JP2003184590A - Cylinder cut-off control device for multiple-cylinder internal combustion engine - Google Patents

Cylinder cut-off control device for multiple-cylinder internal combustion engine

Info

Publication number
JP2003184590A
JP2003184590A JP2001384670A JP2001384670A JP2003184590A JP 2003184590 A JP2003184590 A JP 2003184590A JP 2001384670 A JP2001384670 A JP 2001384670A JP 2001384670 A JP2001384670 A JP 2001384670A JP 2003184590 A JP2003184590 A JP 2003184590A
Authority
JP
Japan
Prior art keywords
cylinder
cut
intake
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001384670A
Other languages
Japanese (ja)
Inventor
Jiro Kondo
二郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001384670A priority Critical patent/JP2003184590A/en
Publication of JP2003184590A publication Critical patent/JP2003184590A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder cut-off control device for a multiple-cylinder internal combustion engine, which suppresses vibration caused by fluctuation of torque of the internal combustion engine. <P>SOLUTION: The control device is provided with an intake air controller 4 placed in intake air paths 2a-2d of respective cylinders 1a-1d of the internal combustion engine 1, and a cylinder cut-off control means, which executes a control for cylinder cut-off in order to shut down operation of a cylinder 1d of the objective cut-off cylinder under predetermined conditions of the engine. The compression ratio of the cylinder 1d is set higher beforehand than a normal compression ratio. In operation for cylinder cut-off, an intake control valve 40 placed in the intake air path of the cut-off cylinder is full opened by the cylinder cut-off control means, and at the same time, fuel injection to the cut-off cylinder is stopped. Difference in cylinder internal pressures between explosion cylinders and the cut-off cylinder is reduced in the cylinder cut-off operation. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば低負荷運転
時等、多気筒内燃機関の所定の運転条件下で、一部の気
筒の運転を休止させて、燃費を向上させる多気筒内燃機
関の減筒制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-cylinder internal combustion engine for improving fuel efficiency by suspending operation of some cylinders under predetermined operating conditions of the multi-cylinder internal combustion engine, such as during low load operation. The present invention relates to a reduced cylinder control device.

【0002】[0002]

【従来の技術】従来より、多気筒内燃機関の低負荷運転
時に、一部の気筒の運転を休止させて燃費を向上させる
減筒制御装置として、減筒制御の実行条件成立時に、予
め設定された減筒気筒への燃料噴射を停止させるもの
(特開昭53−40124号公報)や、減筒制御の実行
条件成立時に、減筒気筒への燃料噴射を停止させると共
に、減筒気筒の吸気通路を遮断して吸気の供給を停止さ
せるもの(特開昭63−65136号公報)等が知られ
ている。
2. Description of the Related Art Conventionally, as a cylinder cut-off control device for improving the fuel efficiency by suspending the operation of some cylinders during a low load operation of a multi-cylinder internal combustion engine, a cylinder cut-off control device which is preset when the execution condition of the cylinder cut-off control is satisfied. Which stops the fuel injection to the reduced cylinders (Japanese Patent Laid-Open No. 53-40124), and when the execution conditions of the reduced cylinder control are satisfied, the fuel injection to the reduced cylinders is stopped and the intake air of the reduced cylinders is intaken. There is known one that shuts off the passage to stop the supply of intake air (Japanese Patent Laid-Open No. 63-65136).

【0003】しかし、こうした従来の減筒制御装置は、
減筒制御の実行条件成立時に、燃料噴射の停止、或は燃
料噴射の停止及び吸気通路の遮断により、減筒気筒の運
転をそのまま休止させ、また減筒制御中、減筒制御から
の復帰条件が成立すると、減筒気筒の運転をそのまま再
開させるように構成されていたため、減筒制御の開始時
や通常運転への復帰時に、内燃機関に急激なトルク変動
が発生し、内燃機関が不快な振動を生じるといった問題
があった。
However, such a conventional cut-off cylinder control device is
When the execution condition of the cut-out cylinder control is satisfied, the operation of the cut-out cylinder is stopped as it is by stopping the fuel injection or stopping the fuel injection and blocking the intake passage, and the condition for returning from the cut-out cylinder control during the cut-out cylinder control. If the above condition is satisfied, the operation of the reduced cylinder is restarted as it is.Therefore, when starting the reduced cylinder control or returning to the normal operation, a rapid torque fluctuation occurs in the internal combustion engine, which makes the internal combustion engine uncomfortable. There was a problem of causing vibration.

【0004】このようなトルク変動を防止するために、
従来では、減筒制御の実行条件が成立すると、まず減筒
気筒として予め設定された複数の気筒のうちの一つの吸
気通路を遮断し、その後、他の減筒気筒の吸気通路を遮
断する、というように運転を休止させる減筒気筒を段階
的に増加させ、更に各減筒気筒の吸気通路遮断時(つま
り運転休止時)には、運転を継続させる前後の気筒の吸
入空気量を抑制するといったことが提案されている(特
開平3−70828号公報)。
In order to prevent such torque fluctuation,
Conventionally, when the execution condition of the reduced cylinder control is satisfied, first, the intake passage of one of the plurality of cylinders preset as the reduced cylinder is cut off, and then the intake passages of the other reduced cylinders are cut off. In this way, the number of reduced cylinders for which the operation is stopped is increased stepwise, and when the intake passage of each reduced cylinder is cut off (that is, when the operation is stopped), the intake air amount of the cylinders before and after the operation is continued is suppressed. It has been proposed (Japanese Patent Laid-Open No. 3-70828).

【0005】この提案の装置においては、減筒気筒とそ
の前後の気筒の出力差が小さくなり、しかも減筒気筒が
除々に増加するので、減筒制御によって生じる内燃機関
のトルク変動を抑制することができるようになる。しか
しながら、この提案の装置では、減筒気筒を除々に増加
するため、減筒気筒として設定された全ての気筒の運転
を休止させるのに時間がかかるといった問題があった。
In the proposed device, the output difference between the reduced cylinder and the cylinders before and after the reduced cylinder becomes small, and the reduced cylinder gradually increases. Therefore, the torque fluctuation of the internal combustion engine caused by the reduced cylinder control is suppressed. Will be able to. However, in the proposed device, the number of reduced cylinders is gradually increased, so that there is a problem that it takes time to suspend the operation of all the cylinders set as the reduced cylinders.

