JP2003179027A - Method of etching nitride system compound semiconductor - Google Patents

Method of etching nitride system compound semiconductor

Info

Publication number
JP2003179027A
JP2003179027A JP2002277024A JP2002277024A JP2003179027A JP 2003179027 A JP2003179027 A JP 2003179027A JP 2002277024 A JP2002277024 A JP 2002277024A JP 2002277024 A JP2002277024 A JP 2002277024A JP 2003179027 A JP2003179027 A JP 2003179027A
Authority
JP
Japan
Prior art keywords
compound semiconductor
etching
layer
type
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002277024A
Other languages
Japanese (ja)
Other versions
JP3931777B2 (en
Inventor
Akihiko Ishibashi
明彦 石橋
Masaya Mannou
正也 萬濃
Seiji Onaka
清司 大仲
Toshiya Fukuhisa
敏哉 福久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002277024A priority Critical patent/JP3931777B2/en
Publication of JP2003179027A publication Critical patent/JP2003179027A/en
Application granted granted Critical
Publication of JP3931777B2 publication Critical patent/JP3931777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an etching method which can make a surface applicable as an end surface of a semiconductor laser resonator in a wafer selectively and without giving a damage to a crystal. <P>SOLUTION: A GaN buffer layer 2, an n-type GaN layer 3, an n-type AlGaInN cladding layer 4, a GaN active layer 5, a p-type AlGaInN cladding layer 6, and a p-type GaN layer 7 are sequentially deposited on a sapphire substrate 1 in this order. By a heat treatment in an hydrogen atmosphere or by the application of a hydrogen plasma, resistances of the portions (H regions) of the p-type AlGaInN cladding layer 6 and the p-type GaN layer 7 are increased. Then, the H regions are selectively subjected to electrolysis by using electrolyte such as chloric acid. After the electrolysis reaches the GaN active layer 5, the electrolysis is further continued while light is applied and, when the electrolysis reaches the n-type GaN layer 3, the electrolysis is discontinued. Finally, the whole unit is subjected to a heat treatment in an atmosphere containing no hydride gas under a temperature not lower than 500°C and hydrogen atoms are discharged from the H regions to restore the H regions into original low resistance states. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は青色から紫外域における
発光ダイオードまたは同波長域におけるレーザダイオー
ドのデバイス製造方法、特に発光デバイスに用いられる
窒化ガリウム系半導体のエッチング方法に関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a light emitting diode in the blue to ultraviolet range or a laser diode in the same wavelength range, and more particularly to a method for etching a gallium nitride based semiconductor used in the light emitting device.

【0002】[0002]

【従来の技術】青色発光素子はフルカラーディスプレー
や高密度記録可能な光ディスク用光源として期待されて
おり、ZnSe等のII-VI族化合物半導体やSiC、GaN等のIII
-V化合物半導体を用いて盛んに研究されている。特に最
近AlGaN、GaNを用いて青色の発光ダイオードが実現され
ており、窒化物系化合物半導体を用いた発光素子は注目
されている。窒化物系化合物半導体を用いたデバイスの
作製方法を説明する。
2. Description of the Related Art A blue light emitting device is expected as a light source for a full color display or an optical disk capable of high density recording, and is a II-VI group compound semiconductor such as ZnSe or III such as SiC or GaN.
-V compound semiconductors are being actively studied. In particular, a blue light emitting diode has recently been realized using AlGaN and GaN, and a light emitting element using a nitride-based compound semiconductor has attracted attention. A method for manufacturing a device using a nitride compound semiconductor will be described.

【0003】まず図6に示すようにまずサファイア基板
1上に有機金属気相成長(MOVPE)法等により、GaN2バッ
ファ層、n-GaN3、n-AlGaInN4、GaN5、p-AlGaInN6、p-Ga
N7を順次堆積した後、ドライエッチングを用いてn-AlGa
InN4、GaN5、p-AlGaInN6、p-GaN7の一部分をエッチング
除去して、n-GaN3の一部分をむき出しにして陰電極を形
成する。このように窒化物系化合物半導体は適当なエッ
チング液が無く、デバイスの微細構造を作製する上にお
いてはドライエッチングを用いて加工している。
First, as shown in FIG. 6, a GaN2 buffer layer, n-GaN3, n-AlGaInN4, GaN5, p-AlGaInN6, p-Ga are first formed on a sapphire substrate 1 by a metal organic chemical vapor deposition (MOVPE) method or the like.
After N7 was sequentially deposited, dry etching was used to n-AlGa
A part of InN4, GaN5, p-AlGaInN6, and p-GaN7 is removed by etching, and a part of n-GaN3 is exposed to form a negative electrode. As described above, the nitride-based compound semiconductor does not have an appropriate etching solution, and is processed by using dry etching in forming a fine structure of a device.

【0004】また、サファイア基板は結晶構造が菱面体
構造で、通常(0001)面が入手しやすく用いられている。
この基板上に窒化物系化合物半導体を成長した場合デバ
イス構造に対して垂直な方向ではへきかい性がなく、例
えばこれを用いて半導体レーザを作製する場合、前出の
ドライエッチングまたは基板裏面に機械的にスクライブ
をいれて割るしかなかった。
In addition, the crystal structure of the sapphire substrate is a rhombohedral structure, and the (0001) plane is usually easily available.
When a nitride compound semiconductor is grown on this substrate, there is no cleavage in the direction perpendicular to the device structure. For example, when a semiconductor laser is manufactured using this, dry etching or mechanical backside I had no choice but to put a scribe in and break it.

【0005】[0005]

【発明が解決しようとする課題】ところが、従来のよう
なドライエッチングによる製造方法ではエッチング時に
結晶にダメージが入ってしまいデバイスの信頼性に問題
がある。特に電流狭窄を行うような微細構造を作製する
場合、活性層近傍でエッチングを制御する必要がある場
合等は結晶のダメージはデバイスにとって致命的とな
る。
However, in the conventional manufacturing method by dry etching, the crystal is damaged during etching, and there is a problem in device reliability. In particular, when a fine structure for current confinement is produced, and when etching needs to be controlled in the vicinity of the active layer, crystal damage is fatal to the device.

【0006】また、ドライエッチングまたは基板裏面に
機械的にスクライブをいれてウエハを割ると図6に示す
ようにデバイス発光共振器端面に傷が入ってしまうため
レーザ共振器端面を作製することは極めて困難であっ
た。
Further, when the wafer is broken by dry etching or by mechanically scribing the back surface of the substrate, the end surface of the device light emitting resonator is damaged as shown in FIG. It was difficult.

【0007】この発明の目的はこのような課題を解決
し、ウエハ内において選択的にかつ結晶にダメージを与
えることなく半導体レーザ共振器端面にも使い得る面を
出すエッチング方法を提供することである。
An object of the present invention is to solve such a problem and to provide an etching method for forming a surface which can be used as an end surface of a semiconductor laser resonator selectively in a wafer and without damaging a crystal. .

