JP2003185792A - Method of extracting and separating americium from lanthanoid - Google Patents

Method of extracting and separating americium from lanthanoid

Info

Publication number
JP2003185792A
JP2003185792A JP2001386014A JP2001386014A JP2003185792A JP 2003185792 A JP2003185792 A JP 2003185792A JP 2001386014 A JP2001386014 A JP 2001386014A JP 2001386014 A JP2001386014 A JP 2001386014A JP 2003185792 A JP2003185792 A JP 2003185792A
Authority
JP
Japan
Prior art keywords
americium
chitosan
rare earth
dithiocarbamate
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001386014A
Other languages
Japanese (ja)
Inventor
Katsutoshi Inoue
勝利 井上
Katsuichi Tatemori
勝一 館盛
Hirochika Osanawa
弘親 長縄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga University NUC
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Saga University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Saga University NUC filed Critical Japan Atomic Energy Research Institute
Priority to JP2001386014A priority Critical patent/JP2003185792A/en
Publication of JP2003185792A publication Critical patent/JP2003185792A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extractant capable of being manufactured at low cost and having the function of separating americium and rare earth elements, which function is equivalent or superior to the functions of conventional extractants, relating to techniques for effectively extracting, separating and removing americium in high-level radioactive solutions. <P>SOLUTION: A compound (dithiocarbamate type 0,0'-decanoyl chitosan) soluble in such an organic solvent as kerosine and obtained by introducing a functional group of dithiocarbamate into a chitosan derivative (0,0'-decanoyl chitosan or the like) is used as the extractant in the selective extraction of americium. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高レベル放射性廃液
中のアメリシウムを効果的に抽出・分離・除去する技術
に関するものである。
TECHNICAL FIELD The present invention relates to a technique for effectively extracting, separating, and removing americium in a high-level radioactive liquid waste.

【0002】[0002]

【従来の技術】使用済み核燃料の再処理によってウラン
とプルトニウムを分離・回収した後のいわゆる高レベル
放射性廃液中には様々な放射性元素が含まれている。こ
の中で特に問題となるのは半減期が非常に長いアメリシ
ウムなどの超ウラン元素である。これらの選択的除去が
可能となれば高レベル放射性廃液の問題は大幅に低減さ
れる。このため以前より各国において超ウラン元素の分
離・除去の研究が長期間にわたり続けられてきた。
2. Description of the Related Art Various radioactive elements are contained in so-called high-level radioactive liquid waste after separating and recovering uranium and plutonium by reprocessing spent nuclear fuel. Of these, a particular problem is trans-uranium elements such as americium, which has a very long half-life. If the selective removal of these is possible, the problem of high-level radioactive liquid waste is greatly reduced. For this reason, research on the separation and removal of transuranium elements has been continued for a long time in each country.

【0003】ここで問題となるのはアメリシウムなどの
3価の超ウラン元素と化学的性質が類似した3価の希土
類元素の存在である。超ウラン元素をそのまま高レベル
放射性廃液から直接分離できることが最も好ましいが、
それは非常に困難なので、現在各国ともまず超ウラン元
素を希土類元素と共に高レベル放射性廃液から一括して
分離し、それから両者の分離を行うという方策を指向し
ている。
The problem here is the presence of a trivalent rare earth element having similar chemical properties to the trivalent transuranium element such as americium. Most preferably, the transuranic element can be directly separated from the high-level radioactive liquid waste as it is,
Since it is very difficult to do so, each country is currently aiming at a method of first separating transuranic elements together with rare earth elements from high-level radioactive waste liquid, and then separating both.

【0004】超ウラン元素と希土類元素とを一括して抽
出・分離する抽出剤として米国ではオクチル(フェニ
ル)−N,N−ジイソブチルカーバモイルメチレンホス
フィンオキシド[octyl(phenyl)-N,N-diisobutylcarbam
oylmethylene phosphine oxide](CMPO)が開発され、こ
れを用いた分離プロセスであるTRUEX法が開発された。
またフランスではN,N'−ジメチル−N,N’−ジブ
チルテトラデシルマロンアミド[N,N'-dimethyl -N,N'-
dibutyltetradecyl malonamide](DMDBTDMA)のようなジ
アミド型抽出剤の研究が行われ、これを用いる分離プロ
セスであるDIAMEX法が開発された。
In the United States, as an extractant for extracting and separating transuranium elements and rare earth elements all together, octyl (phenyl) -N, N-diisobutylcarbamoylmethylenephosphine oxide [octyl (phenyl) -N, N-diisobutylcarbam]
oylmethylene phosphine oxide] (CMPO) was developed, and the TRUEX method, which is a separation process using this, was developed.
In France, N, N'-dimethyl-N, N'-dibutyltetradecylmalonamide [N, N'-dimethyl -N, N'-
A diamide type extractant such as dibutyltetradecyl malonamide] (DMDBTDMA) was studied, and a separation process using it, the DIAMEX method, was developed.

