JP2003185507A - Tape and method for measuring stress distribution - Google Patents

Tape and method for measuring stress distribution

Info

Publication number
JP2003185507A
JP2003185507A JP2001402921A JP2001402921A JP2003185507A JP 2003185507 A JP2003185507 A JP 2003185507A JP 2001402921 A JP2001402921 A JP 2001402921A JP 2001402921 A JP2001402921 A JP 2001402921A JP 2003185507 A JP2003185507 A JP 2003185507A
Authority
JP
Japan
Prior art keywords
stress distribution
piezoelectric material
tape
anisotropic
distribution measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001402921A
Other languages
Japanese (ja)
Inventor
Yukio Fujimoto
由紀夫 藤本
Eiji Shintaku
英司 新宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001402921A priority Critical patent/JP2003185507A/en
Publication of JP2003185507A publication Critical patent/JP2003185507A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stress distribution measuring tape and a stress distribution measuring method which enable easy measurement of a stress distribution on a specific straight line, polygonal line, or curve, which is performed by applying the tape on a structure. <P>SOLUTION: The stress distribution measuring tape formed by applying a plurality of anisotropic piezoelectric materials to one surface of a base material tape changing their direction of anisotropy to at least two directions, is caused to adhere to the surface of a structural member. The surface potentials of the anisotropic piezoelectric materials are measured by a noncontact system using a surface electrometer, and the surface potential values are substituted in a piezoelectric equation, and the stress distribution of the member is found. Besides, the measuring probe of the surface electrometer is attached to a holder and put on the upper surface of an anisotropic piezoelectric material, the holder is moved and surface potentials are measured quickly at a large number of spots. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は機械や構造物等の応
力測定において、部材表面の特定の2点を結ぶ直線上、
折線上あるいは曲線上の応力分布を簡単に測定すること
のできる応力分布測定テープと、その応力分布測定テー
プを用いた応力分布測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a straight line connecting two specific points on the surface of a member in the stress measurement of a machine or a structure,
The present invention relates to a stress distribution measuring tape that can easily measure a stress distribution on a polygonal line or a curve, and a stress distribution measuring method using the stress distribution measuring tape.

【0002】[0002]

【従来の技術】機械や構造物の応力測定には歪ゲージが
多く用いられてきたが、歪ゲージで測定できるのは歪ゲ
ージ接着箇所の応力であるので、部材表面の特定の線上
あるいは面上の応力分布を測定するには多数の歪ゲージ
を接着する必要があった。また、二次元応力状態にある
部材の応力成分を求めるには2軸又は3軸の歪ゲージを
用いる必要があり、多数箇所の歪測定では電気配線や歪
測定器のチャンネル数が増加して装置が大掛かりになる
という問題があった。
2. Description of the Related Art Strain gauges have been widely used for measuring the stress of machines and structures. However, since the strain gauge can measure the stress at the bonded portion of the strain gauge, the strain gauge can be measured on a specific line or surface of the member surface. It was necessary to bond a large number of strain gauges to measure the stress distribution of. In addition, it is necessary to use a biaxial or triaxial strain gauge to obtain the stress component of a member in a two-dimensional stress state, and in the strain measurement at a large number of points, the number of channels of the electric wiring and the strain measuring instrument increases and the device There was a problem that it would be a big problem.

【0003】構造部材表面の特定の線上あるいは面上の
応力分布を測定する方法として、最近、光ファイバー、
サーモグラフィーあるいはモアレ縞を利用した光学的手
法などが提案されている。これらは、非接触で応力分布
が測定できることや多点測定が可能であるという長所を
有するが、測定装置が高価で温度や振動などの環境に影
響を受けやすいので、実構造物の現場測定が容易でない
という問題があった。
Recently, as a method for measuring the stress distribution on a specific line or surface of a structural member, an optical fiber,
Optical methods using thermography or moire fringes have been proposed. These have the advantage that the stress distribution can be measured in a non-contact manner and multi-point measurement is possible, but since the measuring equipment is expensive and susceptible to the environment such as temperature and vibration, it is not possible to perform on-site measurement of actual structures. There was a problem that it was not easy.

【0004】[0004]

【発明が解決しようとする課題】本発明では歪感知に圧
電材料を用いることにより、構造物表面の特定の直線
上、折線上あるいは曲線上の応力分布を簡単に測定する
ことが課題である。
An object of the present invention is to easily measure the stress distribution on a specific straight line, broken line or curved line on the surface of a structure by using a piezoelectric material for strain sensing.

【0005】圧電材料に歪を与えると圧電材料は分極
し、圧電材料の特定の表面に電位を生じる。この電位は
圧電方程式によると与えた歪に比例したものになる。そ
こで圧電材料を構造部材に接着し、圧電材料表面の電位
を非接触方式の表面電位計で測定すると部材応力を求め
ることができる。
When a strain is applied to the piezoelectric material, the piezoelectric material is polarized and an electric potential is generated on a specific surface of the piezoelectric material. This potential is proportional to the applied strain according to the piezoelectric equation. Therefore, the member stress can be obtained by bonding the piezoelectric material to the structural member and measuring the potential of the surface of the piezoelectric material with a non-contact type surface electrometer.

【0006】構造部材表面は一般に二次元応力状態にあ
るので、応力成分を分離して求めるには歪感知に方向性
を有する異方性圧電材料を設置する必要がある。例えば
異方性主軸の向きが0度、45度、90度になるように
接着した3枚の異方性圧電材料(PVDF)の表面電位
、V45、Vを測定すると、部材表面のσ、σ
およびせん断応力τXYは数1の連立方程式を解くこ
とで得られることが特願2000−366269号に示
されている。
Since the surface of the structural member is generally in a two-dimensional stress state, it is necessary to install an anisotropic piezoelectric material having directionality in strain sensing in order to separately determine the stress component. For example, when the surface potentials V x , V 45 , and V Y of three anisotropic piezoelectric materials (PVDF) bonded so that the directions of the principal axes of anisotropy are 0 degree, 45 degrees, and 90 degrees, the member surface is measured. Σ X , σ
It is shown in Japanese Patent Application No. 2000-366269 that Y and shear stress τ XY can be obtained by solving the simultaneous equations of Equation 1.