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段は以下に示すとおりである。 (1)p型窒化物系化合物半導体を含む窒化物系化合物
半導体から構成されるウエハの一部分に選択的に水素原
子を拡散させる工程と、前記半導体を電解液に浸して電
界をかけてエッチングすることを特徴とする窒化物系化
合物半導体のエッチング方法である。特に選択的に水素
原子を拡散させる手段として窒化物系化合物半導体から
構成されるウエハの一部分に選択的に誘電体膜を堆積
し、アンモニアを含む水素化物ガスから構成される雰囲
気で熱処理することを特徴とする窒化物系化合物半導体
のエッチング方法である。 (2)p型窒化物系化合物半導体を含む窒化物系化合物
半導体から構成されるウエハに水素原子を拡散させる工
程と、前記半導体を電解液に浸しかつ一部分に選択的に
光線を照射しながら電界をかけてエッチングすることを
特徴とする窒化物系化合物半導体のエッチング方法であ
る。特に水素原子を拡散させる工程がアンモニアを含む
水素化物ガスから構成される雰囲気で熱処理することを
特徴とする窒化物系化合物半導体のエッチング方法であ
る。 (3)窒化物系化合物半導体からなる多層膜の断面に水
素原子を拡散させる工程と、前記多層膜を電解液に浸し
電界をかけてエッチングすることを特徴とする窒化物系
化合物半導体のエッチング方法である。特に水素原子を
拡散させる工程がアンモニアを含む水素化物ガスから構
成される雰囲気で熱処理することを特徴とする窒化物系
化合物半導体のエッチング方法である。
Means for solving the problems Means for solving the above problems are as follows. (1) A step of selectively diffusing hydrogen atoms into a part of a wafer composed of a nitride-based compound semiconductor containing a p-type nitride-based compound semiconductor, and immersing the semiconductor in an electrolytic solution to apply an electric field to perform etching. A method for etching a nitride-based compound semiconductor, comprising: In particular, as a means for selectively diffusing hydrogen atoms, a dielectric film is selectively deposited on a part of a wafer composed of a nitride compound semiconductor, and heat treatment is performed in an atmosphere composed of a hydride gas containing ammonia. A method for etching a nitride-based compound semiconductor, which is a feature. (2) A step of diffusing hydrogen atoms into a wafer composed of a nitride-based compound semiconductor containing a p-type nitride-based compound semiconductor, and immersing the semiconductor in an electrolyte solution and selectively irradiating a part of the semiconductor with an electric field. It is a method of etching a nitride-based compound semiconductor, which is characterized in that etching is performed by applying. In particular, in the method of etching a nitride-based compound semiconductor, the step of diffusing hydrogen atoms is performed by heat treatment in an atmosphere composed of a hydride gas containing ammonia. (3) A method for etching a nitride-based compound semiconductor, which comprises a step of diffusing hydrogen atoms in a cross-section of a nitride-based compound semiconductor multilayer film, and immersing the multilayer film in an electrolytic solution to apply an electric field to perform etching. Is. In particular, in the method of etching a nitride-based compound semiconductor, the step of diffusing hydrogen atoms is performed by heat treatment in an atmosphere composed of a hydride gas containing ammonia.

【0009】[0009]

【作用】上記本発明の半導体レーザの製造方法(1)に
よれば、p型窒化物系化合物半導体を含む窒化物系化合
物半導体のウエハをアンモニアを含む水素化物ガス中で
熱処理を行うと誘電体膜を選択的に堆積した部分ではア
ンモニアの分解は抑制され、誘電体膜を堆積していない
部分ではアンモニアの分解は促進されて結晶中に水素原
子が拡散してくる。水素原子を拡散させたさせたp型窒
化物系化合物半導体は水素パッシベーションのため高抵
抗となる。このウエハを電解液に浸し電界をかけて電気
分解をおこなうと、p型の部分にはホールが供給されて
分解が起こるが、高抵抗部分はホールが供給されないの
で分解が起こらない。
According to the above-mentioned method (1) for manufacturing a semiconductor laser of the present invention, when a wafer of a nitride compound semiconductor containing a p-type nitride compound semiconductor is heat-treated in a hydride gas containing ammonia, a dielectric is obtained. Decomposition of ammonia is suppressed in the portion where the film is selectively deposited, and decomposition of ammonia is promoted in the portion where the dielectric film is not deposited, and hydrogen atoms diffuse into the crystal. The p-type nitride compound semiconductor in which hydrogen atoms are diffused has high resistance due to hydrogen passivation. When this wafer is immersed in an electrolytic solution and electrolyzed by applying an electric field, holes are supplied to the p-type portion to cause decomposition, but no holes are supplied to the high resistance portion, so that no decomposition occurs.

【0010】上記本発明の半導体レーザの製造方法
(2)によれば、p型窒化物系化合物半導体を含む窒化
物系化合物半導体のウエハをアンモニアを含む水素化物
ガス中で熱処理を行うとアンモニアの分解によって生じ
た水素原子が結晶中に拡散しp型窒化物系化合物系半導
体層を水素パッシベーションで高抵抗にする。このウエ
ハを電解液に浸しウエハの一部分に選択的に光線を照射
しながら電界をかけて電気分解をおこなうと、光線照射
部はホールが供給されて分解されるが、未照射部はホー
ルが供給されないので分解が起こらない。
According to the above-mentioned method (2) for manufacturing a semiconductor laser of the present invention, when a wafer of a nitride-based compound semiconductor containing a p-type nitride-based compound semiconductor is heat-treated in a hydride gas containing ammonia, ammonia gas is produced. Hydrogen atoms generated by the decomposition diffuse into the crystal, and the p-type nitride compound semiconductor layer is made to have high resistance by hydrogen passivation. When this wafer is immersed in an electrolytic solution and a part of the wafer is selectively irradiated with a light beam and an electric field is applied to perform electrolysis, holes are supplied to the light irradiation part and decomposed, but holes are supplied to the unirradiated part. No decomposition, so no decomposition occurs.

【0011】上記本発明の半導体レーザの製造方法
(3)によれば、窒化物系化合物半導体からなる多層膜
をアンモニアを含む水素化物ガス中で熱処理を行うとア
ンモニアの分解によって生じた水素原子が結晶中に拡散
しp型窒化物系化合物系半導体層を水素パッシベーショ
ンで高抵抗にする。この断面に光線を照射しながら電界
をかけて電気分解をおこなうと、光線照射部には一様に
ホールが供給されて多層膜の伝導型にかかわらず電気分
解が起きレーザ共振器端面が作製できる。
According to the above method (3) for manufacturing a semiconductor laser of the present invention, when a multilayer film made of a nitride compound semiconductor is heat-treated in a hydride gas containing ammonia, hydrogen atoms generated by decomposition of ammonia are generated. Hydrogen is passivated to make the p-type nitride compound semiconductor layer diffused in the crystal to have high resistance. When electrolysis is performed by applying an electric field while irradiating a light beam on this cross section, holes are uniformly supplied to the light beam irradiation portion and electrolysis occurs regardless of the conduction type of the multilayer film, and a laser resonator end face can be manufactured. .

