JP2003185787A - Method for preventing corrosion of structural member for liquid metal coolant - Google Patents

Method for preventing corrosion of structural member for liquid metal coolant

Info

Publication number
JP2003185787A
JP2003185787A JP2001388855A JP2001388855A JP2003185787A JP 2003185787 A JP2003185787 A JP 2003185787A JP 2001388855 A JP2001388855 A JP 2001388855A JP 2001388855 A JP2001388855 A JP 2001388855A JP 2003185787 A JP2003185787 A JP 2003185787A
Authority
JP
Japan
Prior art keywords
liquid metal
structural material
dissolved oxygen
oxygen concentration
metal coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001388855A
Other languages
Japanese (ja)
Other versions
JP3838909B2 (en
Inventor
Hisashi Nobunaga
尚志 延永
Kinya Kamata
勤也 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2001388855A priority Critical patent/JP3838909B2/en
Publication of JP2003185787A publication Critical patent/JP2003185787A/en
Application granted granted Critical
Publication of JP3838909B2 publication Critical patent/JP3838909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably and continuously form a protective film having soundness to liquid metal on the surface of a structural member making contact with the liquid metal and to prevent corrosion even in the case of the liquid metal having high corrosion properties to the structural member. <P>SOLUTION: The concentration of oxygen dissolved in the liquid metal 1 is computed from measurements made with a dissolved oxygen concentration measuring sensor 13 and a temperature sensor 15. When the measurement drops below preset a lower control limit, the concentration of the dissolved oxygen is increased through an oxidation process; when the measurement rises above an upper control limit, the concentration of the dissolved oxygen is reduced through a reduction process. Thus, the protective film having soundness to the liquid metal 1 is stably and continuously formed on the surface of the structural member making contact with the liquid metal 1, to prevent corrosion of the structural member 2. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液体金属冷却材用
構造材の腐食防止方法に関するもので、特に、液体金属
と接触する構造材表面に液体金属に対して健全性を有す
る保護被膜を安定的、かつ、持続的に形成させる方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing corrosion of a structural material for a liquid metal coolant, and more particularly, to stabilize a protective coating having soundness against the liquid metal on the surface of the structural material in contact with the liquid metal. The present invention relates to a method of forming the target continuously.

【0002】[0002]

【従来の技術】液体金属は、熱や放射線に対して安定で
あり、また、熱伝導性が優れていることから冷却材とし
て使用されている。その代表的な例が高速増殖炉の液体
Na金属である。このような目的に用いられる金属は、
主として、Na,Na−K,Li,Bi,Pbなどの低
融点金属であるが、こうした液体金属を冷却材として使
用する場合、液体金属による機器や配管などの構造材の
腐食が問題となる。
Liquid metal is used as a coolant because it is stable against heat and radiation and has excellent thermal conductivity. A typical example thereof is liquid Na metal of a fast breeder reactor. The metals used for such purposes are
It is mainly a low melting point metal such as Na, Na-K, Li, Bi, Pb, etc., but when such a liquid metal is used as a coolant, the corrosion of structural materials such as equipment and piping due to the liquid metal becomes a problem.

【0003】液体金属による腐食は、水溶液などの腐食
にみられる電気化学過程ではなく、金属元素の液体金属
中への溶解が主原因である。したがって、冷却材として
使われる液体金属がその熱回収のために、高温部と低温
部を循環する場合、高温部で構造材から溶解した元素が
低温部で過飽和となり析出する、いわゆる質量移動現象
が生じる。
Corrosion by a liquid metal is mainly caused by dissolution of a metal element in a liquid metal, not by an electrochemical process which is seen in corrosion of an aqueous solution. Therefore, when the liquid metal used as a coolant circulates in the high temperature part and the low temperature part for the purpose of recovering its heat, there is a so-called mass transfer phenomenon in which the element dissolved from the structural material in the high temperature part becomes supersaturated and precipitates in the low temperature part. Occurs.

【0004】この質量移動は、繰り返され、機器、配管
などの構造材は腐食され続け、低温部では不純物が析出
し、小口径配管などの液体金属流路を閉塞させる恐れも
ある。溶解速度を支配するのは、高温部での不飽和度に
よるが、ループの構成、形状などの装置の状況、流量、
温度、温度差、表面粗さ、不純物濃度などの多種多様な
条件で左右される。中でも液体金属中の不純物、特に、
溶解酸素濃度は、腐食現象および速度に大きく影響を及
ぼすことが知られている。
This mass transfer is repeated, structural materials such as equipment and pipes continue to be corroded, impurities are precipitated in a low temperature part, and liquid metal flow paths such as small diameter pipes may be blocked. The rate of dissolution is governed by the degree of unsaturation at the high temperature part, but the device configuration such as loop configuration and shape, flow rate,
It depends on various conditions such as temperature, temperature difference, surface roughness, and impurity concentration. Among them, impurities in liquid metal, especially,
It is known that the dissolved oxygen concentration has a great influence on the corrosion phenomenon and rate.

【0005】高速増殖炉のNa冷却材の場合、Naの酸
化物標準生成自由エネルギー(酸素ポテンシャル)の絶
対値は、鋼材の主要元素(Fe,Ni,Cr)や、一般
的な合金元素の酸化物標準生成自由エネルギーの絶対値
より大きい。すなわち、液体Naと接触している構造材
表面は還元され、Naは酸化される傾向にある。
In the case of the Na coolant of the fast breeder reactor, the absolute value of the standard free energy of formation of oxides of Na (oxygen potential) is the oxidation of the main elements (Fe, Ni, Cr) of the steel and general alloy elements. It is larger than the absolute value of the standard free energy of formation. That is, the surface of the structural material that is in contact with liquid Na tends to be reduced and Na tends to be oxidized.

【0006】したがって、構造材の腐食条件は、本質的
にそれら主要元素の液体Na中への溶解度によって決定
される。構造材主要元素の液体Na中への溶解度は比較
的小さいことが知られているが、液体Na中の溶解酸素
濃度の増加とともに腐食速度が増大することが分かって
いる。構造材がステンレス鋼の場合、成分元素のCr,
Niが高温部で溶出し、低温部で析出する。そして、N
a中の酸素濃度が高いとCrの溶出が促進されると言わ
れている。
Therefore, the corrosion conditions of structural materials are essentially determined by the solubilities of these major elements in liquid Na. It is known that the solubility of the main element of the structural material in the liquid Na is relatively small, but it has been known that the corrosion rate increases as the concentration of dissolved oxygen in the liquid Na increases. When the structural material is stainless steel, the constituent elements Cr,
Ni elutes in the high temperature part and precipitates in the low temperature part. And N
It is said that the elution of Cr is promoted when the oxygen concentration in a is high.

【0007】したがって、構造材の腐食防止は、液体金
属冷却材の実用化にとって非常に重要となってくる。
Therefore, the prevention of corrosion of structural materials is very important for the practical use of liquid metal coolants.

【0008】従来の液体金属冷却材用構造材の腐食防止
方法については、その方法の1つにコールドトラップ法
がある。この方法は、金属液体中の不純物を除去する精
製法の一種であり、不純物の溶解度が低温で小さくなる
性質を利用して、金属液体中の酸素、炭素などの不純物
を低温下でいろいろな化合物の形(反応生成物)で析出
除去し、分離回収する方法である。Naの場合、コール
ドトラップでNa中の溶解酵素濃度を10ppm以下程
度まで低減でき、ステンレス鋼及びFe,Cr,Ni,
Co,Moなどとの両立性を図っている。
As a conventional method for preventing corrosion of a structural material for a liquid metal coolant, one of the methods is a cold trap method. This method is one of the purification methods for removing impurities in metal liquids, and utilizes the property that the solubility of impurities decreases at low temperatures, making it possible to remove impurities such as oxygen and carbon in metal liquids from various compounds at low temperatures. This is a method of separating and recovering by removing in the form of (reaction product). In the case of Na, the concentration of dissolved enzyme in Na can be reduced to about 10 ppm or less by cold trap, and stainless steel and Fe, Cr, Ni,
Compatibility with Co, Mo, etc. is aimed at.