【0005】またわが国においては最近日本原子力研究
所においてDMDBTDMAを遥かに上回る分離性能を有する抽
出剤であるN,N,N',N'−テトラオクチル−3−オキサペ
ンタン−1,5−ジアミン(N,N,N',N'-tetraoctyl-3-o
xapentane-1,5-diamide)(TODGA)が開発された(館盛勝
一、日本原子力学会誌、42巻、1124−1129
(2000年))。これらの抽出剤では超ウラン元素と希
土類元素とが3M程度の濃度の硝酸水溶液である高レベ
ル放射性廃液中より一括して抽出・分離され、稀薄濃度
の硝酸中に逆抽出される。
In Japan, N, N, N ', N'-tetraoctyl-3-oxapentane-1,5-diamine (which is an extractant having a separation performance far superior to that of DMDBTDMA at the Japan Atomic Energy Research Institute is recently used. N, N, N ', N'-tetraoctyl-3-o
xapentane-1,5-diamide) (TODGA) was developed (Katsuichi Tatemori, Journal of the Atomic Energy Society of Japan, vol. 42, 1124-1129).
(2000)). With these extractants, transuranic elements and rare earth elements are collectively extracted and separated from high-level radioactive waste liquid, which is an aqueous nitric acid solution having a concentration of about 3 M, and back-extracted into dilute nitric acid.

【0006】一方、このような逆抽出液から超ウラン元
素を選択的に抽出することにより希土類元素との分離を
達成する抽出剤の検索も各国で行われてきた。中国のZh
uらはビス(2,4,4'-トリメチルフェニル)ジチオホスフ
ィン酸[bis(2,4,4'-trimethylpentyl)dithiophosphini
c acid]であるCyanex 301 がこのような目的に適して
いることを見出した(Solvent Extraction Ion Exchang
e,14巻、61−68(1996年))。ユーロピウムか
らのアメリシウムの分離係数は6000以上と報告され
ている。しかしこのCyanex 301は空気により容易に酸化
を受け易く、場合によっては1週間程度で酸化されるこ
とにより両者の分離機能を失う。
On the other hand, searches for extractants which achieve separation from rare earth elements by selectively extracting transuranic elements from such back extract have been conducted in various countries. Chinese Zh
u et al. are bis (2,4,4'-trimethylpentyl) dithiophosphini
[C acid], Cyanex 301, is suitable for this purpose (Solvent Extraction Ion Exchang
e, Vol. 14, 61-68 (1996)). The separation factor of americium from europium is reported to be 6000 or more. However, this Cyanex 301 is easily susceptible to oxidation by air, and in some cases it is oxidized in about a week, and loses the separation function between the two.

【0007】一方ドイツのKolarikらは2,6−ジ
(5,6−ジプロピル−1,2,4−トリアジン−3−
イル)−ピリジン[2,6-di(5,6-dipropyl-1,2,4-triazi
n-3-yl)-pyridine](DPTP)がこのような目的に適した抽
出剤であることを見出した(Solvent Extraction Ion E
xchange,17巻、1155−1170(1999年))。
しかしこの抽出剤は合成が煩雑で、抽出中に沈殿物を生
ずるなどの問題点を抱えている。
On the other hand, Kolarik et al. Of Germany et al. Are 2,6-di (5,6-dipropyl-1,2,4-triazine-3-
Ill) -pyridine [2,6-di (5,6-dipropyl-1,2,4-triazi
n-3-yl) -pyridine] (DPTP) was found to be an extractant suitable for such purpose (Solvent Extraction Ion E
xchange, Vol. 17, 1155-1170 (1999)).
However, this extractant has problems that the synthesis is complicated and a precipitate is generated during the extraction.

【0008】[0008]

【発明が解決しようとする課題】本発明はCyanex 301や
DPTPと比較して酸化されにくく、安価なコストで製造が
可能で、しかもこれらと同等かそれ以上のアメリシウム
と希土類元素の分離機能を有する抽出剤を提供すること
である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
It is an object of the present invention to provide an extractant that is less likely to be oxidized than DPTP, can be produced at a low cost, and has a separation function of americium and rare earth elements equal to or higher than these.

【0009】[0009]

【課題を解決するための手段】本発明者は、前記課題を
解決すべく鋭意研究を重ねた結果、ケロシンなどの有機
溶媒に溶解するキトサン誘導体にジチオカーバメイトの
官能基を導入した化合物が3価のアメリシウムを選択的
に抽出することを見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that a compound in which a functional group of dithiocarbamate is introduced into a chitosan derivative soluble in an organic solvent such as kerosene is trivalent. The inventors have found that Americium of A. is selectively extracted, and completed the present invention.