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】(実施例1)図1(a)に示すようにまず
サファイア基板1上にGaNバッファ層2、n-GaN層3、n-
AlGaInNクラッド層4、GaN活性層5、p-AlGaInNクラッ
ド層6、p-GaN層7を順次堆積し、SiO2マスク8をp-GaN
層7上に選択的に堆積する。結晶成長は有機金属気相成
長法(MOVPE)法で行う。すなわち、まず気相成長
させるに先立ち、サファイア基板1を反応炉内のサセプ
ター上に設置し、真空排気した後、100Torrの水素雰囲
気において1100℃で10分間加熱し、基板のクリーニング
を行う。
Example 1 As shown in FIG. 1A, first, a GaN buffer layer 2, an n-GaN layer 3, and an n-GaN layer were formed on a sapphire substrate 1.
The AlGaInN clad layer 4, the GaN active layer 5, the p-AlGaInN clad layer 6, and the p-GaN layer 7 are sequentially deposited, and the SiO 2 mask 8 is used as the p-GaN.
Selectively deposited on layer 7. Crystal growth is performed by a metal organic vapor phase epitaxy (MOVPE) method. That is, first, prior to vapor phase growth, the sapphire substrate 1 is placed on a susceptor in a reaction furnace, evacuated, and then heated at 1100 ° C. for 10 minutes in a hydrogen atmosphere of 100 Torr to clean the substrate.

【0014】次に、600℃まで冷却し、TMG(トリメチル
ガリウム)を60μモル/分、NH3(アンモニア)を1.3L
/分、キャリア水素を2.5L/分流してGaNバッファ層2
を50nm成長させる。
Next, the temperature is cooled to 600 ° C., TMG (trimethylgallium) is 60 μmol / min, and NH 3 (ammonia) is 1.3 L.
/ Min, 2.5 L / min of carrier hydrogen flow to GaN buffer layer 2
Grow to 50 nm.

【0015】次にTMGの供給のみを停止し温度を1030℃
まで上昇させた後、TMGを60μモル/分、SiH4(シラ
ン)をを1μモル/分供給してn-GaN層3を堆積する。
Next, only the TMG supply is stopped and the temperature is changed to 1030 ° C.
Then, TMG is supplied at 60 μmol / min and SiH 4 (silane) is supplied at 1 μmol / min to deposit the n-GaN layer 3.

【0016】次にTMGの供給を停止し、800℃まで下げた
後NH3の流量を10L/分にあげる。さらにTMA(トリメチ
ルアルミニウム)を50μモル/分、TMGを60μモル/
分、TMI(トリメチルインジウム)を500μモル/分、Si
H4をを1μモル/分加えて供給しn-AlGaInNクラッド層4
を堆積した後、TMG、TMA、TMIの供給を停止し1030℃ま
で温度を上げNH3の流量を1.3L/分にする。
Then, the supply of TMG is stopped, the temperature is lowered to 800 ° C., and then the flow rate of NH 3 is increased to 10 L / min. Furthermore, TMA (trimethylaluminum) 50 μmol / min, TMG 60 μmol / min
Min, TMI (trimethylindium) 500μmol / min, Si
N-AlGaInN cladding layer 4 containing H4 added at 1 μmol / min
After depositing, the supply of TMG, TMA, and TMI is stopped, the temperature is raised to 1030 ° C, and the flow rate of NH3 is set to 1.3 L / min.

【0017】次にTMGを60μモル/分供給してGaN活性層
5を堆積した後、再び温度を800℃まで下げた後NH3の流
量を10L/分にあげ、TMAを50μモル/分、TMGを60μモ
ル/分、TMIを500μモル/分、Cp2Mg(シクロペンタジ
エニルマグネシウム)をを1μモル/分加えて供給しp-A
lGaInNクラッド層6を堆積する。
Next, after supplying TMG at 60 μmol / min to deposit the GaN active layer 5, the temperature is lowered to 800 ° C. again, the flow rate of NH 3 is increased to 10 L / min, TMA is 50 μmol / min, TMG To 60 μmol / min, TMI to 500 μmol / min, and Cp2Mg (cyclopentadienylmagnesium) to 1 μmol / min to supply pA.
The lGaInN cladding layer 6 is deposited.

【0018】最後にTMG、TMA、TMIの供給を停止し1030
℃まで温度を上げNH3の流量を1.3L/分にし、TMGを60μ
モル/分、Cp2Mgをを1μモル/分供給してp-GaN層7を
堆積する。
Finally, the supply of TMG, TMA and TMI is stopped and 1030
The temperature is raised to ℃ and the flow rate of NH3 is set to 1.3 L / min.
Mol / min, Cp2Mg is supplied at 1 μmol / min to deposit the p-GaN layer 7.

【0019】成長後の冷却時においては600℃以上でNH3
の供給を停止し、H2のみの雰囲気で室温まで冷却する。
すなわちこの冷却過程でp-AlGaInNクラッド層6、p-GaN
層7への水素原子の侵入を阻止する。ここで、600℃
の温度でNH3の供給を停止したのは、p型ドーパント
であるMgとともに結晶中に入っている水素を結晶から
追い出したいがためであり、この600℃以上の温度で
は、Mgと水素との結合を切ることができるので、この
温度でガスの供給を停止した。
When cooling after growth, NH3 is used at 600 ° C. or higher.
Stop the supply of H2O and cool to room temperature in an atmosphere of H2 only.
That is, during this cooling process, the p-AlGaInN cladding layer 6 and p-GaN
Prevents the entry of hydrogen atoms into the layer 7. Where 600 ° C
The reason for stopping the supply of NH3 at the temperature is because it is necessary to expel the hydrogen contained in the crystal together with the p-type dopant Mg from the crystal. The gas supply was stopped at this temperature because the gas can be turned off.

【0020】次にホトリソグラフィーを用いてSiO2マス
ク8を選択的に堆積した後、NH3とH2混合雰囲気で600
℃、10分間熱処理する。NH3流量は2L/分である。冷却
過程においては室温までNH3を供給する。この過程でSiO
2マスク8以外の領域ではNH3が分解し水素原子が生成さ
れて結晶中(図1(b)H領域)に侵入するのに対し、
SiO2マスク8上ではNH3の分解が抑制されるので水素原
子の侵入はない。よってH領域のみが高抵抗化される。
H領域の水素化は水素化物雰囲気における熱処理以外に
も、水素プラズマをSiO2等の誘電体膜をマスクとして照
射しても良い。
Next, a SiO2 mask 8 is selectively deposited by using photolithography, and then 600 in a mixed atmosphere of NH3 and H2.
Heat treatment at ℃ for 10 minutes. NH3 flow rate is 2 L / min. During the cooling process, NH3 is supplied up to room temperature. In this process SiO
2 In the regions other than the mask 8, NH3 is decomposed and hydrogen atoms are generated and penetrate into the crystal (H region in FIG. 1 (b)).
Since the decomposition of NH3 is suppressed on the SiO2 mask 8, hydrogen atoms do not enter. Therefore, only the H region has a high resistance.
For hydrogenation of the H region, hydrogen plasma may be applied using a dielectric film such as SiO2 as a mask, instead of heat treatment in a hydride atmosphere.