【0009】また、別の方法として、ホットトラップ法
がある。この方法は、コールドトラップで得られる純度
よりも更に高い純度を得たい時に用いられ、高温で酸素
等の不純物とよく結合する金属ゲッターに液体金属を通
して、液体金属中の不純物を金属ゲッターと反応させて
ゲッター中に固定除去する方法である。例えば、液体N
a中の酸素に対して、酸化ナトリウムよりも安定な酸化
物を生成する金属として、Ti,Zr及びTi−Zr合
金などが用いられ、約600℃の液体Na中の溶解酸素
濃度を数ppm以下に管理できている。
Another method is a hot trap method. This method is used when it is desired to obtain a higher purity than that obtained by a cold trap, and the liquid metal is passed through a metal getter that binds well to impurities such as oxygen at high temperature to cause impurities in the liquid metal to react with the metal getter. It is a method of fixing and removing in the getter. For example, liquid N
Ti, Zr, and Ti-Zr alloys are used as metals that generate oxides that are more stable than oxygen in a, and the dissolved oxygen concentration in liquid Na at about 600 ° C is several ppm or less. You can manage it.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
液体金属冷却材用構造材の腐食防止方法は、液体金属中
の溶解酸素濃度の上限を制御するものである。しかし、
このような腐食防止方法は、液体金属の種類によっては
以下のような不都合を生じる。
However, the conventional method for preventing corrosion of a structural material for a liquid metal coolant controls the upper limit of the concentration of dissolved oxygen in the liquid metal. But,
Such a corrosion prevention method causes the following inconveniences depending on the type of liquid metal.

【0011】例えば、液体金属にPb−Biを使用した
場合、液体Pb−Biに対する構造材主要元素の溶解度
が大きく、液体Pb−Bi中の溶解酸素濃度を減少させ
るだけでは構造材の腐食を防止することが困難であると
いう問題が生じる。すなわち、溶解酸素濃度が小さ過ぎ
ても反って構造材の腐食を加速させるという問題があ
る。
For example, when Pb-Bi is used as the liquid metal, the solubility of the main element of the structural material in the liquid Pb-Bi is large, and corrosion of the structural material is prevented only by reducing the dissolved oxygen concentration in the liquid Pb-Bi. It is difficult to do so. That is, there is a problem that even if the dissolved oxygen concentration is too small, the structure material is warped to accelerate the corrosion of the structural material.

【0012】上記の問題点を回避するため、構造材の溶
解速度を減少させる方法として、インヒビターの添加に
より構造材表面に保護被膜を形成させる方法があるが、
この場合、保護被膜が厚く成長し過ぎると膜剥がれや熱
衝撃によるクラックが発生し、こうした部分を基点に局
部的に腐食が進行するといった問題があった。したがっ
て、Pb,Biのような構造材主要元素の溶解度が大き
い液体金属の冷却材への適用は、従来技術では十分な腐
食防止ができていなかった。
In order to avoid the above problems, there is a method of forming a protective film on the surface of the structural material by adding an inhibitor as a method of decreasing the dissolution rate of the structural material.
In this case, if the protective film grows too thick, film peeling or cracking due to thermal shock occurs, and there is a problem that corrosion locally progresses from such a portion as a starting point. Therefore, the application of a liquid metal, which has a large solubility for the main structural elements such as Pb and Bi, to a coolant has not been able to sufficiently prevent corrosion in the prior art.

【0013】そこで、本発明は、このような問題点を解
決するもので、その目的とするところは、液体金属中の
溶解酸素濃度を制御することにより、液体金属と接触す
る構造材表面に液体金属に対して健全性を有する保護皮
膜を安定的、かつ、持続的に形成させ、構造材に対して
高い腐食性を示す液体金属においても腐食を防止するこ
とが可能な液体金属冷却材用構造材の腐食防止方法を提
供することにある。また、上記の問題解決ばかりでなく
新たなデバイスの創造に寄与するところにある。
Therefore, the present invention solves such a problem, and an object of the present invention is to control the concentration of dissolved oxygen in the liquid metal so that the liquid on the surface of the structural material in contact with the liquid metal is controlled. Structure for liquid metal coolant that can stably and continuously form a protective film having soundness to metal and prevent corrosion even in liquid metal showing high corrosiveness to structural materials It is to provide a method of preventing corrosion of a material. In addition to solving the above problems, it also contributes to the creation of new devices.

【0014】[0014]

【課題を解決するための手段】上記目的は、下記(1)
〜(8)により達成される。すなわち、 (1)本発明は、液体金属を収納し、冷却を行う液体金
属冷却材用構造材において、前記液体金属と接触する前
記液体金属冷却材用構造材表面に、少なくとも前記液体
金属冷却材用構造材の構成元素からなる酸化被膜を形成
させ、その酸化被膜の安定性および持続性を前記液体金
属中の溶解酸素濃度により制御することを特徴とする液
体金属冷却材用構造材の腐食防止方法である。
[Means for Solving the Problems] The above-mentioned object is as follows (1)
~ (8) is achieved. That is, (1) In the present invention, in a structural material for a liquid metal coolant that stores and cools a liquid metal, at least the liquid metal coolant is provided on the surface of the structural material for the liquid metal coolant that is in contact with the liquid metal. Of a structural material for a liquid metal coolant, which comprises forming an oxide film composed of the constituent elements of the structural material for a liquid metal, and controlling the stability and durability of the oxide film by the concentration of dissolved oxygen in the liquid metal. Is the way.

【0015】(2)本発明は、溶解酸素濃度測定センサ
ーと温度センサーを前記液体金属冷却材用構造材に挿入
配置し、前記溶解酸素濃度測定センサーの測定値と前記
温度センサーの測定値から前記液体金属中の溶解酸素濃
度を演算し、この演算された溶解酸素濃度と予め設定し
た溶解酸素濃度とを比較し、管理下限以下になった時、
酸化処理により溶解酸素濃度を増加させ、そして、管理
上限以上になった時、還元処理により溶解酸素濃度を減
少させ、これによって予め設定した溶解酸素濃度を維持
することを特徴とする上記(1)記載の液体金属冷却材
用構造材の腐食防止方法である。
(2) In the present invention, a dissolved oxygen concentration measuring sensor and a temperature sensor are inserted and arranged in the structural material for a liquid metal coolant, and the measured value of the dissolved oxygen concentration measuring sensor and the measured value of the temperature sensor are used to determine the above. The dissolved oxygen concentration in the liquid metal is calculated, and the calculated dissolved oxygen concentration is compared with the preset dissolved oxygen concentration.
The dissolved oxygen concentration is increased by the oxidation treatment, and when it exceeds a control upper limit, the dissolved oxygen concentration is reduced by the reduction treatment, thereby maintaining the preset dissolved oxygen concentration (1). It is a method of preventing corrosion of a structural material for a liquid metal coolant described.

【0016】(3)本発明は、前記液体金属が本質的に
鉛(Pb)、ビスマス(Bi)、鉛ビスマス合金(Pb
−Bi)であることを特徴とする上記(1)記載の液体
金属冷却材用構造材の腐食防止方法である。
(3) In the present invention, the liquid metal is essentially lead (Pb), bismuth (Bi), lead-bismuth alloy (Pb).
-Bi) is the method for preventing corrosion of a structural material for a liquid metal coolant according to the above (1).

【0017】(4)本発明は、前記液体金属の温度範囲
が前記液体金属の融点〜650℃であることを特徴とす
る上記(1)、(2)又は(3)記載の液体金属冷却材
用構造材の腐食防止方法である。
(4) The liquid metal coolant according to the above (1), (2) or (3), wherein the temperature range of the liquid metal is from the melting point of the liquid metal to 650 ° C. This is a method of preventing corrosion of structural materials for construction.

【0018】(5)本発明は、前記液体金属冷却材用構
造材が低合金鋼、特殊鋼、炭素鋼であることを特徴とす
る上記(1)記載の液体金属冷却材用構造材の腐食防止
方法である。
(5) In the present invention, the structural material for a liquid metal coolant is a low alloy steel, a special steel or a carbon steel. Corrosion of the structural material for a liquid metal coolant according to the above (1). It is a prevention method.

【0019】(6)本発明は、前記溶解酸素濃度測定セ
ンサーが固体電解質酸素センサーであることを特徴とす
る上記(1)乃至(2)記載の液体金属冷却材用構造材
の腐食防止方法である。
(6) The present invention provides the method for preventing corrosion of a structural material for a liquid metal coolant according to the above (1) or (2), wherein the dissolved oxygen concentration measuring sensor is a solid electrolyte oxygen sensor. is there.

【0020】(7)本発明は、前記酸化処理の酸化剤が
酸素ガス、水蒸気、酸化鉛、酸化ビスマスからなる群か
ら選択された少なくとも1種で構成される上記(2)記
載の液体金属冷却材用構造材の腐食防止方法である。
(7) The present invention provides the liquid metal cooling according to the above (2), wherein the oxidizing agent for the oxidation treatment is at least one selected from the group consisting of oxygen gas, water vapor, lead oxide and bismuth oxide. This is a method of preventing corrosion of structural materials for lumber.

【0021】(8)本発明は、前記還元処理の還元剤が
水素ガス、炭素、A1,Zr,Ti,Mgからなる群か
ら選択された少なくとも1種で構成される上記(2)記
載の液体金属冷却材用構造材の腐食防止方法である。
(8) The present invention provides the liquid according to (2) above, wherein the reducing agent for the reduction treatment is composed of at least one selected from the group consisting of hydrogen gas, carbon, A1, Zr, Ti and Mg. This is a method for preventing corrosion of structural materials for metal coolants.

