which the elevation value has been calculated is the inclined ground grid point, and the four intersections searched for at this inclined ground grid point Among them, the two intersections searched on the side where the altitude is different from the contour line where the first intersection exists are the third and fourth intersections, respectively, and the calculated distance and the elevation value are adopted, and the distance of the third intersection is focused. Add the distances between the interpolated points and the inclined ground grid points to obtain the third intersection It may be re-calculate the distance from the eye in the interpolation points.

【0017】[0017]

【作用】本発明は上述の如く構成したものであり、第1
の発明の標高値の内挿方法は、まず第1工程では、公知
の等高線で表された基本等高線図を、一定間隔で複数の
メッシュに区分し、各メッシュの中心に格子点を形成す
る。この基本等高線図は、官公庁、企業、研究機関など
から提供される等高線間隔100m、20m、10m、
5m等高線図など、従来公知の適宜のものを用いる事が
できる。次に第2工程では、第1工程で得られる複数の
メッシュから一つを選択し、そのメッシュの格子点を着
目内挿点と定義し、この着目内挿点から16方位方向に
延長線を各々引く。この16方位の延長線と交差する最
近隣の等高線群を、標高値の高い側と低い側に各々2本
ずつ探索し、着目内挿点との最短距離をなす4つの交点
を得て、各交点の着目内挿点からの直線距離を算出する
とともに、各交点の存在する等高線の標高値を該交点の
標高値とする。
The present invention is constructed as described above,
In the method for interpolating elevation values according to the invention, first, in a first step, a basic contour map represented by known contour lines is divided into a plurality of meshes at regular intervals, and a grid point is formed at the center of each mesh. This basic contour map is provided by government agencies, companies, research institutes, etc.
A conventionally known appropriate one such as a 5 m contour map can be used. Next, in the second step, one is selected from the plurality of meshes obtained in the first step, the grid points of the mesh are defined as the target interpolation points, and extension lines are drawn in 16 azimuth directions from the target interpolation points. Draw each. The nearest contour group that intersects with the extension line of 16 directions is searched for two each on the high side and the low side, and four intersections that form the shortest distance from the interpolation point of interest are obtained. The straight line distance from the interpolation point of interest of the intersection is calculated, and the elevation value of the contour line where each intersection exists is used as the elevation value of the intersection.

【0018】また、従来技術では、4方位又は8方位の
みに延長線を引き、一直線上に交点を探索していたの
で、複数の標高値の異なる等高線を探索できなかった
り、着目内挿点と交点との距離が必ずしも最短距離とは
ならない事があり、着目内挿点の標高値を算出する基礎
データとしての信頼性に問題があった。しかし、本発明
では、着目内挿点から16方位方向に延長線を引いてい
るので、標高値の異なる等高線と交差する確率が高く、
着目内挿点から該交点までの距離が最短距離又は限りな
く最短距離に近いものとなり、得られる標高値の信頼性
は高いものとなる。
Further, in the prior art, since an extension line is drawn only in four or eight directions and an intersection is searched for on a straight line, it is not possible to search a plurality of contour lines having different elevation values, or an interpolation point of interest is selected. Since the distance to the intersection may not always be the shortest distance, there was a problem in reliability as basic data for calculating the elevation value of the interpolation point of interest. However, in the present invention, since the extension line is drawn in the 16 azimuth directions from the interpolation point of interest, there is a high probability that it will intersect contour lines with different elevation values,
The distance from the interpolation point of interest to the intersection becomes the shortest distance or is as close as possible to the shortest distance, and the obtained altitude value has high reliability.

【0019】そして、第3工程では、第2工程で得た4
つの交点の標高値及び距離を基に、着目内挿点及び4つ
の交点との関係を示すグラフを作成する。それには、x
軸に距離、y軸に標高値を取って、4つの交点をプロッ
トし、この4つの交点の標高値及び距離を基に計算され
る直線又は高次曲線を内挿関数として適用し、グラフを
作成する。このグラフが、着目内挿点を含んだ上下計4
本の等高線間の最急地形断面を示し、この最急地形断面
のグラフから、着目内挿点の位置に対応する標高値を読
み取る事ができる。また、このグラフは、直線グラフと
しても良いが、高次曲線グラフとすれば、当該地形の傾
斜を、より自然で滑らかに再現する事ができる。例えば
1次差分法による3次エルミート関数を適用すれば、こ
の関数から求められる着目内挿点の標高値の信頼性を更
に高める事ができる。
Then, in the third step, 4 obtained in the second step
A graph showing the relationship between the interpolation point of interest and the four intersections is created based on the elevation value and the distance of the four intersections. It has x
Plot four intersections with distance on the axis and elevation on the y-axis, apply a straight line or higher-order curve calculated based on the elevations and distances of these four intersections as an interpolation function, and plot the graph. create. This graph shows up and down total 4 including the interpolation point of interest.
The steep topographic cross section between the contour lines of the book is shown, and the elevation value corresponding to the position of the interpolation point of interest can be read from the graph of the steep topographic cross section. This graph may be a straight line graph, but if it is a high-order curve graph, the slope of the terrain can be reproduced more naturally and smoothly. For example, if a third-order Hermitian function based on the first-order difference method is applied, the reliability of the altitude value of the interpolation point of interest obtained from this function can be further enhanced.

【0020】また、従来技術では、着目内挿点からの等
高線の探索方向が4方位又は8方位と限られ、しかも着
目内挿点を挟んで、一直線上に2つ又は4つの交点を探
索していた。そのため、各交点を結ぶ地形断面が必ずし
も最急勾配とはならず、算出される着目内挿点の標高値
に誤差を生じ易かった。しかし、本発明では、着目内挿
点から16方位方向に延長線を引いて、この16方位の
任意の方向に、等高線を探索していくので、最短距離又
は最短距離に限りなく近い位置で延長線と等高線との交
点を探索する事ができる。そのため、4つの交点を結ん
だ地形断面のグラフが最急勾配を示すものとなり、この
グラフから得られる着目内挿点の標高値は、信頼性の高
いものとなる。
Further, in the prior art, the search direction of the contour line from the interpolation point of interest is limited to 4 directions or 8 directions, and two or four intersections are searched for on a straight line across the interpolation point of interest. Was there. Therefore, the topographical cross section connecting the intersections does not always have the steepest slope, and an error is likely to occur in the calculated elevation value of the interpolation point of interest. However, in the present invention, an extension line is drawn in the 16 azimuth direction from the interpolation point of interest, and a contour line is searched for in any direction of the 16 azimuth directions. Therefore, the extension is performed at the shortest distance or at a position as close as possible to the shortest distance. You can search for intersections between lines and contour lines. Therefore, the graph of the terrain cross section connecting the four intersections shows the steepest slope, and the elevation value of the interpolation point of interest obtained from this graph becomes highly reliable.

【0021】また、第2発明は、上記第1発明の標高値
の内挿方法で、全てのメッシュの格子点の標高値を求め
る事により得られる標高データである。公知の基本等高
線図の等高線間に、格子状の標高値を高精度に内挿し
て、学術的に優れ、地球科学や工学分野などでの様々な
方面への貢献度の高い標高データを得る事ができる。
The second invention is elevation data obtained by obtaining the elevation values of the grid points of all meshes by the elevation value interpolation method of the first invention. Interpolation of grid-like elevation values with high accuracy between contour lines of a known basic contour map to obtain elevation data that is academically superior and highly contributes to various fields in the field of earth science and engineering. You can

【0022】また、第3発明は等高線図の作成方法で、
第4の発明は、この作成方法によって作成される等高線
図である。何れも、第1、第2発明と同様に、第1工程
で基本等高線図を複数のメッシュに分割したら、第2工
程の4つの交点探索と着目内挿点からの距離及び標高値
の算出と、第3工程の最急地形断面グラフの作成及び標
高値の読み取りを、全てのメッシュの格子点に施して標
高データを得る。次に、第4工程では、この標高データ
を基に、公知の等高線の間に、密な標高線を新たに内挿
し、等高線図を作成する。この新たな等高線は、例えば
コンピュータプログラムなどにより、各格子点の標高値
及び隣接する格子点間の距離を基に、比例配分などによ
って内挿するものである。勿論、この比例配分による方
法だけでなく、他の従来公知の方法によって等高線を内
挿する事もできる。そして、第2、第3工程にて、全て
の格子点について、高精度な標高値を得ているので、こ
の第4工程では、密な等高線を自然で滑らかで、かつ高
精度に内挿する事ができ、実際の地形の再現性が高く、
学術的にも品質的にも優れた等高線図を作成する事がで
きる。
The third invention is a method of creating a contour map,
A fourth invention is a contour map created by this creating method. In both cases, as in the first and second inventions, when the basic contour map is divided into a plurality of meshes in the first step, four intersection points search in the second step and calculation of the distance from the target interpolation point and the elevation value are performed. In the third step, the preparation of the steepest terrain cross-section graph and the reading of the elevation value are applied to all the mesh grid points to obtain the elevation data. Next, in the fourth step, based on the elevation data, dense elevation lines are newly interpolated between known contour lines to create a contour map. This new contour line is interpolated by proportional distribution based on the elevation value of each grid point and the distance between adjacent grid points by, for example, a computer program. Of course, the contour lines can be interpolated not only by this proportional distribution method but also by other conventionally known methods. Since highly accurate elevation values are obtained for all grid points in the second and third steps, dense contour lines are naturally and smoothly interpolated with high accuracy in this fourth step. And the reproducibility of the actual terrain is high,
It is possible to create contour maps that are academically and quality superior.