【0021】次にフッ酸でSiO2マスク8を除去した後、
図2に示すようにウエハを塩酸等の電解液11に浸す。
ウエハのp-GaN7には陽電極9を電解液11には陰電極
をそれぞれ設置する。この状態で電界を加えると図2に
示すようにp型伝導領域にはホールが供給されてGa+、N
+等のイオンが生成されて電気分解が起こる。すなわ
ち、図1(c)のようにp-AlGaInNクラッド層6、p-GaN
層7のH領域以外が選択的にエッチング除去される。
Next, after removing the SiO 2 mask 8 with hydrofluoric acid,
As shown in FIG. 2, the wafer is dipped in an electrolytic solution 11 such as hydrochloric acid.
A positive electrode 9 is provided on the p-GaN 7 of the wafer, and a negative electrode is provided on the electrolytic solution 11. When an electric field is applied in this state, holes are supplied to the p-type conduction region as shown in FIG.
Ions such as + are generated and electrolysis occurs. That is, as shown in FIG. 1C, the p-AlGaInN cladding layer 6 and the p-GaN
Layers 7 other than the H region are selectively etched away.

【0022】さらに図1(d)のようにXeランプ等の
GaNのバンドギャップ(3.4eV)よりも大きい波長
を含む光線をレンズで絞りH領域下部のn-GaN活性層
5、n-AlGaInNクラッド層に照射しながら電解をかける
と光励起によって生成されたホールの供給のため電気分
解が起こりn-GaNが表出する。したがってこれにデバイ
スの陰電極を設置すれば発光デバイスが作製できる。
Further, as shown in FIG.
Holes generated by photoexcitation when electrolysis is performed while irradiating the n-GaN active layer 5 and the n-AlGaInN clad layer under the H region with light rays including a wavelength larger than the GaN bandgap (3.4 eV) with a lens. Is supplied, electrolysis occurs and n-GaN is exposed. Therefore, a light emitting device can be manufactured by installing a negative electrode of the device on this.

【0023】最後にウエハを500℃以上のH2雰囲気で
30分間熱処理し、ウエハから水素原子を完全に離脱さ
せる。熱処理雰囲気はH2以外のN2やAr等水素化物ガス以
外であればいずれでも良い。GaN結晶の伝導型及びXe
ランプ光の照射強度に対する電気分解のエッチングレー
トの依存性を図3に示す。p型GaNでは光線を未照射で
もレートがかなり速いのに対し、n型、あるいは高抵抗
GaNでは光線を未照射ではほとんどエッチングされな
い。
Finally, the wafer is heat-treated in an H 2 atmosphere at 500 ° C. or higher for 30 minutes to completely remove hydrogen atoms from the wafer. The heat treatment atmosphere may be any atmosphere other than hydride gas such as N2 or Ar other than H2. GaN crystal conductivity type and Xe
FIG. 3 shows the dependence of the etching rate of electrolysis on the irradiation intensity of the lamp light. In p-type GaN, the rate is quite fast even without irradiation of light, whereas it is n-type or high resistance.
GaN is hardly etched without light irradiation.

【0024】またいずれの伝導型においても光線の照射
強度が強くなるに従いエッチングレートが増加する。こ
のことは電気分解による選択エッチングが電気伝導によ
って極めて制御性良くできることを示している。このよ
うにして電気分解によるウエットエッチングを行えば活
性層端面にダメージを与えることもなく選択的に広範囲
にわたって制御性良く微細加工が可能となる。
Further, in any conductivity type, the etching rate increases as the irradiation intensity of the light beam increases. This indicates that the selective etching by electrolysis can be performed with excellent controllability by electric conduction. By performing the wet etching by electrolysis in this manner, it is possible to selectively perform fine processing with good controllability over a wide range without damaging the end face of the active layer.

【0025】なお、本実施例で照射する光は、照射する
材料よりもバンドギャップ波長の大きいエネルギーの波
長であればよい。Xeランプ以外には、ヘリウムカドミ
ウムレーザ、窒素レーザであってもよい。波長はともに
約330nmである。
It should be noted that the light to be irradiated in this embodiment may have a wavelength of energy having a bandgap wavelength larger than that of the material to be irradiated. A helium cadmium laser or a nitrogen laser may be used instead of the Xe lamp. Both wavelengths are about 330 nm.

【0026】また、本実施例では、p型AlGaInN
系の材料に水素を導入して、高抵抗化しているが、同様
にn型AlGaInN系の材料に水素を導入して、高抵
抗化することもできるので、この実施例で説明した方法
は、n型の窒化物化合物半導体にも応用が可能である。
その場合に、水素を導入する方法、電気分解によりエッ
チングする方法も図2に示した方法、つまりこの実施例
をそのまま応用できるのである。
Further, in this embodiment, p-type AlGaInN is used.
Although hydrogen is introduced into the material of the system to increase the resistance, it is also possible to introduce hydrogen into the material of the n-type AlGaInN system to increase the resistance. Therefore, the method described in this embodiment is It can also be applied to an n-type nitride compound semiconductor.
In that case, the method of introducing hydrogen and the method of etching by electrolysis can be applied as they are to the method shown in FIG.

【0027】また基板にはサファイアを用いたが、Si
Cを用いることもできる。この場合、基板の上に成長す
るAlGaInN層に近い格子定数にすることができる
し、さらにSiCにはドーピングが可能で、p型、n型
基板として用いることもできる。
Although sapphire was used for the substrate,
C can also be used. In this case, the lattice constant can be close to that of the AlGaInN layer grown on the substrate, and further, SiC can be doped so that it can be used as a p-type or n-type substrate.

【0028】(実施例2)次にp型伝導の窒化物系化合
物半導体層において電流狭窄等の目的のため選択的に微
細加工する方法について述べる。
(Embodiment 2) Next, a method for selectively finely processing a p-type nitride compound semiconductor layer for the purpose of current confinement will be described.