【0022】[0022]

【発明の実施の形態】以下、本発明の液体金属冷却材用
構造材の腐食防止方法の実施の形態について説明する。
本発明の液体金属冷却材用構造材の腐食防止方法におい
ては、液体金属中の溶解酸素濃度を制御することによ
り、液体金属と接触する構造材表面に液体金属に対して
健全性を有する保護被膜を安定的、かつ、持続的に形成
させ、構造材に対して高い腐食性を示す液体金属におい
ても腐食を防止する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the method for preventing corrosion of a structural material for a liquid metal coolant according to the present invention will be described below.
In the method for preventing corrosion of a structural material for a liquid metal coolant of the present invention, a protective coating having soundness to the liquid metal on the surface of the structural material in contact with the liquid metal by controlling the concentration of dissolved oxygen in the liquid metal. Is stably and continuously formed, and corrosion is prevented even in a liquid metal that is highly corrosive to structural materials.

【0023】液体金属中の溶解酸素濃度は、溶解酸素濃
度測定センサーの測定値と温度センサーの測定値から演
算し、その演算した値をフィードバックし、溶解酸素濃
度が予め設定された管理下限以下になった時、酸化処理
により自動的に溶解酸素濃度を増加させ、そして、予め
設定された管理上限以上になった時、還元処理により自
動的に溶解酸素濃度を減少させることにより液体金属中
の溶解酸素濃度を制御し、保護被膜を形成、維持させ
る。
The dissolved oxygen concentration in the liquid metal is calculated from the measured value of the dissolved oxygen concentration measuring sensor and the measured value of the temperature sensor, and the calculated value is fed back to keep the dissolved oxygen concentration below a preset control lower limit. When it reaches the limit, the dissolved oxygen concentration is automatically increased by the oxidation treatment, and when it exceeds the preset control upper limit, the dissolved oxygen concentration is automatically reduced by the reduction treatment to dissolve in the liquid metal. The oxygen concentration is controlled to form and maintain a protective film.

【0024】次に、液体金属中の溶解酸素濃度と構造材
の酸化被膜の関係に関して説明する。熱力学的観点、す
なわち、酸化物の標準生成自由エネルギーの比較から、
本発明に係る主な液体金属成分および構造材主要成分の
酸化物の安定性の序列は、酸化ケイ素>酸化クロム>酸
化モリブデン>酸化鉄>酸化鉛>酸化ビスマスの順であ
る。これを基に液体金属及び構造材主要成分と酸素との
相互作用による腐食性について、液体金属中の溶解酸素
濃度レベルにより大きくは次の3つの場合に分類され
る。すなわち、 (a) 液体金属の溶解酸素濃度レベルが十分に低く、
鉄が酸化されないような条件では、液体金属化に鉄が溶
解し、構造材の腐食は進行する。
Next, the relationship between the concentration of dissolved oxygen in the liquid metal and the oxide film of the structural material will be described. From the thermodynamic point of view, that is, the standard free energy of formation of oxides,
The order of stability of the oxides of the main liquid metal component and the main component of the structural material according to the present invention is in the order of silicon oxide> chromium oxide> molybdenum oxide> iron oxide> lead oxide> bismuth oxide. Based on this, the corrosiveness due to the interaction between the liquid metal and the main component of the structural material and oxygen is roughly classified into the following three cases according to the concentration level of dissolved oxygen in the liquid metal. That is, (a) the dissolved oxygen concentration level of the liquid metal is sufficiently low,
Under the condition that iron is not oxidized, iron is dissolved in the liquid metallization and corrosion of the structural material proceeds.

【0025】(b) 液体金属中の溶解酸素濃度レベル
が高くなり、鉄が酸化されるような条件では、酸化鉄、
酸化クロム、鉄クロム複合酸化物等の酸化被膜が生成さ
れ、これらの酸化被膜は液体金属中で安定な保護被膜と
なり腐食が防止される。
(B) Under the condition that the concentration level of dissolved oxygen in the liquid metal becomes high and iron is oxidized, iron oxide,
Oxide coatings such as chromium oxide and iron-chromium composite oxides are formed, and these oxide coatings serve as stable protective coatings in liquid metal to prevent corrosion.

【0026】(c) 液体金属中の溶解酸素濃度レベル
が更に高くなり、鉛が酸化されるような条件では、酸化
鉛のスラグが液体金属中に発生し、冷却機能の悪化、配
管のプラグ等を生じる。更に酸化被膜が厚く成長し過ぎ
て膜剥がれや熱衝撃によるクラックが発生し易くなり、
こうした部分を基点に局部腐食が進行する。
(C) Under the condition that the concentration of dissolved oxygen in the liquid metal is further increased and lead is oxidized, slag of lead oxide is generated in the liquid metal, deterioration of cooling function, plug of pipe, etc. Cause Furthermore, the oxide film grows too thick, and film peeling and cracks due to thermal shock tend to occur,
Local corrosion proceeds from such a point as a base point.

【0027】したがって、本発明の液体金属冷却材用構
造材の腐食防止方法においては、基本的に上記(b)の
条件、すなわち、鉄は酸化されて、鉛は酸化されないよ
うな溶解酸素濃度に制御すればよいことになる。
Therefore, in the method of preventing corrosion of a structural material for a liquid metal coolant according to the present invention, basically, the above condition (b) is adopted, that is, the dissolved oxygen concentration is such that iron is oxidized and lead is not oxidized. It should be controlled.

【0028】本発明の液体金属冷却材用構造材の腐食防
止方法における液体金属としては、Pb系金属、Bi系
金属、Pb−Bi系合金が挙げられる。
Examples of the liquid metal in the method of preventing corrosion of a structural material for a liquid metal coolant of the present invention include Pb-based metals, Bi-based metals and Pb-Bi-based alloys.

【0029】つぎに、液体金属冷却材用構造材について
は、低合金鋼、特殊鋼、炭素鋼が挙げられる。特殊鋼の
代表的なものとしては、Cr−Mo系鋼、フェライトあ
るいはマルテンサイト系Cr含有鋼、オーステナイト鋼
が好ましい。Pb,Biに対するNiの溶解度が高いた
め、Niを多く含んだ鋼材は好ましくない。
Next, examples of the structural material for liquid metal coolant include low alloy steel, special steel and carbon steel. As typical examples of the special steel, Cr-Mo steel, ferrite or martensite Cr-containing steel, and austenitic steel are preferable. Since the solubility of Ni in Pb and Bi is high, a steel material containing a large amount of Ni is not preferable.

【0030】溶解酸素濃度測定センサーとしては,固体
電解質酸素センサーが使用される。
A solid electrolyte oxygen sensor is used as the dissolved oxygen concentration measuring sensor.

【0031】本発明で使用し得る固体電解質としては、
イットリア(Y2 3 ) 添加ジルコニア(ArO2 )、
カルシア(CaO)添加ジルコニア、酸化ガドリニウム
(Gd2 3 ) 添加ジルコニア、酸化スカンジウム(S
2 3 ) 添加ジルコニア、酸化イッテルピウム(Yb
2 3 ) 添加ジルコニア、トリア・イットリア(ThO
2 −Y2 3 ) 、ハフニア・イットリア(HfO2 −Y
2 3 ) などが挙げられる。
The solid electrolyte usable in the present invention includes:
Yttria (Y 2 O 3 ) added zirconia (ArO 2 ),
Calcia (CaO) added zirconia, Gadolinium oxide (Gd 2 O 3 ) added zirconia, scandium oxide (S
c 2 O 3 ) -added zirconia, ytterpium oxide (Yb
2 O 3 ) -added zirconia, Tria yttria (ThO
2 -Y 2 O 3), hafnia-yttria (HfO 2 -Y
2 O 3 ) and the like.

【0032】また、前記固体電解質センサーを構成する
標準極には、In/In2 3 、Pb/PbO系、Bi
/Bi2 3 系、Sn/SnO2 系、Ga/Ga2 3
系等が挙げられ、標準極と液体金属のそれぞれに接続さ
れるリード線は、Mo,Ta,Ir,Os,W,Cなど
が挙げられる。
The standard electrodes constituting the solid electrolyte sensor are In / In 2 O 3 , Pb / PbO system, Bi.
/ Bi 2 O 3 system, Sn / SnO 2 system, Ga / Ga 2 O 3
Examples of the lead wire connected to each of the standard electrode and the liquid metal include Mo, Ta, Ir, Os, W, and C.

