JP2003185572A - Surface plasmon resonance sensor device - Google Patents

Surface plasmon resonance sensor device

Info

Publication number
JP2003185572A
JP2003185572A JP2001389611A JP2001389611A JP2003185572A JP 2003185572 A JP2003185572 A JP 2003185572A JP 2001389611 A JP2001389611 A JP 2001389611A JP 2001389611 A JP2001389611 A JP 2001389611A JP 2003185572 A JP2003185572 A JP 2003185572A
Authority
JP
Japan
Prior art keywords
light
plasmon resonance
surface plasmon
sensor device
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001389611A
Other languages
Japanese (ja)
Inventor
Atsushi Uchiumi
淳 内海
Takayuki Goto
崇之 後藤
Satoshi Tawara
諭 田原
Hiroyuki Nakayama
博之 中山
Takuma Sakai
琢磨 坂井
Hiromasa Inuzuka
博誠 犬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001389611A priority Critical patent/JP2003185572A/en
Publication of JP2003185572A publication Critical patent/JP2003185572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface plasmon resonance sensor device by which a reaction in a sample can be detected with high accuracy so as to be grasped with satisfactory reproducibility by discriminating the kind of a reaction species adsorbed to the sample. <P>SOLUTION: The surface plasmon resonance sensor device is provided with an optical system in which the sample for biochemical reaction measurement is placed on one face, in which a reflecting surface is constituted of the other face, and in which a thin film used to generate surface plasmon resonance is formed; a light source by which light at a plurality of wavelengths used to generate the surface plasmon resonance on the reflecting surface of the thin film is irradiated toward the reflecting surface; a light splitting means by which reflected light on the reflecting surface is split into respective wavelengths; and a plurality-of-wavelengths-light detection means which detects an intensity of light at each wavelength split by the light splitting means. The sensor device is constituted in such a way that the mind of the reaction specifies contained in the sample can be discriminated based on a detection result of the light detection means. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、生化学計測の対象
となる液体試料の微少質量変化を検出するするために、
表面プラズモン共鳴現象を利用した表面プラズモン共鳴
センサ装置に関し、特に、生化学反応の生じた試料の種
別を識別することのできる表面プラズモン共鳴センサ装
置に関する。
TECHNICAL FIELD The present invention relates to detecting a minute mass change of a liquid sample which is a target of biochemical measurement.
The present invention relates to a surface plasmon resonance sensor device that utilizes the surface plasmon resonance phenomenon, and more particularly to a surface plasmon resonance sensor device that can identify the type of a sample in which a biochemical reaction has occurred.

【0002】[0002]

【従来の技術】従来より、生化学的反応の進行に伴う物
質の物理化学的な変化量を検出する方法として、表面プ
ラズモン共鳴現象を用いた表面プラズモン共鳴センサ装
置が知られている。これは、例えば、図4に示すよう
に、回折格子を備えた平行ガラス基板(またはガラスプ
リズム)1の表面に金や銀等の金属薄膜2を真空蒸着等
の成膜技術を用いて形成し、ガラス基板1の側から金属
薄膜2との界面に向かって全反射条件を満足する角度で
レーザ光3を照射すると、特定の入射角θの時に、金属
薄膜2に表面プラズモン共鳴が励起されるというもので
ある。
2. Description of the Related Art Conventionally, a surface plasmon resonance sensor device using a surface plasmon resonance phenomenon has been known as a method for detecting the amount of physicochemical change of a substance with the progress of biochemical reaction. For example, as shown in FIG. 4, a metal thin film 2 of gold or silver is formed on the surface of a parallel glass substrate (or glass prism) 1 having a diffraction grating by using a film forming technique such as vacuum deposition. When the laser light 3 is irradiated from the glass substrate 1 side toward the interface with the metal thin film 2 at an angle satisfying the total reflection condition, surface plasmon resonance is excited in the metal thin film 2 at a specific incident angle θ. That is.