【0007】[0007]

【数1】 上式でa1、a2は異方性圧電材料の特性および構造部
材のヤング率とポアソン比、及び接着条件に依存する係
数である。
[Equation 1] In the above equation, a1 and a2 are coefficients that depend on the characteristics of the anisotropic piezoelectric material, the Young's modulus and Poisson's ratio of the structural member, and the bonding conditions.

【0008】ところで、構造部材表面の特定の直線上、
折線上あるいは曲線上の応力分布を測定するには、多数
の異方性圧電材料を部材表面に簡単な方法で精度良く接
着する方法が必要である。本発明は、複数の異方性圧電
材料を異方性の向きを変えて精度良く接着した応力分布
測定テープを提供することにより、簡単に構造部材の応
力分布を測定することが課題である。
By the way, on a specific straight line on the surface of the structural member,
In order to measure the stress distribution on a polygonal line or on a curved line, it is necessary to accurately adhere a large number of anisotropic piezoelectric materials to the surface of the member with a simple method. An object of the present invention is to easily measure the stress distribution of a structural member by providing a stress distribution measuring tape in which a plurality of anisotropic piezoelectric materials are changed in the anisotropic direction and bonded accurately.

【0009】構造部材に接着された多数の圧電材料の表
面電位を測定するには、非接触方式の表面電位計の適用
が有効である。高速型の表面電位計にはミリ秒以下の高
速度で表面電位を測定できるものがある(例えばトレッ
クジャパンのカタログによるとMode1362Aの応
答時間は200μsec)。しかしながら、表面電位計
の計測プローブを手に持って多数箇所の表面電位を測定
すると、手ぶれなどの問題が生じる。このため本発明
は、計測プローブを保持具に取り付けて効率的に表面電
位を測定する方法を提供することが課題である。
In order to measure the surface potential of a large number of piezoelectric materials adhered to a structural member, it is effective to apply a non-contact type surface electrometer. Some high-speed type surface electrometers can measure the surface potential at a high speed of millisecond or less (for example, according to the Trek Japan catalog, the response time of Mode 1362A is 200 μsec). However, when the measurement probe of the surface electrometer is held in the hand to measure the surface potentials at many points, problems such as camera shake occur. Therefore, it is an object of the present invention to provide a method for efficiently measuring a surface potential by attaching a measuring probe to a holder.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明の第一の応力分布測定テープは、[1]歪感
知部としての圧電材料を支持体テープの片方の面に規則
正しく並べて接着した応力分布測定テープであって、絶
縁材料の支持体テープと、前記支持体テープの片方の面
に少なくとも2方向に異方性の向きを変えて並べて接着
された複数の異方性圧電材料と、前記支持体テープの異
方性圧電材料が接着されていない側の表面にマークされ
た異方性圧電材料の形状と異方性の向きを表すマークと
を具備し、前記応力分布測定テープを異方性圧電材料の
マークが見えるように構造部材表面に接着して応力測定
を行うことを特徴とする。
In order to solve the above problems, the first stress distribution measuring tape of the present invention is [1] a piezoelectric material as a strain sensing portion is regularly arranged and bonded on one surface of a support tape. A stress distribution measuring tape, comprising: a support tape made of an insulating material; and a plurality of anisotropic piezoelectric materials adhered side by side in one surface of the support tape while changing their anisotropic directions in at least two directions. The stress distribution measuring tape, comprising a shape of the anisotropic piezoelectric material marked on the surface of the support tape to which the anisotropic piezoelectric material is not adhered and a mark indicating the anisotropic direction, It is characterized in that stress is measured by adhering to the surface of the structural member so that the mark of the anisotropic piezoelectric material can be seen.

【0011】また、本発明の第二の応力分布測定テープ
は、[2]歪感知部としての圧電材料を支持体テープの
片方の面に規則正しく並べて剥離可能な粘着剤で粘着し
た応力分布測定テープであって、透明な支持体テープ
と、前記支持体テープの片方の面に少なくとも2方向に
異方性の向きを変えて並べて粘着された複数の異方性圧
電材料と、前記異方性圧電材料の粘着剤との接触面にマ
ークされた前記異方性圧電材料の異方性の向きを表すマ
ークとを具備し、前記応力分布測定テープを異方性圧電
材料のマークが見えるように構造部材表面に接着した後
に、前記支持体テープと異方性圧電材料の間の粘着剤を
剥がして支持体テープを取り除き異方性圧電材料表面を
露出させた状態で応力測定を行うことを特徴とする。
The second stress distribution measuring tape of the present invention is [2] a stress distribution measuring tape in which piezoelectric materials as strain sensing portions are regularly arranged on one surface of a support tape and adhered with a peelable adhesive. And a transparent support tape, a plurality of anisotropic piezoelectric materials which are arranged and adhered on one surface of the support tape while changing anisotropic directions in at least two directions, and the anisotropic piezoelectric material. And a mark indicating the anisotropic direction of the anisotropic piezoelectric material, which is marked on the contact surface of the material with the adhesive, and the stress distribution measuring tape is structured so that the mark of the anisotropic piezoelectric material can be seen. After adhering to the surface of the member, the pressure-sensitive adhesive is peeled off between the support tape and the anisotropic piezoelectric material to remove the support tape, and the stress measurement is performed with the surface of the anisotropic piezoelectric material exposed. To do.