【0023】従って、既存の基本等高線間に、密な等高
線を新たに内挿して等高線図を形成する際に、例えば両
側に急斜面を持ち、中央がなだらかな尾根を有する地
形、屈曲の大きい谷部や尾根を有する地形、山頂や谷
間、鞍部などを有する地形など、特殊な地形や複雑な地
形であっても、自然で滑らかな等高線を内挿し、実際の
地形の再現性の高い等高線図が得られる。この等高線図
の作成方法は、等深線図などにも勿論、応用する事がで
きる。
Therefore, when a dense contour line is newly interpolated between existing basic contour lines to form a contour map, for example, a terrain with steep slopes on both sides and a gentle ridge in the center, and a valley with large bends Natural and smooth contour lines can be interpolated to obtain contour maps with high reproducibility of actual terrain even for special terrain and complex terrain such as terrain with ridges, ridges, ridges, and saddles. To be This method of creating a contour map can of course be applied to a contour map or the like.

【0024】また、上記第1発明〜第4発明で示す第2
工程に於いて、着目内挿点から交点を探索する手順の一
つを詳細に説明すれば、まず、着目内挿点から16方位
への延長線と最近隣の等高線との16の交点の標高値が
全て等しい訳ではない場合、即ち標高の異なる2本の等
高線が探索された場合は、着目内挿点を傾斜地格子点と
する。そして、この傾斜地格子点から16方位への延長
線と最近隣の等高線と最短距離をなす交点を第1交点と
し、傾斜地格子点から第1交点までの距離及び標高値を
算出する。次に、第1交点から16方位に延長線を新た
に引き、この延長線と交差する等高線との最短距離をな
す交点を探索して第2交点とし、第1交点から第2交点
までの距離及び標高値を算出する。
Further, the second invention shown in the first invention to the fourth invention.
In the process, one of the procedures for searching the intersection from the focused interpolation point will be described in detail. First, the elevations of the 16 intersection points between the extension line extending from the focused interpolation point to 16 directions and the nearest contour line. When the values are not all equal, that is, when two contour lines with different altitudes are searched, the interpolation point of interest is the inclined ground grid point. Then, the intersection from the sloped grid point extending in 16 directions and the shortest distance to the nearest contour line is defined as the first intersection, and the distance from the sloped grid point to the first intersection and the altitude value are calculated. Next, an extension line is newly drawn from the first intersection in 16 directions, the intersection that forms the shortest distance from the contour line that intersects with this extension line is searched for, and the second intersection is determined. The distance from the first intersection to the second intersection And calculate the elevation value.

【0025】また、前記傾斜地格子点からの16方位へ
の延長線と交差し第1交点の存在する等高線とは標高の
異なる等高線上に、第3交点を探索し、傾斜地格子点か
ら第3交点までの距離及び標高値を算出する。更に、こ
の第3交点から16方位に引いた延長線と交差する等高
線との最短距離をなす交点を探索して第4交点とし、第
3交点から第4交点までの距離及び標高値を算出する。
そして、このように探索した第1〜第4交点の標高値及
び距離を基に、第3工程で最急地形断面のグラフを作成
し、着目内挿点の標高値を得るものである。
Further, the third intersection is searched for on a contour line which intersects with the extension line extending from the inclined ground grid point in 16 directions and has a different altitude from the contour line where the first intersection exists, and the third intersection point is searched from the inclined ground grid point. Calculate the distance to and altitude. Further, the intersection point forming the shortest distance from the contour line intersecting the extension line drawn from the third intersection point in 16 directions is searched for, and is set as the fourth intersection point, and the distance from the third intersection point to the fourth intersection point and the elevation value are calculated. .
Then, based on the altitude values and distances of the first to fourth intersections searched in this way, a graph of the steepest terrain cross section is created in the third step, and the altitude value of the interpolation point of interest is obtained.

【0026】上記とは逆に、着目内挿点から16方位へ
の延長線と最近隣の等高線との16の交点の標高値が全
て等しい場合、即ち異なる標高値の等高線が見つからな
い場合には、着目内挿点が平地に存在するのか、複雑な
地形の尾根、谷部、鞍部、峠、山頂などに位置するの
か、このままでは不明確である。この不具合を解消する
ための探索方法を説明する。まず、第1交点と第2交点
は、上記通常の検索と同様に着目内挿点からの16方位
への延長線と最近隣の等高線と最短距離をなす交点を第
1交点とし、着目内挿点から第1交点までの距離及び標
高値を算出する。そして、第1交点から16方位に引い
た延長線と交差する等高線と最短距離をなす交点を第2
交点とし、第1交点から第2交点までの距離及び標高値
を算出する。
Contrary to the above, when the elevation values at all 16 intersections of the extension line from the interpolation point of interest to the 16 azimuth and the nearest contour line are equal, that is, when contour lines with different elevation values are not found. It is unclear as it is whether the interpolation point of interest exists on a flat ground, or whether it is located on a ridge, valley, saddle, mountain pass, or mountain peak of complicated terrain. A search method for solving this problem will be described. First, as for the first intersection and the second intersection, the intersection that forms the shortest distance between the extension line to the 16 azimuths from the target interpolation point and the nearest contour line is the first intersection, and the target interpolation is performed, as in the normal search. Calculate the distance from the point to the first intersection and the elevation value. Then, the intersection point that forms the shortest distance with the contour line that intersects the extension line drawn in 16 directions from the first intersection point is
The intersection and the distance from the first intersection to the second intersection and the elevation value are calculated.

【0027】次に、第3、第4交点の探索方法が前記通
常の場合とは異なり、まず、当該着目内挿点とは別個
に、標高値を算出済みの最近隣の他の格子点を探索し、
これを傾斜地格子点とする。この傾斜地格子点で探索済
みの4つの交点のうち、当該着目内挿点で探索した第1
交点の存在する等高線とは標高の異なる側に存在する2
つの交点を、各々第3、第4交点とする。この第3、第
4交点の距離と標高値は、既に算出済みであるから、こ
の値を今回も採用する。但し、第3交点の距離に着目内
挿点と傾斜地格子点間の距離を加算して、第3交点の着
目内挿点からの距離を再計算する。このようにして算出
した4つの交点の標高値及び距離を基に、第3工程にて
最急地形断面のグラフを作成し、着目内挿点の標高値を
算出する。このように、特殊な位置に存在する着目内挿
点であっても、近隣の傾斜地格子点のデータを採用する
事により、当該着目内挿点の位置関係を正しく認識し
て、信頼性の高い標高値を算出する事ができる。
Next, unlike the usual case, the third and fourth intersections are searched for. First, apart from the relevant interpolation point, another grid point in the nearest neighborhood for which the elevation value has been calculated is found. Explore,
This is the inclined ground grid point. Of the four intersections that have been searched for at this inclined ground grid point, the first searched for at the interpolation point of interest.
It exists on the side where the elevation differs from the contour line where the intersection exists. 2
The three intersections are the third and fourth intersections, respectively. Since the distance and the altitude value at the third and fourth intersections have already been calculated, this value is also adopted this time. However, the distance from the target interpolation point of the third intersection is recalculated by adding the distance between the target interpolation point and the inclined ground grid point to the distance of the third intersection. Based on the elevation values and the distances of the four intersections calculated in this way, a graph of the steepest terrain cross section is created in the third step, and the elevation value of the interpolation point of interest is calculated. As described above, even if the interpolated point of interest existing at a special position is used, the positional relationship of the interpolated point of interest is correctly recognized by adopting the data of the neighboring inclined ground grid points, and the reliability is high. Elevation value can be calculated.

【0028】[0028]

【実施例】以下本発明を図面を用いて詳細に説明する。
図1〜図3は、本発明の等高線図の第1〜第3実施例で
あり、図16〜図18に示す従来例で使用したものと同
一の、従来公知の等高線間隔10mとする基本等高線図
を使用している。そして、本発明の標高値の内挿方法に
より得た標高データ(DEM)を基礎として、黒太線で示
した既存の基本等高線間に、黒細線で示す如く、等高線
間隔1mの等高線を新たに内挿したものである。また、
図1に示す第1実施例は、両側に急斜面を持ち、中央が
ややなだらかな尾根を有する地形で実施した等高線図、
図2に示す第2実施例は、屈曲の激しい等高線を有する
地形で実施した等高線図、図3に示す第3実施例は、屈
曲した谷で囲まれた山頂及び鞍部を有する複雑な地形で
実施した等高線図である。
The present invention will be described in detail below with reference to the drawings.
1 to 3 are first to third embodiments of the contour diagram of the present invention, which are the same as those used in the conventional example shown in FIGS. I am using a figure. Then, based on the elevation data (DEM) obtained by the interpolation method of the elevation value of the present invention, a contour line having a contour interval of 1 m is newly inserted between existing basic contour lines shown by thick black lines, as shown by black thin lines. It is inserted. Also,
The first embodiment shown in FIG. 1 is a contour map carried out on a terrain having steep slopes on both sides and a somewhat gentle ridge in the center,
The second embodiment shown in FIG. 2 is a contour map carried out on a terrain having severely curved contour lines, and the third embodiment shown in FIG. 3 is carried out on a complex terrain having peaks and saddles surrounded by curved valleys. It is the contour map which did.

【0029】ここで、等高線図の作成方法を説明する前
に、標高データを得るための標高値の内挿方法を、図4
〜図7の略図を用いて具体的に説明する。まず、第1工
程では、図4に示す如く、等高線間隔10mとする等高
線(10)で表された基本等高線図(20)上に、10m間
隔で区分線(11)を引いて複数のメッシュ(12)に区分
し、各メッシュ(12)の中心に格子点(13)を設ける。
Before describing the method of creating a contour map, the method of interpolating elevation values for obtaining elevation data will be described with reference to FIG.
The specific description will be made with reference to the schematic diagram of FIG. 7. First, in the first step, as shown in FIG. 4, a plurality of meshes (11) are drawn on the basic contour map (20) represented by contour lines (10) having a contour interval of 10 m at intervals of 10 m. 12), and a grid point (13) is provided at the center of each mesh (12).