【0029】図4(a)に示すようにまずサファイア基
板1上にGaNバッファ層2、n-GaN層3、n-AlGaInNクラ
ッド層4、GaN活性層5、p-AlGaInNクラッド層6、p-Ga
N層7を順次堆積する。結晶成長は実施例1で述べた有
機金属気層成長法(MOVPE)法で行う。次にNH3とH
2混合雰囲気で600℃、10分間熱処理する。NH3流量は2L
/分である。冷却過程においては室温までNH3を供給す
る。この過程でウエハ上においてNH3が分解し水素原子
が生成されてp-AlGaInNクラッド層6、p-GaN層7のp型
伝導の結晶中に一様に侵入し、水素パッシベーションの
ために高抵抗化される。
As shown in FIG. 4A, first, on the sapphire substrate 1, a GaN buffer layer 2, an n-GaN layer 3, an n-AlGaInN cladding layer 4, a GaN active layer 5, a p-AlGaInN cladding layer 6, and a p- layer. Ga
N layer 7 is sequentially deposited. Crystal growth is performed by the metal organic vapor phase epitaxy (MOVPE) method described in the first embodiment. Then NH3 and H
2 Heat treatment at 600 ℃ for 10 minutes in mixed atmosphere. NH3 flow rate is 2L
/ Min. During the cooling process, NH3 is supplied up to room temperature. During this process, NH3 is decomposed on the wafer to generate hydrogen atoms, which uniformly penetrate into the p-type conduction crystals of the p-AlGaInN cladding layer 6 and p-GaN layer 7 to increase the resistance for hydrogen passivation. To be done.

【0030】次にウエハを図2に示すように塩酸等の電
解液11に浸す。ウエハのp-GaN7には陽電極9を電解
液11には陰電極をそれぞれ設置する。
Next, the wafer is immersed in an electrolytic solution 11 such as hydrochloric acid as shown in FIG. A positive electrode 9 is provided on the p-GaN 7 of the wafer, and a negative electrode is provided on the electrolytic solution 11.

【0031】次に、Xeランプ光を絞りパターン上に照
射しながら、電界をかけ電気分解する。このとき図3に
示すように光線を照射した部分だけにホールが供給され
て電気分解が起こり、光照射されていない高抵抗化され
たp型の窒化物系化合物半導体層は電気分解されない。
ここで照射する光は、照射する材料のバンドギャップ波
長より大きいエネルギーの波長であればよい。Xeラン
プ以外には、ヘリウムカドミウムレーザ、窒素レーザで
あってもよい。波長はともに330nmである。
Next, while irradiating the aperture pattern with Xe lamp light, an electric field is applied to cause electrolysis. At this time, as shown in FIG. 3, holes are supplied only to the part irradiated with light rays and electrolysis occurs, and the high resistance p-type nitride compound semiconductor layer which is not irradiated with light is not electrolyzed.
The light irradiated here may have a wavelength of energy larger than the bandgap wavelength of the material to be irradiated. A helium cadmium laser or a nitrogen laser may be used instead of the Xe lamp. Both wavelengths are 330 nm.

【0032】最後にウエハを500℃以上のH2雰囲気で
30分間熱処理し、ウエハから水素原子を完全に離脱さ
せる。熱処理雰囲気はH2以外のN2やAr等水素化物ガス以
外であればいずれでも良い。すなわち、結晶性の低下を
行うことなく伝導型を制御してウエットエッチングによ
る微細加工技術が可能となった。
Finally, the wafer is heat-treated in an H 2 atmosphere at 500 ° C. or higher for 30 minutes to completely remove hydrogen atoms from the wafer. The heat treatment atmosphere may be any atmosphere other than hydride gas such as N2 or Ar other than H2. In other words, a fine processing technique by wet etching has become possible by controlling the conductivity type without lowering the crystallinity.

【0033】ストライプ構造を形成したあと、埋め込み
をおこなう。埋め込み層としてはGaInN100を用
いた。この層以外にも、AlGaInNでもよいが、こ
の場合は、p−AlGaInNクラッド層6よりもAl
組成の小さいものであればよい。このようにすること
で、図4(e)に示したような電流狭搾構造の半導体レ
ーザができる。
After forming the stripe structure, embedding is performed. GaInN100 was used as the burying layer. Other than this layer, AlGaInN may be used, but in this case, Al is more preferable than the p-AlGaInN cladding layer 6.
Any composition having a small composition may be used. By doing so, a semiconductor laser having a current narrowing structure as shown in FIG. 4E can be obtained.

【0034】(実施例3)次に窒化物系化合物半導体を
用いた半導体レーザの出射光端面の製造方法に関する実
施例について述べる。
(Embodiment 3) Next, an embodiment relating to a method of manufacturing an outgoing light end face of a semiconductor laser using a nitride compound semiconductor will be described.

【0035】図5(a)に示すようにまずサファイア基
板1上にGaNバッファ層2、n-GaN層3、n-AlGaInNクラ
ッド層4、GaN活性層5、p-AlGaInNクラッド層6、p-Ga
N層7を順次堆積する。結晶成長は実施例1で述べた有
機金属気相成長法(MOVPE)法で行う。
As shown in FIG. 5A, first, on the sapphire substrate 1, a GaN buffer layer 2, an n-GaN layer 3, an n-AlGaInN cladding layer 4, a GaN active layer 5, a p-AlGaInN cladding layer 6, and a p- layer. Ga
N layer 7 is sequentially deposited. Crystal growth is performed by the metal organic chemical vapor deposition (MOVPE) method described in the first embodiment.

【0036】次にNH3とH2混合雰囲気で600℃、10分間熱
処理する。NH3流量は2L/分である。冷却過程において
は室温までNH3を供給する。この過程でウエハ上におい
てNH3が分解し水素原子が生成されてp-AlGaInNクラッド
層6、p-GaN層7のp型伝導の結晶中に一様に侵入し、
水素パッシベーションのために高抵抗化される。
Next, heat treatment is performed at 600 ° C. for 10 minutes in a mixed atmosphere of NH 3 and H 2. NH3 flow rate is 2 L / min. During the cooling process, NH3 is supplied up to room temperature. In this process, NH3 is decomposed on the wafer to generate hydrogen atoms, which uniformly penetrate into the p-type conduction crystals of the p-AlGaInN cladding layer 6 and p-GaN layer 7,
High resistance due to hydrogen passivation.

【0037】次にウエハを機械的にスクライブしてレー
ザ共振器長以上の幅を持ったレーザバーを作製する。こ
の幅は好ましくはレーザ共振器長よりも0.1μm程度長い
ものが工程の制御性、簡便性にとって良い。
Next, the wafer is mechanically scribed to form a laser bar having a width equal to or longer than the laser cavity length. This width is preferably about 0.1 μm longer than the laser cavity length for good process controllability and simplicity.

【0038】次にウエハを図2に示すように塩酸等の電
解液11に浸す。ウエハのp-GaN7には陽電極9を電解
液11には陰電極をそれぞれ設置する。
Next, the wafer is immersed in an electrolytic solution 11 such as hydrochloric acid as shown in FIG. A positive electrode 9 is provided on the p-GaN 7 of the wafer, and a negative electrode is provided on the electrolytic solution 11.

【0039】次に図5(a)に示すように共振器端面に
Xeランプ光を照射しながら電界をかけ電気分解を行
い、図5(b)のようにエッチングする。この方法によ
れば共振器端面はすべての層が高抵抗であるので端面に
おいて一様に電気分解することが可能である。
Next, as shown in FIG. 5A, an electric field is applied to the end face of the resonator while irradiating the end face of the resonator with Xe lamp light to cause electrolysis, and etching is performed as shown in FIG. 5B. According to this method, since all the layers of the resonator end face have high resistance, the end face can be uniformly electrolyzed.

