JP2003176970A - Cold potable water supply device - Google Patents

Cold potable water supply device

Info

Publication number
JP2003176970A
JP2003176970A JP2001373895A JP2001373895A JP2003176970A JP 2003176970 A JP2003176970 A JP 2003176970A JP 2001373895 A JP2001373895 A JP 2001373895A JP 2001373895 A JP2001373895 A JP 2001373895A JP 2003176970 A JP2003176970 A JP 2003176970A
Authority
JP
Japan
Prior art keywords
water
ice
reference value
cooling water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001373895A
Other languages
Japanese (ja)
Other versions
JP4445688B2 (en
Inventor
Toshiaki Hara
俊明 原
Tomio Suyama
富夫 陶山
Takashi Shima
剛史 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2001373895A priority Critical patent/JP4445688B2/en
Publication of JP2003176970A publication Critical patent/JP2003176970A/en
Application granted granted Critical
Publication of JP4445688B2 publication Critical patent/JP4445688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Devices For Dispensing Beverages (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly carry out control of ice making regardless of water quality of cooling water. <P>SOLUTION: A first reference value for normal water (upper reference value is 170 KΩ and lower reference value is 74 KΩ) and a second reference value for water having high conductive material content (upper reference value is 110 KΩ and lower reference value is 40 KΩ) are prepared as a reference value for controlling a driving of a compressor. Depending on the water quality of a service water used for the cooling water, any of the first reference value and the second reference value is selected. In a case where the service water is the normal water, when icing advances and a measured value of an ice reservoir sensor reaches 170 KΩ as shown in a characteristic line X, it is determined that the ice reservoir sensor is covered with ice, and the compressor is stopped. When the measured value decreased to be 74 KΩ, it is determined that there is no ice, and the compressor is driven again. In a case where the service water is the water having high conductive material content, as shown in a characteristic line Y, when the measured value reaches 110 KΩ, the compressor is stopped, and when the measured value is decreased to be 40 KΩ, the compressor is driven again. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷水タンク内に浸
漬した注出管に飲料を流通させることで冷飲料を供給す
る形式の冷飲料供給装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold beverage supply device of the type in which a beverage is supplied by circulating the beverage through a pouring pipe immersed in a cold water tank.

【0002】[0002]

【従来の技術】この種の冷飲料供給装置の一例である冷
水機として、図6に示すものが知られている。このもの
は、冷却用水Wが貯留される冷水タンク1内に、冷凍サ
イクルの一部を構成する冷却器2(蒸発パイプ)が周壁
に沿うように螺旋巻きして配設される一方、この冷却器
2の内側に注出管3が配設されており、貯氷センサ4に
よる氷の有無の検知に基づいて冷凍サイクル(圧縮機)
の停止と運転とを制御することで、冷却器2の回りに所
定厚さの氷層Iを形成し、また撹拌部材5で撹拌しつつ
冷却用水Wを冷却し、係る状態で給水バルブ6Aと注出
バルブ6Bを開放して水供給源7から注出管3に常温の
飲用水を流通させると、冷却用水Wとの間の熱交換によ
り冷水が生成されて注出口8から注出されるようになっ
ている。
2. Description of the Related Art As a cold water machine which is an example of this type of cold beverage supply apparatus, one shown in FIG. 6 is known. In this device, a cooler 2 (evaporation pipe) forming a part of a refrigerating cycle is spirally wound along a peripheral wall in a cold water tank 1 in which cooling water W is stored, while cooling the same. A pouring pipe 3 is arranged inside the container 2, and a refrigeration cycle (compressor) is detected based on the detection of ice by the ice storage sensor 4.
By controlling the stop and operation of the cooling water, the ice layer I having a predetermined thickness is formed around the cooler 2, and the cooling water W is cooled while being stirred by the stirring member 5, and the water supply valve 6A and When the pouring valve 6B is opened and normal temperature drinking water is circulated from the water supply source 7 to the pouring pipe 3, cold water is generated by heat exchange with the cooling water W and is poured from the pouring outlet 8. It has become.