【0010】[0010]

【発明の実施の形態】キトサンは海老や蟹などの甲殻類
の殻の主要成分であるキチンをアルカリ加水分解するこ
とにより得られる粉末状の多糖類である。キトサンはキ
チンと同様に多くの水酸基を有するため、親水性が高
く、そのままでは有機溶媒に溶解しない。しかし例えば
Nishimuraら(Chemistry Letters, 243-246(1990
年))が提案しているように長鎖のアルキル基を有する酸
塩化物を用いてキトサンの水酸基をアシル化することに
より、クロロホルムなどの様々な有機溶媒に可溶なキト
サン誘導体(例えば、O,O'-デカノイルキトサン)を製
造することが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION Chitosan is a powdered polysaccharide obtained by alkaline hydrolysis of chitin, which is a main component of shells of crustaceans such as shrimp and crab. Since chitosan has many hydroxyl groups like chitin, it has high hydrophilicity and cannot be dissolved in an organic solvent as it is. But for example
Nishimura et al. (Chemistry Letters, 243-246 (1990)
)), A chitosan derivative soluble in various organic solvents such as chloroform can be obtained by acylating the hydroxyl group of chitosan with an acid chloride having a long-chain alkyl group (for example, O , O'-decanoyl chitosan) can be produced.

【0011】この場合、アシル化に用いる酸塩化物とし
ては炭素数が7〜25、好ましくは9〜15のものが用
いられる。炭素数が6以下のものでは生成物は大部分有
機溶媒に溶解せず、26以上のものでは生成物が非常に
粘稠になり後の溶媒抽出の操作が困難となる。
In this case, the acid chloride used for acylation has 7 to 25 carbon atoms, preferably 9 to 15 carbon atoms. When the number of carbon atoms is 6 or less, most of the products do not dissolve in the organic solvent, and when the number of carbons is 26 or more, the product becomes very viscous and the subsequent solvent extraction operation becomes difficult.

【0012】さらにこのようなキトサン誘導体の1級ア
ミノ基に様々な官能基を固定化することにより多様な官
能基を有する、有機溶媒に可溶なキトサン誘導体を調製
することができる。例えば2硫化炭素と反応させること
によりジチオカーバメイトの官能基を有するキトサン誘
導体(例えば、ジチオカ−バメイト型O,O'-デカノイル
キトサン)が調製できる。以下に本発明の実施の形態を
さらに詳細に説明する。
Furthermore, by immobilizing various functional groups on the primary amino group of such a chitosan derivative, chitosan derivatives having various functional groups and soluble in organic solvents can be prepared. For example, a chitosan derivative having a dithiocarbamate functional group (eg, dithiocarbamate type O, O′-decanoyl chitosan) can be prepared by reacting with carbon disulfide. Hereinafter, embodiments of the present invention will be described in more detail.

【0013】[0013]

【実施例】(実施例1) ジチオカーバメイトの官能
基を有するケロシンなどの有機溶媒に可溶なキトサン誘
導体の調製方法 ジチオカーバメイトの官能基を有する、ケロシンなどの
有機溶媒に可溶なキトサン誘導体は、例えば平成12年
10月19日に開催された第19回日本溶媒抽出討論会
において報告された下記の方法により調整される(第1
9回溶媒抽出討論会、講演要旨集、21ページ)。ただ
し本発明において使用されるジチオカーバメイトの官能
基を有する、ケロシンなどの有機溶媒に可溶なキトサン
誘導体の調製方法は下記の方法に限定されるものではな
い。
Example 1 Example 1 Sensory function of dithiocarbamate
Induced chitosan soluble in organic solvents such as kerosene having a group
Method for Preparing Conductor Chitosan derivative having a functional group of dithiocarbamate and soluble in an organic solvent such as kerosene is reported in, for example, the following 19th Japan Solvent Extraction Discussion Meeting held on October 19, 2000. Is adjusted by the method of (1st
9th Solvent Extraction Debate, Proceedings, page 21). However, the method for preparing a chitosan derivative having a dithiocarbamate functional group and soluble in an organic solvent such as kerosene used in the present invention is not limited to the following method.

【0014】1) まず最初にキトサンを有機溶媒に可
溶化させるために、酸塩化物を用いてキトサンの水酸基
をアシル化する。この場合に、直接反応させるとキトサ
ンの水酸基の他、1級アミノ基も酸塩化物と反応するた
め、以下のようにあらかじめ無水フタル酸を用いて反応
させることにより、アミノ基の保護を行う。
1) First, in order to solubilize chitosan in an organic solvent, the hydroxyl group of chitosan is acylated with an acid chloride. In this case, when the reaction is carried out directly, not only the hydroxyl group of chitosan but also the primary amino group reacts with the acid chloride. Therefore, the amino group is protected by previously reacting with phthalic anhydride as follows.