【0033】一方、温度センサーは、測温用熱電対や放
射温度計等の接触式、非接触式タイプのものが挙げられ
る。測温用熱電対を使用する場合、固体電解質酸素セン
サーを組み込んだ一体型の酸素プローブで構成してもよ
い。
On the other hand, the temperature sensor may be a contact type or non-contact type such as a thermocouple for temperature measurement or a radiation thermometer. When the thermocouple for temperature measurement is used, it may be configured with an integrated oxygen probe incorporating a solid electrolyte oxygen sensor.

【0034】溶解酸素濃度は、固体電解質センサーの起
電力測定値と温度センサーの測定値から決定することが
できる。
The dissolved oxygen concentration can be determined from the measured value of the electromotive force of the solid electrolyte sensor and the measured value of the temperature sensor.

【0035】本発明の酸化処理の酸化剤としては、一つ
には、固体酸化剤で、これには使用液体金属である酸化
鉛、酸化ビスマスの1種または2種を混合して用いるこ
とができる。また、本発明の固体酸化剤の形状、寸法等
は、特に限定されず、例えば、形状に関しては、円柱
状、角柱状、円筒状、平板状、ハニカム状、顆粒状、ペ
レット状、粉末状等のあらゆる形状のものが可能であ
り、その大きさもあらゆる大きさのものが可能である。
二つには、気体酸化剤で、酸素ガス、Arガス−酸素ガ
ス、Arガス−水蒸気の混合ガス等の酸化性ガスが挙げ
られる。本発明における酸化処理方法としては、基本的
には前記酸化剤により液体金属中の溶解酸素濃度を増加
させれば良く、具体的には、例えば、次の4つの酸化処
理方法が挙げられる。すなわち、 (a) ロッド状等の固体酸化剤を金属中に出し入れす
る。
As the oxidizing agent for the oxidation treatment of the present invention, one is a solid oxidizing agent, and it is possible to use one or two kinds of liquid oxides of lead oxide and bismuth oxide. it can. Further, the shape, size, etc. of the solid oxidizer of the present invention are not particularly limited, and for example, regarding the shape, columnar shape, prismatic shape, cylindrical shape, flat plate shape, honeycomb shape, granule shape, pellet shape, powder shape, etc. Can be of any shape, and can be of any size.
The second is a gaseous oxidant, and examples thereof include oxidizing gases such as oxygen gas, Ar gas-oxygen gas, and mixed gas of Ar gas-steam. As the oxidation treatment method in the present invention, basically, the concentration of dissolved oxygen in the liquid metal may be increased by the above-mentioned oxidizing agent, and specifically, the following four oxidation treatment methods may be mentioned. That is, (a) a rod-shaped solid oxidizer is put into and taken out of the metal.

【0036】(b) 粉末状、顆粒状等の固定酸化剤を
液体金属中に適量添加する。
(B) An appropriate amount of powdered or granular fixed oxidant is added to the liquid metal.

【0037】(c) 酸化処理装置の液体金属流路内に
予めボール状、ペレット状、ハニカム状等の固体酸化剤
を配置しておき、液体金属を固体酸化剤に接触させなが
ら通過させる。
(C) A solid oxidizer having a ball shape, a pellet shape, a honeycomb shape, or the like is previously arranged in the liquid metal flow path of the oxidation treatment apparatus, and the liquid metal is passed while being in contact with the solid oxidizer.

【0038】(d) 液体金属中に気体酸化剤を注入す
る。
(D) Injecting a gaseous oxidizer into the liquid metal.

【0039】また、本発明の酸化処理の装置は特に限定
されず、例えば、ロッド状等の固体酸化剤を液体金属中
に出し入れするような方法であれば、出し入れする機構
などを具備すればよい。また、気体酸化剤を注入するよ
うな場合には、流量計、供給バルブ等を具備すればよ
い。さらに、固体酸化剤を液体金属流路内に装入させて
おき、液体金属を通過する際に酸化させるような場合に
は、酸化処理装置自体に駆動系制御部品を具備しないで
も酸化処理装置前後に配置したバルブの調整のみで酸化
処理を制御することも可能である。
Further, the apparatus for the oxidation treatment of the present invention is not particularly limited, and, for example, in the case of a method of putting a rod-shaped solid oxidizer into and out of a liquid metal, a mechanism for putting in and out may be provided. . When injecting a gaseous oxidant, a flow meter, a supply valve, etc. may be provided. Further, when a solid oxidizer is charged in the liquid metal flow path and is oxidized when passing through the liquid metal, the oxidation treatment apparatus itself may be provided with no drive system control parts before and after the oxidation treatment apparatus. It is also possible to control the oxidation treatment only by adjusting the valve arranged at.

【0040】前記還元処理の還元剤としては、気体還元
剤として水素ガス、Arガス−水素ガス、Arガス−水
素ガス−水蒸気の混合ガス等の還元性ガスが挙げられ
る。また、固体還元剤として、炭素、Al,Zr,T
i,Mgなどが挙げられる。なお、本発明の固体還元剤
の炭素、Al,Zr,Ti,Mgなどの形状、寸法など
は、特に限定されるものではない。本発明の還元方法と
しては、基本的には、前記還元剤により液体金属中の溶
解酸素濃度を減少させれば良く、具体的には、次の3つ
の還元処理方法が挙げられる。すなわち、 (a) ロッド状等の固体還元剤を金属中に出し入れす
る。
Examples of the reducing agent for the reduction treatment include reducing gases such as hydrogen gas, Ar gas-hydrogen gas, and mixed gas of Ar gas-hydrogen gas-steam as a gas reducing agent. Further, as a solid reducing agent, carbon, Al, Zr, T
Examples thereof include i and Mg. The shape and dimensions of carbon, Al, Zr, Ti, Mg, etc. of the solid reducing agent of the present invention are not particularly limited. As the reduction method of the present invention, basically, the concentration of dissolved oxygen in the liquid metal may be reduced by the reducing agent, and specifically, the following three reduction treatment methods may be mentioned. That is, (a) a rod-shaped solid reducing agent is put into and taken out of the metal.

【0041】(b) 還元処理装置の液体金属流路内に
予めボール状、ペレット状、ハニカム状等の固体還元剤
を配置しておき、液体金属を固体還元剤に接触させなが
ら通過させる。
(B) A solid reducing agent having a ball shape, a pellet shape, a honeycomb shape or the like is previously arranged in the liquid metal flow path of the reduction treatment apparatus, and the liquid metal is passed while being in contact with the solid reducing agent.

【0042】(c) 液体金属中に気体酸化剤を注入す
る。
(C) Injecting a gaseous oxidizer into the liquid metal.

【0043】また、本発明の還元処理の装置は前記酸化
処理の装置と同様に特に限定されず、処理方法等に応じ
て装置構成を決定すればよい。その場合、必要に応じて
還元処理装置に駆動系制御部品等を具備して制御すれば
よい。また、液体金属中に気体還元剤を注入する場合
は、還元処理で生成した水蒸気をループ外に放出させる
機構を具備しておくことが好ましい。
The reduction treatment apparatus of the present invention is not particularly limited as in the oxidation treatment apparatus, and the apparatus configuration may be determined according to the treatment method and the like. In that case, the reduction processing apparatus may be provided with a drive system control component or the like as needed for control. Further, when injecting the gas reducing agent into the liquid metal, it is preferable to have a mechanism for releasing the water vapor generated by the reduction treatment to the outside of the loop.

【0044】次に、本発明の液体金属冷却材用構造材の
腐食防止方法において、ループ系における酸化処理装置
と還元処理装置の配置は、例えば、以下のような配置が
挙げられる。すなわち、 (a) 主幹の液体金属ループラインの途中に直接酸化
処理装置と還元処理装置を配置する。
Next, in the method for preventing corrosion of a structural material for a liquid metal coolant according to the present invention, the arrangement of the oxidation treatment device and the reduction treatment device in the loop system may be the following arrangements, for example. That is, (a) A direct oxidation treatment device and a reduction treatment device are arranged in the middle of the main liquid metal loop line.

【0045】(b) 主幹の液体金属ループラインに溶
解酸素濃度調整タンクを配置し、このタンクに酸化処理
装置と還元処理装置を配置する。
(B) A dissolved oxygen concentration adjusting tank is arranged in the main liquid metal loop line, and an oxidation treatment apparatus and a reduction treatment apparatus are arranged in this tank.

【0046】(c) 主幹の液体金属ループラインに分
岐点を設けてそのバイパスラインに酸化処理装置と還元
処理装置を配置する。
(C) A branch point is provided in the main liquid metal loop line, and an oxidation treatment device and a reduction treatment device are arranged in the bypass line.

【0047】(d) 主幹の液体金属ループラインに分
岐点を設けてそのバイパスラインを酸化処理ラインと還
元処理ラインの2つに分岐し、配置する。
(D) A branch point is provided in the liquid metal loop line of the main trunk, and the bypass line is branched and arranged into two lines, an oxidation treatment line and a reduction treatment line.