【0003】ここで貯氷センサ4は、冷却用水W中に水
没された一対の電極4A,4Bを備えており、水と氷と
では導電率が相違し、言い換えると両電極4A,4B間
の抵抗値が相違することを利用して、水か氷かを識別す
るようになっている。具体的には、図7に示すように、
冷却器2の回りに着氷が進み、貯氷センサ4で検知され
た測定値が上基準値、例えば170KΩに達すると、導
通なし、すなわち貯氷センサ4の回りが氷で覆われたと
判断されて、圧縮機が停止され、すなわち製氷が終了す
る。一方、氷が融け出し、貯氷センサ4で検知された測
定値が下基準値、例えば74KΩに下がると、導通あ
り、すなわち貯氷センサ4の回りの氷が無くなって冷却
用水W内に露出した状態となったと判断され、圧縮機が
再駆動され、すなわち製氷が再開されるようになってい
る。
Here, the ice storage sensor 4 is provided with a pair of electrodes 4A and 4B submerged in the cooling water W, and the conductivity is different between water and ice, in other words, the resistance between the electrodes 4A and 4B. The fact that the values are different is used to distinguish between water and ice. Specifically, as shown in FIG.
When icing progresses around the cooler 2 and the measured value detected by the ice storage sensor 4 reaches an upper reference value, for example, 170 KΩ, it is determined that there is no conduction, that is, the area around the ice storage sensor 4 is covered with ice, The compressor is stopped, that is, ice making ends. On the other hand, when the ice melts and the measured value detected by the ice storage sensor 4 falls to a lower reference value, for example, 74 KΩ, there is continuity, that is, there is no ice around the ice storage sensor 4 and it is exposed in the cooling water W. It has been decided that the compressor has been restarted, that is, ice making is restarted.

【0004】[0004]

【発明が解決しようとする課題】しかるに、冷却用水W
として一般に使用される水道水の水質は、地域等によっ
て異なる場合がある。一例としては、導電物質の含有量
の多少があり、導電物質が多く含まれていれば、少ない
ものと比べると、抵抗値が下がる傾向にある。このよう
な導電物質の含有量が多い水道水を冷却用水として使用
すると、氷が生成された場合にも同氷内に導電物質が混
入することから、貯氷センサ4が氷で覆われても、両電
極4A,4B間の抵抗値が所定値(170KΩ)まで上
がらないことがあり得る。そうすると、未だ導通あり、
すなわち氷が生成されていないと判断されたまま、製氷
が継続され、最終的には冷水タンク1内全体が凍り付く
事態を招くおそれがあった。本発明は上記のような事情
に基づいて完成されたものであって、その目的は、冷却
用水の水質によらず製氷の制御を適正に行えるようにす
るところにある。
However, the cooling water W is used.
The quality of tap water that is commonly used as a product may vary depending on the region. As an example, there is some content of the conductive material, and if the content of the conductive material is large, the resistance value tends to be lower than that of the material containing less conductive material. When tap water containing a large amount of such a conductive substance is used as cooling water, the conductive substance is mixed into the ice even when ice is generated, so that even if the ice storage sensor 4 is covered with ice, It is possible that the resistance value between the electrodes 4A and 4B does not rise to a predetermined value (170 KΩ). Then, there is still continuity,
That is, there is a possibility that the ice making is continued while it is determined that the ice is not generated, and eventually the entire cold water tank 1 freezes. The present invention has been completed based on the above circumstances, and an object thereof is to appropriately control ice making regardless of the quality of cooling water.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めの手段として、請求項1の発明は、冷却用水の貯留さ
れた冷水タンク内には冷凍装置と接続された冷却手段が
装備され、貯氷検知手段による氷の有無の検知に基づい
て前記冷凍装置の駆動を制御して前記冷却手段の回りに
所定厚さの氷層を形成しつつ前記冷却用水を冷却し、こ
の冷却用水中に浸漬された注出管に飲料を流通させるこ
とにより冷飲料を供給するようにした冷飲料供給装置に
おいて、前記貯氷検知手段における氷の有無を検知する
基準値を変更する変更手段を設けた構成としたところに
特徴を有する。請求項2の発明は、請求項1に記載のも
のにおいて、前記変更手段には、前記冷却用水の水質を
検知する水質検知手段と、水質に対応した各基準値のデ
ータが取り込まれた記憶手段とが付設され、水質検知手
段で検知された水質に応じた基準値を記憶手段から呼び
出してこの基準値に変更する機能を備えているところに
特徴を有する。
As means for achieving the above object, the invention of claim 1 is equipped with a cooling means connected to a refrigerating device in a cold water tank in which cooling water is stored. The cooling water is cooled while forming an ice layer of a predetermined thickness around the cooling means by controlling the drive of the refrigerating device based on the detection of the presence or absence of ice by the ice storage detection means, and the water is immersed in the cooling water. In the cold beverage supply apparatus configured to supply the cold beverage by circulating the beverage in the dispensing pipe, the change means for changing the reference value for detecting the presence or absence of ice in the ice storage detecting means is provided. However, it has a feature. According to a second aspect of the present invention, in the first aspect, the changing means includes a water quality detecting means for detecting the water quality of the cooling water, and a storage means in which data of respective reference values corresponding to the water quality are fetched. Is provided, and is characterized in that it has a function of calling a reference value corresponding to the water quality detected by the water quality detection means from the storage means and changing it to this reference value.