【0030】次に、第2工程では、前記複数のメッシュ
(12)で決まる格子点(13)の中から一つを選出して着
目内挿点P(14)とし、この着目内挿点P(14)から、
図4に示す如く、16方位方向に延長線(15)Qi(0≦
i≦15)を各々引く。そして、各延長線(15)と最初
に交差する近隣の等高線(10)を探索する。
Next, in the second step, the plurality of meshes are
One of the grid points (13) determined by (12) is selected as a target interpolation point P (14), and from this target interpolation point P (14),
As shown in FIG. 4, an extension line (15) Q i (0 ≦ 0
i ≤ 15) respectively. Then, a neighboring contour line (10) that first intersects each extension line (15) is searched for.

【0031】図5の地形の例では、16方位の延長線
(15)が最初に交差する等高線(10)はC2、C3で、標
高値の異なる2本の等高線(10)を探索する事ができ
る。この場合、着目内挿点P(14)は等高線(10)C2
〜C3間の傾斜地に存在するので、P(14)を傾斜地格
子点と定義する。そして、16方位の延長線(15)と等
高線(10)との交点の中で、図5に示す如く、傾斜地格
子点P(14)に最も近い等高線(10)C2側に、交点(1
6)q1、q2を各々探索し、この等高線(10)C2とは標
高値の異なる等高線(10)C3側に、交点(16)q3、q
4を各々探索する。
In the example of the terrain of FIG. 5, extension lines of 16 directions
The contour line (10) where (15) first intersects is C 2 and C 3 , and it is possible to search for two contour lines (10) having different elevation values. In this case, the target interpolation point P (14) is the contour line (10) C 2
Since it exists on the sloping ground between C 3 and C 3 , P (14) is defined as the sloping ground grid point. Then, among the intersections of the extension lines (15) of 16 directions and the contour lines (10), as shown in FIG. 5, on the contour line (10) C 2 side closest to the inclined ground grid point P (14), the intersection point (1
6) q 1 and q 2 are searched respectively, and the intersection points (16) q 3 and q are located on the side of the contour line (10) C 3 whose elevation value is different from that of the contour line (10) C 2.
Search 4 each.

【0032】まずq2は、前述の如く16方位への延長
線(15)と等高線(10)C2との複数の交点(16)の中
で、傾斜地格子点P(14)と最短距離をなす第1の交点
(16)であり、q1はq2から引いた16方位への延長線
(17)と、最近隣の等高線(10)C1との交点(16)の
中で、最短距離をなすもので、第2の交点(16)であ
る。もし、等高線(10)C2と標高値の異なる等高線(1
0)C1が存在しない場合、傾斜地格子点P(14)とq2
の間に引いた延長線(15)と、最初に交差する等高線
(10)との交点(16)をq1とする。
First, q 2 is the shortest distance from the sloping ground grid point P (14) among a plurality of intersections (16) of the extension line (15) in 16 directions and the contour line (10) C 2 as described above. First intersection of eggplant
(16) and q 1 is an extension line to 16 directions subtracted from q 2.
Among the intersections (16) between (17) and the nearest contour line (10) C 1 , the shortest distance is formed, which is the second intersection (16). If the contour line (10) C 2 is different from the contour line (1)
0) If C 1 does not exist, the tilted ground grid point P (14) and q 2
An extension line (15) drawn between and the first contour line that intersects
The intersection (16) with (10) is defined as q 1 .

【0033】一方、q3はq2の存在する等高線(10)C
2とは反対側の等高線(10)C3と、傾斜地格子点P(1
4)からの延長線(15)との複数の交点(16)の中で、
最短距離をなす第3の交点(16)である。また、q4
3から16方位に引いた延長線(18)と等高線(10)
4との複数の交点(16)の中で、最短距離をなす第4
の交点(16)である。この場合も、もし等高線(10)C
3と標高値の異なる等高線(10)C4が存在しない場合、
傾斜地格子点P(14)とq3間に引いた延長線(15)
と、最初に交差する等高線(10)との交点(16)をq4
とする。
On the other hand, q 3 is a contour line (10) C in which q 2 exists.
The contour line (10) C 3 on the side opposite to 2 and the inclined ground grid point P (1
Among multiple intersections (16) with the extension line (15) from 4),
It is the third intersection (16) forming the shortest distance. Also, q 4 is an extension line (18) and a contour line (10) drawn from q 3 in 16 directions.
Of the plurality of intersections (16) with C 4 , the fourth distance is the shortest.
It is the intersection point (16). Also in this case, if the contour line (10) C
If there is no contour line (10) C 4 whose altitude value is different from that of 3 ,
Extension line (15) drawn between the inclined ground grid point P (14) and q 3
And the intersection (16) with the first intersecting contour line (10) is q 4
And

【0034】上述の如く、傾斜地格子点P(14)から最
短距離で4つの交点(16)q1、q2、q3、q4を各々探
索したら、傾斜地格子点P(14)−交点(16)q2間の
直線距離l2、q2−q1間の直線距離l1 、P(14)−
3間の直線距離l3 、q3−q4間の直線距離l4を算出
する。また、各交点(16)q1〜q4の存在する等高線
(10)群C1〜C4から、各交点(16)q1〜q4に対応す
る標高値h1〜h4を読み取る。
As described above, when the four intersections (16) q 1 , q 2 , q 3 and q 4 are searched for at the shortest distance from the inclined ground grid point P (14), the inclined ground grid point P (14) -intersection ( 16) the linear distance between q 2 l 2, q 2 linear distance between -q 1 l 1, P (14 ) -
linear distance between q 3 l 3, q 3 calculates the linear distance l 4 between -q 4. Also, the contour lines at which each intersection (16) q 1 to q 4 exists
(10) From the groups C 1 to C 4 , the elevation values h 1 to h 4 corresponding to the intersections (16) q 1 to q 4 are read.

【0035】次に、第3工程では、上記第2工程で得た
交点(16)q1、q2、q3、q4と着目内挿点P(14)の
位置関係を示すグラフを作成する。それには、x軸に距
離l 1〜l4、y軸に標高値h1〜h4を取って交点(16)
1〜q4の座標を各々プロットし、l1〜l4及びh1
4の値に基づいて計算される直線又は高次曲線を内挿
関数として適用して、図6に示すグラフを作成する。こ
のグラフの形状が、着目内挿点P(14)を含む交点(1
6)q1〜q4間の最急地形断面を表すものとなる。そし
て、上記内挿関数のグラフから、着目内挿点P(14)に
対応する標高値hPを求める。
Next, in the third step, the product obtained in the second step was obtained.
Intersection (16) q1, Q2, Q3, QFourAnd the interpolation point P (14) of interest
Create a graph showing the positional relationship. To do that,
Separation 1~ LFour, H on the y-axis1~ HFourTake the intersection (16)
q1~ QFourPlot the coordinates of each1~ LFourAnd h1~
hFourInterpolate a straight line or higher-order curve calculated based on the value of
It is applied as a function to produce the graph shown in FIG. This
The shape of the graph of the intersection point (1
6) q1~ QFourIt represents the steepest terrain section between. That
Then, from the graph of the above interpolation function,
Corresponding elevation value hPAsk for.

【0036】尚、本実施例では、内挿関数として一次差
分法による3次エルミート関数を適用する事により、よ
り自然で滑らかな地形断面グラフを描く事ができる。ま
た、従来技術では、交点(4)を結ぶ地形断面グラフが必
ずしも最急勾配とはならなかったが、本発明では、16
方位方向に最短距離で4つの交点(16)q1〜q4を探索
していく方式なので、各交点(16)を結ぶ地形断面グラ
フが、より実際の地形形状に近く、最急勾配を示すもの
とする事ができる。従って、このようなグラフから求め
た着目内挿点P(14)の標高値hPは、信頼性が高いも
のとなる。
In the present embodiment, a more natural and smooth topographic cross section graph can be drawn by applying a cubic Hermitian function by the first-order difference method as the interpolation function. Further, in the conventional technique, the topographical cross-section graph connecting the intersection points (4) does not necessarily have the steepest slope, but in the present invention,
Since it is a method to search four intersections (16) q 1 to q 4 in the shortest distance in the azimuth direction, the topographic cross-section graph connecting each intersection (16) is closer to the actual topography and shows the steepest slope. It can be something. Therefore, the altitude value h P of the interpolation point P (14) of interest obtained from such a graph is highly reliable.

【0037】そして、上述の如き第2工程の4つの交点
(16)q1〜q4の探索、各交点(16)の標高値h1〜h4
の読み取り、及び距離l1〜l4の算出と、第3工程の最
急地形断面グラフの作成、及びこのグラフからの着目内
挿点P(14)の標高値hPの読み取りを、着目する地域
に対応する全てのメッシュ(12)の格子点(13)につい
て行い、全ての格子点(13)の標高値hPを、標高デー
タ(DEM)として記録するものである。
Then, the four intersections of the second step as described above
(16) Search for q 1 to q 4 , elevation values h 1 to h 4 at each intersection (16)
Pay attention to the reading of the above, calculation of the distances l 1 to l 4 , the preparation of the steepest topographic cross-section graph in the third step, and the reading of the elevation value h P of the noted interpolation point P (14) from this graph. This is performed for the grid points (13) of all meshes (12) corresponding to the area, and the altitude values h P of all the grid points (13) are recorded as the altitude data (DEM).