【0006】また、減筒気筒の運転を休止させる際に
は、その減筒気筒前後の運転を継続すべき気筒の出力も
低下させるため、減筒気筒の出力停止に伴う急激なトル
ク変動を抑制することはできるものの、減筒制御開始時
の内燃機関の出力トルクが一時的に大きく低下してしま
うといった問題もある。つまり、多筒筒内燃機関におい
て、特定の気筒を減筒気筒としてその運転を休止させた
場合、その減筒気筒から出力トルクを得ることができな
くなるため、内燃機関から一定の出力トルクを得るに
は、運転を継続させる他の気筒の出力トルクを通常より
増加させる必要があるが、上記の提案の装置では、減筒
気筒の休止前後で他の気筒の出力トルクも低下させるた
め、内燃機関から所望の出力トルクを発生させることが
できないのである。そして、上記のように減筒気筒を段
階的に増加させていると、減筒気筒の増加に伴い内燃機
関のトルクが周期的に変動してしまう。
Further, when the operation of the reduced cylinder is stopped, the output of the cylinder which should continue the operation before and after the reduced cylinder is also reduced, so that the rapid torque fluctuation due to the stop of the output of the reduced cylinder is suppressed. Although it is possible to do so, there is also a problem that the output torque of the internal combustion engine at the start of the cut-off cylinder control is greatly reduced temporarily. In other words, in a multi-cylinder internal combustion engine, when a specific cylinder is set as a reduced cylinder and its operation is suspended, output torque cannot be obtained from the reduced cylinder, so that a constant output torque is obtained from the internal combustion engine. Is required to increase the output torque of other cylinders that continue to operate more than usual, but in the above proposed device, the output torques of the other cylinders are also reduced before and after the cut-off cylinders are deactivated. The desired output torque cannot be generated. When the number of reduced cylinders is increased stepwise as described above, the torque of the internal combustion engine changes periodically as the number of reduced cylinders increases.

【0007】上記の問題を解決するものとして、本出願
人は、先に特開平7−217463号公報により公知の
内燃機関の減筒制御装置を提案している。この公知の減
筒制御装置は、減筒制御の開始及び終了時に、減筒気筒
の吸気通路に設けられた吸気制御弁の減筒気筒吸気行程
中の開期間を徐々に変化させて、減筒制御開始及び終了
時に生じる内燃機関のトルク変動を抑制するようにした
ものである。
As a solution to the above problem, the applicant of the present invention has previously proposed a cylinder cut-off control device for an internal combustion engine known from Japanese Patent Laid-Open No. 7-217463. This known cut-off cylinder control device gradually changes the open period during the cut-off cylinder intake stroke of the intake control valve provided in the intake passage of the cut-off cylinder at the start and end of the cut-off cylinder control to reduce the cut-off cylinder. The torque fluctuation of the internal combustion engine that occurs at the start and end of control is suppressed.

【0008】しかしながら、減筒制御を常に予め減筒気
筒として設定された特定の気筒に対して行うようにした
場合、減筒制御の実行期間が比較的短い場合には問題が
ないが、例えば内燃機関の減速運転が長く続き、減筒制
御を比較的長期間(例えば10分程度)にわたって実行
すると、その期間中に、クランク室との差圧によって減
筒気筒内にオイルが上がり、燃焼室温度が低下し、点火
プラグのくすぶりが発生するといった問題がある。この
ため、上記公知の減筒制御装置では、減筒制御の実行中
に、運転を休止する減筒気筒を切り替えるようにして、
上記問題の発生を防止するようにしている。また、上記
従来技術においては、いずれも減筒運転時に減筒気筒
(休止気筒)の吸気制御弁を閉じている。このため、図
4(a)に示されるように爆発気筒と減筒気筒との筒内
圧の差が大きく、これが、内燃機関のトルク変動による
振動の原因になっていた。
However, in the case where the cut-out cylinder control is always performed for a specific cylinder preset as the cut-out cylinder, there is no problem if the cut-out cylinder control execution period is relatively short. When the deceleration operation of the engine continues for a long time and the cut-off cylinder control is executed for a relatively long period (for example, about 10 minutes), oil rises in the cut-off cylinder due to the pressure difference with the crank chamber during that period, and the combustion chamber temperature And the spark plug is smoldered. Therefore, in the above-described known cut-off cylinder control device, during execution of cut-off cylinder control, by switching cut-off cylinders in which operation is suspended,
The above problems are prevented from occurring. In each of the above-mentioned conventional techniques, the intake control valve of the reduced cylinder (rest cylinder) is closed during the reduced cylinder operation. Therefore, as shown in FIG. 4A, there is a large difference in in-cylinder pressure between the explosive cylinder and the reduced cylinder, which causes vibration due to torque fluctuations of the internal combustion engine.

【0009】[0009]

【発明が解決しようとする課題】このように、従来公知
の減筒制御装置においては、内燃機関のトルク変動を抑
制するために、減筒制御の開始及び終了時に、吸気制御
弁の減筒気筒吸気行程中の開期間を徐々に変化させた
り、また、減筒気筒内のオイル上がり、燃焼室温度の低
下及び点火プラグのくすぶり等の不具合の発生を防止す
るために、減筒気筒の切替え等の煩雑な制御を必要とし
ている。また爆発気筒と減筒気筒との筒内圧の差が大き
く、機関振動の原因になっていた。
As described above, in the conventionally known cut-off cylinder control device, in order to suppress the torque fluctuation of the internal combustion engine, the cut-off cylinder of the intake control valve is started and stopped at the start and end of the cut-off cylinder control. In order to prevent the occurrence of problems such as gradually changing the open period during the intake stroke, rising oil in the reduced cylinder, lowering the combustion chamber temperature and smoldering the spark plug, etc. Needing cumbersome control of. Further, the difference in the cylinder pressure between the explosive cylinder and the reduced cylinder is large, which causes engine vibration.