【0006】[0006]

【発明の作用及び効果】<請求項1の発明>貯氷検知手
段により氷の有無を検知する場合の基準値を複数備え、
その基準値を変更手段により変更できるようにしたか
ら、冷却用水の水質等に応じて適正な基準値に変更する
ことにより、氷の生成の有無を正確に検知できる。その
結果、冷却手段の回りにできる氷層をほぼ一定に保持で
き、安定した冷却能力を得ることができる。また、スイ
ッチ操作等で簡単に対応することができる。 <請求項2の発明>製氷の開始前に水質検知手段によっ
て冷却用水の水質が検知され、その検知結果に基づいて
記憶手段から適正な基準値が呼び出されて変更され、そ
の基準値に基づいて氷の生成の有無が検知される。冷却
用水の水質を未然に検知し、それに応じて基準値を自動
的に選択できるようにしたから、ユーザーに冷却用水の
水質に関する特別な知識が無くても、水質によらず氷層
を正規に生成することができる。
<Operation and effect of the invention><Invention of claim 1> A plurality of reference values for detecting the presence or absence of ice by the ice storage detecting means are provided.
Since the reference value can be changed by the changing means, the presence or absence of ice formation can be accurately detected by changing the reference value to an appropriate reference value according to the quality of the cooling water. As a result, the ice layer formed around the cooling means can be kept substantially constant, and a stable cooling capacity can be obtained. Further, it is possible to easily deal with it by operating the switch. <Invention of Claim 2> The quality of the cooling water is detected by the water quality detection means before the start of ice making, an appropriate reference value is called from the storage means based on the detection result and changed, and based on the reference value. The presence or absence of ice formation is detected. Since the water quality of the cooling water is detected in advance and the reference value can be automatically selected accordingly, even if the user does not have any special knowledge about the water quality of the cooling water, the ice layer can be normalized regardless of the water quality. Can be generated.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施形態を添付図
面に基づいて説明する。 <第1実施形態>本発明の第1実施形態を図1ないし図
3によって説明する。この実施形態では、給茶機に設け
られた冷水の供給部分を例示している。図1において、
符号10は冷水タンクであって、回りを断熱材で囲われ
ており、その内部には、オーバフローパイプ等を装備す
ることで所定水位まで冷却用水Wが貯留可能とされてい
る。冷水タンク10内には、蒸発パイプを円筒状に螺旋
巻きしてなる冷却器12が、内周面の内側に沿うように
配されている。この冷却器12には、冷凍装置13であ
る圧縮機14、凝縮器15及びキャピラリチューブ16
(膨張弁)が冷媒配管17により循環接続され、周知の
冷凍回路が構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. <First Embodiment> A first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the cold water supply part provided in the tea dispenser is illustrated. In FIG.
Reference numeral 10 denotes a cold water tank, which is surrounded by a heat insulating material, and inside of which a cooling water W can be stored up to a predetermined water level by equipping an overflow pipe or the like. Inside the cold water tank 10, a cooler 12 formed by spirally winding an evaporation pipe in a cylindrical shape is arranged along the inner side of the inner peripheral surface. The cooler 12 includes a compressor 14, which is a refrigerating device 13, a condenser 15, and a capillary tube 16.
The (expansion valve) is circulated through the refrigerant pipe 17 to form a well-known refrigeration circuit.