【0012】また、非導電性構造物で応力分布測定を行
うために、[3]上記[1]または[2]記載の応力分
布測定テープにおいて、支持体テープの片方の面に貼り
付けられた異方性圧電材料の表面に、さらに、前記異方
性圧電材料の全ての表面を覆い一部が支持体テープの外
側にはみ出す形状に一枚の金属フィルムを接着し、前記
金属フィルムに表面電位計の接地端子を接続して基準電
位とすることを特徴とする。
Further, in order to measure the stress distribution in the non-conductive structure, [3] the stress distribution measuring tape according to the above [1] or [2] was attached to one surface of the support tape. On the surface of the anisotropic piezoelectric material, further, a metal film is adhered in a shape that covers the entire surface of the anisotropic piezoelectric material and a part of the anisotropic piezoelectric material protrudes outside the support tape, and a surface potential is applied to the metal film. It is characterized by connecting the ground terminal of the meter to the reference potential.

【0013】また、本発明の第一の応力分布測定方法
は、[4]上記[1]乃至[3]記載の応力分布測定テ
ープを用いた応力測定において、異方性圧電材料の表面
電位測定に振動容量型で距離補償型の表面電位計を用い
たこと、該表面電位計の計測プローブを保持具に取り付
け前記保持具を構造部材に接着された異方性圧電材料の
上面に置いて計測プローブの位置を保持したこと、前記
保持具を異方性圧電材料の上面で移動させて表面電位を
測定したことを特徴とする。
The first stress distribution measuring method of the present invention is [4] in the stress measurement using the stress distribution measuring tape according to the above [1] to [3], the surface potential of an anisotropic piezoelectric material is measured. A vibration capacitance type and distance compensation type surface electrometer was used for the measurement, the measurement probe of the surface electrometer was attached to a holder, and the holder was placed on the upper surface of an anisotropic piezoelectric material adhered to a structural member for measurement. It is characterized in that the position of the probe is held and that the holder is moved on the upper surface of the anisotropic piezoelectric material to measure the surface potential.

【0014】また、本発明の第二の応力分布測定方法
は、[5]上記[1]乃至[3]記載の応力分布測定テ
ープを用いた応力測定において、金属板57aを底面に
取り付けた保持具を前記異方性圧電材料の上面に置いて
金属板57aの位置を保持したこと、金属板57aに電
気配線を接続して応力測定位置から離れた場所に置かれ
た別の金属板57bに一方の端を接続したこと、金属板
57bに表面電位計の計測プローブを接近させて該金属
板57bとの間隔を固定したこと、前記保持具を異方性
圧電材料の上面で移動させて表面電位を測定したことを
特徴とする。
The second stress distribution measuring method of the present invention is [5] a stress measurement using the stress distribution measuring tape described in [1] to [3] above. The tool is placed on the upper surface of the anisotropic piezoelectric material to hold the position of the metal plate 57a, and the electric wiring is connected to the metal plate 57a to another metal plate 57b placed at a position away from the stress measurement position. One end is connected, a measurement probe of a surface electrometer is brought close to the metal plate 57b to fix the gap with the metal plate 57b, and the holder is moved on the upper surface of the anisotropic piezoelectric material to make the surface It is characterized in that the electric potential was measured.

【0015】[0015]

【発明の実施の形態】以下に発明の実施の形態について
図を用いて詳細に説明する。図1(a)は本発明の一実
施例に係わる応力分布測定テープの構成を示した図であ
る。樹脂フィルムなど絶縁材料の薄い支持体テープ1の
片方の面に、異方性圧電材料2a、2b、2cを異方性
主軸が支持体テープ1の長さ方向に対して0度、45度
および90度方向を向くように3枚一組として並べ、こ
れと同じ組を支持体テープ1の長さ方向に繰り返し並べ
て接着剤3で接着したものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1A is a diagram showing the structure of a stress distribution measuring tape according to an embodiment of the present invention. On one surface of the thin support tape 1 made of an insulating material such as a resin film, the anisotropic piezoelectric materials 2a, 2b, and 2c are provided with the anisotropic main axes at 0 °, 45 °, and 0 ° to 45 ° with respect to the length direction of the support tape 1. Three pieces are arranged as one set so as to face the direction of 90 degrees, and the same set is repeatedly arranged in the length direction of the support tape 1 and bonded with the adhesive 3.

【0016】異方性圧電材料としては例えば高分子異方
性圧電材料PVDFがある。PVDFは薄く柔軟性があ
り加工も容易である。PVDFには表面が電極処理され
たものと電極処理されていないものがあり、どちらも応
力測定に使用できるが接着力を考えると電極処理されて
いないものが良い。
An example of the anisotropic piezoelectric material is a polymer anisotropic piezoelectric material PVDF. PVDF is thin, flexible and easy to process. There are PVDF whose surface is treated with an electrode and those whose surface is not treated with an electrode. Both of them can be used for stress measurement, but considering the adhesive force, those not treated with an electrode are preferable.

【0017】異方性圧電材料2a、2b、2cが接着さ
れた面の背面にあたる前記支持体テープ1の表面には、
異方性圧電材料の形状と異方性主軸の方向を表すマーク
6が印刷などでマークされている。図中の矩形のマーク
6が異方性圧電材料の形状と接着位置を表し、矩形内部
の直線が異方性主軸の方向を表す。
On the surface of the support tape 1, which is the back surface of the surface to which the anisotropic piezoelectric materials 2a, 2b, 2c are adhered,
A mark 6 indicating the shape of the anisotropic piezoelectric material and the direction of the anisotropic main axis is marked by printing or the like. The rectangular mark 6 in the figure represents the shape and the bonding position of the anisotropic piezoelectric material, and the straight line inside the rectangle represents the direction of the anisotropic principal axis.