【0038】ここで、第2工程の例外として、着目内挿
点P(14)が特殊な位置に存在する場合の交点(16)q
1〜q4の探索方法を、図7に示す如き屈曲の激しい谷部
に存在する着目内挿点P(14)で説明する。この場合
も、着目内挿点P(14)からの16方位への延長線(1
5)と、最近隣の等高線(10)C2との最短距離をなす交
点(16)q2を探索し、q2から引いた延長線(17)と等
高線(10)C1と最短距離をなす交点(16)をq1とす
る。この場合も、もし等高線(10)C2とは標高値の異
なる等高線(10)C1が存在しなかったら、着目内挿点
P(14)と交点(16)q2を結ぶ延長線(15)と、最初
に交差する等高線(10)との交点をq1とする。そし
て、着目内挿点P(14)から交点(16)q2までの距離
2、q2からq1までの距離l1を算出するとともに、q
2、q1の存在する等高線(10)C2、C1から、q2、q1
の標高値h2、h1を読み取る。
Here, as an exception to the second step, the intersection point (16) q when the target interpolation point P (14) exists at a special position
The search method of 1 to q 4 will be described with reference to the interpolation point P (14) present in the valley portion where the bending is severe as shown in FIG. Also in this case, the extension line (1
5) is searched for an intersection (16) q 2 that forms the shortest distance between the nearest contour line (10) C 2 and the shortest distance between the extension line (17) drawn from q 2 and the contour line (10) C 1 The intersecting point (16) is q 1 . Again, if there is not present different contours (10) C 1 altitude value and if contour lines (10) C 2, extended line connecting interest in interpolation point P (14) the intersection of (16) q 2 (15 ) And the first intersecting contour line (10) are q 1 . Then, the distance l 2 from the point of interest P (14) to the intersection (16) q 2 and the distance l 1 from q 2 to q 1 are calculated, and q
From the contour line (10) C 2 , C 1 in which 2 , 2 , q 1 exist, q 2 , q 1
Read the altitude values h 2 and h 1 of.

【0039】次に、交点(16)q3、q4を探索する。し
かし、図7の如き地形の場合、着目内挿点P(14)から
16方位に引いた延長線(15)は全て、等高線(10)C
2及びC1とは交差するが、等高線(10)C4及びC3とは
交差せず、通常の探索方法では、着目内挿点P(14)が
平地に存在すると誤認識される虞れがある。
Next, the intersection points (16) q 3 and q 4 are searched. However, in the case of the terrain as shown in FIG. 7, all the extension lines (15) drawn from the target interpolation point P (14) in 16 directions are contour lines (10) C.
It intersects with 2 and C 1 , but does not intersect with the contour lines (10) C 4 and C 3, and in the usual search method, there is a possibility that the focused interpolation point P (14) is erroneously recognized as existing on the flat ground. There is.

【0040】この不具合を解消するため、本発明では、
まず着目内挿点P(14)を保留格子点P(14)と定義
し、この保留格子点P(14)から最近隣の傾斜地格子点
F(21)を探索する。この傾斜地格子点F(21)は、既
に等高線(10)C3及びC4との交点(16)q3、q4を探
索済みであり、q3、q4の標高値h3、h4と、傾斜地格
子点F(21)−q3間及びq3−q2間の距離を算出済み
であるので、このデータを今回の保留格子点P(14)の
データとして採用する。
In order to solve this problem, the present invention uses
First, the focused interpolation point P (14) is defined as the reserved grid point P (14), and the nearest inclined ground grid point F (21) is searched from this reserved grid point P (14). This inclined ground grid point F (21) has already searched for the intersections (16) q 3 and q 4 with the contour lines (10) C 3 and C 4, and the elevation values h 3 and h 4 of q 3 and q 4 have already been searched. If, because it is already calculating the distance between the between the sloping grid point F (21) -q 3 and q 3 -q 2, employing the data as the data of the current pending grid points P (14).

【0041】但し、距離l3は、保留格子点P(14)と
傾斜地格子点F(21)間の距離と、傾斜地格子点F(2
1)と交点(16)q3間の距離の和であり、距離l4は、
交点(16)q3とq4間の距離である。このようにして得
た距離l1〜l4をx軸に取り、標高値h1〜h4をy軸に
取って、3次エルミート関数を適用する事により、保留
格子点P(14)を含む最急地形断面のグラフを作成する
事ができ、このグラフから保留格子点P(14)に対応す
る標高値hPを、高精度に得る事ができる。
However, the distance l 3 is the distance between the reserved grid point P (14) and the slope ground grid point F (21) and the slope ground grid point F (2
1) and the intersection (16) q 3 and the distance l 4 is
The intersection (16) is the distance between q 3 and q 4 . By taking the distances l 1 to l 4 thus obtained on the x-axis, the elevation values h 1 to h 4 on the y-axis, and applying the cubic Hermitian function, the reserved grid point P (14) is obtained. It is possible to create a graph of the steepest terrain section including the altitude value h P corresponding to the reserved grid point P (14) with high accuracy from this graph.

【0042】また、従来技術では、図12〜図15に示
す如く、着目内挿点p(1)の標高値が不正確となったり
誤認識されたケースでも、本発明によって標高値の信頼
性を高め、問題を解決する事ができる。その標高値の算
出過程を図8〜11に於いて説明するが、これらで使用
する基本等高線図(20)及び着目内挿点P(14)の位置
は、図12〜図15の従来例と同一である。
Further, in the prior art, as shown in FIGS. 12 to 15, even if the altitude value of the interpolation point p (1) of interest is inaccurate or erroneously recognized, the reliability of the altitude value is improved by the present invention. Can be raised and the problem can be solved. The process of calculating the elevation value will be described with reference to FIGS. 8 to 11. The positions of the basic contour map (20) and the interpolated point P (14) of interest used in these processes are the same as those in the conventional example of FIGS. It is the same.

【0043】まず、図12に示す如く、両側に急斜面を
持ち、中央がややなだらかな尾根を有する地形では、従
来は等高線(3)C3、C4を探索できず、着目内挿点p
(1)は平地上に存在すると誤認識された。しかし、本発
明の手法では、図8に示す如く、異なる4本の等高線
(10)C1〜C4を探索できるので、着目内挿点P(14)
が尾根上存在すると正しく認識され、信頼性の高い標高
値を算出する事ができる。
First, as shown in FIG. 12, in the terrain having steep slopes on both sides and a slightly gentle ridge in the center, the contour lines (3) C 3 and C 4 cannot be searched conventionally, and the interpolation point p of interest is used.
(1) was erroneously recognized as existing on level ground. However, in the method of the present invention, as shown in FIG.
(10) Since C 1 to C 4 can be searched, the point of interest P (14)
Is correctly recognized as existing on the ridge, and a highly reliable altitude value can be calculated.

【0044】また、図13では、着目内挿点p(1)を挟
んで一直線上に交点(4)を探索しているので、2つの交
点(4)又は4つの交点(4)が形成する地形断面が必ずし
も最急勾配とはならず、しかも等高線(3)C4を探索で
きないため、着目内挿点p(1)の標高値に誤差を生じて
いた。しかし、本発明では、図9に示す如く、着目内挿
点P(14)から16方位の任意の方向に、最短距離の交
点(16)q2及びq3を探索しているし、各々q1、q4
探索する場合も、先の着目内挿点P(14)からの延長線
(15)とは別個に、q2、q3から各々新たに16方位に
延長線(17)(18)を引いて、任意の方向に最短距離を
なす交点(16)q1、q4を探索していくものである。従
って、4つの交点(16)q1〜q4の描く地形断面グラフ
が、最急勾配又は最急勾配に限りなく近くなるから、こ
のグラフから得る着目内挿点P(14)の標高値hPは、
信頼性が高いものである。
Further, in FIG. 13, since the intersection (4) is searched for on a straight line across the interpolation point p (1) of interest, two intersections (4) or four intersections (4) are formed. Since the terrain cross section does not always have the steepest slope and the contour line (3) C 4 cannot be searched, an error occurs in the elevation value of the interpolation point p (1) of interest. However, in the present invention, as shown in FIG. 9, intersections (16) q 2 and q 3 of the shortest distance are searched for in any direction in 16 directions from the interpolation point P (14) of interest, and each q Also when searching for 1 and q 4 , an extension line from the previous interpolation point P (14)
Separately from (15), extension lines (17) and (18) are newly drawn in 16 directions from q 2 and q 3 , respectively, and intersection points (16) q 1 and q 4 that form the shortest distance in any direction are obtained. It is something to explore. Therefore, the topographical cross-section graph drawn by the four intersections (16) q 1 to q 4 becomes the steepest slope or is as close as possible to the steepest slope, and therefore the elevation value h of the interpolation point P (14) of interest obtained from this graph. P is
It is highly reliable.

【0045】また、図14に示す如く、屈曲の大きい谷
部や尾根に存在する着目内挿点p(1)では、従来は等高
線(3)C4を検出できず、平地上の点であると誤認識さ
れていた。しかし、本発明では、図10に示す如く、着
目内挿点P(14)と近隣の傾斜地格子点F(21)を介し
て、等高線(10)C4を検出する事ができ、着目内挿点
P(14)は谷部又は尾根上に存在すると確実に認識され
るとともに、信頼性の高い標高値が得られる。
Further, as shown in FIG. 14, the contour line (3) C 4 cannot be conventionally detected at the interpolated point p (1) of interest present in a valley portion or a ridge having a large bend, which is a point on the flat ground. Was mistakenly recognized as. However, in the present invention, as shown in FIG. 10, the contour line (10) C 4 can be detected via the target interpolation point P (14) and the neighboring slope ground grid point F (21), and the target interpolation point The point P (14) is surely recognized as existing on the valley or ridge, and a highly reliable altitude value is obtained.