【0040】最後にウエハを500℃以上のH2雰囲気で
30分間熱処理し、ウエハから水素原子を完全に離脱さ
せる。熱処理雰囲気はH2以外のN2やAr等水素化物ガス以
外であればいずれでも良い。このようにして電気分解し
て作製した共振器端面の平坦性を段差測定した結果を図
7に示す。図7の横軸はバッファ層2からp−GaN層
7までの距離を示している。つまり横軸の0は基板1と
バッファ層2との界面を示し、その界面からの位置を横
軸に示している。縦軸は端面の凹凸を示しており、基板
とバッファ層の界面から上に向かって端面の凹凸を走査
していった結果であり、logスケールでとっている。
Finally, the wafer is heat-treated in an H 2 atmosphere at 500 ° C. or higher for 30 minutes to completely remove hydrogen atoms from the wafer. The heat treatment atmosphere may be any atmosphere other than hydride gas such as N2 or Ar other than H2. FIG. 7 shows the result obtained by measuring the flatness of the end face of the resonator produced by electrolysis in this way. The horizontal axis of FIG. 7 indicates the distance from the buffer layer 2 to the p-GaN layer 7. That is, 0 on the horizontal axis indicates the interface between the substrate 1 and the buffer layer 2, and the position from the interface is indicated on the horizontal axis. The vertical axis shows the unevenness of the end face, which is the result of scanning the unevenness of the end face upward from the interface between the substrate and the buffer layer, and is taken on a log scale.

【0041】この図7より、本発明は従来の基板を機械
的にスクライブして端面を形成する方法と比較して格段
の平坦性の改善が確認された。つまり、従来のスクライ
ブでは凹凸の振幅が1000オングストローム(A)あ
ったのに対し、本発明では、凹凸は10A程度に収まっ
ている。この方法により、結晶性の十分な向上が実現さ
れれば本発明を用いて半導体レーザ共振器端面を作製す
ることが十分に可能である。
From FIG. 7, it has been confirmed that the present invention has significantly improved flatness as compared with the conventional method of mechanically scribing a substrate to form an end face. That is, in the conventional scribe, the unevenness has an amplitude of 1000 Å (A), whereas in the present invention, the unevenness is about 10 A. If the crystallinity is sufficiently improved by this method, the end face of the semiconductor laser resonator can be sufficiently manufactured by using the present invention.

【0042】なお、本実施例では窒化物系の材料として
AlGaInNを用いているが、ここでAlGaInN
とは、AlxGayInzN(0≦x≦1、0≦y≦1、
0≦z≦1)のことであり、x,y,zはどの値を用いて
もかまわない。またAlを含まない系ではBN(ボロン
ナイトライド)であってもよい。
Although AlGaInN is used as the nitride-based material in this embodiment, here, AlGaInN is used.
And AlxGayInzN (0 ≦ x ≦ 1, 0 ≦ y ≦ 1,
0 ≦ z ≦ 1), and any value may be used for x, y, and z. Further, BN (boron nitride) may be used in a system not containing Al.

【0043】さらにp型AlGaInNを用いて水素を
拡散させた後、電気分解によりエッチングした場合につ
いて説明したが、実施例1の最後で述べたように、n型
AlGaInNを用いても水素拡散後の電気分解でエッ
チングすることができる。
Further, the case where hydrogen was diffused using p-type AlGaInN and then etching was performed by electrolysis was described. However, as described at the end of Example 1, even when n-type AlGaInN is used, hydrogen diffusion after hydrogen diffusion is performed. It can be etched by electrolysis.

【0044】[0044]

【発明の効果】以上述べてきたように本発明の第一の製
造方法によれば従来のように結晶にダメージを与えるド
ライエッチングによることなく電解液を用いたウエット
エッチングで電極部分を形成できるので発光デバイスの
信頼性が飛躍的に向上する。
As described above, according to the first manufacturing method of the present invention, the electrode portion can be formed by the wet etching using the electrolytic solution instead of the conventional dry etching which damages the crystal. The reliability of the light emitting device is dramatically improved.

【0045】また、第二の製造方法によれば光線を照射
した部分だけを選択的にかつ結晶にダメージを与えるこ
となく制御性良くエッチングできるのでレーザの電流狭
窄など信頼性の要求される微細加工技術が可能となる。
Further, according to the second manufacturing method, since only the portion irradiated with the light beam can be etched selectively and with good controllability without damaging the crystal, fine processing which requires reliability such as current confinement of laser. Technology becomes possible.

【0046】また、第三の製造方法によれば従来不可能
とされてきた窒化物系化合物半導体レーザの共振器端面
を再現性良く形成することが可能となる。
Further, according to the third manufacturing method, it becomes possible to reproducibly form the cavity facet of the nitride compound semiconductor laser, which has been heretofore impossible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に関する工程断面図FIG. 1 is a process sectional view according to a first embodiment of the present invention.

【図2】本発明の実施例1、2、3に関する電気分解の
工程図
FIG. 2 is a process diagram of electrolysis regarding Examples 1, 2, and 3 of the present invention.

【図3】本発明の実施例1、2、3に関する光線照射に
よるエッチングレートの依存性を示す図
FIG. 3 is a diagram showing the dependence of etching rate by light irradiation on Examples 1, 2, and 3 of the present invention.

【図4】本発明の実施例2に関する工程断面図FIG. 4 is a process cross-sectional view related to Example 2 of the present invention.

【図5】本発明の実施例3に関する工程断面図FIG. 5 is a process sectional view relating to a third embodiment of the present invention.

【図6】従来のエッチングまたはスクライブによる工程
後の素子断面図
FIG. 6 is a cross-sectional view of an element after a conventional etching or scribing process.

【図7】本発明の実施例3による平坦性向上の効果を示
す図
FIG. 7 is a diagram showing an effect of improving flatness according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 サファイア基板 2 GaNバッファ層 3 n-GaN層 4 n-AlGaInNクラッド層 5 GaN活性層 6 p-AlGaInNクラッド層 7 p-GaN層 8 SiO2マスク 9 陽電極 10 陰電極 11 電解液 100 GaInN層 1 sapphire substrate 2 GaN buffer layer 3 n-GaN layer 4 n-AlGaInN clad layer 5 GaN active layer 6 p-AlGaInN clad layer 7 p-GaN layer 8 SiO2 mask 9 Positive electrode 10 negative electrode 11 Electrolyte 100 GaInN layer

【手続補正書】[Procedure amendment]