【0018】図1(b)は応力分布測定テープを構造物
へ接着する方法を説明した図である。まず、部材表面を
エメリー紙などで研摩した後、支持体テープにマークさ
れた圧電材料のマーク6が見えるように構造部材表面に
置いて、圧電材料表面を接着剤4で部材に接着する。図
1(a)の応力分布測定テープでは、任意の隣接する3
枚の異方性圧電材料の異方性主軸が0度、45度及び9
0度の向きを構成する配置になっているので、隣接する
3枚の表面電位V、V45、Vを測定し、それらを
数1に代入して求めたσ、σおよびτXYを3枚の
重心位置での応力とする。隣接する3枚の組をずらして
表面電位を測定すると、支持体テープ長さ方向に離散的
応力分布を求めることができる。
FIG. 1 (b) is a view for explaining a method of adhering a stress distribution measuring tape to a structure. First, the surface of the member is ground with an emery paper or the like, then placed on the surface of the structural member so that the mark 6 of the piezoelectric material marked on the support tape can be seen, and the surface of the piezoelectric material is bonded to the member with the adhesive 4. In the stress distribution measuring tape of FIG.
Anisotropy principal axes of one piece of anisotropic piezoelectric material are 0 degree, 45 degree, and 9
Since the arrangement is such that the direction of 0 degree is formed, the surface potentials V x , V 45 , and V Y of three adjacent sheets are measured, and σ X , σ Y, and τ obtained by substituting them into Equation 1 are obtained. Let XY be the stress at the center of gravity of the three sheets. When the surface potential is measured by shifting the set of three adjacent sheets, a discrete stress distribution can be obtained in the length direction of the support tape.

【0019】なお、応力分布測定テープは複数のテープ
を直列に接着して長いテープとして使用しても良いし、
鋏みなどで必要長さに切断して使用することもできる。
また、ロール状に巻いた長い応力分布測定テープを作製
しておいてもよい。
The stress distribution measuring tape may be used as a long tape by adhering a plurality of tapes in series,
It can also be cut to the required length with scissors and used.
Further, a long stress distribution measuring tape wound in a roll may be prepared.

【0020】図2(a)は異方性圧電材料を支持体テー
プに剥離可能な粘着剤5で貼り付けた応力分布測定テー
プの一実施例を示した図である。異方性圧電材料2a、
2b、2cの片方の表面に印刷等で異方性主軸の方向が
マークされた圧電材料を、透明な支持体テープに粘着剤
5で規則正しく張り付けたものである。これを異方性圧
電材料2a、2b、2cのマーク6が見えるように構造
部材の表面において接着剤4で接着する。接着剤が乾燥
した後に、支持体テープ1と異方性圧電材料の間の粘着
剤5を剥がして支持体テープ1を取り除き、異方性圧電
材料の表面が露出するようにする。
FIG. 2A is a diagram showing an embodiment of a stress distribution measuring tape in which an anisotropic piezoelectric material is attached to a support tape with a peelable adhesive 5. Anisotropic piezoelectric material 2a,
A piezoelectric material having an anisotropic principal axis direction marked by printing or the like on one surface of 2b or 2c is regularly attached to a transparent support tape with an adhesive 5. This is bonded with an adhesive 4 on the surface of the structural member so that the marks 6 of the anisotropic piezoelectric materials 2a, 2b, 2c can be seen. After the adhesive has dried, the adhesive 5 between the support tape 1 and the anisotropic piezoelectric material is peeled off to remove the support tape 1 so that the surface of the anisotropic piezoelectric material is exposed.

【0021】図2(b)は、支持体テープ1の粘着剤5
を剥がす途中の異方性圧電材料2a、2b、2cの断面
を示したものである。この応力分布測定テープでは支持
体テープを取り除いた後は異方性圧電材料の表面が露出
するので、表面電位計の計測プローブをより圧電材料表
面に接近させて表面電位測定を行うことができる。ま
た、異方性圧電材料の上面に塗装等を施して表面電位を
測定することもできる。
FIG. 2B shows the adhesive 5 of the support tape 1.
3 shows a cross section of the anisotropic piezoelectric material 2a, 2b, 2c during peeling. In this stress distribution measuring tape, since the surface of the anisotropic piezoelectric material is exposed after the support tape is removed, it is possible to measure the surface potential by bringing the measurement probe of the surface electrometer closer to the surface of the piezoelectric material. Alternatively, the surface potential can be measured by coating the upper surface of the anisotropic piezoelectric material.

【0022】図3(a)は非導電性構造物での応力分布
測定を行う場合の、本発明の応力分布測定テープの一実
施形態例を示した図である。非導電性構造物では構造物
自体の電位を基準電位にすることができないので、応力
分布測定テープの異方性圧電材料2a、2b、2cの上
面に、異方性圧電材料の全面を覆う形状の一枚の金属フ
ィルム7を接着する。また、金属フィルム7に表面電位
計の接地端子を接続するために金属フィルム7の一部が
支持体テープ1の外側にはみ出した構造とする。構造物
への接着においては、図3(b)に示すように、支持体
テープ1にマークされた異方性圧電材料のマーク6が見
えるように構造部材表面に置いて、金属フィルム7を部
材表面に接着剤4で接着する。
FIG. 3A is a view showing an embodiment of the stress distribution measuring tape of the present invention when the stress distribution is measured in a non-conductive structure. Since the non-conductive structure cannot set the potential of the structure itself to the reference potential, the shape of covering the entire surface of the anisotropic piezoelectric material on the upper surfaces of the anisotropic piezoelectric materials 2a, 2b, 2c of the stress distribution measuring tape. One piece of metal film 7 is adhered. Further, in order to connect the ground terminal of the surface electrometer to the metal film 7, the metal film 7 has a structure in which a part of the metal film 7 protrudes outside the support tape 1. In adhering to the structure, as shown in FIG. 3B, the metal film 7 is placed on the surface of the structural member so that the mark 6 of the anisotropic piezoelectric material marked on the support tape 1 can be seen. Adhesive 4 is attached to the surface.