【0010】本発明の目的は、このような煩雑な制御を
必要とすることなく、内燃機関のトルク変動による振動
を抑制でき、かつ減筒気筒内のオイル上がり、燃焼室温
度の低下及び点火プラグのくすぶり等の不具合の発生を
防止できる多気筒内燃機関の減筒制御装置を提供するこ
とである。
The object of the present invention is to suppress vibrations due to torque fluctuations of the internal combustion engine without requiring such complicated control, and to raise oil in the reduced cylinder, decrease in combustion chamber temperature, and spark plug. It is an object of the present invention to provide a reduced-cylinder control device for a multi-cylinder internal combustion engine that can prevent the occurrence of problems such as smoldering.

【0011】[0011]

【課題を解決するための手段】本発明は、前記課題を解
決するための手段として、特許請求の範囲の各請求項に
記載の多気筒内燃機関の減筒制御装置を提供する。請求
項1に記載の多気筒内燃機関の減筒制御装置は、減筒対
象である気筒の圧縮比を予め通常の圧縮比より高く設定
し、減筒運転時に、減筒制御手段により減筒対象の休止
気筒の吸気制御弁を全開状態にして、休止気筒の燃料の
噴射を停止することで、爆発気筒と休止気筒との筒内圧
差を小さくするようにしたものである。これにより、減
筒運転時におけるトルク変動及びそれに起因する振動を
低減できる。また、休止気筒の筒内圧を高くすることが
できるので、オイル上がり、燃焼室温度の低下、点火プ
ラグのくすぶり等の発生が防止できる。
As a means for solving the above-mentioned problems, the present invention provides a reduced-cylinder control device for a multi-cylinder internal combustion engine according to each of the claims. The cylinder cut-off control device for a multi-cylinder internal combustion engine according to claim 1 sets a compression ratio of a cylinder which is a cylinder cut-off target in advance to a higher compression ratio than a normal compression ratio, and the cylinder cut-off control means performs the cylinder cut-down target during a cylinder cut-off operation. By fully opening the intake control valve of the idle cylinder and stopping the fuel injection in the idle cylinder, the in-cylinder pressure difference between the explosive cylinder and the idle cylinder is reduced. As a result, it is possible to reduce the torque fluctuation and the vibration caused thereby during the reduced cylinder operation. Further, since the cylinder pressure of the deactivated cylinder can be increased, it is possible to prevent the occurrence of oil rise, decrease in combustion chamber temperature, smoldering of the spark plug, and the like.

【0012】請求項2の該減筒制御装置は、減筒運転時
に、減筒制御手段により爆発気筒の各吸気制御弁が吸気
量を増やすように制御されるようにしたものであり、こ
れによって、減筒運転時においても、トルクを補うこと
ができ、平均的な発生トルクを減筒運転前と同等に保つ
ことができる。請求項3の該減筒制御装置は、減筒対象
の気筒の排気通路に、触媒を通過する排出ラインと触媒
を通過しないバイパス排出ラインとに切り替え可能な流
路切替バルブが更に設けられており、減筒運転時に、休
止気筒からの排出ガスがバイパス排出ラインを通るよう
に、減筒制御手段により流路切替バルブが切り替えられ
るようにしたものである。これにより、爆発気筒からの
排ガスと休止気筒からの吹き抜けガスとが混合して、排
ガス温度を低下させたり、排ガスを薄めたりして触媒機
能を低下させることがなく、触媒を有効に働かすことが
できる。
According to another aspect of the present invention, the cylinder cut-off control device controls the intake control valves of the explosive cylinders to increase the intake amount by the cylinder cut-off control means during the cylinder cut-off operation. The torque can be supplemented even during the reduced-cylinder operation, and the average generated torque can be kept equal to that before the reduced-cylinder operation. According to the third aspect of the present invention, there is further provided a passage switching valve in the exhaust passage of the cylinder subject to the reduction of cylinders, which is capable of switching between an exhaust line passing through the catalyst and a bypass exhaust line not passing through the catalyst. During the cut-off cylinder operation, the cut-off cylinder control means can switch the flow path switching valve so that the exhaust gas from the idle cylinder passes through the bypass discharge line. As a result, the exhaust gas from the explosive cylinder and the blow-through gas from the idle cylinder are mixed to reduce the exhaust gas temperature or dilute the exhaust gas without degrading the catalytic function, and the catalyst can be effectively operated. it can.

【0013】請求項4の該減筒制御装置は、高負荷運転
時においては、減筒制御手段により、圧縮比を通常より
も高く設定している減筒対象の気筒の吸気制御弁を絞
り、吸気量を減らすようにしたものであり、これによっ
て、高負荷運転(全気筒爆発)時における、減筒対象の
気筒の圧縮比を高く設定したことに起因するノッキング
の発生を防止できる。
According to another aspect of the present invention, in the reduced cylinder control device, during a high load operation, the reduced cylinder control means throttles the intake control valve of the cylinder to be reduced whose compression ratio is set higher than usual. The amount of intake air is reduced, which can prevent the occurrence of knocking due to the high compression ratio of the cylinder to be reduced during high load operation (all cylinder explosion).

【0014】[0014]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態の多気筒内燃機関の減筒制御装置について説明
する。図1は、本実施形態の減筒制御装置が搭載される
多気筒内燃機関のシステム構成を示している。図1に示
すようにこのシステム構成は、4気筒内燃機関1と、こ
の内燃機関1の吸気系2及び排気系3と、吸気系2の各
気筒に接続する各吸気マニホールド2a〜2dに設けら
れた吸気制御装置4と、これらを制御する電子制御装置
(ECU)5などから構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION A cylinder reduction control apparatus for a multi-cylinder internal combustion engine according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the system configuration of a multi-cylinder internal combustion engine in which the reduced cylinder control device of the present embodiment is mounted. As shown in FIG. 1, this system configuration is provided in a four-cylinder internal combustion engine 1, an intake system 2 and an exhaust system 3 of the internal combustion engine 1, and intake manifolds 2a to 2d connected to each cylinder of the intake system 2. The intake control device 4 and an electronic control unit (ECU) 5 that controls the intake control device 4 and the like.