【0003】表面プラズモン共鳴が励起されると、金属
薄膜2上のプラズモン波に光エネルギが吸収されるた
め、ガラス基板1と金属薄膜2との界面で全反射する反
射光5の強度が鋭く低下する。図5に、入射角θと反射
光5の強度との関係を示す。ここで、表面プラズモン共
鳴が生じる入射角θは、金属薄膜2と接触している測定
部4の試料溶液など媒質の密度(すなわち、金属薄膜表
面の質量)に依存するという関係がある。
When surface plasmon resonance is excited, optical energy is absorbed by plasmon waves on the metal thin film 2, so that the intensity of the reflected light 5 totally reflected at the interface between the glass substrate 1 and the metal thin film 2 sharply decreases. To do. FIG. 5 shows the relationship between the incident angle θ and the intensity of the reflected light 5. Here, there is a relation that the incident angle θ at which the surface plasmon resonance occurs depends on the density of the medium such as the sample solution of the measurement unit 4 in contact with the metal thin film 2 (that is, the mass of the metal thin film surface).

【0004】従って、この光学系から反射され反射光5
が特異的に低下する反射角を求めることにより、表面プ
ラズモン共鳴現象の有無、並びに、表面プラズモン共鳴
現象が生じている時の入射角θを求めることができ、結
果として媒質の密度、すなわち、金属薄膜表面の質量の
変化を求めることが可能となる。
Therefore, the reflected light 5 reflected from this optical system
By specifically determining the reflection angle at which the surface plasmon resonance phenomenon occurs, and the incident angle θ when the surface plasmon resonance phenomenon occurs, the density of the medium, that is, the metal It is possible to obtain the change in mass on the surface of the thin film.

【0005】このように、金属薄膜表面の質量の微少変
化は、金属薄膜の表面プラズモン共鳴吸収による大きな
光量変化として鋭敏に検知することができるようにな
る。従って、この表面プラズモン共鳴現象を応用した計
測法では、非常に微少な量を対象として計測が可能とな
り、通常、1ピコグラムの質量変化をも検出できる。そ
れゆえ、一般的な計測方法では計測できない微少量を扱
う生化学計測にも応用されている。例えば、図5に示す
2つの特性のように、測定部4(図4参照)におけるD
NA結合の有無が、反射光5の強度が低下する入射角θ
の違いとなって現れるので、DNAの結合による質量の
微少変化を検知することができる。
As described above, a minute change in the mass of the surface of the metal thin film can be sensitively detected as a large change in the amount of light due to surface plasmon resonance absorption of the metal thin film. Therefore, according to the measurement method to which the surface plasmon resonance phenomenon is applied, it is possible to measure an extremely small amount, and a mass change of 1 picogram can usually be detected. Therefore, it is also applied to biochemical measurement that handles minute amounts that cannot be measured by general measurement methods. For example, as in the two characteristics shown in FIG. 5, D in the measurement unit 4 (see FIG. 4) is
Incident angle θ at which the intensity of the reflected light 5 decreases with or without NA coupling
Therefore, it is possible to detect a minute change in mass due to the binding of DNA.