【0048】また、本発明の液体金属冷却用構造材の腐
食防止方法において、ループ系における溶解酸素濃度測
定センサーと温度センサーの配置は、例えば、液体金属
ループラインに直接挿入配置したり、液体金属ループラ
インに分岐点を設けて、そのバイパスラインに挿入配置
することが挙げられる。さらに、複数の溶解酸素濃度測
定センサーと温度センサーを配置することも可能であ
り、この場合、溶存酸素濃度の制御がし易くなる。
Further, in the method for preventing corrosion of a structural material for cooling a liquid metal according to the present invention, the dissolved oxygen concentration measuring sensor and the temperature sensor in the loop system may be arranged, for example, by directly inserting into the liquid metal loop line. It is possible to provide a branch point in the loop line and insert and arrange it in the bypass line. Further, it is possible to dispose a plurality of dissolved oxygen concentration measuring sensors and temperature sensors, and in this case, it becomes easy to control the dissolved oxygen concentration.

【0049】本発明において、液体金属の温度範囲は、
使用する液体金属の融点〜650℃であることが好まし
く、Pb系は、330℃〜550℃、Bi系及びPb−
Bi系は、300℃〜550℃がより好ましい。温度が
低すぎると、固体電解質酸素センサーによる起電力の測
定が困難となり、極端な場合には測定不能となる。ま
た、温度が高すぎると、構造材の腐食が激しくなり、腐
食防止制御が困難となる。
In the present invention, the temperature range of the liquid metal is
The melting point of the liquid metal to be used is preferably 650 ° C, the Pb type is 330 ° C to 550 ° C, the Bi type and the Pb-type.
The Bi-based material is more preferably at 300 ° C to 550 ° C. If the temperature is too low, it becomes difficult to measure the electromotive force by the solid electrolyte oxygen sensor, and in extreme cases, the measurement becomes impossible. On the other hand, if the temperature is too high, the corrosion of the structural material becomes severe, and it becomes difficult to control the corrosion prevention.

【0050】なお、液体金属冷却用構造材の内部には、
カバーガスを用いておくことが好ましい。カバーガスと
しては、十分に水分を除去した高純度のArガスなどの
不活性ガスが好ましい。
Inside the liquid metal cooling structural material,
It is preferable to use cover gas. As the cover gas, an inert gas such as high-purity Ar gas from which water is sufficiently removed is preferable.

【0051】[0051]

【実施例】以下、本発明の液体金属冷却材用構造材の腐
食防止方法について具体的に説明する。図1は本発明の
液体金属冷却材用構造材の腐食防止方法の実施に用いた
液体金属中の酸素濃度制御装置の概略図である。
EXAMPLES The method of preventing corrosion of a structural material for a liquid metal coolant according to the present invention will be specifically described below. FIG. 1 is a schematic diagram of an oxygen concentration control device in liquid metal used for carrying out the method for preventing corrosion of a structural material for a liquid metal coolant of the present invention.

【0052】本装置を冷却材のループ系に装入配置す
る。液体金属1は、液体金属冷却材用構造材2内を矢印
の方向に流れる。主幹である液体金属ループライン3に
は、バルブ4が配置されている。このバルブ4を迂回す
るように液体金属ループライン3は、途中で分岐し、液
体金属ループライン3と、バイパスラインとしての酸化
処理ライン5及び還元処理ライン9の3つのラインに分
かれている。
The device is placed in a coolant loop system. The liquid metal 1 flows in the structure 2 for a liquid metal coolant in the direction of the arrow. A valve 4 is arranged in the liquid metal loop line 3 which is the main trunk. The liquid metal loop line 3 is branched in the middle so as to bypass the valve 4, and is divided into three lines of a liquid metal loop line 3 and an oxidation treatment line 5 and a reduction treatment line 9 as a bypass line.

【0053】酸化処理装置6は、バルブ7,バルブ8と
ともに酸化処理ライン5に配置され、再び、液体金属ル
ープライン3に合流するようになっている。一方、還元
処理装置10は、バルブ11,バルブ12とともに還元
処理ライン9に配置され、再び、液体金属ループライン
3に合流するようになっている溶解酸素濃度測定センサ
ーとして固体電解質酸素センサー13と、温度センサー
として測温用熱電対15を用い、それぞれ、測定部が液
体金属に浸るように液体金属ループライン3に挿入配置
する。これら両センサー13および15は、バイパスラ
イン5および9の下流側に配される。
The oxidation treatment device 6 is arranged in the oxidation treatment line 5 together with the valve 7 and the valve 8 so as to join the liquid metal loop line 3 again. On the other hand, the reduction treatment device 10 is arranged in the reduction treatment line 9 together with the valve 11 and the valve 12, and is again joined to the liquid metal loop line 3 as a dissolved oxygen concentration measuring sensor, and a solid electrolyte oxygen sensor 13; Thermocouples 15 for temperature measurement are used as temperature sensors, and the thermocouples 15 are inserted and arranged in the liquid metal loop line 3 so that the measuring parts are immersed in the liquid metal. Both of these sensors 13 and 15 are arranged downstream of the bypass lines 5 and 9.

【0054】固体電解質酸素センサー13は、酸素濃度
測定装置14と接続し、測温用熱電対15は、温度測定
装置16と接続している。酸素濃度測定装置14と温度
測定装置16は、データ処理装置17に接続され、得ら
れた酸素濃度データと温度データをデータ処理装置17
で演算処理し、溶解酸素濃度を求める。そこで得られた
制御信号をコントローラ18に供給して、その制御信号
に基づいて酸化処理装置6または還元処理装置10およ
び各ラインに配置したバルブ7,8、並びに11,12
の開閉により、自動的に溶解酸素濃度を制御する。
The solid electrolyte oxygen sensor 13 is connected to the oxygen concentration measuring device 14, and the temperature measuring thermocouple 15 is connected to the temperature measuring device 16. The oxygen concentration measuring device 14 and the temperature measuring device 16 are connected to a data processing device 17, and the obtained oxygen concentration data and temperature data are used for the data processing device 17
To calculate the dissolved oxygen concentration. The control signal obtained there is supplied to the controller 18, and based on the control signal, the oxidation treatment device 6 or the reduction treatment device 10 and the valves 7, 8 and 11, 12 arranged in each line.
The dissolved oxygen concentration is automatically controlled by opening and closing.

【0055】図2は、上記酸化処理装置6の一実施の形
態を示す概略図である。配管5に容器20が配置され、
容器20内にはハニカム状の固体処理剤21が装入され
ている。
FIG. 2 is a schematic view showing an embodiment of the oxidation treatment device 6. The container 20 is arranged in the pipe 5,
A honeycomb-shaped solid processing agent 21 is loaded in the container 20.

【0056】図3は、本発明の還元処理装置10の一実
施の形態を示す概略図である。配管9に容器23が配置
され、容器23内にガス導入口24から還元ガス27が
コントローラにより制御可能なバルブ26と流量計25
を介して導入できるようになっている。
FIG. 3 is a schematic diagram showing an embodiment of the reduction treatment apparatus 10 of the present invention. A container 23 is arranged in the pipe 9, and a reducing gas 27 is introduced into the container 23 from a gas introduction port 24 by a controller and a valve 26 and a flow meter 25.
Can be introduced via.

【0057】図1、図2、図3を用いて、本発明の液体
金属冷却材用構造材の腐食防止方法における溶解酸素濃
度制御装置の動作を説明する。
The operation of the dissolved oxygen concentration control device in the method for preventing corrosion of a structural material for a liquid metal coolant according to the present invention will be described with reference to FIGS. 1, 2 and 3.

【0058】まず、バルブ7,バルブ8,バルブ11,
バルブ12を閉め、バルブ4を開けておく。上流から流
入した液体金属1は、液体金属ループライン3を流れ、
固体電解質酸素センサー13と測温用熱電対15に流入
する。流入した液体金属1中の固体電解質酸素センサー
の起電力と温度を測定し、酸素濃度測定装置14と温度
測定装置16により数値化され、得られた溶解酸素濃度
データと温度データをデータ処理装置17に伝送する。
そして、データ処理装置17で演算処理され、溶解酸素
濃度が求められる。さらに、データ処理装置17で求め
られた溶解酸素濃度が判定され、その判定結果に基づい
た制御信号をコントローラ18に供給し、後記の制御の
基となる。この判定結果は、連続的もしくは間欠的に行
われ、監視される。
First, the valve 7, the valve 8, the valve 11,
The valve 12 is closed and the valve 4 is opened. The liquid metal 1 flowing in from the upstream flows through the liquid metal loop line 3,
It flows into the solid electrolyte oxygen sensor 13 and the thermocouple 15 for temperature measurement. The electromotive force and temperature of the solid electrolyte oxygen sensor in the inflowing liquid metal 1 are measured, digitized by the oxygen concentration measuring device 14 and the temperature measuring device 16, and the obtained dissolved oxygen concentration data and temperature data are converted into a data processing device 17. To transmit.
Then, the data processing device 17 performs arithmetic processing to obtain the dissolved oxygen concentration. Further, the dissolved oxygen concentration determined by the data processing device 17 is determined, and a control signal based on the determination result is supplied to the controller 18, which serves as a basis for the control described below. This determination result is continuously or intermittently performed and monitored.