【0046】また、図15に示す如く、鞍部又は峠など
にある着目内挿点p(1)でも、従来の一直線上に交点
(4)を探索する方法では、等高線(3)C2、C1は検出で
きるが、C3、C4を探索できず、平地上にある点と誤認
識された。この場合も、本発明の手法では、図11に示
す如く、着目内挿点P(14)から16方位の任意の方向
に、標高の異なる等高線(10)C2、C3上の交点(16)
2、q3を探索するとともに、この交点(16)q2、q3
から16方位の任意の方向に、標高値の異なる等高線
(10)C1、C4上の交点(16)q1、q4を得ている。従
って、4つの標高値の異なる交点(16)q1〜q4が得ら
れ、着目内挿点P(14)は鞍部又は山頂に存在すると認
識されるとともに、信頼性の高い標高値が得られる。
Further, as shown in FIG. 15, the interpolated point p (1) of interest on the saddle part or the pass, etc. also has an intersection point on the conventional straight line.
In the method of searching (4), contour lines (3) C 2 and C 1 could be detected, but C 3 and C 4 could not be searched, and it was erroneously recognized as a point on the level ground. Also in this case, according to the method of the present invention, as shown in FIG. 11, intersections (16) on contour lines (10) C 2 and C 3 having different altitudes are arranged in arbitrary directions in 16 directions from the interpolation point P (14) of interest. )
While searching for q 2 and q 3 , this intersection (16) q 2 and q 3
Contour lines with different elevation values in any direction from 16 to 16
(10) to obtain a C 1, C 4 on the intersection (16) q 1, q 4 . Therefore, four intersections (16) q 1 to q 4 having different altitude values are obtained, and the interpolated point P (14) of interest is recognized to exist at the saddle or the summit, and a highly reliable altitude value is obtained. .

【0047】上述の如く、本発明で提案する標高値の内
挿方法で得た高精度な標高データを使用して、等高線図
を作成するには、第4工程として、最初に与えられた基
本等高線図(20)の等高線間隔10mとする既存の等高
線(10)間に、従来公知の方法で等高線間隔1mとする
密な等高線を内挿する。そして、高精度な標高データを
使用するから、従来に比べて、より自然で円滑な等高線
を内挿して、学術的に優れた詳細な等高線図を得る事が
できる。
As described above, in order to create a contour map using the highly accurate altitude data obtained by the altitude value interpolating method proposed in the present invention, as the fourth step, the basic pattern given at the beginning is given. A dense contour line having a contour interval of 1 m is interpolated by a conventionally known method between existing contour lines (10) having a contour interval of 10 m in the contour map (20). Since highly accurate elevation data is used, more natural and smooth contour lines can be interpolated as compared with the conventional one, and an academically excellent detailed contour map can be obtained.

【0048】そして、図1に示す両側に急斜面を持ち中
央がややなだらかな尾根を有する地形で実施した第1実
施例の等高線図では、図16に示した第1従来例と比較
して、尾根部分の等高線の不自然な傾斜が解消され、視
覚的にも自然で滑らかで、再現性の高い等高線図を得る
事ができた。また、図2に示す屈曲の激しい等高線を有
する地形で実施した第2実施例の等高線図では、図17
に示す第2従来例に比べて、自然で滑らかな等高線を内
挿する事ができた。また、図3に示す屈曲した谷で囲ま
れた山頂及び鞍部を有する複雑な地形で実施した第3実
施例の等高線図では、図18に示す従来例で、谷や山
頂、鞍部に見られた等高線の不自然さが、図3に示す如
く解消されて、再現性が高く等高線図として優れた製品
を得る事ができた。
Then, in the contour map of the first embodiment carried out on the terrain having steep slopes on both sides and a slightly gentle ridge in the center shown in FIG. 1, the ridge is compared with the first conventional example shown in FIG. The unnatural inclination of the contour lines of the part was eliminated, and it was possible to obtain a contour map that was visually natural, smooth, and highly reproducible. In addition, in the contour map of the second embodiment executed on the terrain having the contour lines with sharp bends shown in FIG.
Natural and smooth contour lines could be interpolated as compared with the second conventional example shown in FIG. Further, in the contour map of the third embodiment carried out on the complex terrain having the peaks and saddles surrounded by the curved valleys shown in FIG. 3, the conventional example shown in FIG. 18 shows the valleys, peaks and saddles. The unnaturalness of contour lines was eliminated as shown in FIG. 3, and a product with high reproducibility and excellent contour map could be obtained.

【0049】また、上記各実施例は、陸地の起伏を表し
た等高線図で実施しているが、海や湖などの深度を一定
の等深線間隔で表した、等深線図で実施する事もでき
る。また、等高線図、等深線図だけでなく、公知の適宜
の等値線図にも、本発明を応用する事ができる。この等
値線図として、例えば、気圧の分布を一定間隔の等圧線
で表した等圧線図、気温の分布を一定間隔の等温線で表
した等温線図など、地球の気候を表したものや、液体、
気体、固体の物質の温度分布を一定間隔の等温線で表し
た等温線図などに本発明を用いる事ができる。また、物
体に掛かる圧力、張力、その他の物理的な応力を、一定
の等しい値で結んだものも、等値線図の一種である。こ
れらの等値線図の等値線間に、本発明の標高値の内挿方
法によって、格子状に標高値を高精度に内挿する事がで
きる。また、これにより得た標高データを基に、等値線
図の等値線間に、密な等値線を高精度に内挿する事がで
き、詳細で信頼性の高い等値線図を得る事ができる。
Further, although the above-mentioned respective embodiments are carried out by the contour map showing the ups and downs of the land, it is also possible to carry out by the contour map showing the depth of the sea or lake at a constant contour line interval. The present invention can be applied not only to contour maps and contour maps, but also to known publicly known contour maps. As this contour map, for example, an isobar map showing the distribution of atmospheric pressure by isobars at regular intervals, an isothermal map showing the distribution of air temperature by isothermal lines at regular intervals, and the like, which represent the climate of the earth and liquids. ,
The present invention can be used for an isotherm diagram in which the temperature distribution of a gas or solid substance is represented by isotherms at regular intervals. In addition, the pressure, tension, and other physical stresses exerted on an object are tied with a constant equal value, which is also a kind of contour map. Between the contour lines of these contour maps, the elevation value interpolating method of the present invention enables highly accurate interpolation of the elevation values in a grid pattern. In addition, based on the elevation data obtained by this, dense contour lines can be interpolated with high accuracy between the contour lines of the contour map, and a detailed and reliable contour map can be obtained. You can get it.

【0050】[0050]

【発明の効果】本発明は上述の如く構成したものであ
り、公知の等高線図に格子状に標高値を内挿して標高デ
ータ(DEM)を得る際に、着目内挿点から、16方位の
任意の方向に、標高の異なる等高線との最短距離をなす
4つの交点を探索し、この4つの交点の位置関係や標高
値を基に、当該着目内挿点の標高値を算出しているの
で、信頼性の高い標高データを得る事ができる。従っ
て、地球科学や工学分野に於いて、様々な方面での応用
のための優れた標高データを提供する事ができる。そし
て、高精度な標高データを利用して、従来公知の等高線
図又は等深線図に、密な等高線や又は等深線を高精度に
内挿し、地形の起伏の再現性の高い等高線図又は等深線
図を得る事ができる。このようにして得た等高線図又は
等深線図は、起伏が入り組んだ複雑な地形や特殊な地形
であっても、その地形を詳細かつ正確に再現されている
から、使用者が地形を良好に把握する事ができ、学術的
にも品質的にも優れた製品となる。
The present invention is configured as described above, and when the elevation data (DEM) is obtained by interpolating the elevation values in a grid pattern on a publicly known contour map, the 16 azimuth points from the interpolation point of interest are obtained. In any direction, four intersections that form the shortest distances from contour lines with different elevations are searched, and the elevation value of the interpolation point concerned is calculated based on the positional relationship and elevation value of these four intersections. , It is possible to obtain highly reliable altitude data. Therefore, it is possible to provide excellent elevation data for application in various fields in the earth science and engineering fields. Then, by using highly accurate elevation data, dense contour lines and / or contour lines are interpolated with high accuracy into a conventionally known contour map or contour map to obtain a contour map or contour map with high reproducibility of topographical relief. I can do things. The contour map or contour map thus obtained reproduces the terrain in detail and accurately, even if the terrain is complicated or special terrain with complicated undulations. It is possible to do, and it will be an academically and quality superior product.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例で、両側に急斜面を持ち、
中央がややなだらかな尾根を有する地形の等高線図。
FIG. 1 is a first embodiment of the present invention, which has steep slopes on both sides,
A contour map of the terrain with a gentle ridge in the center.

【図2】本発明の第2実施例で、屈曲の激しい等高線を
有する地形の等高線図。
FIG. 2 is a contour map of a terrain having contour lines with sharp bends according to the second embodiment of the present invention.

【図3】本発明の第3実施例で、屈曲した谷で囲まれた
山頂及び鞍部を有する複雑な地形の等高線図。
FIG. 3 is a contour map of a complex terrain having peaks and saddles surrounded by curved valleys according to a third embodiment of the present invention.

【図4】着目内挿点Pから16方位に延長線を引いた状
態を示す概念図。
FIG. 4 is a conceptual diagram showing a state in which an extension line is drawn in 16 directions from a target interpolation point P.