【0006】一般に、上述した表面プラズモン共鳴セン
サ装置は、一つの検出部位で行われる生化学反応を対象
として、個々に計測を行なうものであり、計測の作業効
率が悪いため、多数の試料を計測するための装置が開発
されている。例えば、特開2000−65730号公報
に記載されているように、多種類の試料成分の表面プラ
ズモン共鳴角を効率的に検出する装置が開発されてい
る。図6を用いて簡単に説明すると、この従来の装置
は、試料溶液が吸着される金属薄膜(図示せず)が成膜
されたガラス基板6を設けたセンサーチップ7に密着す
るプリズム8に対して光照射装置9からの光を所要の角
度で入射し、受光装置10によりガラス基板6の金属薄
膜境界面からの反射光を受光してその強度が最小になる
共鳴角により試料溶液の成分を検出する。下面が開口し
た多数のセル11aが所要の間隔で配列されたセルプレ
ート11の下面にガラス基板6を、各セル11aの開口
を閉鎖するように取り付けてセンサーチップ7を構成す
る。プリズム8を複数のセル11aに応じた大きさに形
成し、プリズム8に対して複数のセル11aに応じたガ
ラス基板6を選択的に密着させた状態で選択された各セ
ル11aにおけるガラス基板6の金属薄膜境界面に夫々
の光を所要の角度幅で照射する。各セル11aに対応す
るガラス基板6の金属薄膜境界面からの各反射光の強度
に基づいて選択された各セル11a内に分注された試料
溶液の共鳴角を同時に検出可能にしている。
Generally, the above-mentioned surface plasmon resonance sensor device individually measures a biochemical reaction carried out at one detection site, and since the measurement work efficiency is low, a large number of samples are measured. Devices have been developed to do so. For example, as described in Japanese Patent Laid-Open No. 2000-65730, an apparatus has been developed that efficiently detects the surface plasmon resonance angle of many kinds of sample components. This will be briefly described with reference to FIG. 6. In this conventional device, a prism 8 is attached to a sensor chip 7 provided with a glass substrate 6 on which a metal thin film (not shown) for adsorbing a sample solution is provided. The light from the light irradiation device 9 is incident at a required angle, the light receiving device 10 receives the reflected light from the boundary surface of the metal thin film on the glass substrate 6, and the components of the sample solution are detected by the resonance angle at which the intensity is minimized. To detect. The glass substrate 6 is attached to the lower surface of the cell plate 11 in which a large number of cells 11a having open lower surfaces are arranged at a required interval so as to close the openings of the cells 11a to form the sensor chip 7. The glass substrate 6 in each cell 11a selected in a state where the prism 8 is formed in a size corresponding to the plurality of cells 11a and the glass substrate 6 corresponding to the plurality of cells 11a is selectively adhered to the prism 8 The respective metal thin film boundary surfaces are irradiated with respective lights in a required angular width. The resonance angle of the sample solution dispensed in each cell 11a selected based on the intensity of each reflected light from the metal thin film boundary surface of the glass substrate 6 corresponding to each cell 11a can be simultaneously detected.

【0007】[0007]

【発明が解決しようとする課題】従来の装置は以上のよ
うに構成されていたため、次のような課題が存在してい
た。すなわち、従来の表面プラズモン共鳴センサ装置で
は、試料の質量変化を検出することにより、試料に生化
学反応が生じたか否かを判別することはできたが、試料
に吸着した反応種の種別を判別することはできなかっ
た。例えば、DNAで吸着反応が生じたのか、あるいは
DNA以外のタンパク質で吸着反応が生じたのかを判別
することはできなかった。
Since the conventional device is constructed as described above, the following problems exist. That is, in the conventional surface plasmon resonance sensor device, it was possible to determine whether or not a biochemical reaction occurred in the sample by detecting the mass change of the sample, but it was possible to determine the type of the reactive species adsorbed in the sample. I couldn't. For example, it was not possible to discriminate whether the adsorption reaction occurred in DNA or the adsorption reaction occurred in proteins other than DNA.

【0008】本発明は、以上のような課題を解決するた
めになされたもので、特に、試料に吸着した反応種の種
別を判別することにより、試料における反応を高精度に
検出し、再現性良く把握することのできる表面プラズモ
ン共鳴センサ装置を提供することを目的とする。
The present invention has been made in order to solve the above problems, and in particular, the reaction in a sample can be detected with high accuracy and reproducibility by determining the type of reactive species adsorbed in the sample. An object is to provide a surface plasmon resonance sensor device that can be grasped well.

【0009】[0009]

【課題を解決するための手段】本発明の表面プラズモン
共鳴センサ装置は、一方の面に生化学反応測定用の試料
が載置され、他方の面で反射面を構成して表面プラズモ
ン共鳴を生じさせる薄膜が形成された光学系と、前記薄
膜の反射面でプラズモン共鳴を生じさせるための複数の
波長の光を前記反射面に向けて照射する光源と、前記反
射面での反射光をそれぞれの波長毎に分割する光分割手
段と、前記光分割手段で分割された各波長の光の強度を
それぞれ検出する複数の波長光検出手段とを備え、前記
光検出手段の検出結果に基づき前記試料に含まれる反応
種の種別を判別できる構成であり、また、前記試料は前
記薄膜の一方の面に複数載置されると共に、前記光検出
手段は、前記複数の試料による表面プラズモン共鳴の発
生の有無を同時かつ個別的に検出できるように構成され
ている構成である。
In the surface plasmon resonance sensor device of the present invention, a sample for biochemical reaction measurement is placed on one surface and a reflecting surface is formed on the other surface to generate surface plasmon resonance. An optical system in which a thin film is formed, a light source that irradiates light of a plurality of wavelengths for causing plasmon resonance on the reflective surface of the thin film toward the reflective surface, and light reflected by the reflective surface. Light splitting means for splitting for each wavelength, and a plurality of wavelength light detecting means for detecting the intensity of light of each wavelength split by the light splitting means, respectively, the sample based on the detection result of the light detecting means The configuration is such that it is possible to determine the type of reactive species contained, and a plurality of the samples are mounted on one surface of the thin film, and the photodetector is configured to determine whether surface plasmon resonance occurs due to the plurality of samples. At the same time A structure that is configured to detect individually.