【0008】冷却器12のさらに内側には、注出管20
が配されている。この注出管20は、熱伝導性に優れた
素材からなるパイプを小径の円筒形に螺旋巻きして形成
されており、流入口20A側は給水バルブ21を介して
水道水等の水供給源22に接続され、また流出口20B
側は、各注出口24と対応した注出バルブ23に分岐し
て接続されている。冷水タンク10内の中心には、モー
タ25により回転駆動されるシャフト26が垂下して支
持され、その下端に撹拌用のインペラ27が設けられ
て、注出管20の内側に浸漬されている。また、冷却器
12の内側の面には、一対の電極28A,28Bを備え
た貯氷センサ29が設けられている。
Inside the cooler 12, a spout pipe 20 is provided.
Are arranged. The spout pipe 20 is formed by spirally winding a pipe made of a material having excellent heat conductivity into a small-diameter cylindrical shape, and the inlet 20A side is provided with a water supply source such as tap water via a water supply valve 21. 22 and outlet 20B
The side is branched and connected to the spout valve 23 corresponding to each spout 24. A shaft 26 rotatably driven by a motor 25 is hung and supported at the center of the cold water tank 10, and an impeller 27 for stirring is provided at the lower end of the shaft 26 and is immersed inside the pouring pipe 20. An ice storage sensor 29 including a pair of electrodes 28A and 28B is provided on the inner surface of the cooler 12.

【0009】基本的な運転としては、冷水タンク10内
に冷却用水Wを貯留して冷凍装置13(圧縮機14)を
作動させると、冷媒配管17内を循環される冷媒は冷却
器12内で気化され、そのときに生じる吸熱作用により
冷却器12付近の冷却用水Wが冷却されて氷層Iが生成
され、この氷層Iの潜熱により冷却用水Wが冷却され
る。同時に、モータ25が駆動されてインペラ27が回
転することによって冷却用水Wが撹拌され、冷却用水W
を万遍なく冷却し、また冷却器12に対して一様に氷層
Iができることを図っている。また、貯氷センサ29を
氷が覆ってこれが検知されたところで冷凍装置13を停
止し、逆に氷が融けて貯氷センサ29が露出したところ
で冷凍装置13の運転を再開するように制御されること
で、氷層Iの量もほぼ一定に保持される。この間、冷水
または冷茶の注出スイッチが操作されると、給水バルブ
21と対応する注出バルブ23とが開放され、水道水が
注出管20に導入されてその中を流通する間に冷却用水
Wと熱交換して冷却され、冷水となって注出口24に向
けて吐出される。
As a basic operation, when the cooling water W is stored in the cold water tank 10 and the refrigerating device 13 (compressor 14) is operated, the refrigerant circulated in the refrigerant pipe 17 is cooled in the cooler 12. The cooling water W in the vicinity of the cooler 12 is cooled by the endothermic action that is vaporized and the ice layer I is generated, and the cooling water W is cooled by the latent heat of the ice layer I. At the same time, the motor 25 is driven to rotate the impeller 27, whereby the cooling water W is agitated, and the cooling water W is stirred.
It is intended that the ice layer I is evenly cooled and that the ice layer I is uniformly formed on the cooler 12. In addition, when the ice storage sensor 29 is covered with ice and the ice storage sensor 29 is detected, the refrigeration system 13 is stopped, and conversely, when the ice storage sensor 29 is exposed due to melting of the ice storage system, the operation of the refrigeration system 13 is restarted. The amount of ice layer I is also kept almost constant. During this period, when the cold water or cold tea pouring switch is operated, the water supply valve 21 and the corresponding pouring valve 23 are opened, and tap water is introduced into the pouring pipe 20 and the cooling water is supplied while flowing through the tap water. It is cooled by exchanging heat with W, becomes cold water, and is discharged toward the spout 24.

【0010】さてこの実施形態では、冷却用水Wとして
使用する水道水の水質によらず、所定量の氷層Iを生成
する制御を正確に行うことを意図している。まず基本的
には、図2に参照して示すように、貯氷センサ29にお
ける両電極28A,28B間の抵抗値の測定値と、基準
値とが、制御手段30に装備された比較回路31で比較
され、測定値が上基準値に上がると、駆動制御回路32
を介して冷凍装置13の圧縮機14が停止され、一方、
同測定値が下基準値に下がると、圧縮機14が再駆動さ
れるようになっている。
Now, in this embodiment, it is intended to accurately control the generation of the ice layer I of a predetermined amount regardless of the quality of the tap water used as the cooling water W. First, basically, as shown with reference to FIG. 2, the measured value of the resistance value between both electrodes 28A and 28B in the ice storage sensor 29 and the reference value are compared by the comparison circuit 31 equipped in the control means 30. When compared and the measured value rises to the upper reference value, the drive control circuit 32
The compressor 14 of the refrigeration system 13 is stopped via the
When the measured value falls below the lower reference value, the compressor 14 is restarted.