【0015】内燃機関1は4個の気筒1a〜1dを備え
ている。各気筒1a〜1dには、高速適合カムによって
開閉される吸気弁(図示せず)と排気弁(図示せず)と
が設けられ、各気筒の吸気弁より上流の吸気マニホール
ド2a〜2dには、それぞれ吸気制御装置4が設けられ
た吸気マニホールド2a〜2dより上流の吸気系2に
は、エアクリーナ6が設けられているだけであり、本発
明の多気筒内燃機関のシステム構成では、運転手のアク
セル操作によって開閉されるスロットルバルブは設けら
れていない。各気筒1a〜1dの排気弁より下流の排気
系3には、触媒部7が設けられていると共に、この排気
系3は、触媒部7を通る排出ライン3aと触媒部7を通
過しないバイパス排出ライン3bの2系統を有してお
り、後述する減筒運転により減筒対象とされる気筒1d
の排気路には、排出ライン3aとバイパス排出ライン3
bと間で排出ルートを切り替えることができる流路切替
バルブ31が設けられている。この流路切替バルブ31
は、ECU5により切替操作される。
The internal combustion engine 1 is equipped with four cylinders 1a-1d. Each cylinder 1a-1d is provided with an intake valve (not shown) and an exhaust valve (not shown) that are opened and closed by a high speed compatible cam, and the intake manifolds 2a-2d upstream of the intake valves of each cylinder are provided. Only the air cleaner 6 is provided in the intake system 2 upstream of the intake manifolds 2a to 2d in which the intake control device 4 is provided. In the system configuration of the multi-cylinder internal combustion engine of the present invention, There is no throttle valve that is opened or closed by accelerator operation. A catalyst unit 7 is provided in the exhaust system 3 downstream of the exhaust valves of the cylinders 1a to 1d, and the exhaust system 3 includes an exhaust line 3a that passes through the catalyst unit 7 and a bypass exhaust that does not pass through the catalyst unit 7. A cylinder 1d that has two systems of a line 3b and is a cylinder reduction target by a cylinder reduction operation described later.
The exhaust line 3a and the bypass exhaust line 3
A flow path switching valve 31 that can switch the discharge route between b and b is provided. This flow path switching valve 31
Is switched by the ECU 5.

【0016】また内燃機関1には、その運転状態を検出
するセンサとして、各気筒1a〜1dのピストンが上死
点(TDC)に位置するときにパルス信号を出すクラン
ク角センサ81、気筒毎にトルクあるいは燃焼を検出す
る気筒判別センサ82、吸気制御装置4の吸気制御弁の
開度を検出する開度センサ83、内燃機関1全体の吸入
空気量を検出するエアフロメータ84及びアクセルペダ
ルの踏込量を検出するアクセル開度センサ85などが設
けられており、これらの各センサからの検出信号は、E
CU5に出力される。
Further, in the internal combustion engine 1, a crank angle sensor 81 for outputting a pulse signal when the pistons of the cylinders 1a to 1d are located at the top dead center (TDC) as a sensor for detecting the operating state of each cylinder, and for each cylinder. A cylinder discrimination sensor 82 for detecting torque or combustion, an opening sensor 83 for detecting the opening of the intake control valve of the intake control device 4, an air flow meter 84 for detecting the intake air amount of the entire internal combustion engine 1, and an accelerator pedal depression amount. An accelerator opening sensor 85 and the like for detecting the E are provided, and the detection signals from these sensors are
It is output to CU5.

【0017】ECU5は、CPU,ROM,RAMを中
心に算術論理回路として構成されており、コモンパスを
介して入出力部と接続され、外部と入出力を行う。各セ
ンサからの検出信号は、ECU5に入力され、ここから
後述する吸気制御装置4のロータリソレノイドアクチュ
エータ(R/Sアクチュエータ)及び流路切替バルブ3
1に制御出力信号を出力する。従って、このECU5
が、本発明の減筒制御手段に相当するものである。
The ECU 5 is configured as an arithmetic logic circuit centering on a CPU, a ROM, and a RAM, and is connected to an input / output unit via a common path to perform input / output with the outside. Detection signals from the respective sensors are input to the ECU 5, from which a rotary solenoid actuator (R / S actuator) and a flow passage switching valve 3 of an intake control device 4 which will be described later are provided.
The control output signal is output to 1. Therefore, this ECU 5
Corresponds to the cut-off cylinder control means of the present invention.

【0018】次に吸気制御装置4を、図2,3により説
明する。図2は、吸気制御装置4の縦断面図である。吸
気制御装置4は、主に吸気制御弁40及びR/Sアクチ
ュエータ50とから構成されている。吸気制御弁40
は、吸気マニホールド2a〜2d内部に設けたバタフラ
イ型の円形弁板(弁体)41を備えている。円形弁板4
1は支軸42により回動自在に支持されており、吸気マ
ニホールド2a〜2dの壁面に対し極めて狭いクリアラ
ンスを持ちながら非接触で支軸42を中心に遥動する。
なお、支軸42の一端はベアリング43により吸気マニ
ホールド2a〜2dに支持され、支軸42の他端は、R
/Sアクチュエータ50に連結されている。
Next, the intake control device 4 will be described with reference to FIGS. FIG. 2 is a vertical sectional view of the intake control device 4. The intake control device 4 mainly includes an intake control valve 40 and an R / S actuator 50. Intake control valve 40
Includes a butterfly-type circular valve plate (valve body) 41 provided inside the intake manifolds 2a to 2d. Circular valve plate 4
1 is rotatably supported by a support shaft 42 and has a very narrow clearance with respect to the wall surfaces of the intake manifolds 2a to 2d and swings around the support shaft 42 in a non-contact manner.
In addition, one end of the support shaft 42 is supported by the intake manifolds 2a to 2d by a bearing 43, and the other end of the support shaft 42 is R
It is connected to the / S actuator 50.

【0019】また、支軸42の一端には、R/Sアクチ
ュエータ50の非通電時に円形弁板(弁体)41を中立
位置(半開状態)に保持するスプリング44が設けられ
ている。更に、吸気制御弁40には、円形弁板41の開
度を検出する開度センサ83が設けられている。
A spring 44 is provided at one end of the support shaft 42 for holding the circular valve plate (valve body) 41 at a neutral position (half open state) when the R / S actuator 50 is not energized. Further, the intake control valve 40 is provided with an opening sensor 83 that detects the opening of the circular valve plate 41.