【0010】[0010]

【発明の実施の形態】以下、図面と共に本発明による表
面プラズモン共鳴センサ装置の好適な実施の形態につい
て詳細に説明する。なお、従来装置と同一または同等部
分には同一符号を付し、その説明を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a surface plasmon resonance sensor device according to the present invention will be described in detail below with reference to the drawings. The same or equivalent parts as those of the conventional device are designated by the same reference numerals, and the description thereof will be omitted.

【0011】実施の形態1.図1に示すように、本発明
の実施の形態1に係る表面プラズモン共鳴センサ装置に
おいて、波長260nm及び280nmの2種類の光を
同時に照射できる光源である水銀ランプ15から照射さ
れる光15aは、第1レンズ16を介して収束され、断
面半円形の柱状の光学系であるプリズム17に誘導され
る。前記プリズム17の平面には金属薄膜2が形成され
ており、この金属薄膜2上に生化学反応検出用の試料が
塗布される。プリズム17に入射した光15aは金属薄
膜2の前記試料が塗布された位置の裏側に照射され、反
射光15bは第2レンズ18を経て光分割手段であるビ
ームスプリッタ19に入射し、2方向に分割される。
Embodiment 1. As shown in FIG. 1, in the surface plasmon resonance sensor device according to the first embodiment of the present invention, light 15a emitted from a mercury lamp 15 which is a light source capable of simultaneously emitting two types of light having wavelengths of 260 nm and 280 nm is: It is converged via the first lens 16 and guided to a prism 17 which is a columnar optical system having a semicircular cross section. A metal thin film 2 is formed on the plane of the prism 17, and a sample for biochemical reaction detection is applied onto the metal thin film 2. The light 15a incident on the prism 17 is irradiated to the back side of the metal thin film 2 at the position where the sample is applied, and the reflected light 15b is incident on the beam splitter 19 which is the light splitting means through the second lens 18 and is bidirectional. Will be divided.

【0012】ビームスプリッタ19で反射された光19
aは、波長280nmの光を透過する第1フィルタ20
を経て第1光検出器21に誘導される。一方、ビームス
プリッタ19を透過した光19bは、260nmの光を
透過する第2フィルタ22を透過して第2光検出器23
に誘導される。それぞれの光19a(波長280nm)
及び19b(波長260nm)は、光検出手段である第
1光検出器21及び第2光検出器23において反射率
(反射光強度)が求められる。
The light 19 reflected by the beam splitter 19
a is the first filter 20 that transmits light having a wavelength of 280 nm.
And is guided to the first photodetector 21. On the other hand, the light 19b that has passed through the beam splitter 19 passes through a second filter 22 that transmits light of 260 nm and passes through a second photodetector 23.
Be guided to. Each light 19a (wavelength 280nm)
And 19b (wavelength 260 nm), the reflectance (reflected light intensity) is obtained in the first photodetector 21 and the second photodetector 23, which are photodetection means.

【0013】水銀ランプ15が波長260nmと280
nmの2種類の光を同時に照射できるようにしたのは、
一般にDNAは波長260nmに吸収ピークを持ち、一
方タンパク質は波長280nmに吸収ピークを持つから
であり、このように光源である水銀ランプ15に試料特
有の吸収波長の光を照射させることにより、質量変化に
加えて、反応種の種別判別が可能となる。
The mercury lamp 15 has wavelengths of 260 nm and 280
It is possible to irradiate two kinds of light of nm at the same time.
This is because DNA generally has an absorption peak at a wavelength of 260 nm, while protein has an absorption peak at a wavelength of 280 nm. By irradiating the mercury lamp 15 as a light source with light having an absorption wavelength peculiar to the sample, the mass change In addition to this, it is possible to determine the type of reactive species.