【0011】そして、この実施形態では、圧縮機14の
駆動と停止を制御する基準となる基準値として、通常の
水用の第1基準値と、導電物質の含有量の多い水用の第
2基準値との2パターンが準備されている。例えば、第
1基準値では、上基準値が170KΩ、下基準値が74
KΩであり、また第2基準値では、上基準値が110K
Ω、下基準値が40KΩに設定されている。この両パタ
ーンは、図2に示す記憶部33に予め格納されている。
一方、給茶機の操作部等には、通常の水と導電物質の含
有量の多い水とのいずれかに切り替える切替スイッチ3
4が装備されており、その操作に伴って、上記した第1
基準値または第2基準値のいずれかのパターンが、比較
回路31に取り込まれるようになっている。
In this embodiment, the first reference value for normal water and the second reference value for water containing a large amount of conductive material are used as reference values for controlling the driving and stopping of the compressor 14. Two patterns with the reference value are prepared. For example, in the first reference value, the upper reference value is 170 KΩ and the lower reference value is 74 KΩ.
KΩ, and in the second reference value, the upper reference value is 110K
Ω, the lower reference value is set to 40 KΩ. Both patterns are stored in advance in the storage unit 33 shown in FIG.
On the other hand, a changeover switch 3 for switching between normal water and water containing a large amount of conductive material is provided on the operation unit of the tea dispenser.
4 is equipped with the operation of the first
A pattern of either the reference value or the second reference value is taken in by the comparison circuit 31.

【0012】本実施形態の作動を、図3を参照して説明
する。冷却用水Wとして使用する水道水が、通常の水で
ある場合には、切替スイッチ34の操作でそれを選択す
ると、第1基準値が比較回路31に取り込まれる。した
がって、図3の特性線Xに示すように、冷却器12の回
りに着氷が進み、貯氷センサ29の測定値が上基準値で
ある170KΩに達すると、導通なし、すなわち貯氷セ
ンサ29の回りが氷で覆われたと判断されて、圧縮機1
4が停止され、すなわち製氷が終了する。氷が融け出
し、貯氷センサ29の測定値が下基準値である74KΩ
に下がると、導通あり、すなわち貯氷センサ29の回り
の氷が無くなって冷却用水W内に露出した状態となった
と判断され、圧縮機14が再駆動され、すなわち製氷が
再開される。この繰り返しによって、氷層Iの厚みがほ
ぼ一定に保持される。
The operation of this embodiment will be described with reference to FIG. When the tap water used as the cooling water W is normal water, when the tap water is selected by operating the changeover switch 34, the first reference value is taken into the comparison circuit 31. Therefore, as shown by the characteristic line X in FIG. 3, when ice accretion proceeds around the cooler 12 and the measured value of the ice storage sensor 29 reaches the upper reference value of 170 KΩ, there is no conduction, that is, around the ice storage sensor 29. Compressor 1 was determined to have been covered with ice
4 is stopped, that is, ice making ends. The ice melts out, and the measured value of the ice storage sensor 29 is 74 KΩ, which is the lower reference value.
When the temperature goes down, it is determined that there is continuity, that is, the ice around the ice storage sensor 29 is lost and the ice is exposed in the cooling water W, and the compressor 14 is restarted, that is, ice making is restarted. By repeating this, the thickness of the ice layer I is kept substantially constant.

【0013】一方、冷却用水Wとして使用する水道水
が、導電物質の含有量の多い水である場合には、切替ス
イッチ34の操作でそれを選択すると、第2基準値が替
わって比較回路31に取り込まれる。したがって今度
は、図3の特性線Yに示すように、貯氷センサ29の測
定値が上基準値110KΩに達すると、導通なし、すな
わち貯氷センサ29の回りが氷で覆われたと判断され
て、圧縮機14が停止され、すなわち製氷が終了する。
氷が融け出し、貯氷センサ29の測定値が下基準値40
KΩに下がると、導通あり、すなわち貯氷センサ29の
回りの氷が無くなって冷却用水W内に露出した状態とな
ったと判断され、圧縮機14が再駆動され、すなわち製
氷が再開される。
On the other hand, when the tap water used as the cooling water W is water having a large content of the conductive material, when the tap water is selected by the operation of the changeover switch 34, the second reference value is changed and the comparison circuit 31 is changed. Is taken into. Therefore, this time, as shown by the characteristic line Y in FIG. 3, when the measured value of the ice storage sensor 29 reaches the upper reference value of 110 KΩ, it is determined that there is no conduction, that is, the area around the ice storage sensor 29 is covered with ice, and the compression is performed. The machine 14 is stopped, that is, ice making ends.
The ice melts and the measured value of the ice storage sensor 29 is the lower reference value 40.
When it decreases to KΩ, it is determined that there is conduction, that is, the ice around the ice storage sensor 29 has disappeared and the ice is exposed in the cooling water W, and the compressor 14 is restarted, that is, ice making is restarted.