【0020】R/Sアクチュエータ50は、強磁性体の
ロータ51と同じく強磁性体のステータ52とより構成
されており、ロータ51は吸気制御弁40の支軸42に
連結している。図3は、R/Sアクチュエータ50の横
断面図である。ロータ51は、断面円形の中実棒状部5
1aと、中実棒状部51aの軸心(ロータの軸心)に対
して対称的に配置され、中実棒状部51aの周面に設け
られた2つの扇形部51bとよりなり、これらが一体的
に形成されている。ステータ52には、90°毎に4つ
の方向にそれぞれ電磁コイル53a〜53dが配置され
ており、またステータ52には、電磁コイル53a,5
3cが設けられている部分から、ロータ51に向って先
細状に突出する一対の突出部52aが形成されており、
かつ同様に電磁コイル53b,53dが設けられている
部分から延出して、先端が扇形部51bの円弧と同じ形
状の凹状の円弧面をもつ一対の延出部52bが形成され
ている。
The R / S actuator 50 comprises a ferromagnetic rotor 51 and a ferromagnetic stator 52. The rotor 51 is connected to a support shaft 42 of the intake control valve 40. FIG. 3 is a cross-sectional view of the R / S actuator 50. The rotor 51 has a solid rod-shaped portion 5 having a circular cross section.
1a and two fan-shaped parts 51b provided symmetrically with respect to the axis of the solid rod-shaped part 51a (axial center of the rotor) and provided on the peripheral surface of the solid rod-shaped part 51a. Has been formed. Electromagnetic coils 53a to 53d are arranged in the stator 52 in four directions at 90 ° intervals, and the stator 52 has electromagnetic coils 53a and 53d.
A pair of projecting portions 52a that taper toward the rotor 51 are formed from the portion where 3c is provided,
Similarly, a pair of extending portions 52b extending from the portion where the electromagnetic coils 53b and 53d are provided and having a concave arc surface whose tip is the same as the arc of the fan-shaped portion 51b is formed.

【0021】ロータ51の扇形部51bの一側面が、ス
テータ52の一方の突出部52aの側面に当接すること
で、即ち図3に示される位置で、吸気制御弁40を全閉
状態にしており、ロータ51がその扇形部51bがステ
ータ52の延出部52bの円弧面に接するようにして回
動して、ステータ52の他方の突出部52aの側面に、
ロータ51の扇形部51bの他側面が当接することで、
吸気制御弁40を全開状態にする。したがって、吸気制
御弁40が全閉状態から全開状態への移動期間、即ち、
ロータ51が全閉位置から全開位置への移動期間におい
て、ロータ51の扇形部51bの側面とステータ52の
突出部52aと間にエアギャップgが形成され、ロータ
51の回動によってこのエアギャップgが変化する。即
ち、ロータ51は両突出部52a間で搖動することにな
り、略90°の範囲で搖動する。
The intake control valve 40 is fully closed by contacting one side surface of the fan-shaped portion 51b of the rotor 51 with the side surface of one protruding portion 52a of the stator 52, that is, at the position shown in FIG. , The rotor 51 is rotated so that the fan-shaped portion 51b of the rotor 51 is in contact with the circular arc surface of the extending portion 52b of the stator 52, and the rotor 51 is rotated to the side surface of the other protruding portion 52a of the stator 52.
By contacting the other side surface of the fan-shaped portion 51b of the rotor 51,
The intake control valve 40 is fully opened. Therefore, the period during which the intake control valve 40 moves from the fully closed state to the fully open state, that is,
During the movement period of the rotor 51 from the fully closed position to the fully open position, an air gap g is formed between the side surface of the fan-shaped portion 51b of the rotor 51 and the protruding portion 52a of the stator 52, and the rotation of the rotor 51 causes the air gap g to change. Changes. That is, the rotor 51 swings between the two protrusions 52a, and swings in the range of about 90 °.

【0022】このように構成された吸気制御装置4は、
以下のように作動する。R/Sアクチュエータ50電磁
コイル53a〜53dに所定の通電方向で通電すると、
スプリング44によって中立位置にあるロータ51は、
スプリング44のトルクに打ち勝って回転し、全閉位置
に保持される。したがって、ロータ51に直結している
吸気制御弁40の円形弁板41も中立(半開)状態から
全閉状態に保持される。R/Sアクチュエータ50の電
磁コイル53a〜53dへの通電を止めると、ロータ5
1及び円形弁板41はスプリング44のトルクにより回
転し、ロータ51は全開付近(円形弁板41は全開付
近)に到達する。この場合、摩擦及び粘性抵抗等によ
り、ロータ51及び円形弁板41は全開に到達しない。
この状態で、R/Sアクチュエータ50の電磁コイル5
3a〜53dに前回とは逆の通電方向(電磁コイル53
b,53dの通電方向が切り替えられる)で再び通電す
ると、ロータ51は吸引されて全開位置に保持される。
したがって、吸気制御弁40の円形弁板41も全開状態
に保持される。このようにして、上記の動作(電磁コイ
ルの通電方向の切り替え)を所望のタイミングで繰り返
すことにより、内燃機関の各気筒毎の吸入空気量を制御
する。
The intake control device 4 thus constructed is
It works as follows. When the R / S actuator 50 electromagnetic coils 53a to 53d are energized in a predetermined energizing direction,
The rotor 51 in the neutral position by the spring 44 is
The spring 44 overcomes the torque of the spring 44 to rotate and is held in the fully closed position. Therefore, the circular valve plate 41 of the intake control valve 40 directly connected to the rotor 51 is also held from the neutral (half-open) state to the fully closed state. When the energization of the electromagnetic coils 53a to 53d of the R / S actuator 50 is stopped, the rotor 5
1 and the circular valve plate 41 are rotated by the torque of the spring 44, and the rotor 51 reaches near full opening (the circular valve plate 41 is near full opening). In this case, the rotor 51 and the circular valve plate 41 do not reach full opening due to friction and viscous resistance.
In this state, the electromagnetic coil 5 of the R / S actuator 50
3a to 53d are energized in the opposite direction to the previous one (electromagnetic coil 53).
When the energization is performed again by switching the energization directions of b and 53d), the rotor 51 is attracted and held in the fully open position.
Therefore, the circular valve plate 41 of the intake control valve 40 is also held in the fully open state. In this way, the intake air amount for each cylinder of the internal combustion engine is controlled by repeating the above operation (switching the energization direction of the electromagnetic coil) at a desired timing.