【0015】450mlのジメチルホルムアミド中にキ
トサン20gと無水フタル酸52.5gを入れ、130
℃の油浴中で5時間加熱攪拌する。得られる茶色の粘性
液体を少量づつ氷水中に投入し、1時間攪拌して、茶色
の沈殿を得る。濾過後、この沈殿を蒸留水で洗浄し、さ
らに熱エタノール中で30分攪拌する。これを濾過した
後、エタノール、続いてジエチルエーテルで洗浄した
後、減圧乾燥させる。これによりN-フタロイルキトサン
である茶褐色の固体40.8gを得る。
In 450 ml of dimethylformamide, 20 g of chitosan and 52.5 g of phthalic anhydride were added,
Heat and stir in an oil bath at ℃ for 5 hours. The brown viscous liquid obtained is poured little by little into ice water and stirred for 1 hour to obtain a brown precipitate. After filtration, the precipitate is washed with distilled water and further stirred in hot ethanol for 30 minutes. This is filtered, washed with ethanol and then with diethyl ether, and then dried under reduced pressure. This gives 40.8 g of a dark brown solid which is N-phthaloyl chitosan.

【0016】2) この後、得られたN-フタロイルキト
サンの水酸基と長鎖のアルキル基を有する酸無水物とを
反応させることにより以下のようにアシル化反応を行
う。240mlのメタンスルホン酸に30.0gのN-フ
タロイルキトサンを入れ、完全に溶解するまで攪拌す
る。その後窒素雰囲気下で10℃の氷浴中でデカン酸ク
ロリド126gをゆっくりと加える。3時間攪拌した
後、−20℃で12時間放置する。得られた黒色液体を
少しづつ氷水中に投入し、沈殿を生成させる。この沈殿
をろ過し、氷水で洗浄した後、再び氷水中に入れ、希ア
ンモニア水で中和してから再度濾過を行う。再び氷水で
洗浄した後クロロホルムに溶解させ、蒸留水で中性にな
るまで洗浄する。この有機相を無水硫酸マグネシウムで
乾燥させ、減圧蒸留でクロロホルムを除去することによ
り黒色の液体が得られる。この黒色液体をヘキサンに入
れて放置しておくとO,O'−デカノイルN−フタロイルキ
トサン20.5gの黒色沈殿が得られる。
2) Then, the hydroxyl group of the obtained N-phthaloyl chitosan is reacted with an acid anhydride having a long-chain alkyl group to carry out an acylation reaction as follows. To 240 ml of methanesulfonic acid, add 30.0 g of N-phthaloyl chitosan and stir until completely dissolved. Thereafter, 126 g of decanoic acid chloride is slowly added in an ice bath at 10 ° C. under a nitrogen atmosphere. After stirring for 3 hours, the mixture is left at -20 ° C for 12 hours. The black liquid obtained is poured little by little into ice water to form a precipitate. The precipitate is filtered, washed with ice water, put again in ice water, neutralized with diluted ammonia water, and then filtered again. Wash with ice water again, dissolve in chloroform, and wash with distilled water until neutral. The organic phase is dried over anhydrous magnesium sulfate and chloroform is removed by distillation under reduced pressure to obtain a black liquid. When this black liquid is put in hexane and left to stand, a black precipitate of 20.5 g of O, O'-decanoyl N-phthaloyl chitosan is obtained.

【0017】3) この後、以下の反応により1級アミ
ノ基を保護していたN−フタロイル基を脱保護し、目的
物であるO,O'−デカノイルキトサンを得る。250ml
のクロロホルムに先に得られたO,O'−デカノイルN−フ
タロイルキトサン6.5gを入れ完全に溶解させる。続
いて12gのヒドラジンをゆっくりと加え、室温で5時
間攪拌する。析出した茶色の物質を濾過して取り除き、
ろ液を大量の水で中性になるまで洗浄する。この液を無
水硫酸マグネシウムで乾燥させ、クロロホルムを減圧留
去する。さらにヘキサンを加えて目的物であるO,O'−デ
カノイルキトサンの白色固体1.0gを得る。この固体
はクロロホルムやトルエンには溶解するが、ヘキサンや
ケロシンのような脂肪族炭化水素の希釈剤には溶解しな
い。
3) Thereafter, the N-phthaloyl group protecting the primary amino group is deprotected by the following reaction to obtain the desired product O, O'-decanoyl chitosan. 250 ml
6.5 g of the O, O'-decanoyl N-phthaloyl chitosan obtained above was put into the chloroform of and completely dissolved. Subsequently, 12 g of hydrazine is slowly added, and the mixture is stirred at room temperature for 5 hours. The brown substance that has precipitated is filtered off,
Wash the filtrate with plenty of water until neutral. This solution is dried over anhydrous magnesium sulfate, and chloroform is distilled off under reduced pressure. Hexane is further added to obtain 1.0 g of a target white solid of O, O'-decanoylchitosan. This solid dissolves in chloroform and toluene, but not in aliphatic hydrocarbon diluents such as hexane and kerosene.