【0014】既述したように、導電物質の含有量の多い
水では、それが氷となって貯氷センサ29を覆った場合
にも、貯氷センサ29による抵抗値の測定値が小さく留
められ、氷の生成が検知されないことが懸念されるが、
第2基準値を選択することにより、氷の生成の判断の基
準となる上基準値が、110KΩといった低い値に変更
されているから、抵抗値が小さい値に留められたまま氷
が生成された場合にも、これが確実に検知される。その
結果、導電物質の含有量の多い水が冷却用水Wとして使
用される場合も、着氷が多過ぎたり、さらには冷水タン
ク10内全体が凍り付くといった事態の発生が防止され
る。これに付随し、冷水の注出動作が担保され、また安
定した冷却能力が発揮されて一定品質の冷水を注出する
ことができる。もちろん、撹拌部材であるインペラ27
が損傷を受けることもない。しかも、切替スイッチ34
を操作するだけであるから、対応も簡単である。
As described above, in the case of water containing a large amount of conductive material, even when it becomes ice and covers the ice storage sensor 29, the resistance value measured by the ice storage sensor 29 is kept small and the ice There is concern that the generation of
By selecting the second reference value, the upper reference value, which is the reference for determining the formation of ice, has been changed to a low value such as 110 KΩ, so that ice is generated while the resistance value remains small. Even in this case, this is surely detected. As a result, even when water containing a large amount of the conductive material is used as the cooling water W, it is possible to prevent the occurrence of a situation in which excessive icing occurs and further the entire cold water tank 10 freezes. Accompanying this, the operation of pouring cold water is secured, and stable cooling capacity is exerted, so that cold water of a certain quality can be poured. Of course, the impeller 27 which is a stirring member
Is not damaged. Moreover, the changeover switch 34
It is easy to handle because you only need to operate.

【0015】<第1実施形態の変形例>上記とは逆に、
通常の水よりも、導電物質の含有量の少ない水が冷却用
水Wとして使用された場合、通常の水用の第1基準値で
制御すると、着氷量が少なくなるおそれがある。この場
合は、上下の基準値が第1基準値のそれよりも高く設定
された別の基準値のパターンを準備し、これを基準にし
て製氷を制御することで適正な着氷量を得ることができ
る。また、製氷終了用を司る上基準値と、製氷再開を司
る下基準値とを、それぞれ独立して切り替えができるよ
うにしてもよい。
<Modification of First Embodiment> Contrary to the above,
When the water having a smaller content of the conductive material than the normal water is used as the cooling water W, the amount of icing may be reduced if the water is controlled by the first reference value for the normal water. In this case, prepare a pattern of another reference value in which the upper and lower reference values are set higher than that of the first reference value, and control ice making based on this to obtain an appropriate amount of ice accretion. You can Further, the upper reference value for controlling the end of ice making and the lower reference value for controlling the restart of ice making may be independently switchable.

【0016】なお、冷却用水Wの導電率が相違すること
については、上記したように予め備わった水質によるこ
と以外にも、例えば、冷水タンク10の蓋等への結露水
が冷水タンク10中に順次に混入して、冷却用水Wが純
水化することで導電率が下がったり、あるいは、冷却用
水Wが汚れる等で導電率が上がったりと、後発的な要因
で導電率が替わることがある。そのため、水質によって
は本来基準値を変更する必要がない場合にも、後発的な
要因による導電率の相違に対応すべく、本実施形態のよ
うな基準値の変更機能を備えていると便利である。
Regarding the difference in the conductivity of the cooling water W, in addition to the fact that the quality of water is preliminarily provided as described above, for example, the dew condensation water on the lid of the cold water tank 10 is stored in the cold water tank 10. There is a case where the conductivity is changed due to a later factor such that the conductivity is lowered by being mixed in order and the cooling water W is purified to be pure water, or the cooling water W is dirty and the conductivity is increased. Therefore, even if it is not necessary to change the reference value depending on the water quality, it is convenient to have the reference value changing function as in the present embodiment in order to cope with the difference in conductivity due to a subsequent factor. is there.