【0023】次に、ECU5において実行される本発明
の特徴である減筒制御について図1と図4によって説明
する。本発明においては、減筒対象とされる気筒1d、
即ち減筒運転時の休止気筒の圧縮比は、予め通常の圧縮
比、約11よりも高く、例えば約14、に設定されてい
る。まず、アクセル開度センサ85及びクランク角セン
サ81からの検出信号に基づき得られる、内燃機関負荷
を表わすアクセルペダルの踏込量及び内燃機関の回転数
が、ECU5に読み込まれ、内燃機関の運転状態が低負
荷時である減筒制御領域にあれば、減筒制御が行われ
る。
Next, the cut-off cylinder control, which is a feature of the present invention and is executed in the ECU 5, will be described with reference to FIGS. 1 and 4. In the present invention, the cylinder 1d to be reduced
That is, the compression ratio of the idle cylinder during the reduced cylinder operation is set to a value higher than the normal compression ratio of about 11, for example, about 14, for example. First, the accelerator pedal depression amount and the internal combustion engine rotational speed, which represent the internal combustion engine load, obtained based on the detection signals from the accelerator opening sensor 85 and the crank angle sensor 81 are read into the ECU 5, and the operating state of the internal combustion engine is read. If the cylinder is in the cylinder reduction control area when the load is low, the cylinder reduction control is performed.

【0024】減筒制御手段であるECU5からの指令に
より、減筒対象である気筒1dの吸気マニホールド2d
に設けられた吸気制御弁40は、全開状態に保持され、
気筒1dへの燃料噴射を停止することで、気筒1dを休
止状態にする。他の運転状態にある爆発気筒1a,1
b,1cは、休止気筒1d分のトルクを補うために、E
CU5からの指令により、それぞれの吸気制御弁40の
開弁時間を長くして吸気量を増やすことで、平均的な発
生トルクを減筒運転前と同等に保つようにする。
In response to a command from the ECU 5 which is the cylinder reduction control means, the intake manifold 2d of the cylinder 1d which is the cylinder reduction target.
The intake control valve 40 provided in the
By stopping the fuel injection to the cylinder 1d, the cylinder 1d is put into a rest state. Explosion cylinders 1a, 1 in other operating states
b and 1c are provided with E in order to supplement the torque for the idle cylinder 1d.
In response to a command from the CU 5, the opening time of each intake control valve 40 is lengthened and the intake amount is increased, so that the average generated torque is maintained at the same level as before the reduced cylinder operation.

【0025】排気系3においては、減筒運転が開始され
ると、ECU5からの指令によって流路切替バルブ31
が切り替え作動され、休止気筒1dからの排出ガスの流
れが、触媒7を通る排出ライン1aから触媒7を通らな
いバイパス排出ライン1bに切り替えられる。他の爆発
気筒1a,1b,1cからの排ガスは、触媒7を通って
排出される。
In the exhaust system 3, when the reduced-cylinder operation is started, the flow passage switching valve 31 is instructed by the command from the ECU 5.
Is switched, and the flow of exhaust gas from the idle cylinder 1d is switched from the exhaust line 1a passing through the catalyst 7 to the bypass exhaust line 1b not passing through the catalyst 7. Exhaust gas from the other explosion cylinders 1a, 1b, 1c is discharged through the catalyst 7.

【0026】従来においては、吸気系には、アクセルと
連動するスロットルバルブが設けられており、低負荷運
転時には、スロットルバルブにより空気量が絞られてい
る上に、各気筒の吸気マニホールドに設けられる吸気制
御弁も、休止気筒では、閉弁されている。そのため、図
4(a)に示されるように、休止気筒と爆発気筒とで
は、筒内圧の圧力差が大きく、減筒運転時における内燃
機関の振動、騒音の原因となっていた。
Conventionally, the intake system is provided with a throttle valve that works in conjunction with the accelerator. During low load operation, the amount of air is throttled by the throttle valve, and in addition, it is provided on the intake manifold of each cylinder. The intake control valve is also closed in the idle cylinder. Therefore, as shown in FIG. 4A, the pressure difference between the in-cylinder pressures in the deactivated cylinder and the detonated cylinder is large, which causes vibration and noise of the internal combustion engine during the reduced cylinder operation.

【0027】本発明においては、低負荷運転時において
は、爆発気筒1a,1b,1cでも吸気量が少ないた
め、筒内圧があまり上がらない。その一方で、休止気筒
1dにおいては、吸気制御弁40が全開となっているた
め吸気量が多くなり、しかも圧縮比を高く設定している
ので筒内圧は高くなる。従って、図4(b)に示される
ように爆発気筒1a,1b,1cと休止気筒1dとの筒
内圧の圧力差が小さいため、減筒運転時における内燃機
関の振動、騒音を低減することができる。
According to the present invention, during low load operation, the cylinder pressure does not rise so much even in the explosive cylinders 1a, 1b, 1c because the intake air amount is small. On the other hand, in the deactivated cylinder 1d, since the intake control valve 40 is fully opened, the intake amount increases, and the compression ratio is set high, so the cylinder pressure increases. Therefore, as shown in FIG. 4 (b), since the pressure difference between the in-cylinder pressures between the explosive cylinders 1a, 1b, 1c and the idle cylinder 1d is small, the vibration and noise of the internal combustion engine during the reduced cylinder operation can be reduced. it can.