【0018】4) 次に上記の方法で調製されたO,O'−
デカノイルキトサンに下記の方法によりジチオカーバメ
イトの官能基を導入する。200mlのエタノールに上
記の方法により得られたO,O'−デカノイルキトサン1g
を入れ、完全に溶解するまで攪拌し、5gの二硫化炭素
を加えて1時間攪拌した後、濃アンモニア水3mlをゆっ
くりと加える。37℃で24時間攪拌した後、もう1度
二硫化炭素5gと濃アンモニア水3mlを加える。24時
間攪拌した後、0.1Mの塩酸で液を中和する。減圧留
去によりエタノールと二硫化炭素を取り除いた後、クロ
ロホルムを加え、有機相を中性になるまで水洗する。硫
酸マグネシウムで乾燥させた後、クロロホルムを減圧留
去すると、目的物であるジチオカーバメイト型O,O'−デ
カノイルキトサンの茶色の粘性固体 1.02gが得ら
れる。
4) Next, O, O'- prepared by the above method
The functional group of dithiocarbamate is introduced into decanoyl chitosan by the following method. 1 g of O, O'-decanoyl chitosan obtained by the above method in 200 ml of ethanol
, Stirred until completely dissolved, added with 5 g of carbon disulfide and stirred for 1 hour, and then slowly added 3 ml of concentrated aqueous ammonia. After stirring at 37 ° C. for 24 hours, 5 g of carbon disulfide and 3 ml of concentrated aqueous ammonia are added again. After stirring for 24 hours, the solution is neutralized with 0.1 M hydrochloric acid. After removing ethanol and carbon disulfide by distillation under reduced pressure, chloroform is added and the organic phase is washed with water until it becomes neutral. After drying over magnesium sulfate, the chloroform was distilled off under reduced pressure to obtain 1.02 g of a brown viscous solid of the desired product, dithiocarbamate type O, O'-decanoylchitosan.

【0019】この固体はクロロホルム、トルエンの他、
ヘキサンやケロシンにも溶解した。この固体中の硫黄の
含有量は11.64%(重量%)であり、これは糖鎖の単
量体ユニットへのジチオカーバメイトの官能基の導入量
に換算すると96.0%に相当する。
This solid is, in addition to chloroform and toluene,
It also dissolved in hexane and kerosene. The content of sulfur in this solid was 11.64% (% by weight), which corresponds to 96.0% when converted into the amount of the functional group of dithiocarbamate introduced into the monomer unit of the sugar chain.

【0020】(実施例2) ジチオカーバメイトの官
能基を有する、ケロシンなどの有機溶媒に可溶なキトサ
ン誘導体を用いた3価のアメリシウムの希土類元素から
の抽出・分離 2325ppmの濃度のジチオカーバメイト型O,O'−デ
カノイルキトサンのケロシン溶液2.5mlと50pp
bの濃度のアメリシウム、ならびにとそれぞれ1ppmの
濃度の3価のランタン、セリウム、プラセオジム、ネオ
ジム、サマリウム、ユーロピウム、ガドリニウム、テル
ビウム、ジスプロシウム、ホルミウム、エルビウム、ツ
リウム、イッテルビウム、ルテチウムを含むpH=3~4の
水溶液2.5mlとをフラスコに入れて26℃で15分
間振り混ぜた。
Example 2 Dithiocarbamate Official
Chitosa, which has a functional group and is soluble in organic solvents such as kerosene
Trivalent Americium Rare Earth Element
Extraction and separation of dithiocarbamate type O, O'-decanoyl chitosan at a concentration of 2325 ppm, 2.5 ml and 50 pp of kerosene solution
pH of 3 to 4 containing americium at a concentration of b and trivalent lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium at a concentration of 1 ppm each. 2.5 ml of the above aqueous solution was placed in a flask and shaken at 26 ° C. for 15 minutes.