【0014】例えば、DNA間結合を検出する場合にお
いても、タンパク質等のDNA以外の物質の影響が生じ
るが、波長260nmと280nmの2波長を含む水銀
ランプ15からの光15aを、それぞれの波長における
プラズモン共鳴角以上となる集光角を持つようにプリズ
ム17ヘ入射させる。このときの入射角は、その共鳴角
付近とする。
For example, when detecting a bond between DNAs, substances other than DNA, such as proteins, are affected, but the light 15a from the mercury lamp 15 containing two wavelengths of 260 nm and 280 nm at each wavelength is detected. The light is made incident on the prism 17 so as to have a converging angle equal to or larger than the plasmon resonance angle. The incident angle at this time is near the resonance angle.

【0015】図2に示すように、予め測定しておいたタ
ンパク質のみの場合のプラズモン共鳴スペクトル(図2
の特性a:波長280nm)と、予め測定したDNAの
みの場合の共鳴スペクトル(図2の特性c:波長260
nm)とを用いて検量線を作成し、実際の試料の場合の
プラズモン共鳴スペクトル(図2の特性b)を測定する
ことにより、1つの測量点におけるDNA以外のタンパ
ク質等の物質による影響を把握することができ、DNA
間の吸着反応やDNA以外のタンパク質間における吸着
反応を高精度に検出し、再現性良く把握することが可能
となる。
As shown in FIG. 2, the plasmon resonance spectrum (FIG.
Characteristic a: wavelength 280 nm) and a resonance spectrum measured in advance only for DNA (characteristic c in FIG. 2: wavelength 260
nm) to create a calibration curve and measure the plasmon resonance spectrum (characteristic b in FIG. 2) in the case of an actual sample to understand the influence of substances such as proteins other than DNA at one survey point. Can and DNA
It becomes possible to detect the adsorption reaction between the proteins and the adsorption reaction between the proteins other than DNA with high accuracy and to grasp with good reproducibility.

【0016】なお、以上の説明では、DNAが波長26
0nmに吸収ピークを持ち、一方タンパク質は波長28
0nmに吸収ピークを持つ場合について説明したが、D
NAないしこれ以外のタンパク質が上述した波長領域以
外に吸収ピークを有する場合もある。このような場合
は、光源である水銀ランプ15の照射光波長を変更する
と共に、第1フィルタ20及び第2フィルタ22の透過
波長帯域を変更すればよく、2つの波長の光を同時に照
射できる光源及びこれを別個に検出できる光学系を用い
れば、どのような波長に吸収ピークを有する試料であっ
ても反応種の種別判別が可能となる。
In the above explanation, DNA has a wavelength of 26
Has an absorption peak at 0 nm, while protein has a wavelength of 28
I explained the case of having an absorption peak at 0 nm, but D
NA or a protein other than NA may have an absorption peak outside the above-mentioned wavelength region. In such a case, it is sufficient to change the irradiation light wavelength of the mercury lamp 15 which is the light source, and to change the transmission wavelength bands of the first filter 20 and the second filter 22 as well. Further, by using an optical system capable of separately detecting this, it is possible to discriminate the type of reactive species regardless of the sample having an absorption peak at any wavelength.

【0017】また、3種類以上の波長の光を照射できる
光源を用いると共に、例えばビームスプリッタを複数段
設ける等の手法により多くの反応種の種別判別を可能と
する光学系を用いれば、より多くの反応種の種別判別が
可能な表面プラズモン共鳴センサ装置を提供することが
できる。さらに、金属薄膜2上に複数の試料を載置し、
第1光検出器21及び第2光検出器23として2次元ア
レイセンサを用いれば、複数点に載置された複数の試料
について同時に反応種の種別判別を行うことのできる表
面プラズモン共鳴センサ装置を提供することができる。
Further, if a light source capable of irradiating light of three or more kinds of wavelengths is used and an optical system capable of discriminating the types of a large number of reactive species is used by a method of providing a plurality of stages of beam splitters, for example, a greater number of optical systems can be used. It is possible to provide a surface plasmon resonance sensor device capable of discriminating the type of the reactive species. Furthermore, a plurality of samples are placed on the metal thin film 2,
If a two-dimensional array sensor is used as the first photodetector 21 and the second photodetector 23, a surface plasmon resonance sensor device capable of simultaneously determining the types of reactive species for a plurality of samples placed at a plurality of points is provided. Can be provided.