【0028】なお、本発明においては、減筒運転時の減
筒対象である気筒1dの圧縮比を通常の圧縮比よりも予
め高めに設定している。そのため、高負荷運転時(全気
筒爆発)に気筒間の圧縮比が異なるため、ノッキング発
生の恐れがある。このノッキング発生の防止のため、高
負荷運転時においては、気筒1dの吸気マニホールド2
dに設けた吸気制御弁40の開時間を他の気筒1a,1
b,1cの吸気制御弁40の開時間よりも短かくして、
気筒1dへの吸気量を減らすようにする。
In the present invention, the compression ratio of the cylinder 1d, which is the object of cylinder reduction during the cylinder reduction operation, is set higher than the normal compression ratio in advance. Therefore, during high load operation (explosion of all cylinders), the compression ratio between the cylinders is different, which may cause knocking. In order to prevent the occurrence of knocking, the intake manifold 2 of the cylinder 1d is operated during high load operation.
The opening time of the intake control valve 40 provided in d is set to the other cylinders 1a, 1
b, 1c shorter than the opening time of the intake control valve 40,
The amount of intake air to the cylinder 1d is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の減筒制御装置が搭載され
る多気筒内燃機関のシステム構成図である。
FIG. 1 is a system configuration diagram of a multi-cylinder internal combustion engine equipped with a reduced cylinder control device according to an embodiment of the present invention.

【図2】本発明で用いる吸気制御装置の縦断面図であ
る。
FIG. 2 is a vertical sectional view of an intake control device used in the present invention.

【図3】本発明で用いる吸気制御装置のロータリソレノ
イドアクチュエータの横断面図である。
FIG. 3 is a cross-sectional view of a rotary solenoid actuator of the intake control device used in the present invention.

【図4】(a)従来技術における減筒制御と、(b)本
発明の減筒制御との差を説明するグラフである。
FIG. 4 is a graph illustrating a difference between (a) conventional cylinder reduction control and (b) the present invention cylinder reduction control.

【符号の説明】[Explanation of symbols]

1…内燃機関 1a,1b,1c…爆発気筒 1d…休止気筒 2…吸気系 3…排気系 3a…排出ライン 3b…バイパス排出ライン 31…流路切替バルブ 4…吸気制御装置 40…吸気制御弁 5…ECU(減筒制御手段) 50…ロータリソレノイドアクチュエータ 7…触媒部 81…クランク角センサ 82…気筒判別センサ 83…開度センサ 85…アクセル開度センサ 1 ... Internal combustion engine 1a, 1b, 1c ... Explosion cylinder 1d ... idle cylinder 2 ... Intake system 3 ... Exhaust system 3a ... Discharge line 3b ... Bypass discharge line 31 ... Flow path switching valve 4 ... Intake control device 40 ... Intake control valve 5 ... ECU (reduced cylinder control means) 50 ... Rotary solenoid actuator 7 ... Catalyst part 81 ... Crank angle sensor 82 ... Cylinder discrimination sensor 83 ... Opening sensor 85 ... Accelerator position sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/20 F01N 3/20 T 3/24 3/24 R F02D 9/02 351 F02D 9/02 351P 361 361G 361J 41/04 310 41/04 310D 43/00 301 43/00 301H 301Z Fターム(参考) 3G065 AA05 CA13 DA07 GA05 GA41 GA46 HA03 KA34 KA36 3G084 AA03 BA05 BA24 DA02 DA11 DA23 FA10 FA19 FA39 3G091 AA02 AA28 AB01 CB06 DA08 HB03 3G092 AA14 AC01 BA01 BB01 BB10 CA03 CA07 CA09 CB05 DC01 DC12 DC15 DF01 DF02 DF09 DG02 DG07 DG09 EA01 EA11 FA05 FA14 FA16 FA20 GA06 GA14 HA01X HA06X HA14Z HB01Z HD09X HE03Z HE05Z 3G301 HA07 JA02 JA04 JA05 JA33 JA37 KA09 LA01 LC01 MA06 MA24 MA25 NE06 PA01Z PA11A PA13A PB03Z PC01Z PE05Z PE06Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F01N 3/20 F01N 3/20 T 3/24 3/24 R F02D 9/02 351 F02D 9/02 351P 361 361G 361J 41/04 310 41/04 310D 43/00 301 43/00 301H 301Z F term (reference) 3G065 AA05 CA13 DA07 GA05 GA41 GA46 HA03 KA34 KA36 3G084 AA03 BA05 BA24 DA02 DA11 DA23 FA10 FA19 FA39 3G091 AA02 DAA28 AB01 HB03 3G092 AA14 AC01 BA01 BB01 BB10 CA03 CA07 CA09 CB05 DC01 DC12 DC15 DF01 DF02 DF09 DG02 DG07 DG09 EA01 EA11 FA05 FA14 FA16 FA20 GA06 GA14 HA01X HA06X HA14Z HB01Z HD09X HE03Z HE05Z 3G301 HA07 JA02 JA04 JA05 JA33 JA37 KA09 LA01 LC01 MA06 MA24 MA25 NE06 PA01Z PA11A PA13A PB03Z PC01Z PE05Z PE06Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の各気筒の各吸気通路に設けら
れた吸気制御弁と、 非通電時には、前記吸気制御弁を前記吸気通路を半開す
る中立位置に保持し、通電時には、通電電流に応じて通
電方向に対応した方向に前記吸気制御弁を開閉駆動する
ロータリソレノイドアクチュエータと、 内燃機関の所定の条件下で、減筒対象である気筒の運転
を休止させる、減筒制御を実行する減筒制御手段とを備
えた多気筒内燃機関の減筒制御装置において、 前記減筒対象である気筒の圧縮比を予め通常の圧縮比よ
り高く設定し、減筒運転時において、前記減筒制御手段
により、減筒対象の休止気筒の前記吸気通路に設けられ
た前記吸気制御弁を全開状態にすると同時に前記休止気
筒の燃料の噴射を停止させることで、減筒対象でない爆
発気筒と前記休止気筒との筒内圧差を小さくすることを
特徴とする多気筒内燃機関の減筒制御装置。
1. An intake control valve provided in each intake passage of each cylinder of an internal combustion engine, and when not energized, the intake control valve is held in a neutral position where the intake passage is half-opened, and when energized, an energization current is supplied. Accordingly, the rotary solenoid actuator that opens and closes the intake control valve in a direction corresponding to the energization direction, and, under predetermined conditions of the internal combustion engine, suspends the operation of the cylinder that is the target of cylinder reduction, and executes the cylinder reduction control. In a cylinder reduction control apparatus for a multi-cylinder internal combustion engine including cylinder control means, a compression ratio of a cylinder that is a cylinder reduction target is set higher than a normal compression ratio in advance, and during the cylinder reduction operation, the cylinder reduction control means Thus, by simultaneously opening the intake control valve provided in the intake passage of the deactivated cylinder of the deactivated cylinder and stopping the fuel injection of the deactivated cylinder, the explosive cylinder and the deactivated cylinder that are not the reduced cylinder are And a cylinder-reducing control device for a multi-cylinder internal combustion engine, which reduces a cylinder pressure difference between the cylinder and the cylinder.
【請求項2】 減筒運転時において、前記減筒制御手段
により、前記爆発気筒の吸気通路の各吸気制御弁が、前
記爆発気筒の吸気量を増やすように制御されることを特
徴とする請求項1に記載の多気筒内燃機関の減筒制御装
置。
2. The reduced cylinder operation means controls each intake control valve in the intake passage of the explosive cylinder so as to increase the intake amount of the explosive cylinder during the reduced cylinder operation. Item 2. A reduced cylinder control device for a multi-cylinder internal combustion engine according to Item 1.
【請求項3】 前記減筒対象の気筒の排気通路に、触媒
を通過する排出ラインと触媒を通過しないバイパス排出
ラインとに切り替え可能な流路切替バルブが更に設けら
れており、減筒運転時に、前記休止気筒からの排出ガス
が前記バイパス排出ラインを通るように、前記減筒制御
手段によって、前記流路切替バルブが切り替えられるこ
とを特徴とする請求項1又は2に記載の多気筒内燃機関
の減筒制御装置。
3. A flow path switching valve capable of switching between an exhaust line that passes through the catalyst and a bypass exhaust line that does not pass through the catalyst is further provided in the exhaust passage of the cylinder to be cut-off cylinder, and at the time of cut-out cylinder operation. The multi-cylinder internal combustion engine according to claim 1 or 2, characterized in that the flow path switching valve is switched by the cut-off cylinder control means so that exhaust gas from the idle cylinder passes through the bypass exhaust line. Cylinder reduction control device.
【請求項4】 高負荷運転時においては、前記減筒制御
手段により、圧縮比を通常よりも高く設定している減筒
対象の気筒の前記吸気制御弁を絞り、吸気量を減らすよ
うに制御することを特徴とする請求項1,2又は3に記
載の多気筒内燃機関の減筒制御装置。
4. During high-load operation, the cut-off cylinder control means controls the intake control valve of the cylinder subject to cut-off cylinder whose compression ratio is set higher than usual so as to reduce the intake amount. The reduced cylinder control device for a multi-cylinder internal combustion engine according to claim 1, 2, or 3.
JP2001384670A 2001-12-18 2001-12-18 Cylinder cut-off control device for multiple-cylinder internal combustion engine Pending JP2003184590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001384670A JP2003184590A (en) 2001-12-18 2001-12-18 Cylinder cut-off control device for multiple-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001384670A JP2003184590A (en) 2001-12-18 2001-12-18 Cylinder cut-off control device for multiple-cylinder internal combustion engine