【0021】抽出後の水相及び有機相中のアメリシウム
の濃度を高純度ゲルマニウム分光計システムを用いて、
それぞれの相のγ線量を測定することにより求めた。ま
た抽出前後の水溶液中の各希土類元素の濃度をICP質量
分析装置により分析した。これらの濃度変化より抽出後
のそれぞれの元素の有機相中の濃度、さらに分配比を求
めた。この場合の分配比とは抽出後の有機相中に存在す
るその元素の濃度と水溶液中に残存しているその元素の
濃度の比である。図1にpH=3および3.55および4
におけるアメリシウム、ならびに希土類元素のジチオカ
ーバメイト型O,O'-デカノイルキトサンに対しての抽出
の分配比の対数値を示す。アメリシウムの値が全ての希
土類元素の値と比較して格段に大きなことが分かる。
The concentration of americium in the aqueous and organic phases after extraction was determined using a high purity germanium spectrometer system.
It was determined by measuring the γ dose of each phase. The concentration of each rare earth element in the aqueous solution before and after extraction was analyzed by an ICP mass spectrometer. From these changes in concentration, the concentration of each element in the organic phase after extraction and the distribution ratio were determined. The partition ratio in this case is the ratio of the concentration of the element existing in the organic phase after extraction to the concentration of the element remaining in the aqueous solution. PH = 3 and 3.55 and 4 in Figure 1.
The logarithmic value of the partition ratio of extraction of americium and rare earth elements to dithiocarbamate type O, O'-decanoylchitosan in. It can be seen that the value of americium is much larger than the values of all rare earth elements.

【0022】同じ抽出実験を7日間おいてもう一度行っ
たが、同じ値が得られた。すなわち7日間経過しても抽
出剤は変質していないことが実証された。希土類元素の
代表としてユーロピウムを選び、各pHにおけるアメリシ
ウムとユーロピウムの分離係数を求めた。ここで分離係
数とは両者の分配比の比である。その結果以下のような
値となった。
The same extraction experiment was performed again after 7 days, but the same value was obtained. That is, it was proved that the extractant was not deteriorated even after 7 days. Europium was selected as a representative rare earth element, and the separation coefficient of americium and europium at each pH was obtained. Here, the separation coefficient is the ratio of the distribution ratio of the two. As a result, the following values were obtained.

【0023】[0023]

【表1】 [Table 1]

【0024】pH=4において1227という大きな値と
なった。先に述べたCyanex301の値ほどではないが、極
めて大きな値である。(比較例1) ジチオカーバメイト型キトサンの調製方
ジチオカーバメイトの官能基をキトサンに直接導入し
て、固体の吸着剤として利用することは可能である。こ
こでこのようなジチオカーバメイト型キトサンは、例え
ば以下に述べるRiccardらの方法(Carbohydrate Researc
h, 104巻、235~243ページ(1984年))により容易に調製さ
れる。
It became a large value of 1227 at pH = 4. Although it is not as high as the Cyanex 301 value mentioned above, it is an extremely large value. (Comparative Example 1) Preparation of dithiocarbamate chitosan
Method It is possible to introduce the functional group of dithiocarbamate directly into chitosan and use it as a solid adsorbent. Here, such a dithiocarbamate type chitosan can be obtained, for example, by the method of Riccard et al. (Carbohydrate Researc) described below.
h, 104, pp. 235-243 (1984)).

【0025】キトサン5.0gを10容量%の酢酸水溶
液100mlに溶解させ、これをメタノールにより4〜5
倍に希釈する。これに二硫化炭素10gを加え、スター
ラーでしばらく攪拌した後、アンモニア水90mlを少し
ずつ加える。その後室温で24時間攪拌した後、生成す
るゲル状物質をろ過し、メタノールで数回洗浄し、さら
にメタノール中にて1昼夜攪拌する。その後ろ過し、ろ
液が無色になるまでメタノールにて洗浄する。次に10
mMの塩酸中で1昼夜攪拌し、ろ液が中性になるまで蒸
留水で洗浄する。これを真空乾燥した後、乳鉢で粉砕す
ると、淡黄色の粉末が得られる。
5.0 g of chitosan was dissolved in 100 ml of a 10% by volume aqueous acetic acid solution, and this was dissolved in methanol for 4-5 times.
Dilute twice. To this, 10 g of carbon disulfide was added, stirred with a stirrer for a while, and 90 ml of ammonia water was added little by little. Then, after stirring at room temperature for 24 hours, the gel-like substance produced is filtered, washed with methanol several times, and further stirred in methanol for one day. Then, it is filtered and washed with methanol until the filtrate becomes colorless. Then 10
Stir for 1 day in mM hydrochloric acid and wash with distilled water until the filtrate is neutral. This is vacuum dried and then ground in a mortar to obtain a pale yellow powder.