【0023】図4は異方性圧電材料2a、2b、2cの
配置を2列横に並べた応力分布測定テープの一実施例を
示した図である。一方の異方性圧電材料の列2a、2
b、2cともう一方の異方性圧電材料の列12a、12
b、12cを千鳥状にずらせて配置することにより、異
方性主軸が0度、45度および90度方向を向く3枚の
異方性圧電材料の組を3角形状にも選ぶことができる。
なお、圧電材料の列を3列、4列とさらに増やした応力
分布測定テープを用いると平面上の応力分布を測定する
ことができる。
FIG. 4 is a diagram showing an embodiment of a stress distribution measuring tape in which anisotropic piezoelectric materials 2a, 2b, 2c are arranged in two rows. One of the anisotropic piezoelectric material columns 2a, 2
b, 2c and another row of anisotropic piezoelectric materials 12a, 12
By arranging b and 12c in a staggered manner, a set of three anisotropic piezoelectric materials whose anisotropic principal axes are oriented in the directions of 0 °, 45 ° and 90 ° can be selected in a triangular shape. .
The stress distribution on the plane can be measured by using a stress distribution measuring tape in which the rows of the piezoelectric material are further increased to 3 rows and 4 rows.

【0024】図5は異方性主軸が支持体テープ1の長さ
方向に対して0度、45度および90度を向くように切
り出した細長い異方性圧電材料のストリップ22a、2
2b、22cを支持体テープ1の長手方向に沿う縦縞状
になるように接着した応力分布測定テープの一実施例を
示す図である。この応力分布測定テープでは異方性圧電
材料が支持体テープの長さ方向に連続して接着されてい
るので、支持体テープ長さ方向の任意の位置で異方性圧
電材料のストリップ22a、22b、22c上の3点の
表面電位を測定することにより、支持体テープの長さ方
向に連続的な応力分布を求めることが可能である。
FIG. 5 shows elongated anisotropic piezoelectric material strips 22a, 2 cut so that the principal axes of the anisotropy are oriented at 0, 45, and 90 degrees with respect to the longitudinal direction of the support tape 1.
It is a figure which shows one Example of the stress distribution measuring tape which adhered 2b and 22c so that it might become vertical stripe shape along the longitudinal direction of the support body tape 1. In this stress distribution measuring tape, the anisotropic piezoelectric material is continuously adhered in the length direction of the support tape, so that the strips 22a, 22b of the anisotropic piezoelectric material are located at arbitrary positions in the length direction of the support tape. , 22c, it is possible to obtain a continuous stress distribution in the length direction of the support tape by measuring the surface potentials at three points.

【0025】なお、異方性主軸が支持体テープの長さ方
向に対して0度および90度の2種類の異方性圧電材料
を接着した応力分布測定テープを用いると、部材表面の
2方向の軸応力σ、σを測定することができる。
When a stress distribution measuring tape in which two kinds of anisotropic piezoelectric materials whose anisotropy principal axis is 0 degree and 90 degrees with respect to the length direction of the support tape is adhered is used, two directions of the surface of the member are used. The axial stresses σ X and σ Y can be measured.

【0026】図6は振動容量型で距離補償型の表面電位
計80を用いた圧電材料の表面電位の測定方法を説明し
た図である。構造物が導電性材料である場合には表面電
位計の基準電位になる接地端子82を構造物表面に接続
する。構造物が非導電性材料である場合には、基準電位
になる接地端子82を応力分布測定テープの金属フィル
ム7に接続する。
FIG. 6 is a diagram for explaining a method of measuring the surface potential of a piezoelectric material using a vibration capacitance type distance compensation type surface electrometer 80. When the structure is a conductive material, the ground terminal 82, which serves as the reference potential of the surface electrometer, is connected to the surface of the structure. When the structure is made of a non-conductive material, the ground terminal 82, which becomes the reference potential, is connected to the metal film 7 of the stress distribution measuring tape.

【0027】次に、表面電位計80の本体に接続された
計測プローブ81の振動電極を異方性圧電材料に接近さ
せて表面電位を測定するが、振動容量型で距離補償型の
非接触方式の表面電位計は、計測プローブ81の筐体電
位を制御することにより、振動電極と圧電材料表面の間
の静電容量の影響を打ち消して測定する方式であるの
で、振動電極と圧電材料表面の間に絶縁材料の支持体テ
ープ1があっても表面電位を測定することができる。計
測プローブ81を手に持って支持体テープ1の上で移動
させると、複数箇所で順次表面電位を測定することがで
きるが、手ぶれ等の影響で多数箇所の表面電位を手早く
測定することが困難である。
Next, the vibrating electrode of the measuring probe 81 connected to the main body of the surface electrometer 80 is brought close to the anisotropic piezoelectric material to measure the surface potential. The non-contact type of vibration capacitance type and distance compensation type is used. The surface electrometer of the method is a method of canceling the influence of the electrostatic capacitance between the vibrating electrode and the surface of the piezoelectric material to measure by controlling the casing potential of the measuring probe 81. The surface potential can be measured even if there is a support tape 1 made of an insulating material in between. If the measurement probe 81 is held in hand and moved on the support tape 1, the surface potential can be sequentially measured at a plurality of points, but it is difficult to quickly measure the surface potential at a large number of points due to camera shake or the like. Is.

【0028】図7は計測プローブ81を保持具50に取
り付け、保持具50を支持体テープ1の上面で滑らすよ
うに移動させて表面電位を測定する方法の一実施例を示
した図である。保持具50を手で押す方法、あるいは保
持具50に車輪を取り付けて押す方法で移動させると、
計測プローブ81を直接手に持って測定する場合と比べ
て、手早くかつ精度良く表面電位を測定することができ
る。また、保持具50自体に自力移動手段と構造物への
密着機能を持たせても良い。また、表面電位計に例えば
3チャンネルの表面電位計を使用し、保持具50に3つ
の計測プローブを取り付け、3枚の異方性圧電材料の表
面電位を同時に測定すると、より高速な応力分布測定が
可能になる。
FIG. 7 is a diagram showing one embodiment of a method for measuring the surface potential by attaching the measuring probe 81 to the holder 50 and moving the holder 50 so as to slide on the upper surface of the support tape 1. When the holder 50 is pushed by hand, or when the holder 50 is moved by attaching wheels to the holder 50,
The surface potential can be measured quickly and accurately as compared with the case where the measurement probe 81 is directly held in the hand for measurement. Further, the holder 50 itself may be provided with a self-moving means and a function of adhering to the structure. Further, for example, if a surface electrometer having three channels is used as the surface electrometer, and three measuring probes are attached to the holder 50, the surface potentials of the three anisotropic piezoelectric materials are simultaneously measured. Will be possible.