【0059】溶解酸素濃度が予め設定した管理限界下限
付近になった場合、データ処理装置17から酸化処理実
行のON指令がコントローラ18に伝送される。そし
て、コントローラ18の制御信号でバルブが作動し、バ
ルブ4が閉じ、バルブ7とバルブ8が開状態となる。
When the dissolved oxygen concentration becomes close to the preset lower limit of control limit, the data processing device 17 transmits an ON command for executing the oxidation process to the controller 18. Then, the valve is operated by the control signal of the controller 18, the valve 4 is closed, and the valves 7 and 8 are opened.

【0060】したがって、液体金属1は、酸化処理ライ
ン5に導かれ、固体酸化剤21と接触し、その際、酸化
されながら通過する。そして、溶解酸素濃度が管理限界
内の正常値に復帰した場合、データ処理装置17から
「正常」の指令がコントローラ18に伝送され、コント
ローラ18の制御信号でバルブが作動し、バルブ4が開
き、バルブ7とバルブ8が閉状態となる。液体金属1
は、液体金属ループライン3に導かれ、正常時のループ
モードに復帰する。
Therefore, the liquid metal 1 is guided to the oxidation treatment line 5 and comes into contact with the solid oxidizer 21. At that time, the liquid metal 1 passes while being oxidized. Then, when the dissolved oxygen concentration returns to a normal value within the control limit, a “normal” command is transmitted from the data processing device 17 to the controller 18, the valve is operated by the control signal of the controller 18, and the valve 4 opens, The valves 7 and 8 are closed. Liquid metal 1
Is guided to the liquid metal loop line 3 and returns to the normal loop mode.

【0061】一方、溶解酸素濃度が予め設定した管理限
界上限付近になった場合、管理限界下限の検知と同様
に、固体電解質酸素センサー13と測温用熱電対15に
より溶解酸素濃度の管理限界上限を検知し、データ処理
装置17から還元処理実行のON指令がコントローラ1
8に伝送される。そして、コントローラ18の制御信号
でバルブが作動し、バルブ4が閉じ、バルブ11とバル
ブ12が開状態となり、液体金属1は還元処理ライン9
に導かれる。そして、コントローラ18の制御信号でバ
ルブ26が作動し、還元ガス27が容器23内に導入さ
れ、液体金属1が還元される。
On the other hand, when the dissolved oxygen concentration is close to the preset upper limit of the control limit, the upper limit of the control limit of the dissolved oxygen concentration is detected by the solid electrolyte oxygen sensor 13 and the temperature measuring thermocouple 15 as in the detection of the lower limit of the control limit. Is detected, the ON instruction of the reduction processing execution is issued from the data processing device 17 to the controller
8 is transmitted. Then, the valve is operated by the control signal of the controller 18, the valve 4 is closed, the valves 11 and 12 are opened, and the liquid metal 1 is transferred to the reduction treatment line 9
Be led to. Then, the valve 26 is operated by the control signal of the controller 18, the reducing gas 27 is introduced into the container 23, and the liquid metal 1 is reduced.

【0062】溶解酸素濃度が管理限界内の正常値に復帰
した場合、データ処理装置17から「正常」の指令がコ
ントローラ18に伝送され、コントローラ18の制御信
号でバルブが作動し、バルブ4が開き、バルブ11とバ
ルブ12が閉状態となる。液体金属1は、液体金属ルー
プライン3に導かれる。また、ガス供給がバルブ26の
作動により停止され、正常時のループラインに復帰す
る。 (実施例1)本発明の液体金属冷却材用構造材の腐食防
止方法として、液体金属としてPb−Bi共晶合金を、
また、液体金属冷却材用構造材として18Cr−1Mo
鋼を用い、流速0.5m/s、高温部550℃、低温部
350℃の強制ループ装置での液体金属と構造材の健全
性を評価した。
When the dissolved oxygen concentration returns to the normal value within the control limit, a "normal" command is transmitted from the data processing device 17 to the controller 18, the valve is operated by the control signal of the controller 18, and the valve 4 is opened. The valves 11 and 12 are closed. The liquid metal 1 is guided to the liquid metal loop line 3. Further, the gas supply is stopped by the operation of the valve 26, and the loop line at the normal time is restored. (Example 1) As a method of preventing corrosion of a structural material for a liquid metal coolant of the present invention, a Pb-Bi eutectic alloy was used as a liquid metal,
Further, as a structural material for liquid metal coolant, 18Cr-1Mo
Using steel, the soundness of the liquid metal and the structural material was evaluated in a forced loop device having a flow rate of 0.5 m / s, a high temperature part of 550 ° C., and a low temperature part of 350 ° C.

【0063】強制ループ装置内の溶解酸素濃度を増加さ
せ、10-5mass%付近より多くなると、次第にスラ
グが析出し始め、低温部の構造材内部に付着し、流路を
狭めた。スラグを分析したところ、酸化鉛が主成分であ
った。したがって、溶解酸素濃度の管理限界上限は、約
10-5mass%で、これより多くなると、Pb−Bi
液体金属の鉛の酸化物が生成され、健全性が維持できな
かった。
When the concentration of dissolved oxygen in the forced loop device was increased and the concentration became higher than around 10 -5 mass%, slag gradually began to precipitate and adhered to the inside of the structural material in the low temperature part, narrowing the flow path. When the slag was analyzed, lead oxide was the main component. Therefore, the upper limit of the control limit of the dissolved oxygen concentration is about 10 -5 mass%, and if it exceeds this, Pb-Bi
The liquid metal lead oxide was generated and the soundness could not be maintained.

【0064】一方、強制ループ装置内の溶解酸素濃度を
減少させ、10-7mass%付近より少なくなると、次
第にスラグが析出し始め、低温部の構造材内部に付着
し、流路を狭めた。スラグを分析したところ、Feを主
成分とした構造材の構成元素であった。
On the other hand, when the concentration of dissolved oxygen in the forced loop device was reduced to be less than around 10 -7 mass%, slag gradually began to precipitate and adhered to the inside of the structural material in the low temperature part, narrowing the flow path. When the slag was analyzed, it was a constituent element of the structural material containing Fe as a main component.

【0065】したがって、溶解酸素濃度の管理限界下限
は、約10-7mass%で、これより少なくなると、P
b−Bi液体金属中に構造材の構成元素であるFe,C
rなどが溶解され、構造材表面には、安定な酸化被膜は
生成されず、液体金属と構造材との健全性を維持されな
かった。
Therefore, the lower limit of the control limit of the dissolved oxygen concentration is about 10 -7 mass%.
Fe and C, which are constituent elements of the structural material, in b-Bi liquid metal
r and the like were dissolved, a stable oxide film was not formed on the surface of the structural material, and the soundness of the liquid metal and the structural material was not maintained.

【0066】これに対し、本発明の液体金属冷却材用構
造材の腐食防止方法を用いて溶解酸素濃度を10-7ma
ss%〜10-5mass%に管理すると、低温部でのプ
ラグもなく、長期に亘って液体金属と構造材との健全性
を維持することができた。試験終了後、構造材表面を分
析したところ、鉄酸化物、鉄クロムスピネル酸化物、ク
ロム酸化物、モリブデン酸化物等の酸化被膜が形成され
ていた。
On the other hand, the dissolved oxygen concentration was 10 −7 ma using the method for preventing corrosion of the structural material for liquid metal coolant of the present invention.
When the ss% to 10 -5 mass% was controlled, the soundness of the liquid metal and the structural material could be maintained for a long period without a plug in the low temperature part. After the test was completed, the surface of the structural material was analyzed, and it was found that an oxide film of iron oxide, iron chromium spinel oxide, chromium oxide, molybdenum oxide, or the like was formed.

【0067】[0067]

【発明の効果】以上述べたように、本発明によれば、液
体金属中の溶解酸素濃度を制御することにより、液体金
属と接触する構造材表面に液体金属に対して健全性を有
する保護被膜を安定的、かつ、持続的に形成させること
ができる。構造材表面に保護被膜を形成、および維持さ
せることにより、これまで使用することができなかった
腐食性の高いPb,Bi系の液体金属を冷却材に使用す
ることができる。
As described above, according to the present invention, by controlling the concentration of dissolved oxygen in the liquid metal, the surface of the structural material in contact with the liquid metal is a protective film having soundness against the liquid metal. Can be formed stably and continuously. By forming and maintaining a protective coating on the surface of the structural material, it is possible to use a highly corrosive Pb, Bi-based liquid metal that cannot be used until now as a coolant.