【図5】着目内挿点Pと、最近隣等高線との4つの交点
の探索過程を示す概念図。
FIG. 5 is a conceptual diagram showing a process of searching for four intersections between a target interpolation point P and a nearest contour line.

【図6】4つの交点の距離及び標高値により作成した最
急地形断面グラフ。
FIG. 6 is a steepest terrain cross-section graph created from the distances and elevation values of four intersections.

【図7】隣接する傾斜地格子点Fを利用して、保留格子
点Pの4つの交点を探索する過程を示す概念図。
FIG. 7 is a conceptual diagram showing a process of searching for four intersections of reserved grid points P using adjacent inclined ground grid points F.

【図8】両側に急斜面を持ち、中央がややなだらかな尾
根に存在する着目内挿点Pと、最近隣等高線との4つの
交点の探索過程を示す概念図。
FIG. 8 is a conceptual diagram showing a search process of four intersections between a target interpolation point P having steep slopes on both sides and a center of which is located on a gradual ridge, and the nearest contour line.

【図9】着目内挿点Pから最短距離で最近隣等高線との
4つの交点を探索した状態を示す概念図。
FIG. 9 is a conceptual diagram showing a state in which four intersections with the nearest contour line are searched at the shortest distance from the target interpolation point P.

【図10】屈曲の大きい谷部や尾根に存在する着目内挿
点Pでの、等高線の探索過程を示す概念図。
FIG. 10 is a conceptual diagram showing a contour line searching process at a target interpolation point P existing in a valley or a ridge having a large bend.

【図11】鞍部又は峠などに存在する着目内挿点Pで
の、等高線の探索過程を示す概念図。
FIG. 11 is a conceptual diagram showing a contour line searching process at a target interpolation point P existing in a saddle part or a pass.

【図12】図8と同一地域に於いて、従来方法による等
高線の探索過程を示す概念図。
FIG. 12 is a conceptual diagram showing a contour line searching process by a conventional method in the same area as FIG.

【図13】図9と同一地域に於いて、従来方法による等
高線の探索過程を示す概念図。
FIG. 13 is a conceptual diagram showing a contour line searching process by a conventional method in the same area as FIG.

【図14】図10と同一地域に於いて、従来方法による
等高線の探索過程を示す概念図。
14 is a conceptual diagram showing a contour line searching process by a conventional method in the same area as FIG.

【図15】図11と同一地域に於いて、従来方法による
交点の探索過程を示す概念図。
FIG. 15 is a conceptual diagram showing a process of searching for an intersection by the conventional method in the same area as FIG. 11.

【図16】図1と同一地域に於いて、従来方法により作
成した等高線図。
FIG. 16 is a contour map created by the conventional method in the same area as FIG.

【図17】図2と同一地域に於いて、従来方法により作
成した等高線図。
FIG. 17 is a contour map created by a conventional method in the same area as FIG.

【図18】図3と同一地域に於いて、従来方法により作
成した等高線図。
FIG. 18 is a contour map created by a conventional method in the same area as FIG.

【符号の説明】[Explanation of symbols]

10 等高線 12 メッシュ 13 格子点 14 着目内挿点 15 延長線 16 交点 17 延長線 18 延長線 20 基本等高線図 21 傾斜地格子点 10 contour lines 12 mesh 13 grid points 14 Interpolation points of interest 15 extension line 16 intersections 17 extension line 18 extension line 20 Basic contour map 21 inclined ground grid points