【0029】図8は計測プローブ81自体を応力分布測
定テープに近づけることなく、表面電位を測定する方法
の一実施例を示した図である。金属板57aを保持具5
0の底面に取り付け、該保持具50を支持体テープ上面
に置いて金属板57aの位置を保持し、金属板57aに
電気配線を接続して応力測定位置から離れた場所に置か
れた別の金属板57bに一方の端を接続する。次に金属
板57bに表面電位計の計測プローブ81を接近させて
金属板57bとの間隔を固定する。この応力測定方法の
回路は、圧電材料表面と支持体の上に置いた金属板57
aからなる静電容量と、計測プローブ前方に置いた金属
板57bとプローブ先端の振動電極からなる静電容量を
直列に接続した静電容量になるが、振動容量型で距離補
償型の表面電位計では、プローブ筐体の電圧を変化させ
て静電容量の影響を打ち消して測定するので表面電位を
測定することができる。
FIG. 8 is a diagram showing an embodiment of a method for measuring the surface potential without bringing the measuring probe 81 itself close to the stress distribution measuring tape. The metal plate 57a is attached to the holder 5
No. 0, the holder 50 is placed on the upper surface of the support tape to hold the position of the metal plate 57a, and electric wiring is connected to the metal plate 57a so that another place placed away from the stress measurement position can be used. One end is connected to the metal plate 57b. Next, the measurement probe 81 of the surface electrometer is brought close to the metal plate 57b to fix the distance from the metal plate 57b. The circuit of this stress measuring method is the metal plate 57 placed on the surface of the piezoelectric material and the support.
The electrostatic capacitance formed by a and the electrostatic capacitance formed by the metal plate 57b placed in front of the measurement probe and the vibration electrode at the probe tip are connected in series. In the meter, the voltage of the probe casing is changed to cancel the influence of the electrostatic capacitance and the measurement is performed, so that the surface potential can be measured.

【0030】なお、本発明の応力分布測定テープは図9
に示すように、異方性の向きを0度、45度および90
度に変えた3枚の異方性圧電材料2a、2b、2cを支
持体テープ1に接着あるいは粘着した応力測定テープと
して、3軸歪ゲージと同様に一箇所の応力測定にも使用
することができる。
The stress distribution measuring tape of the present invention is shown in FIG.
, The anisotropic orientations are 0 degree, 45 degree and 90 degree.
As the stress measuring tape in which three anisotropic piezoelectric materials 2a, 2b, and 2c, which are changed in degrees, are adhered or adhered to the support tape 1, it can be used for stress measurement at one place as in the case of the triaxial strain gauge. it can.

【0031】[0031]

【発明の効果】本発明の応力分布測定テープを用いる
と、歪感知部となる多数の異方性圧電材料を構造部材に
簡単かつ精度良く接着することができる。また、表面電
位計の計測プローブあるいは金属板を保持具に取り付
け、保持具を異方性圧電材料の上面で移動させることに
より、応力分布測定を高速に行うことができる。また保
持具自体に自力移動手段と構造物への密着機能を具備し
た測定方法や、構造物点検マニピュレータのアーム先端
に保持具を取り付けて構造物表面を移動させる測定方法
など種々の発展形が可能である。
When the stress distribution measuring tape of the present invention is used, a large number of anisotropic piezoelectric materials serving as strain sensing portions can be easily and accurately adhered to structural members. Further, the stress distribution can be measured at high speed by attaching a measuring probe of a surface electrometer or a metal plate to the holder and moving the holder on the upper surface of the anisotropic piezoelectric material. In addition, various types of development are possible, such as a measuring method in which the holder itself has a self-moving means and a function of adhering to the structure, and a measuring method in which the holder is attached to the arm tip of the structure inspection manipulator to move the structure surface. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の応力分布測定テープの一実施例を示し
た図である。
FIG. 1 is a view showing an example of a stress distribution measuring tape of the present invention.

【図2】異方性圧電材料を支持体テープに剥離可能な粘
着剤で貼り付けた応力分布測定テープの一実施例を示し
た図である。
FIG. 2 is a diagram showing an example of a stress distribution measuring tape in which an anisotropic piezoelectric material is attached to a support tape with a peelable adhesive.

【図3】非導電性構造物に適用する応力分布測定テープ
の一実施例を示した図である。
FIG. 3 is a diagram showing an example of a stress distribution measuring tape applied to a non-conductive structure.

【図4】応力分布測定テープにおける異方性圧電材料の
配置例を示した図である。
FIG. 4 is a diagram showing an arrangement example of anisotropic piezoelectric materials in a stress distribution measuring tape.

【図5】異方性圧電材料のストリップを配置した応力分
布測定テープの一実施例を示した図である。
FIG. 5 is a diagram showing an example of a stress distribution measuring tape on which strips of anisotropic piezoelectric material are arranged.

【図6】表面電位計を用いて圧電材料の表面電位を測定
する方法を示した図である。
FIG. 6 is a diagram showing a method of measuring the surface potential of a piezoelectric material using a surface electrometer.

【図7】計測プローブを保持具に取り付けて表面電位を
測定する方法である。
FIG. 7 is a method of measuring a surface potential by attaching a measurement probe to a holder.