【0026】実施例1と同様にキトサンの糖鎖ユニット
当たりに導入されたジチオカーバメイトの官能基を評価
したところ25%であった。(比較例2) ジチオカーバメイト型キトサンを用い
た3価のアメリシウムの希土類元素からの吸着・分離 20mgのジチオカーバメイト型キトサンと50ppb
の濃度のアメリシウム、ならびにとそれぞれ1ppmの濃
度の3価のランタン、セリウム、プラセオジム、ネオジ
ム、サマリウム、ユーロピウム、ガドリニウム、テルビ
ウム、ジスプロシウム、ホルミウム、エルビウム、ツリ
ウム、イッテルビウム、ルテチウムを含むpH=3~4の水
溶液15mlとをフラスコに入れて26℃で15分間振
り混ぜた。
When the functional group of dithiocarbamate introduced per sugar chain unit of chitosan was evaluated in the same manner as in Example 1, it was 25%. (Comparative Example 2) Using dithiocarbamate chitosan
Adsorption and separation of trivalent americium from rare earth elements 20 mg dithiocarbamate chitosan and 50 ppb
PH of 3 to 4 including americium at a concentration of 1 ppm and trivalent lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium at concentrations of 1 ppm each. 15 ml of an aqueous solution was placed in a flask and shaken at 26 ° C. for 15 minutes.

【0027】吸着前後の水溶液中のアメリシウムの濃度
を高純度ゲルマニウム分光計システムを用いてγ線量を
測定することにより求めた。また吸着前後の水溶液中の
各希土類元素の濃度をICP質量分析装置により分析し
た。これらの吸着前後の濃度変化よりそれぞれの元素の
吸着量を求め、さらに分配比を求めた。ここでの分配比
とは1kgの吸着剤に吸着されたその元素の吸着モル数
と水溶液中に残存しているその元素のモル濃度の比であ
る。
The concentration of americium in the aqueous solution before and after the adsorption was determined by measuring the γ dose using a high purity germanium spectrometer system. In addition, the concentration of each rare earth element in the aqueous solution before and after adsorption was analyzed by an ICP mass spectrometer. The adsorption amount of each element was determined from the change in concentration before and after the adsorption, and the distribution ratio was determined. The partition ratio here is the ratio of the number of moles of the element adsorbed by 1 kg of the adsorbent to the molar concentration of the element remaining in the aqueous solution.

【0028】図2にpH=3および4および5におけるア
メリシウムならびに希土類元素のジチオカーバメイト型
キトサンに対しての吸着の分配比の対数値を示す。それ
ぞれのpHにおいてアメリシウムの分配比は希土類元素
の分配比と比較して若干大きくなっている程度であるに
過ぎない。
FIG. 2 shows logarithmic values of adsorption distribution ratios of americium and rare earth elements to dithiocarbamate type chitosan at pH = 3 and 4 and 5. The distribution ratio of americium at each pH is only slightly higher than the distribution ratio of rare earth elements.

【0029】[0029]

【発明の効果】以上の実施例、比較例により本発明で提
案するジチオカーバメイトの官能基を有する、有機溶媒
に可溶なキトサン誘導体を用いた溶媒抽出法が3価のア
メリシウムを希土類元素からの選択的に抽出・分離する
のに有効であることが明らかとなった。
INDUSTRIAL APPLICABILITY The solvent extraction method using a chitosan derivative soluble in an organic solvent, which has a functional group of dithiocarbamate proposed in the present invention by the above Examples and Comparative Examples, is used to extract trivalent americium from rare earth elements It became clear that it is effective for selective extraction and separation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 pH=3および3.55および4におけるアメ
リシウム、ならびに希土類元素の分配比の対数値を示す
(アメリシウムの値が全ての希土類元素の値と比較して
格段に大きなことが分かる)。
FIG. 1 shows the logarithmic values of the distribution ratio of americium and rare earth elements at pH = 3 and 3.55 and 4 (it can be seen that the value of americium is significantly larger than the values of all rare earth elements).

【図2】 pH=3および4および5におけるアメリシウ
ムならびに希土類元素の分配比の対数値を示す(それぞ
れのpHにおいてアメリシウムの分配比は希土類元素の
分配比と比較して若干大きくなっている程度であるに過
ぎない)。
FIG. 2 shows logarithmic values of distribution ratios of americium and rare earth elements at pH = 3 and 4 and 5 (at each pH, the distribution ratio of americium is slightly larger than the distribution ratio of rare earth elements). There is only).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 館盛 勝一 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 (72)発明者 長縄 弘親 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 Fターム(参考) 4D056 AB03 AB10 AC01 BA03 CA01 CA39 DA10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shoichi Tatemori             4 of 2 Shirane, Shikata, Tokai-mura, Naka-gun, Ibaraki Prefecture               Japan Atomic Energy Research Institute Tokai Research Center (72) Inventor Hironaga Naganawa             4 of 2 Shirane, Shikata, Tokai-mura, Naka-gun, Ibaraki Prefecture               Japan Atomic Energy Research Institute Tokai Research Center F-term (reference) 4D056 AB03 AB10 AC01 BA03 CA01                       CA39 DA10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ジチオカーバメイトの官能基を有する、
有機溶媒に可溶なキトサン誘導体を用いることを特徴と
する、アメリシウムと希土類元素とが共存する水溶液中
からのアメリシウムの選択的な溶媒抽出によるアメリシ
ウムの希土類元素からの分離方法。
1. Having a dithiocarbamate functional group,
A method for separating americium from rare earth elements by selective solvent extraction of americium from an aqueous solution in which americium and a rare earth element coexist, characterized by using a chitosan derivative soluble in an organic solvent.
【請求項2】 水溶液のpHを2〜6、好ましくは3〜5
の条件で請求項1の方法によるアメリシウムの希土類元
素からの分離方法。
2. The pH of the aqueous solution is 2 to 6, preferably 3 to 5.
A method for separating americium from a rare earth element according to the method of claim 1 under the conditions of.
JP2001386014A 2001-12-19 2001-12-19 Method of extracting and separating americium from lanthanoid Pending JP2003185792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386014A JP2003185792A (en) 2001-12-19 2001-12-19 Method of extracting and separating americium from lanthanoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386014A JP2003185792A (en) 2001-12-19 2001-12-19 Method of extracting and separating americium from lanthanoid