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 公知の等高線で表した基本等高線図を、
一定間隔で複数のメッシュに区分し、各メッシュの中心
を格子点とする第1工程と、第1工程で得られた複数の
メッシュで決まる格子点の中から一つを選出して着目内
挿点とし、この着目内挿点から16方位に引いた延長線
と交差する最近隣の等高線群を、標高値の高い側と低い
側に各々2本ずつ探索して、着目内挿点との最短距離を
なす4つの交点を得て、着目内挿点からの距離及び標高
値を算出する第2工程と、第2工程で得た4つの交点の
標高値及び着目内挿点からの距離を基に、着目内挿点を
含む最急地形断面を直線グラフ又は高次曲線グラフにて
表し、このグラフから当該着目内挿点の標高値を読み取
る第3工程とから成る事を特徴とする標高値の内挿方
法。
1. A basic contour map represented by known contour lines,
Interpolation is performed by dividing the mesh into a plurality of meshes at regular intervals and selecting one from among the grid points determined by the meshes obtained in the first step and the first step in which the center of each mesh is the grid point. The nearest contour line group that intersects the extension line drawn in 16 directions from this point of interest interpolation point is searched for each of the high side and low side of the elevation value The second step of obtaining the four intersections forming the distance and calculating the distance and the elevation value from the target interpolation point, and the elevation value of the four intersections obtained in the second step and the distance from the target interpolation point In addition, the steepest landform cross section including the interpolation point of interest is represented by a straight line graph or a higher-order curve graph, and the elevation value is characterized by comprising a third step of reading the elevation value of the interpolation point of interest from this graph. Interpolation method.
【請求項2】 公知の等高線で表した基本等高線図を、
一定間隔で複数のメッシュに区分し、各メッシュの中心
を格子点とする第1工程と、第1工程で得られた複数の
メッシュで決まる格子点の中から一つを選出して着目内
挿点とし、この着目内挿点から16方位に引いた延長線
と交差する最近隣の等高線群を、標高値の高い側と低い
側に各々2本ずつ探索して、着目内挿点との最短距離を
なす4つの交点を得て、着目内挿点からの距離及び標高
値を算出する第2工程と、第2工程で得た4つの交点の
標高値及び着目内挿点からの距離を基に、着目内挿点を
含む最急地形断面を直線グラフ又は高次曲線グラフにて
表し、このグラフから当該着目内挿点の標高値を読み取
る第3工程と、前記第2工程及び第3工程を全てのメッ
シュの格子点に施して得た事を特徴とする標高データ。
2. A basic contour map represented by known contour lines,
Interpolation is performed by dividing the mesh into a plurality of meshes at regular intervals and selecting one from among the grid points determined by the meshes obtained in the first step and the first step in which the center of each mesh is the grid point. The nearest contour line group that intersects the extension line drawn in 16 directions from this point of interest interpolation point is searched for each of the high side and low side of the elevation value The second step of obtaining the four intersections forming the distance and calculating the distance and the elevation value from the target interpolation point, and the elevation value of the four intersections obtained in the second step and the distance from the target interpolation point In, the steepest terrain cross section including the interpolation point of interest is represented by a straight line graph or a higher-order curve graph, and the elevation value of the interpolation point of interest is read from this graph, and the second step and the third step. Elevation data characterized by being obtained by applying the grid points to all mesh points.
【請求項3】 公知の等高線で表した基本等高線図を、
一定間隔で複数のメッシュに区分し、各メッシュの中心
を格子点とする第1工程と、第1工程で得られた複数の
メッシュで決まる格子点の中から一つを選出して着目内
挿点とし、この着目内挿点から16方位に引いた延長線
と交差する最近隣の等高線群を、標高値の高い側と低い
側に各々2本ずつ探索して、着目内挿点との最短距離を
なす4つの交点を得て、着目内挿点からの距離及び標高
値を算出する第2工程と、第2工程で得た4つの交点の
標高値及び着目内挿点からの距離を基に、着目内挿点を
含む最急地形断面を直線グラフ又は高次曲線グラフにて
表し、このグラフから当該着目内挿点の標高値を読み取
る第3工程と、前記第2工程及び第3工程を全てのメッ
シュの格子点に施して得た標高データを基に、前記粗間
隔の等高線間に、等高線を内挿する第4工程とから成る
事を特徴とする等高線図の作成方法。
3. A basic contour map represented by known contour lines,
Interpolation is performed by dividing the mesh into a plurality of meshes at regular intervals and selecting one from among the grid points determined by the meshes obtained in the first step and the first step in which the center of each mesh is the grid point. The nearest contour line group that intersects the extension line drawn in 16 directions from this point of interest interpolation point is searched for each of the high side and low side of the elevation value The second step of obtaining the four intersections forming the distance and calculating the distance and the elevation value from the target interpolation point, and the elevation value of the four intersections obtained in the second step and the distance from the target interpolation point In, the steepest terrain cross section including the interpolation point of interest is represented by a straight line graph or a higher-order curve graph, and the elevation value of the interpolation point of interest is read from this graph, and the second step and the third step. Based on the elevation data obtained by applying the grid points to all the meshes, between the contour lines at the coarse intervals, How to create contour diagram, characterized in that comprising a fourth step interpolating a high line.
【請求項4】 公知の等高線で表した基本等高線図を、
一定間隔で複数のメッシュに区分し、各メッシュの中心
を格子点とする第1工程と、第1工程で得られた複数の
メッシュで決まる格子点の中から一つを選出して着目内
挿点とし、この着目内挿点から16方位に引いた延長線
と交差する最近隣の等高線群を、標高値の高い側と低い
側に各々2本ずつ探索して、着目内挿点との最短距離を
なす4つの交点を得て、着目内挿点からの距離及び標高
値を算出する第2工程と、第2工程で得た4つの交点の
標高値及び着目内挿点からの距離を基に、着目内挿点を
含む最急地形断面を直線グラフ又は高次曲線グラフにて
表し、このグラフから当該着目内挿点の標高値を読み取
る第3工程と、前記第2工程及び第3工程を全てのメッ
シュの格子点に施して得た標高データを基に、前記粗間
隔の等高線間に、等高線を内挿する第4工程とによって
得られる等高線図。
4. A basic contour map represented by known contour lines,
Interpolation is performed by dividing the mesh into a plurality of meshes at regular intervals and selecting one from among the grid points determined by the meshes obtained in the first step and the first step in which the center of each mesh is the grid point. The nearest contour line group that intersects the extension line drawn in 16 directions from this point of interest interpolation point is searched for each of the high side and low side of the elevation value The second step of obtaining the four intersections forming the distance and calculating the distance and the elevation value from the target interpolation point, and the elevation value of the four intersections obtained in the second step and the distance from the target interpolation point In, the steepest terrain cross section including the interpolation point of interest is represented by a straight line graph or a higher-order curve graph, and the elevation value of the interpolation point of interest is read from this graph, and the second step and the third step. Based on the elevation data obtained by applying the grid points to all the meshes, between the contour lines at the coarse intervals, Contour map obtained by the fourth step interpolating a high line.
【請求項5】 着目内挿点は、16方位への延長線と最
近隣の等高線との16の交点の標高値が全て等しい訳で
はない場合には、着目内挿点を傾斜地格子点とし、この
傾斜地格子点から16方位への延長線と最近隣の等高線
と最短距離をなす交点を第1交点とし、傾斜地格子点か
らの距離及び標高値を算出し、第1交点から16方位へ
の延長線と交差する等高線との最短距離をなす交点を第
2交点とし、第1交点からの距離及び標高値を算出する
とともに、前記傾斜地格子点からの16方位への延長線
と交差し第1交点の存在する等高線とは標高の異なる等
高線上に第3交点を探索し、傾斜地格子点からの距離及
び標高値を算出するとともに、第3交点からの16方位
への延長線と交差する等高線と最短距離をなす交点を第
4交点とし、第3交点からの距離及び標高値を算出した
事を特徴とする請求項1の標高値の内挿方法。
5. The interpolated point of interest is an inclined ground grid point when the elevation values of the 16 intersections of the extension line to the 16 azimuth and the nearest contour line are not all equal, The first intersection is the intersection that forms the shortest distance from the extension line from this inclined grid point to the 16th direction and the nearest contour line, and the distance from the inclined ground lattice point and the elevation value are calculated, and the extension from the first intersection to the 16th direction The intersection that forms the shortest distance from the contour line that intersects the line is defined as the second intersection, and the distance from the first intersection and the elevation value are calculated, and the first intersection is intersected with the extension line extending from the inclined ground grid point to 16 directions. The third intersection is searched for on a contour line with a different altitude from the existing contour line, and the distance from the inclined grid point and the elevation value are calculated, and the contour line that intersects the extension line from the third intersection to 16 directions is the shortest. The intersection that forms the distance is the fourth intersection, and the third intersection The method of interpolating an elevation value according to claim 1, wherein the distance from the point and the elevation value are calculated.
【請求項6】 着目内挿点は、16方位への延長線と最
近隣の等高線との16の交点の標高値が全て等しい訳で
はない場合には、着目内挿点を傾斜地格子点とし、この
傾斜地格子点から16方位への延長線と最近隣の等高線
と最短距離をなす交点を第1交点とし、傾斜地格子点か
らの距離及び標高値を算出し、第1交点から16方位へ
の延長線と交差する等高線との最短距離をなす交点を第
2交点とし、第1交点からの距離及び標高値を算出する
とともに、前記傾斜地格子点からの16方位への延長線
と交差し第1交点の存在する等高線とは標高の異なる等
高線上に第3交点を探索し、傾斜地格子点からの距離及
び標高値を算出するとともに、第3交点からの16方位
への延長線と交差する等高線と最短距離をなす交点を第
4交点とし、第3交点からの距離及び標高値を算出した
事を特徴とする請求項2の標高データ。
6. The interpolated point of interest is an inclined ground grid point when the elevation values of the 16 intersections of the extension line to the 16 azimuth and the nearest contour line are not all equal, The first intersection is the intersection that forms the shortest distance from the extension line from this inclined grid point to the 16th direction and the nearest contour line, and the distance from the inclined ground lattice point and the elevation value are calculated, and the extension from the first intersection to the 16th direction The intersection that forms the shortest distance from the contour line that intersects the line is defined as the second intersection, and the distance from the first intersection and the elevation value are calculated, and the first intersection is intersected with the extension line extending from the inclined ground grid point to 16 directions. The third intersection is searched for on a contour line with a different altitude from the existing contour line, and the distance from the inclined grid point and the elevation value are calculated, and the contour line that intersects the extension line from the third intersection to 16 directions is the shortest. The intersection that forms the distance is the fourth intersection, and the third intersection The elevation data according to claim 2, wherein the distance from the point and the elevation value are calculated.
【請求項7】 着目内挿点は、16方位への延長線と最
近隣の等高線との16の交点の標高値が全て等しい訳で
はない場合には、着目内挿点を傾斜地格子点とし、この
傾斜地格子点から16方位への延長線と最近隣の等高線
と最短距離をなす交点を第1交点とし、傾斜地格子点か
らの距離及び標高値を算出し、第1交点から16方位へ
の延長線と交差する等高線との最短距離をなす交点を第
2交点とし、第1交点からの距離及び標高値を算出する
とともに、前記傾斜地格子点からの16方位への延長線
と交差し第1交点の存在する等高線とは標高の異なる等
高線上に第3交点を探索し、傾斜地格子点からの距離及
び標高値を算出するとともに、第3交点からの16方位
への延長線と交差する等高線と最短距離をなす交点を第
4交点とし、第3交点からの距離及び標高値を算出した
事を特徴とする請求項3の等高線図の作成方法。
7. The interpolated point of interest is an inclined ground grid point when the elevation values of 16 intersections of the extension line to the 16 azimuth and the nearest contour line are not all equal, The first intersection is the intersection that forms the shortest distance from the extension line from this inclined grid point to the 16th direction and the nearest contour line, and the distance from the inclined ground lattice point and the elevation value are calculated, and the extension from the first intersection to the 16th direction The intersection that forms the shortest distance from the contour line that intersects the line is defined as the second intersection, and the distance from the first intersection and the elevation value are calculated, and the first intersection is intersected with the extension line extending from the inclined ground grid point to 16 directions. The third intersection is searched for on a contour line with a different altitude from the existing contour line, and the distance from the inclined grid point and the elevation value are calculated, and the contour line that intersects the extension line from the third intersection to 16 directions is the shortest. The intersection that forms the distance is the fourth intersection, and the third intersection The method for creating a contour map according to claim 3, wherein the distance from the point and the elevation value are calculated.
【請求項8】 着目内挿点は、16方位への延長線と最
近隣の等高線との16の交点の標高値が全て等しい訳で
はない場合には、着目内挿点を傾斜地格子点とし、この
傾斜地格子点から16方位への延長線と最近隣の等高線
と最短距離をなす交点を第1交点とし、傾斜地格子点か
らの距離及び標高値を算出し、第1交点から16方位へ
の延長線と交差する等高線との最短距離をなす交点を第
2交点とし、第1交点からの距離及び標高値を算出する
とともに、前記傾斜地格子点からの16方位への延長線
と交差し第1交点の存在する等高線とは標高の異なる等
高線上に第3交点を探索し、傾斜地格子点からの距離及
び標高値を算出するとともに、第3交点からの16方位
への延長線と交差する等高線と最短距離をなす交点を第
4交点とし、第3交点からの距離及び標高値を算出した
事を特徴とする請求項4の等高線図。
8. The interpolated point of interest is an inclined ground grid point when the elevation values of 16 intersections of the extension line to the 16 azimuth and the nearest contour line are not all equal, The first intersection is the intersection that forms the shortest distance from the extension line from this inclined grid point to the 16th direction and the nearest contour line, and the distance from the inclined ground lattice point and the elevation value are calculated, and the extension from the first intersection to the 16th direction The intersection that forms the shortest distance from the contour line that intersects the line is defined as the second intersection, and the distance from the first intersection and the elevation value are calculated, and the first intersection is intersected with the extension line extending from the inclined ground grid point to 16 directions. The third intersection is searched for on a contour line with a different altitude from the existing contour line, and the distance from the inclined grid point and the elevation value are calculated, and the contour line that intersects the extension line from the third intersection to 16 directions is the shortest. The intersection that forms the distance is the fourth intersection, and the third intersection The contour map according to claim 4, wherein the distance from the point and the altitude value are calculated.
【請求項9】 着目内挿点は、16方位への延長線と最
近隣の等高線との16の交点の標高値が全て等しい場合
には、着目内挿点からの16方位への延長線と最近隣の
等高線と最短距離をなす交点を第1交点とし、傾斜地格
子点からの距離及び標高値を算出し、第1交点からの1
6方位への延長線と交差する等高線と最短距離をなす交
点を第2交点とし、第1交点からの距離及び標高値を算
出するとともに、標高値算出済みの最近隣の他の格子点
を傾斜地格子点とし、この傾斜地格子点で探索済みの4
つの交点のうち、第1交点の存在する等高線とは標高の
異なる側に探索した2つの交点を各々第3、第4交点と
し算出済みの距離と標高値を採用するとともに、第3交
点の距離に着目内挿点と傾斜地格子点間の距離を加算し
て第3交点の着目内挿点からの距離を再計算した事を特
徴とする請求項1の標高値の内挿方法。
9. The interpolated point of interest is an extended line from the interpolated point of interest to 16 azimuths when all the elevation values of 16 intersections of the extended line to the 16 azimuth and the nearest contour line are equal. The first intersection is the intersection that forms the shortest distance with the nearest contour line, and the distance from the inclined ground grid point and the elevation value are calculated, and 1 from the first intersection is calculated.
The second intersection is the intersection that forms the shortest distance with the contour line that intersects the extension lines to the six directions, and the distance from the first intersection and the elevation value are calculated, and the other neighboring grid points for which the elevation value has been calculated are sloped. 4 points that have already been searched at this sloping ground grid point
Of the two intersections, the two intersections searched on the side where the elevation is different from the contour line where the first intersection exists are the third and fourth intersections, respectively, and the calculated distance and elevation value are adopted, and the distance of the third intersection The method of interpolating an elevation value according to claim 1, wherein the distance between the target interpolation point and the inclined ground grid point is added to and the distance from the target interpolation point at the third intersection is recalculated.
【請求項10】 着目内挿点は、16方位への延長線と
最近隣の等高線との16の交点の標高値が全て等しい場
合には、着目内挿点からの16方位への延長線と最近隣
の等高線と最短距離をなす交点を第1交点とし、傾斜地
格子点からの距離及び標高値を算出し、第1交点からの
16方位への延長線と交差する等高線と最短距離をなす
交点を第2交点とし、第1交点からの距離及び標高値を
算出するとともに、標高値算出済みの最近隣の他の格子
点を傾斜地格子点とし、この傾斜地格子点で探索済みの
4つの交点のうち、第1交点の存在する等高線とは標高
の異なる側に探索した2つの交点を各々第3、第4交点
とし算出済みの距離と標高値を採用するとともに、第3
交点の距離に着目内挿点と傾斜地格子点間の距離を加算
して第3交点の着目内挿点からの距離を再計算した事を
特徴とする請求項2の標高データ。
10. The interpolation point of interest is an extension line from the interpolation point of interest to 16 orientations when the elevation values of all 16 intersections of the extension line to 16 orientations and the nearest contour line are equal. The first intersection is the intersection that forms the shortest distance with the nearest contour line, and the distance from the sloping ground grid point and the elevation value are calculated, and the intersection that forms the shortest distance with the contour line that intersects the extension line from the first intersection to the 16 bearings Is the second intersection, the distance from the first intersection and the elevation value are calculated, and the other nearest neighbor grid point for which the elevation value has been calculated is the inclined ground grid point, and the four intersections searched for at this inclined ground grid point Among them, the two intersections searched on the side where the altitude is different from the contour line where the first intersection exists are the third and fourth intersections, respectively, and the calculated distance and altitude value are adopted, and
3. The elevation data according to claim 2, wherein the distance between the interpolation point of interest and the inclined ground grid point is added to the distance of the intersection point to recalculate the distance from the interpolation point of interest of the third intersection point.
【請求項11】 着目内挿点は、16方位への延長線と
最近隣の等高線との16の交点の標高値が全て等しい場
合には、着目内挿点からの16方位への延長線と最近隣
の等高線と最短距離をなす交点を第1交点とし、傾斜地
格子点からの距離及び標高値を算出し、第1交点からの
16方位への延長線と交差する等高線と最短距離をなす
交点を第2交点とし、第1交点からの距離及び標高値を
算出するとともに、標高値算出済みの最近隣の他の格子
点を傾斜地格子点とし、この傾斜地格子点で探索済みの
4つの交点のうち、第1交点の存在する等高線とは標高
の異なる側に探索した2つの交点を各々第3、第4交点
とし算出済みの距離と標高値を採用するとともに、第3
交点の距離に着目内挿点と傾斜地格子点間の距離を加算
して第3交点の着目内挿点からの距離を再計算した事を
特徴とする請求項3の等高線図の作成方法。
11. The interpolation point of interest is an extension line from the interpolation point of interest to 16 orientations when the elevation values of all 16 intersections of the extension line to 16 orientations and the nearest contour line are equal. The first intersection is the intersection that forms the shortest distance with the nearest contour line, and the distance from the sloping ground grid point and the elevation value are calculated, and the intersection that forms the shortest distance with the contour line that intersects the extension line from the first intersection to the 16 bearings Is the second intersection, the distance from the first intersection and the elevation value are calculated, and the other nearest neighbor grid point for which the elevation value has been calculated is the inclined ground grid point, and the four intersections searched for at this inclined ground grid point Among them, the two intersections searched on the side where the altitude is different from the contour line where the first intersection exists are the third and fourth intersections, respectively, and the calculated distance and altitude value are adopted, and
4. The method for creating a contour map according to claim 3, wherein the distance between the point of interest and the inclined ground grid point is added to the distance of the point of intersection to recalculate the distance from the point of interest of interpolation of the third point of intersection.
【請求項12】 着目内挿点は、16方位への延長線と
最近隣の等高線との16の交点の標高値が全て等しい場
合には、着目内挿点からの16方位への延長線と最近隣
の等高線と最短距離をなす交点を第1交点とし、傾斜地
格子点からの距離及び標高値を算出し、第1交点からの
16方位への延長線と交差する等高線と最短距離をなす
交点を第2交点とし、第1交点からの距離及び標高値を
算出するとともに、標高値算出済みの最近隣の他の格子
点を傾斜地格子点とし、この傾斜地格子点で探索済みの
4つの交点のうち、第1交点の存在する等高線とは標高
の異なる側に探索した2つの交点を各々第3、第4交点
とし算出済みの距離と標高値を採用するとともに、第3
交点の距離に着目内挿点と傾斜地格子点間の距離を加算
して第3交点の着目内挿点からの距離を再計算した事を
特徴とする請求項4の等高線図。
12. The interpolation point of interest is an extension line from the interpolation point of interest to 16 orientations when the elevation values of all 16 intersections between the extension line to 16 orientations and the nearest contour line are equal. The first intersection is the intersection that forms the shortest distance with the nearest contour line, and the distance from the sloping ground grid point and the elevation value are calculated, and the intersection that forms the shortest distance with the contour line that intersects the extension line from the first intersection to the 16 bearings Is the second intersection, the distance from the first intersection and the elevation value are calculated, and the other nearest neighbor grid point for which the elevation value has been calculated is the inclined ground grid point, and the four intersections searched for at this inclined ground grid point Among them, the two intersections searched on the side where the altitude is different from the contour line where the first intersection exists are the third and fourth intersections, respectively, and the calculated distance and altitude value are adopted, and
The contour map according to claim 4, wherein the distance from the target interpolation point of the third intersection is recalculated by adding the distance between the target interpolation point and the inclined ground grid point to the distance of the intersection.
JP2001385782A 2001-12-19 2001-12-19 Altitude value interpolation method and altitude data generated thereby and method for preparing contour map prepared by altitude data and contour map Pending JP2003186393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001385782A JP2003186393A (en) 2001-12-19 2001-12-19 Altitude value interpolation method and altitude data generated thereby and method for preparing contour map prepared by altitude data and contour map