【図8】計測プローブ自体を異方性圧電材料に接近させ
ることなく応力分布測定を行う方法を示した図である。
FIG. 8 is a diagram showing a method of performing stress distribution measurement without bringing the measurement probe itself close to the anisotropic piezoelectric material.

【図9】異方性の向きを変えて圧電材料を3枚貼り付け
た応力測定テープの図である。
FIG. 9 is a diagram of a stress measuring tape in which three piezoelectric materials are attached while changing the anisotropic direction.

【符号の説明】[Explanation of symbols]

1 支持体テープ 2a、2b、2c 異方性圧電材料 12a、12b、12c 異方性圧電材料 22a、22b、22c 異方性圧電材料のストリップ 3 接着剤 4 接着剤 5 粘着剤 6 圧電材料の形状と異方性の向きを表すマーク 7 金属フィルム 50 保持具 57a、57b 金属板 80 表面電位計 81 計測プローブ 82 接地端子 1 support tape 2a, 2b, 2c Anisotropic piezoelectric material 12a, 12b, 12c Anisotropic piezoelectric material 22a, 22b, 22c Strips of anisotropic piezoelectric material 3 adhesive 4 adhesive 5 Adhesive 6 Marks indicating the shape and anisotropy of the piezoelectric material 7 Metal film 50 holder 57a, 57b Metal plate 80 surface electrometer 81 Measuring probe 82 Ground terminal

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 歪感知部としての圧電材料を支持体テー
プの片方の面に規則正しく並べて接着した応力分布測定
テープであって、絶縁材料の支持体テープと、前記支持
体テープの片方の面に少なくとも2方向に異方性の向き
を変えて並べて接着された複数の異方性圧電材料と、前
記支持体テープの異方性圧電材料が接着されていない側
の表面にマークされた異方性圧電材料の形状と異方性の
向きを表すマークとを具備し、前記応力分布測定テープ
を異方性圧電材料のマークが見えるように構造部材表面
に接着したことを特徴とする応力分布測定テープ。
1. A stress distribution measuring tape in which piezoelectric materials as strain sensing portions are regularly arranged and adhered to one surface of a support tape, the support tape being made of an insulating material, and the support tape being provided on one surface of the support tape. A plurality of anisotropic piezoelectric materials adhered side by side with their anisotropy changed in at least two directions, and anisotropy marked on the surface of the support tape on which the anisotropic piezoelectric material is not adhered A stress distribution measuring tape comprising a shape of a piezoelectric material and a mark indicating an anisotropic direction, wherein the stress distribution measuring tape is adhered to a surface of a structural member so that the mark of the anisotropic piezoelectric material can be seen. .
【請求項2】 歪感知部としての圧電材料を支持体テー
プの片方の面に規則正しく並べて剥離可能な粘着剤で粘
着した応力分布測定テープであって、透明な支持体テー
プと、前記支持体テープの片方の面に少なくとも2方向
に異方性の向きを変えて並べて粘着された複数の異方性
圧電材料と、前記異方性圧電材料の粘着剤との接触面に
マークされた異方性圧電材料の異方性の向きを表すマー
クとを具備し、前記応力分布測定テープを異方性圧電材
料のマークが見えるように構造部材表面に接着した後
に、前記支持体テープと異方性圧電材料の間の粘着剤を
剥がして支持体テープを取り除いて異方性圧電材料の表
面を露出させたことを特徴とする応力分布測定テープ。
2. A stress distribution measuring tape in which piezoelectric materials as strain sensing portions are regularly arranged on one surface of a support tape and adhered with a peelable adhesive, the support tape being transparent, and the support tape. Anisotropy marked on the contact surface between a plurality of anisotropic piezoelectric materials adhered by arranging one surface of the anisotropic piezoelectric material in different directions in at least two directions. A mark indicating the anisotropic direction of the piezoelectric material, the stress distribution measuring tape being adhered to the surface of the structural member so that the mark of the anisotropic piezoelectric material can be seen, A stress distribution measuring tape, characterized in that the pressure sensitive adhesive between the materials is peeled off and the support tape is removed to expose the surface of the anisotropic piezoelectric material.
【請求項3】 請求項1または2記載の応力分布測定テ
ープにおいて、支持体テープの片方の面に貼り付けられ
た異方性圧電材料の表面に、さらに、前記異方性圧電材
料の全ての表面を覆い一部が支持体テープの外側にはみ
出す形状に一枚の金属フィルムを接着したことを特徴と
する応力分布測定テープ。
3. The stress distribution measuring tape according to claim 1, wherein the surface of the anisotropic piezoelectric material attached to one surface of the support tape further comprises all of the anisotropic piezoelectric material. A stress distribution measuring tape characterized in that a piece of metal film is adhered in such a shape that the surface is covered and a part of the support tape protrudes outside the support tape.
【請求項4】 請求項1乃至3記載の応力分布測定テー
プを用いた応力測定において、異方性圧電材料の表面電
位測定に振動容量型で距離補償型の表面電位計を用いた
こと、該表面電位計の計測プローブを保持具に取り付け
前記保持具を構造部材に接着された異方性圧電材料の上
面に置いて計測プローブの位置を保持したこと、前記保
持具を前記異方性圧電材料の上面で移動させて表面電位
を測定したことを特徴とする応力分布測定方法。
4. The stress measurement using the stress distribution measuring tape according to claim 1, wherein a vibrating capacitance type distance compensation type surface electrometer is used to measure the surface potential of the anisotropic piezoelectric material. The measurement probe of the surface electrometer is attached to the holder, the holder is placed on the upper surface of the anisotropic piezoelectric material adhered to the structural member to hold the position of the measurement probe, and the holder is the anisotropic piezoelectric material. A stress distribution measuring method, characterized in that the surface potential is measured by moving on the upper surface of the.
【請求項5】 請求項1乃至3記載の応力分布測定テー
プを用いた応力測定において、金属板57aを底面に取
り付けた保持具を前記異方性圧電材料の上面に置いて金
属板57aの位置を保持したこと、金属板57aに電気
配線を接続して応力測定位置から離れた場所に置かれた
別の金属板57bに一方の端を接続したこと、金属板5
7bに表面電位計の計測プローブを接近させて該金属板
57bとの間隔を固定したこと、前記保持具を前記異方
性圧電材料の上面で移動させて表面電位を測定したこと
を特徴とする応力分布測定方法。
5. The stress measurement using the stress distribution measuring tape according to claim 1, wherein a holder having a metal plate 57a attached to the bottom is placed on the upper surface of the anisotropic piezoelectric material and the position of the metal plate 57a is set. The metal plate 57a was connected to an electric wire and one end was connected to another metal plate 57b placed away from the stress measurement position.
7b, a measuring probe of a surface electrometer is brought close to the metal plate 57b to fix the distance, and the holder is moved on the upper surface of the anisotropic piezoelectric material to measure the surface potential. Method of measuring stress distribution.
JP2001402921A 2001-12-19 2001-12-19 Tape and method for measuring stress distribution Pending JP2003185507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001402921A JP2003185507A (en) 2001-12-19 2001-12-19 Tape and method for measuring stress distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001402921A JP2003185507A (en) 2001-12-19 2001-12-19 Tape and method for measuring stress distribution