Publications (1)

Publication Number Publication Date
JP2003185792A true JP2003185792A (en) 2003-07-03

Family

ID=27595280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386014A Pending JP2003185792A (en) 2001-12-19 2001-12-19 Method of extracting and separating americium from lanthanoid

Country Status (1)

Country Link
JP (1) JP2003185792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114195A (en) * 2005-09-26 2007-05-10 National Univ Corp Shizuoka Univ Extraction separation method
CN114471474A (en) * 2022-02-13 2022-05-13 兰州大学 Resin material capable of selectively adsorbing am (III) in high-acid environment and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114195A (en) * 2005-09-26 2007-05-10 National Univ Corp Shizuoka Univ Extraction separation method
CN114471474A (en) * 2022-02-13 2022-05-13 兰州大学 Resin material capable of selectively adsorbing am (III) in high-acid environment and preparation method thereof
CN114471474B (en) * 2022-02-13 2023-09-08 兰州大学 Resin material capable of selectively adsorbing Am (III) in high acid environment and preparation method thereof

Similar Documents

Publication Publication Date Title
US5332531A (en) Extracting metal ions with diphosphonic acid, or derivative thereof
Mathur SYHERGISM OF TRTVALENT ACTINIDES AHD LANTHANIDES
US3655347A (en) Process of extracting copper with certain substituted 2-hydroxybenzophenoximes
US4255394A (en) Process for the separating of rare earths
Wehbie et al. Organization of diglycolamides on resorcinarene cavitand and its effect on the selective extraction and separation of HREEs
GB2116534A (en) Method for enriching and separating heavy hydrogen isotopes from substance streams containing such isotopes by means of isotope exchange
NO312247B1 (en) Use of hydrocarbon-soluble aminomethylene phosphonic acid derivatives for solvent extraction of iron ions aqueous solutions
EP0851035B1 (en) Use of a composition for extracting transition metal and method for extracting transition metal using the same
CN112063862B (en) Extractant for rare earth enrichment and application thereof
JP5526434B2 (en) N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide (DOODA) and TADGA (N, N, N ′, N′-tetraalkyl-diglycolamide) Mutual separation of Am, Cm and Sm, Eu, Gd used together
JP2003185792A (en) Method of extracting and separating americium from lanthanoid
JP3426613B2 (en) Method for separating iron and / or zirconium from trivalent lanthanide and / or actinide
CN102712578B (en) Dialkyldiaza-tetraalkyloctane diamide derivatives useful for the separation of trivalent actinides from lanthanides and process for the preparation thereof
SU1215615A3 (en) Method of purifying solutions of sodium chloride
Amjad et al. Evaluation of effective parameters on the non-aqueous solvent extraction of samarium and gadolinium to n-dodecane/D2EHPA
Shafa-Amry et al. Synthesis and chelation properties of Mannich polymers derived from piperazine and some hydroxy benzaldoximes
CN102471318A (en) Compounds suitable for use as actinide ligands, synthesis and uses thereof
US4275037A (en) Stripping metals from organic solvent with aqueous solution of polymeric phosphates
KR890004520B1 (en) A process for the overall recovery of uranium yttrium thorium and rare earths contained in a phosphate-bearing ore
RU2047562C1 (en) Method for extracting rare-earth and actinide elements from liquid high active wastes
Hidayah et al. Liquid-liquid extraction of cerium using synergist extractant
Akatsu et al. Extraction chromatography in the DHDECMP (XAD-4)-HNO 3 system
JPS63122692A (en) Recovery of acidic organophosphorous compound and/or organic phosphoric ester in aqueous solution
CN114272900B (en) Solid phase extractant, preparation method and application thereof
JP3096731B2 (en) Extraction and separation method for rare earth metal ions

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051021

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912