【0018】実施の形態2.図3に示すように、本発明
の実施の形態2に係る表面プラズモン共鳴センサ装置
は、光源として2光子吸収過程を発生できる光強度を有
する短パルスレーザ25を用いる。例えば、DNAを検
出する場合は、その吸収ピーク波長である260nmの
倍となる波長520nmが必要であり、同様に、タンパ
ク質を検出するためには、吸収ピーク波長280nmの
倍波長の560nmが必要となる。従って、520nm
及び560nmの2種類の波長のレーザ光を照射できる
短パルスレーザ25を光源として用いれば、実施の形態
1に係る表面プラズモン共鳴センサ装置と同様に、DN
A間の吸着反応やDNA以外のタンパク質間における吸
着反応を高精度に検出し、再現性良く把握することが可
能となる。
Embodiment 2. As shown in FIG. 3, the surface plasmon resonance sensor device according to the second embodiment of the present invention uses a short pulse laser 25 having a light intensity capable of generating a two-photon absorption process as a light source. For example, when detecting DNA, a wavelength of 520 nm, which is twice the absorption peak wavelength of 260 nm, is required. Similarly, in order to detect a protein, 560 nm, which is the absorption peak wavelength of 280 nm, is required. Become. Therefore, 520 nm
If the short pulse laser 25 capable of irradiating laser light having two wavelengths of 560 nm and 560 nm is used as the light source, the DN is used as in the surface plasmon resonance sensor device according to the first embodiment.
It is possible to detect the adsorption reaction between A and the adsorption reaction between proteins other than DNA with high accuracy and to grasp with good reproducibility.

【0019】[0019]

【発明の効果】本発明の表面プラズモン共鳴センサ装置
は、一方の面に生化学反応測定用の試料が塗布され、他
方の面で反射面を構成して表面プラズモン共鳴を生じさ
せる薄膜が形成された光学系と、前記薄膜の反射面でプ
ラズモン共鳴を生じさせるための複数の波長の光を前記
反射面に向けて照射する光源と、前記反射面での反射光
をそれぞれの波長毎に分割する光分割手段と、前記光分
割手段で分割された各波長の光の強度をそれぞれ検出す
る複数の波長光検出手段とを備え、前記光検出手段の検
出結果に基づき前記試料に含まれる反応種の種別を判別
できるので、DNA間の吸着反応やDNA以外のタンパ
ク質間における吸着反応を高精度に検出し、再現性良く
把握することが可能となる。また、前記試料は前記薄膜
の一方の面に複数載置されると共に、前記光検出手段
は、前記複数の試料による表面プラズモン共鳴の発生の
有無を同時かつ個別的に検出できるように構成されてい
るので、複数点に載置された複数の試料について同時に
反応種の種別判別を行うことのできる表面プラズモン共
鳴センサ装置を提供することができる。
In the surface plasmon resonance sensor device of the present invention, a sample for biochemical reaction measurement is applied on one surface, and a thin film is formed on the other surface to form a reflection surface and generate surface plasmon resonance. An optical system, a light source for irradiating the reflecting surface with light of a plurality of wavelengths for causing plasmon resonance on the reflecting surface of the thin film, and dividing the reflected light on the reflecting surface for each wavelength. Light splitting means and a plurality of wavelength light detecting means for respectively detecting the intensity of light of each wavelength split by the light splitting means are provided, and the reactive species contained in the sample based on the detection result of the light detecting means. Since the type can be discriminated, the adsorption reaction between DNA and the adsorption reaction between proteins other than DNA can be detected with high accuracy and grasped with good reproducibility. Further, a plurality of the samples are placed on one surface of the thin film, and the photodetector is configured to be able to simultaneously and individually detect the presence or absence of occurrence of surface plasmon resonance by the plurality of samples. Therefore, it is possible to provide a surface plasmon resonance sensor device capable of simultaneously determining the types of reactive species for a plurality of samples placed at a plurality of points.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1に係る表面プラズモン共
鳴センサ装置を概略的に示す構成図である。
FIG. 1 is a configuration diagram schematically showing a surface plasmon resonance sensor device according to a first embodiment of the present invention.