Publications (1)

Publication Number Publication Date
JP2003185507A true JP2003185507A (en) 2003-07-03

Family

ID=27605741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001402921A Pending JP2003185507A (en) 2001-12-19 2001-12-19 Tape and method for measuring stress distribution

Country Status (1)

Country Link
JP (1) JP2003185507A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122215A (en) * 2006-11-13 2008-05-29 Aisin Seiki Co Ltd Piezoelectric sensor and method of manufacturing the same
JP2009042059A (en) * 2007-08-08 2009-02-26 Honda Motor Co Ltd Sensor assembly
JP2009264852A (en) * 2008-04-23 2009-11-12 Wakayama Univ Phase analysis method of grid image and displacement measurement method of object using the same, and shape measurement method of object
JP2009300096A (en) * 2008-06-10 2009-12-24 Minebea Co Ltd Strain gauge and its manufacturing method, and strain-gauge fitting method
JP2010230442A (en) * 2009-03-26 2010-10-14 Japan Research Institute Ltd System for detecting direction of external force
JP2016138803A (en) * 2015-01-27 2016-08-04 三井化学株式会社 Piezoelectric property measurement device and piezoelectric property measurement method
WO2022239434A1 (en) * 2021-05-11 2022-11-17 株式会社村田製作所 Sensor unit and sensor unit installation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122215A (en) * 2006-11-13 2008-05-29 Aisin Seiki Co Ltd Piezoelectric sensor and method of manufacturing the same
US8314536B2 (en) 2006-11-13 2012-11-20 Aisin Seiki Kabushiki Kaisha Piezoelectric sensor and method for manufacturing the same
JP2009042059A (en) * 2007-08-08 2009-02-26 Honda Motor Co Ltd Sensor assembly
JP2009264852A (en) * 2008-04-23 2009-11-12 Wakayama Univ Phase analysis method of grid image and displacement measurement method of object using the same, and shape measurement method of object
JP2009300096A (en) * 2008-06-10 2009-12-24 Minebea Co Ltd Strain gauge and its manufacturing method, and strain-gauge fitting method
JP2010230442A (en) * 2009-03-26 2010-10-14 Japan Research Institute Ltd System for detecting direction of external force
JP2016138803A (en) * 2015-01-27 2016-08-04 三井化学株式会社 Piezoelectric property measurement device and piezoelectric property measurement method
WO2022239434A1 (en) * 2021-05-11 2022-11-17 株式会社村田製作所 Sensor unit and sensor unit installation method

Similar Documents

Publication Publication Date Title
KR100908124B1 (en) Pressure sensor for measuring blood pressure and manufacturing method thereof
CN101057148B (en) Acceleration sensor
EP0381187A2 (en) Force detector using resistance elements
KR101259782B1 (en) Flexible force or pressure sensor array using semi-conductor strain gauge which is adapting cmos circuit, fabrication method thereof and measurement method therof
EP1970714A1 (en) Device including a contact detector
WO2006106876A1 (en) Microstructure probe card, and microstructure inspecting device, method, and computer program
WO2019009368A1 (en) Strain gauge and multiple axis force sensor
EP3431917B1 (en) Clearance sensor and clearance measuring method
JP2003185507A (en) Tape and method for measuring stress distribution
Nguyen et al. Development of a single-chip elasticity sensor using MEMS-based piezoresistive cantilevers with different tactile properties
Shan et al. The design and fabrication of a flexible three-dimensional force sensor skin
TW200526928A (en) Sensor positioning systems and methods
JP4958102B2 (en) Tactile sensor and manufacturing method thereof
US8984966B2 (en) Sub-millinewton capacitive MEMS force sensor for mechanical testing on a microscope
US4934197A (en) Method of measuring pressures and forces acting on arbitrarily shaped bodies
US9063036B2 (en) Sample for electron microscopy and method of manufacturing the same
JPH05149773A (en) Using method of strain gage
Nakashima et al. Multi-axial tactile sensor using standing LIG cantilevers on polyimide film
JPH09236409A (en) Measuring gauge for relative slippage amount
Metz et al. New parallelogram 3D-displacement sensor for micro probing and dimensional metrology
Kim et al. Piezoelectric properties of lead zirconate titanate thin films characterized by the pneumatic loading method
US20070262306A1 (en) Semiconductor device having microstructure and method of manufacturing microstructure
JP2004212246A (en) Acceleration sensor
KR101278679B1 (en) Haptics sensing device for multi-point and system including the same
JP2021056093A (en) Measuring system