【提出日】平成14年10月23日(2002.10.
23)
[Submission date] October 23, 2002 (2002.10.
23)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【課題を解決するための手段】基板上の窒化物系化合物
半導体の表面の一部分にマスクを選択的に堆積する工
程、基板を水素化物雰囲気下において熱処理することに
より、マスクに重ならない窒化物系化合物半導体の部分
のみを高抵抗化する工程、マスクを除去する工程、基板
を電解液に浸して電界を加えることにより、高抵抗化さ
れなかった部分の窒化物系化合物半導体をエッチングす
る工程、を有する、窒化物系化合物半導体のエッチング
方法である。上記課題を解決するための他の手段として
は、基板上の窒化物系化合物半導体の表面の一部分にマ
スクを選択的に堆積する工程、基板に水素プラズマを照
射することにより、マスクに重ならない窒化物系化合物
半導体の部分のみを高抵抗化する工程、マスクを除去す
る工程、基板を電解液に浸して電界を加えることによ
り、高抵抗化されなかった部分の窒化物系化合物半導体
をエッチングする工程、を有する、窒化物系化合物半導
体のエッチング方法である。
A step of selectively depositing a mask on a part of the surface of a nitride-based compound semiconductor on a substrate, and a nitride-based compound which does not overlap the mask by heat-treating the substrate in a hydride atmosphere A step of increasing the resistance of only the portion of the compound semiconductor, a step of removing the mask, a step of immersing the substrate in an electrolytic solution and applying an electric field to etch the nitride compound semiconductor in the portion where the resistance is not increased. A method of etching a nitride-based compound semiconductor having the same. As another means for solving the above problems, a step of selectively depositing a mask on a part of the surface of the nitride-based compound semiconductor on the substrate, and irradiating the substrate with hydrogen plasma to prevent the nitride from overlapping with the mask A step of increasing the resistance of only the part of the compound-based compound semiconductor, a step of removing the mask, a step of immersing the substrate in an electrolytic solution and applying an electric field to etch the part of the nitride-based compound semiconductor which has not been increased in resistance. And a method for etching a nitride-based compound semiconductor.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】削除[Correction method] Delete

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】削除[Correction method] Delete

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】削除[Correction method] Delete

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大仲 清司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 福久 敏哉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5F041 CA34 CA40 CA46 CA73 CA74 CA77 5F043 AA16 BB10 DD02 DD08 DD14 5F073 CA07 CB05 DA22 DA23 DA32 DA35    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kiyoshi Onaka             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Toshiya Fukuhisa             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5F041 CA34 CA40 CA46 CA73 CA74                       CA77                 5F043 AA16 BB10 DD02 DD08 DD14                 5F073 CA07 CB05 DA22 DA23 DA32                       DA35

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】p型窒化物系化合物半導体の一部分に選択
的に水素原子を拡散させる工程と、 前記化合物半導体を電解液に浸して電界をかけて、前記
化合物半導体の水素原子を拡散させていない領域をエッ
チングする工程とを有することを特徴とする窒化物系化
合物半導体のエッチング方法。
1. A step of selectively diffusing hydrogen atoms into a part of a p-type nitride compound semiconductor; and immersing the compound semiconductor in an electrolytic solution to apply an electric field to diffuse the hydrogen atoms of the compound semiconductor. Etching a non-existing region, a method for etching a nitride-based compound semiconductor.
【請求項2】水素原子を拡散させる工程が、アンモニア
を含む水素化物ガスから構成される雰囲気で熱処理する
工程であることを特徴とする請求項1に記載の窒化物系
化合物半導体のエッチング方法。
2. The method of etching a nitride-based compound semiconductor according to claim 1, wherein the step of diffusing hydrogen atoms is a step of performing heat treatment in an atmosphere composed of a hydride gas containing ammonia.
【請求項3】窒化物系化合物半導体の一部分に選択的に
誘電体膜を堆積する工程のあと、 前記誘電体膜を形成していない前記化合物半導体に選択
的に水素原子を拡散させることを特徴とする請求項2に
記載の窒化物系化合物半導体のエッチング方法。
3. A step of selectively depositing a dielectric film on a part of a nitride compound semiconductor, and then selectively diffusing hydrogen atoms into the compound semiconductor on which the dielectric film is not formed. The method for etching a nitride-based compound semiconductor according to claim 2.
【請求項4】p型窒化物系化合物半導体に水素原子を拡
散させる工程と、 前記化合物半導体を電解液に浸しかつ前記化合物半導体
の所定の部分に選択的に前記化合物半導体のバンドギャ
ップ波長より大きいエネルギ−の光線を照射しながら電
界をかけてエッチングする工程とを有することを特徴と
する窒化物系化合物半導体のエッチング方法。
4. A step of diffusing hydrogen atoms into a p-type nitride compound semiconductor, immersing the compound semiconductor in an electrolytic solution, and selectively allowing a predetermined portion of the compound semiconductor to have a band gap wavelength larger than the compound semiconductor. And a step of applying an electric field while irradiating a light beam of energy to perform etching, and a method of etching a nitride-based compound semiconductor.
【請求項5】水素原子を拡散させる工程が、アンモニア
を含む水素化物ガスから構成される雰囲気で熱処理する
ことを特徴とする請求項4に記載の窒化物系化合物半導
体のエッチング方法。
5. The method for etching a nitride-based compound semiconductor according to claim 4, wherein the step of diffusing hydrogen atoms comprises performing heat treatment in an atmosphere composed of a hydride gas containing ammonia.
【請求項6】窒化物系化合物半導体からなる多層膜の断
面に水素原子を拡散させる工程と、 前記多層膜を電解液に浸し電界をかけて、前記化合物半
導体をエッチングする工程とを有することを特徴とする
窒化物系化合物半導体のエッチング方法。
6. A method comprising: diffusing hydrogen atoms in a cross section of a multilayer film made of a nitride compound semiconductor; and immersing the multilayer film in an electrolytic solution to apply an electric field to etch the compound semiconductor. A method for etching a nitride-based compound semiconductor, which is characterized.
【請求項7】水素原子を拡散させる工程が、アンモニア
を含む水素化物ガスから構成される雰囲気で熱処理する
工程であることを特徴とする請求項6に記載の窒化物系
化合物半導体のエッチング方法。
7. The method for etching a nitride-based compound semiconductor according to claim 6, wherein the step of diffusing hydrogen atoms is a step of performing heat treatment in an atmosphere composed of a hydride gas containing ammonia.
【請求項8】AlGaInN層上に、選択的に誘電体膜
を形成し、 前記誘電体膜を含むAlGaInN層上に、熱分解によ
り水素を発生させるガスを流し、 前記ガスを熱分解させることで発生した水素を、前記誘
電体膜が形成されていないAlGaInN層に水素を拡
散させることを特徴とする水素拡散方法。
8. A dielectric film is selectively formed on the AlGaInN layer, and a gas for generating hydrogen by thermal decomposition is caused to flow over the AlGaInN layer including the dielectric film to thermally decompose the gas. A hydrogen diffusion method, wherein the generated hydrogen is diffused into the AlGaInN layer on which the dielectric film is not formed.
【請求項9】NH3を含むガスを、前記NH3ガスの分解
温度よりも高温で供給することでp型AlGaInN層
を成長する工程と、 成長後の冷却時において、前記p型AlGaInN層中
のp型ドーパントと水素との結合が切れる温度で前記N
H3の供給を停止し、H2のみの雰囲気で冷却すること
で、前記AlGaInN層への水素の拡散を阻止する水
素拡散阻止方法。
9. A step of growing a p-type AlGaInN layer by supplying a gas containing NH3 at a temperature higher than the decomposition temperature of the NH3 gas, and a step of growing the p-type AlGaInN layer at the time of cooling after the growth. The N at the temperature at which the bond between the type dopant and hydrogen is broken.
A hydrogen diffusion preventing method for stopping the diffusion of hydrogen into the AlGaInN layer by stopping the supply of H3 and cooling in an atmosphere of only H2.
【請求項10】NH3の供給を停止する温度が、600
℃以上であることを特徴とする請求項9に記載の水素拡
散阻止方法。
10. The temperature at which the supply of NH3 is stopped is 600.
10. The method for preventing hydrogen diffusion according to claim 9, wherein the temperature is not less than ° C.
【請求項11】基板上に、n型AlGaInN層を成長
する工程と、 前記n型AlGaInN層の上に、p型AlGaInN
層を成長する工程と、 前記p型AlGaInN層の一部分に選択的に水素原子
を拡散させる工程と、 前記p型,n型AlGaInN層を電解液に浸して電界
をかけ、前記p型AlGaInN層の水素原子を拡散さ
せていない領域をエッチングする工程と、 前記n型AlGaInN層をエッチングする工程と、 前記p型AlGaInN層に拡散した水素原子を離脱さ
せる工程と、を有することを特徴とする半導体発光素子
の製造方法。
11. A step of growing an n-type AlGaInN layer on a substrate, and a p-type AlGaInN layer on the n-type AlGaInN layer.
A step of growing a layer, a step of selectively diffusing hydrogen atoms in a part of the p-type AlGaInN layer, an electric field by immersing the p-type and n-type AlGaInN layers in an electrolytic solution, Semiconductor light emission comprising: a step of etching a region in which hydrogen atoms are not diffused; a step of etching the n-type AlGaInN layer; and a step of releasing hydrogen atoms diffused in the p-type AlGaInN layer. Device manufacturing method.
【請求項12】n型AlGaInN層をエッチングする
工程が、 前記AlGaInN層のバンドギャップ波長より大きい
エネルギ−の光線を照射して行うことを特徴とする請求
項11に記載の半導体発光素子の製造方法。
12. The method of manufacturing a semiconductor light emitting device according to claim 11, wherein the step of etching the n-type AlGaInN layer is performed by irradiating a light beam having an energy larger than the band gap wavelength of the AlGaInN layer. .
JP2002277024A 2002-09-24 2002-09-24 Nitride compound semiconductor etching method and semiconductor light emitting device manufacturing method Expired - Lifetime JP3931777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277024A JP3931777B2 (en) 2002-09-24 2002-09-24 Nitride compound semiconductor etching method and semiconductor light emitting device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277024A JP3931777B2 (en) 2002-09-24 2002-09-24 Nitride compound semiconductor etching method and semiconductor light emitting device manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1173195A Division JPH08203862A (en) 1995-01-27 1995-01-27 Method for etching nitride compound semiconductor