【図2】各試料におけるプラズモン共鳴スペクトルを示
す特性図である。
FIG. 2 is a characteristic diagram showing a plasmon resonance spectrum of each sample.

【図3】本発明の実施の形態2に係る表面プラズモン共
鳴センサ装置を概略的に示す構成図である。
FIG. 3 is a configuration diagram schematically showing a surface plasmon resonance sensor device according to a second embodiment of the present invention.

【図4】表面プラズモン共鳴を利用して質量変化を検出
するための検出原理を概念的に示す図である。
FIG. 4 is a diagram conceptually showing a detection principle for detecting a mass change using surface plasmon resonance.

【図5】表面プラズモン共鳴を利用した質量変化の検出
における入射角θと反射光の強度との関係を示す特性図
である。
FIG. 5 is a characteristic diagram showing the relationship between the incident angle θ and the intensity of reflected light in detection of mass change using surface plasmon resonance.

【図6】特開2000−65730号公報記載の多種類
の試料成分の表面プラズモン共鳴角を効率的に検出する
装置を示す構成図である。
FIG. 6 is a configuration diagram showing an apparatus for efficiently detecting surface plasmon resonance angles of various kinds of sample components described in JP-A-2000-65730.

【符号の説明】[Explanation of symbols]

2 金属薄膜、15 水銀ランプ、15a 光、15b
反射光、16 第1レンズ、17 プリズム、18
第2レンズ、19 ビームスプリッタ、19a光(波長
280nm)、19b 光(波長260nm)、20
第1フィルタ、21 第1光検出器、22 第2フィル
タ、23 第2光検出器、25 短パルスレーザ。
2 metal thin film, 15 mercury lamp, 15a light, 15b
Reflected light, 16 First lens, 17 Prism, 18
Second lens, 19 Beam splitter, 19a light (wavelength 280 nm), 19b light (wavelength 260 nm), 20
1st filter, 21 1st photodetector, 22 2nd filter, 23 2nd photodetector, 25 Short pulse laser.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田原 諭 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 中山 博之 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 坂井 琢磨 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 犬塚 博誠 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 Fターム(参考) 2G059 AA01 BB04 BB12 CC16 EE02 EE11 EE12 GG01 GG08 GG10 HH02 HH03 HH06 JJ02 JJ11 JJ12 JJ22 KK03 KK04 MM12 4B029 AA07 BB15 BB20 CC02 FA10   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Satoshi Tahara             1-8 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa               Mitsubishi Heavy Industries, Ltd. Basic Technology Research Center (72) Inventor Hiroyuki Nakayama             1-8 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa               Mitsubishi Heavy Industries, Ltd. Basic Technology Research Center (72) Takuma Sakai             1-8 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa               Mitsubishi Heavy Industries, Ltd. Basic Technology Research Center (72) Inventor Hiromitsu Inuzuka             1-8 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa               Mitsubishi Heavy Industries, Ltd. Basic Technology Research Center F term (reference) 2G059 AA01 BB04 BB12 CC16 EE02                       EE11 EE12 GG01 GG08 GG10                       HH02 HH03 HH06 JJ02 JJ11                       JJ12 JJ22 KK03 KK04 MM12                 4B029 AA07 BB15 BB20 CC02 FA10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一方の面に生化学反応測定用の試料が載
置され、他方の面で反射面を構成して表面プラズモン共
鳴を生じさせる薄膜が形成された光学系と、 前記薄膜の反射面でプラズモン共鳴を生じさせるための
複数の波長の光を前記反射面に向けて照射する光源と、 前記反射面での反射光をそれぞれの波長毎に分割する光
分割手段と、 前記光分割手段で分割された各波長の光の強度をそれぞ
れ検出する複数の波長光検出手段とを備え、前記光検出
手段の検出結果に基づき前記試料に含まれる反応種の種
別を判別できることを特徴とする表面プラズモン共鳴セ
ンサ装置。
1. An optical system in which a sample for biochemical reaction measurement is placed on one surface, and a thin film is formed on the other surface to form a surface plasmon resonance and a reflection of the thin film. A light source for irradiating the reflecting surface with light of a plurality of wavelengths for causing plasmon resonance on the surface, a light splitting means for splitting the reflected light on the reflecting surface for each wavelength, and the light splitting means. A surface characterized by comprising a plurality of wavelength light detecting means for respectively detecting the intensity of light of each wavelength divided by, and capable of discriminating the type of reactive species contained in the sample based on the detection result of the light detecting means. Plasmon resonance sensor device.
【請求項2】 前記試料は前記薄膜の一方の面に複数載
置されると共に、前記光検出手段は、前記複数の試料に
よる表面プラズモン共鳴の発生の有無を同時かつ個別的
に検出できるように構成されていることを特徴とする請
求項1記載の表面プラズモン共鳴センサ装置。
2. A plurality of the samples are placed on one surface of the thin film, and the photodetector is configured to detect the presence or absence of surface plasmon resonance caused by the plurality of samples simultaneously and individually. The surface plasmon resonance sensor device according to claim 1, which is configured.
JP2001389611A 2001-12-21 2001-12-21 Surface plasmon resonance sensor device Pending JP2003185572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001389611A JP2003185572A (en) 2001-12-21 2001-12-21 Surface plasmon resonance sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001389611A JP2003185572A (en) 2001-12-21 2001-12-21 Surface plasmon resonance sensor device