Publications (1)

Publication Number Publication Date
JP2003184590A true JP2003184590A (en) 2003-07-03

Family

ID=27594344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384670A Pending JP2003184590A (en) 2001-12-18 2001-12-18 Cylinder cut-off control device for multiple-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP2003184590A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127212A (en) * 2003-10-23 2005-05-19 Toyota Motor Corp Control device for internal combustion engine
JP2016186501A (en) * 2004-05-14 2016-10-27 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC Voltammetric systems for assaying biological analytes
CN106246380A (en) * 2015-06-09 2016-12-21 通用汽车环球科技运作有限责任公司 Air single cylinder determines system and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127212A (en) * 2003-10-23 2005-05-19 Toyota Motor Corp Control device for internal combustion engine
JP2016186501A (en) * 2004-05-14 2016-10-27 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC Voltammetric systems for assaying biological analytes
CN106246380A (en) * 2015-06-09 2016-12-21 通用汽车环球科技运作有限责任公司 Air single cylinder determines system and method
US10337441B2 (en) 2015-06-09 2019-07-02 GM Global Technology Operations LLC Air per cylinder determination systems and methods
CN106246380B (en) * 2015-06-09 2019-07-12 通用汽车环球科技运作有限责任公司 Air single cylinder determines system and method

Similar Documents

Publication Publication Date Title
CN102192018B (en) Method for controlling an internal combustion engine
JP3867461B2 (en) Fail-safe control device for electromagnetically driven valve
JP4092917B2 (en) Electromagnetically driven valve control device for internal combustion engine
KR100980886B1 (en) Vibration reducing system in key-off and method thereof
KR100935708B1 (en) Apparatus for and method of controlling a starting operation to restart an engine
JP2000154740A (en) Control device of variable valve system engine
US10683797B2 (en) Waste gate valve control method and control device
WO2008099282A2 (en) Intake system for internal combustion engine and control method of the same
JP2002213259A (en) Valve control device for internal combustion engine
JP2003184590A (en) Cylinder cut-off control device for multiple-cylinder internal combustion engine
JPWO2019043860A1 (en) Control method and control device for internal combustion engine
JP4104518B2 (en) Variable cylinder internal combustion engine
JP2005030391A (en) Control device and method of variable valve system
JP2001159339A (en) Control device for variable valve system type internal combustion engine
JP2003201891A (en) Device of controlling early warming-up of catalyst of multiple cylinder internal combustion engine
JP2008303744A (en) Control device of internal combustion engine
JPH07133726A (en) Intake air controller of internal combustion engine
JP2003193889A (en) Intake control device for multi-cylinder internal combustion engine
JP2003193873A (en) Reduced cylinder control device for multi-cylinder internal combustion engine
JPS6036736A (en) Engine designed to be capable of changing the number of cylinders to be operated
JP3712144B2 (en) Intake control device for internal combustion engine
JPS6036737A (en) Negative intake pressure detecting apparatus for engine capable of changing the number of cylinders to be operated
JP2018172995A (en) Control device of internal combustion engine
JPH0226049B2 (en)
JP2001295673A (en) Internal combustion engine having split intake system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205