【0068】これにより、従来、Na冷却材で問題とさ
れた反応性(特に、水との反応性)の高さに関して、よ
り化学的に不活性なPb,Bi系が使用できるようにな
るなと、その適用範囲は極めて広い。
As a result, it becomes possible to use a Pb, Bi system which is more chemically inactive with respect to the high reactivity (particularly, the reactivity with water) which has been conventionally problematic in the Na coolant. And, its application range is extremely wide.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する際に適用した液体金属
中の酸素濃度制御装置の概略図である。
FIG. 1 is a schematic view of an apparatus for controlling oxygen concentration in liquid metal applied when carrying out the method of the present invention.

【図2】酸化処理装置の概略図である。FIG. 2 is a schematic view of an oxidation treatment device.

【図3】還元処理装置の概略図である。FIG. 3 is a schematic view of a reduction treatment device.

【符号の説明】[Explanation of symbols]

1 液体金属 2 液体金属冷却材用構造材 3 液体金属ループライン 4,7,8,11,12,26 バルブ 5 酸化処理ライン 6 酸化処理装置 9 還元処理ライン 10 還元処理装置 13 固体電解質酸素センサー 14 酸素濃度測定装置 15 測温用熱電対 16 温度測定装置 17 データ処理装置 18 コントローラ 20,23 容器 21 固体処理剤 24 ガス導入口 25 流量計 27 還元ガス 1 liquid metal 2 Structural material for liquid metal coolant 3 Liquid metal loop line 4,7,8,11,12,26 valves 5 Oxidation treatment line 6 Oxidation treatment equipment 9 Reduction processing line 10 Reduction processing device 13 Solid electrolyte oxygen sensor 14 Oxygen concentration measuring device 15 Thermocouple for temperature measurement 16 Temperature measuring device 17 Data processing device 18 Controller 20,23 container 21 Solid treatment agent 24 gas inlet 25 flow meter 27 reducing gas

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21D 3/08 GDF G21C 17/02 F Fターム(参考) 2G075 AA07 CA40 DA07 DA14 FA11 FC14 4G075 AA53 AA61 BA06 BA10 BB03 BD01 BD16 CA51 DA01 DA02 EB01 EC06 EC21 EC25 EE31 FB02 FC09 4K062 AA03 BA01 BA02 BA03 BA14 CA10 DA07 FA02 FA04 FA16─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G21D 3/08 GDF G21C 17/02 FF term (reference) 2G075 AA07 CA40 DA07 DA14 FA11 FC14 4G075 AA53 AA61 BA06 BA10 BB03 BD01 BD16 CA51 DA01 DA02 EB01 EC06 EC21 EC25 EE31 FB02 FC09 4K062 AA03 BA01 BA02 BA03 BA14 CA10 DA07 FA02 FA04 FA16

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 液体金属を収納し、冷却を行う液体金属
冷却材用構造材において、前記液体金属と接触する前記
液体金属冷却材用構造材の表面に、少なくとも前記液体
金属冷却材用構造材の構成元素からなる酸化被膜を形成
させ、その酸化被膜の安定性および持続性を前記液体金
属中の溶解酸素濃度により制御することを特徴とする液
体金属冷却材用構造材の腐食防止方法。
1. A structural material for a liquid metal coolant, which accommodates and cools a liquid metal, wherein at least the structural material for a liquid metal coolant is provided on a surface of the structural material for a liquid metal coolant which is in contact with the liquid metal. A method for preventing corrosion of a structural material for a liquid metal coolant, which comprises forming an oxide film comprising the constituent element of, and controlling the stability and durability of the oxide film by the concentration of dissolved oxygen in the liquid metal.
【請求項2】 溶解酸素濃度測定センサーと温度センサ
ーを前記液体金属冷却材用構造材に挿入配置し、前記溶
解酸素濃度測定センサーの測定値と前記温度センサーの
測定値から前記液体金属中の溶解酸素濃度を演算し、こ
の演算された溶解酸素濃度と予め設定した溶解酸素濃度
とを比較し、管理下限以下になった時、酸化処理により
溶解酸素濃度を増加させ、そして、管理上限以上になっ
た時、還元処理により溶解酸素濃度を減少させ、これに
よって予め設定した溶解酸素濃度を維持することを特徴
とする請求項1記載の液体金属冷却材用構造材の腐食防
止方法。
2. A dissolved oxygen concentration measuring sensor and a temperature sensor are inserted and arranged in the structural material for a liquid metal coolant, and the dissolved value in the liquid metal is determined from the measured value of the dissolved oxygen concentration measuring sensor and the measured value of the temperature sensor. The oxygen concentration is calculated, and the calculated dissolved oxygen concentration is compared with the preset dissolved oxygen concentration.When the oxygen concentration becomes lower than the control lower limit, the dissolved oxygen concentration is increased by the oxidation treatment, and then becomes higher than the control upper limit. The method for preventing corrosion of a structural material for a liquid metal coolant according to claim 1, wherein the dissolved oxygen concentration is reduced by a reduction treatment, and thereby the preset dissolved oxygen concentration is maintained.
【請求項3】 前記液体金属が本質的に鉛(Pb)、ビ
スマス(Bi)、鉛ビスマス合金(Pb−Bi)である
ことを特徴とする請求項1記載の液体金属冷却材用構造
材の腐食防止方法。
3. The structural material for a liquid metal coolant according to claim 1, wherein the liquid metal is essentially lead (Pb), bismuth (Bi), or a lead-bismuth alloy (Pb-Bi). Corrosion prevention method.
【請求項4】 前記液体金属の温度範囲が前記液体金属
の融点〜650℃であることを特徴とする請求項1、2
又は3記載の液体金属冷却材用構造材の腐食防止方法。
4. The temperature range of the liquid metal is the melting point of the liquid metal to 650 ° C.
Alternatively, the method for preventing corrosion of a structural material for a liquid metal coolant according to 3 above.
【請求項5】 前記液体金属冷却材用構造材が低合金
鋼、特殊鋼、炭素鋼であることを特徴とする請求項1記
載の液体金属冷却材用構造材の腐食防止方法。
5. The method for preventing corrosion of a structural material for a liquid metal coolant according to claim 1, wherein the structural material for the liquid metal coolant is low alloy steel, special steel or carbon steel.
【請求項6】 前記溶解酸素濃度測定センサーが固体電
解質酸素センサーであることを特徴とする請求項1乃至
2記載の液体金属冷却材用構造材の腐食防止方法。
6. The method for preventing corrosion of a structural material for a liquid metal coolant according to claim 1, wherein the dissolved oxygen concentration measuring sensor is a solid electrolyte oxygen sensor.
【請求項7】 前記酸化処理の酸化剤が酸素ガス、水蒸
気、酸化鉛、酸化ビスマスからなる群より選択された少
なくとも1種で構成される請求項2記載の液体金属冷却
材用構造材の腐食防止方法。
7. The corrosion of a structural material for a liquid metal coolant according to claim 2, wherein the oxidizing agent for the oxidation treatment is composed of at least one selected from the group consisting of oxygen gas, water vapor, lead oxide and bismuth oxide. Prevention method.
【請求項8】 前記還元処理の還元剤が水素ガス、炭
素、A1,Zr,Ti,Mgからなる群から選択された
少なくとも1種で構成される請求項2記載の液体金属冷
却材用構造材の腐食防止方法。
8. The structural material for a liquid metal coolant according to claim 2, wherein the reducing agent for the reduction treatment is composed of at least one selected from the group consisting of hydrogen gas, carbon, A1, Zr, Ti, and Mg. Corrosion prevention method.
JP2001388855A 2001-12-21 2001-12-21 Method for preventing corrosion of structural materials for liquid metal coolant Expired - Lifetime JP3838909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001388855A JP3838909B2 (en) 2001-12-21 2001-12-21 Method for preventing corrosion of structural materials for liquid metal coolant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001388855A JP3838909B2 (en) 2001-12-21 2001-12-21 Method for preventing corrosion of structural materials for liquid metal coolant

Publications (2)

Publication Number Publication Date
JP2003185787A true JP2003185787A (en) 2003-07-03
JP3838909B2 JP3838909B2 (en) 2006-10-25

Family

ID=27597226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001388855A Expired - Lifetime JP3838909B2 (en) 2001-12-21 2001-12-21 Method for preventing corrosion of structural materials for liquid metal coolant

Country Status (1)