Publications (1)

Publication Number Publication Date
JP2003185572A true JP2003185572A (en) 2003-07-03

Family

ID=27597787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001389611A Pending JP2003185572A (en) 2001-12-21 2001-12-21 Surface plasmon resonance sensor device

Country Status (1)

Country Link
JP (1) JP2003185572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509597A (en) * 2012-03-05 2015-03-30 バイオサーフィット、 ソシエダッド アノニマ Improved surface plasmon resonance method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509597A (en) * 2012-03-05 2015-03-30 バイオサーフィット、 ソシエダッド アノニマ Improved surface plasmon resonance method

Similar Documents

Publication Publication Date Title
US6710870B1 (en) Method and device for measuring luminescence
US8045141B2 (en) Detecting element, detecting device and detecting method
JPH0627703B2 (en) Optical sensor for selective detection of substance and detection of change in refractive index in measurement substance
US20100252751A1 (en) Microelectronic opiacal evanescent field sensor
JP2007516413A (en) Support with surface structure to detect evanescent fields with high sensitivity
US20050163659A1 (en) Kit for assay development and serial analysis
JP2005257455A (en) Measuring apparatus and measuring unit
CA2270665A1 (en) Use of biosensors to diagnose plant diseases
WO2016170967A1 (en) Method of manufacturing sensing chip and sensing chip
JP2012510628A (en) Sensor device for detecting target particles by attenuated total reflection
US20030104390A1 (en) Use of biosensors to diagnose plant diseases
US6788415B2 (en) Turntable measuring apparatus utilizing attenuated total reflection
JP2003185572A (en) Surface plasmon resonance sensor device
WO2009007888A1 (en) An opto-mechanical arrangement for providing optical access to a sample chamber
EP2227685B1 (en) Microelectronic sensor device
JP6627778B2 (en) Detection device and detection method
JP6414205B2 (en) Surface plasmon enhanced fluorescence measuring apparatus and surface plasmon enhanced fluorescence measuring method
JP2003075337A (en) Integrated surface plasmon resonance sensor
JP2003075333A (en) Surface plasmon resonance sensor device
JP6711285B2 (en) Detection method, detection device and chip
JP2009204484A (en) Sensing device
JP4064169B2 (en) Sensors using specific substance recovery methods and total reflection attenuation
JP6717201B2 (en) Detection method and detection device
WO2018135503A1 (en) Position detection method and position detection device for sensor chip in optical sample detection system
JPWO2019221040A1 (en) Specimen detection chip and sample detection device using it