Publications (2)

Publication Number Publication Date
JP2003179027A true JP2003179027A (en) 2003-06-27
JP3931777B2 JP3931777B2 (en) 2007-06-20

Family

ID=19196999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277024A Expired - Lifetime JP3931777B2 (en) 2002-09-24 2002-09-24 Nitride compound semiconductor etching method and semiconductor light emitting device manufacturing method

Country Status (1)

Country Link
JP (1) JP3931777B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148149B2 (en) 2003-12-24 2006-12-12 Matsushita Electric Industrial Co., Ltd. Method for fabricating nitride-based compound semiconductor element
WO2008050490A1 (en) 2006-10-25 2008-05-02 Panasonic Corporation Flowmeter and its program
US7442644B2 (en) 2004-07-21 2008-10-28 Nichia Corporation Method for manufacturing nitride semiconductor wafer or nitride semiconductor device; nitride semiconductor wafer or nitride semiconductor device made by the same; and laser irradiating apparatus used for the same
CN109997235A (en) * 2016-11-24 2019-07-09 日机装株式会社 The manufacturing method of semiconductor light-emitting elements

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148149B2 (en) 2003-12-24 2006-12-12 Matsushita Electric Industrial Co., Ltd. Method for fabricating nitride-based compound semiconductor element
US7442644B2 (en) 2004-07-21 2008-10-28 Nichia Corporation Method for manufacturing nitride semiconductor wafer or nitride semiconductor device; nitride semiconductor wafer or nitride semiconductor device made by the same; and laser irradiating apparatus used for the same
WO2008050490A1 (en) 2006-10-25 2008-05-02 Panasonic Corporation Flowmeter and its program
US8515692B2 (en) 2006-10-25 2013-08-20 Panasonic Corporation Flow rate measuring apparatus and program thereof
CN109997235A (en) * 2016-11-24 2019-07-09 日机装株式会社 The manufacturing method of semiconductor light-emitting elements
CN109997235B (en) * 2016-11-24 2021-08-20 日机装株式会社 Method for manufacturing semiconductor light emitting element

Also Published As

Publication number Publication date
JP3931777B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP3688843B2 (en) Nitride semiconductor device manufacturing method
JP3594826B2 (en) Nitride semiconductor light emitting device and method of manufacturing the same
US6841410B2 (en) Method for forming group-III nitride semiconductor layer and group-III nitride semiconductor device
JP3876649B2 (en) Nitride semiconductor laser and manufacturing method thereof
JP3349931B2 (en) Method of manufacturing semiconductor laser device
US20110177678A1 (en) Method for manufacturing nitride semiconductor device
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
JP2006156958A (en) Semiconductor element and its manufacture
JP2001077476A (en) Nitorgen compound semiconductor light-emitting element and manufacture thereof
JP2007184353A (en) Nitride-based compound semiconductor element and manufacturing method thereof
JP3269344B2 (en) Crystal growth method and semiconductor light emitting device
JPH11251687A (en) Manufacture of semiconductor and semiconductor device
US7221690B2 (en) Semiconductor laser and process for manufacturing the same
JP3729065B2 (en) Nitride semiconductor epitaxial wafer manufacturing method and nitride semiconductor epitaxial wafer
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JP3322179B2 (en) Gallium nitride based semiconductor light emitting device
JPH08203862A (en) Method for etching nitride compound semiconductor
JP2001148544A (en) Semiconductor light-emitting element
JP2000208814A (en) Semiconductor light-emitting element
JP4631214B2 (en) Manufacturing method of nitride semiconductor film
JP3931777B2 (en) Nitride compound semiconductor etching method and semiconductor light emitting device manufacturing method
JPH10321956A (en) Semiconductor device and manufacture thereof
JP2999435B2 (en) Semiconductor manufacturing method and semiconductor light emitting device
JP2001057463A (en) Film structure and element of nitrogen compound semiconductor element, and manufacture of them
JP2006140530A (en) Method of manufacturing p-type nitride semiconductor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6