Country Link
JP (1) JP3838909B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513882A (en) * 2006-12-22 2010-04-30 アレヴァ エンペー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for pre-processing fuel rod cladding for material inspection
RU2486613C1 (en) * 2012-02-14 2013-06-27 Открытое акционерное общество "Российский концерн по производству электрической и тепловой энергии на атомных станциях" (ОАО "Концерн Росэнергоатом") Method to control speed of corrosion of coolant circuit in nuclear uranium and graphite reactor
KR20160064096A (en) * 2013-09-30 2016-06-07 조인트 스탁 컴퍼니 ″아크메-엔지니어링″ Method for the in situ passivation of the steel surfaces of a nuclear reactor
WO2016099331A1 (en) * 2014-12-15 2016-06-23 Открытое акционерное общество "АКМЭ - инжиниринг" Diagnosis of lead-bismuth fast reactor coolant
KR20160098298A (en) * 2013-12-10 2016-08-18 조인트 스탁 컴퍼니 ″아크메-엔지니어링″ Method for inner-contour passivation of steel surfaces of nuclear reactor
JP2016224019A (en) * 2015-05-27 2016-12-28 佐藤 誠 Nuclear power system without sodium leakage
JP2017520767A (en) * 2014-06-11 2017-07-27 ジョイント ストック カンパニー“アクメ−エンジニアリング” Method and apparatus for controlling oxygen concentration in a reactor plant and reactor plant
CN108761022A (en) * 2018-05-29 2018-11-06 中广核研究院有限公司 A kind of liquid lead bismuth alloy hot-working hydraulic characteristic and etching characteristic experimental system
CN114574843A (en) * 2022-02-28 2022-06-03 西安交通大学 Composite protective film, preparation method thereof and liquid lead bismuth corrosion resistant metal tungsten

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531237B (en) * 2016-12-29 2018-08-07 中科瑞华原子能源技术有限公司 A kind of lead base reactor coolant process system running gear
CN106601314B (en) * 2016-12-30 2018-07-31 中国科学院合肥物质科学研究院 A kind of lead base reactor coolant oxygen control system and oxygen prosecutor method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201885A (en) * 1993-06-30 1994-07-22 Hitachi Ltd Operating condition monitoring system of plant
JPH08122491A (en) * 1994-10-25 1996-05-17 Shinko Pantec Co Ltd Control device of oxygen concentration of water in nuclear reactor
JP2001272493A (en) * 2000-03-28 2001-10-05 Tokyo Inst Of Technol Lead group metal circulation device
JP2003066187A (en) * 2001-08-23 2003-03-05 Mitsubishi Heavy Ind Ltd Purity control method and system for lead-bismuth alloy melt
JP2003130988A (en) * 2001-10-23 2003-05-08 Mitsubishi Heavy Ind Ltd Oxygen concentration monitoring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201885A (en) * 1993-06-30 1994-07-22 Hitachi Ltd Operating condition monitoring system of plant
JPH08122491A (en) * 1994-10-25 1996-05-17 Shinko Pantec Co Ltd Control device of oxygen concentration of water in nuclear reactor
JP2001272493A (en) * 2000-03-28 2001-10-05 Tokyo Inst Of Technol Lead group metal circulation device
JP2003066187A (en) * 2001-08-23 2003-03-05 Mitsubishi Heavy Ind Ltd Purity control method and system for lead-bismuth alloy melt
JP2003130988A (en) * 2001-10-23 2003-05-08 Mitsubishi Heavy Ind Ltd Oxygen concentration monitoring device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513882A (en) * 2006-12-22 2010-04-30 アレヴァ エンペー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for pre-processing fuel rod cladding for material inspection
RU2486613C1 (en) * 2012-02-14 2013-06-27 Открытое акционерное общество "Российский концерн по производству электрической и тепловой энергии на атомных станциях" (ОАО "Концерн Росэнергоатом") Method to control speed of corrosion of coolant circuit in nuclear uranium and graphite reactor
JP2016533509A (en) * 2013-09-30 2016-10-27 ジョイント ストック カンパニー“アクメ−エンジニアリング” A method for on-site passivation of reactor steel surfaces.
KR20160064096A (en) * 2013-09-30 2016-06-07 조인트 스탁 컴퍼니 ″아크메-엔지니어링″ Method for the in situ passivation of the steel surfaces of a nuclear reactor
KR101896029B1 (en) * 2013-09-30 2018-09-06 조인트 스탁 컴퍼니 ″아크메-엔지니어링″ Method for the in situ passivation of the steel surfaces of a nuclear reactor
EP3054453A4 (en) * 2013-09-30 2017-06-21 Joint Stock Company "Akme-Engineering" Method for the in situ passivation of the steel surfaces of a nuclear reactor
JP2017500558A (en) * 2013-12-10 2017-01-05 ジョイント ストック カンパニー“アクメ−エンジニアリング” Internal contour passivation method for steel surface of nuclear reactor
KR20160098298A (en) * 2013-12-10 2016-08-18 조인트 스탁 컴퍼니 ″아크메-엔지니어링″ Method for inner-contour passivation of steel surfaces of nuclear reactor
KR102309765B1 (en) * 2013-12-10 2021-10-06 조인트 스탁 컴퍼니 ″아크메-엔지니어링″ Method for inner-contour passivation of steel surfaces of nuclear reactor
JP2017520767A (en) * 2014-06-11 2017-07-27 ジョイント ストック カンパニー“アクメ−エンジニアリング” Method and apparatus for controlling oxygen concentration in a reactor plant and reactor plant
RU2596159C2 (en) * 2014-12-15 2016-08-27 Открытое Акционерное Общество "Акмэ-Инжиниринг" Diagnostic technique for heat carrier lead-bismuth one fast reactor and diagnostic system for realizing said method
WO2016099331A1 (en) * 2014-12-15 2016-06-23 Открытое акционерное общество "АКМЭ - инжиниринг" Diagnosis of lead-bismuth fast reactor coolant
JP2016224019A (en) * 2015-05-27 2016-12-28 佐藤 誠 Nuclear power system without sodium leakage
CN108761022A (en) * 2018-05-29 2018-11-06 中广核研究院有限公司 A kind of liquid lead bismuth alloy hot-working hydraulic characteristic and etching characteristic experimental system
CN108761022B (en) * 2018-05-29 2023-12-08 中广核研究院有限公司 Liquid lead bismuth alloy thermal hydraulic characteristic and corrosion characteristic experiment system
CN114574843A (en) * 2022-02-28 2022-06-03 西安交通大学 Composite protective film, preparation method thereof and liquid lead bismuth corrosion resistant metal tungsten

Also Published As

Publication number Publication date
JP3838909B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
Bell et al. Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power
Frazer et al. Liquid metal as a heat transport fluid for thermal solar power applications
Gómez-Briceño et al. Oxidation of austenitic and ferritic/martensitic alloys in supercritical water
Schroer et al. Long-term service of austenitic steel 1.4571 as a container material for flowing lead–bismuth eutectic
JP3838909B2 (en) Method for preventing corrosion of structural materials for liquid metal coolant
Schroer et al. Aspects of minimizing steel corrosion in liquid lead-alloys by addition of oxygen
Ilinčev Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb–Bi on structural materials with and without corrosion inhibitors
Flament et al. Compatibility of materials in fusion first wall and blanket structures cooled by liquid metals
JP2020514675A (en) Power plant chemical control system
Ren et al. Synergistic effects of Si and Y on corrosion behavior of cast cladding steels by pre-laying Y powder for nuclear applications in static liquid LBE
JP2003185788A (en) Method and apparatus for controlling concentration of oxygen dissolved in liquid metal
KR101797093B1 (en) Liquid metal cooled nuclear reactor, system for monitoring oxygen thermodynamic activity in such reactors and method for monitoring oxygen thermodynamic activity
Uetsuka et al. High-temperature oxidation kinetics of Zircaloy-4 in oxygen/argon mixtures
Borgstedt et al. A vanadium alloy for the application in a liquid metal blanket of a fusion reactor
Zhang et al. Oxygen control technique in molten lead and lead-bismuth eutectic systems
JP2002039987A (en) Method for measuring concentration of oxygen dissolved in liquid metal
Courouau et al. Chemistry control analysis of lead alloys systems to be used as nuclear coolant or spallation target
US7147823B2 (en) High temperature cooling system and method
Konys et al. Electrochemical oxygen sensors for corrosion control in lead-cooled nuclear reactors
Chopra et al. Corrosion of ferrous alloys in a flowing lithium environment
Borgstedt et al. Material compatibility tests with flowing Pb 17Li eutectic
Cabet et al. Environmental degradation of materials in advanced reactors
JP2003307589A (en) Dissolved oxygen concentration control method in liquid metal
Rivai et al. Performance of oxygen sensor in lead–bismuth at high temperature
JP2004020411A (en) Nuclear power plant and its operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3838909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140811

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term