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001385782A JP2003186393A (en) 2001-12-19 2001-12-19 Altitude value interpolation method and altitude data generated thereby and method for preparing contour map prepared by altitude data and contour map

Publications (1)

Publication Number Publication Date
JP2003186393A true JP2003186393A (en) 2003-07-04

Family

ID=27595102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001385782A Pending JP2003186393A (en) 2001-12-19 2001-12-19 Altitude value interpolation method and altitude data generated thereby and method for preparing contour map prepared by altitude data and contour map

Country Status (1)

Country Link
JP (1) JP2003186393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111695181A (en) * 2020-05-22 2020-09-22 中国能源建设集团广东省电力设计研究院有限公司 Novel mountainous area pile foundation pile length calculation method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111695181A (en) * 2020-05-22 2020-09-22 中国能源建设集团广东省电力设计研究院有限公司 Novel mountainous area pile foundation pile length calculation method and system

Similar Documents

Publication Publication Date Title
US9651698B2 (en) Multi-beam bathymetric chart construction method based on submarine digital depth model feature extraction
JP4429737B2 (en) Method and apparatus for creating digital topographic map
CN103278115B (en) A kind of method and system calculating silt arrester siltation volume based on DEM
JP2006349872A (en) Apparatus for creating map information, method of creating map information and program
CN103927788A (en) Building ground feature DEM manufacturing method based on city vertical planning
KR100283734B1 (en) Navigation system, stereoscopic topographic display method of this navigation system, and recording medium recording the method
CN108022273A (en) A kind of figure number Detachable drafting method and system
CN110400371B (en) Three-dimensional model construction method for horizontally-constructed landform entity
CN111177917B (en) Slope length extraction method based on SRTM
Coverages Landscape Drainage Analyses
Gousie et al. Constructing a DEM from grid-based data by computing intermediate contours
JP2003186393A (en) Altitude value interpolation method and altitude data generated thereby and method for preparing contour map prepared by altitude data and contour map
Xiao-Ping et al. An algorithm for generation of DEMs from contour lines considering geomorphic features
CN114969944A (en) High-precision road DEM construction method
JP4543820B2 (en) Three-dimensional data processing apparatus and program
JP2007264952A (en) Ground-analyzing mesh generation method and ground-analyzing mesh generation program
CN114463494A (en) Automatic topographic feature line extracting algorithm
JP2014085420A (en) Map information processor
Gousie Contours to digital elevation models: grid-based surface reconstruction methods
CN114103127B (en) Drainage basin terrain 3D printing method and device, electronic equipment and storage medium
JP4725909B2 (en) Ground polygon generation method
CN114329575B (en) Contour line encryption method, system, medium, and device based on interpolated ridge line
CN116645482B (en) Large-range ground continuous elevation extraction method
JP6877706B1 (en) Terrain display method, terrain display system, and terrain display program
CN117911640B (en) High-precision river bank slope DEM generation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041005

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20050328

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050715