【0017】<第2実施形態>次に、本発明の第2実施
形態を図4及び図5によって説明する。この第2実施形
態では、冷却用水Wの水質等を検知し、それに応じて、
圧縮機14の駆動と停止を制御する基準となる基準値を
自動的に選択できるようにしている。この実施形態で
は、冷却用水Wとして使用する水道水が、通常の水と、
導電物質の含有量の多い水とのいずれであるかを検知す
るようになっている。そのため、本実施形態の制御手段
40には、図3に示すように、冷却用水Wの水温を検知
するサーミスタ41と、上記した貯氷センサ29とを入
力側に備えた水質検知手段42を設けている。
<Second Embodiment> Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the water quality and the like of the cooling water W is detected and accordingly,
A reference value serving as a reference for controlling driving and stopping of the compressor 14 can be automatically selected. In this embodiment, tap water used as the cooling water W is normal water,
It is adapted to detect whether it is water containing a large amount of conductive material. Therefore, as shown in FIG. 3, the control means 40 of the present embodiment is provided with a water quality detection means 42 having the thermistor 41 for detecting the water temperature of the cooling water W and the ice storage sensor 29 described above on the input side. There is.

【0018】基本的には、貯氷センサ29で冷却用水W
の抵抗値を測定すれば、導電率が低い水であるか高い水
であるか、すなわち通常の水か、導電物質の含有量の多
い水かは判る。ただし、同じ水であっても、水温が高く
なるほど導電率が低く、水温が低くなるほど導電率が高
くなることが知られている。そのため水質検知手段42
には、水温と、水の抵抗値との組み合わせにより、通常
の水と、導電物質の含有量の多い水とのいずれに所属す
るかのデータが予め格納されている。
Basically, the ice storage sensor 29 is used for cooling water W.
When the resistance value of is measured, it can be determined whether the water has low conductivity or high conductivity, that is, normal water or water containing a large amount of conductive material. However, even with the same water, it is known that the higher the water temperature, the lower the conductivity, and the lower the water temperature, the higher the conductivity. Therefore, the water quality detection means 42
Stored in advance is data indicating whether the water belongs to normal water or water containing a large amount of conductive material, depending on the combination of the water temperature and the resistance value of the water.

【0019】一方、記憶部33には、上記第1実施形態
と同様に、通常の水用の第1基準値(上基準値が170
KΩ、下基準値が74KΩ)と、導電物質の含有量の多
い水用の第2基準値(上基準値が110KΩ、下基準値
が40KΩ)とのパターンが、格納されている。そし
て、サーミスタ41により水温が、貯氷センサ29によ
り抵抗値がそれぞれ測定されると、その組み合わせによ
って、冷却用水Wが通常の水か、導電物質の含有量の多
い水かが判別され、その判別結果に対応して、記憶部3
3に格納された第1基準値または第2基準値のいずれか
のパターンが、比較回路31に取り込まれるようになっ
ている。
On the other hand, in the storage unit 33, the first reference value for normal water (the upper reference value is 170
The patterns of KΩ, the lower reference value is 74 KΩ, and the second reference value for water containing a large amount of conductive material (the upper reference value is 110 KΩ and the lower reference value is 40 KΩ) are stored. Then, when the water temperature is measured by the thermistor 41 and the resistance value is measured by the ice storage sensor 29, it is determined whether the cooling water W is normal water or water containing a large amount of conductive material, depending on the combination, and the determination result. Corresponding to
The pattern of either the first reference value or the second reference value stored in No. 3 is loaded into the comparison circuit 31.

【0020】第2実施形態の作用を、図5のフローチャ
ートを参照しつつ説明する。稼働を開始すべく電源を入
れたとき、上記したサーミスタ41を利用して、冷却用
水Wの温度が検知される。冷却用水Wの温度が0℃前後
のときは、冷却器12に着氷があると判断され(ステッ
プS1が「NO」)、比較回路31に既に取り込まれて
いる基準値を使用する。一方、冷却用水Wの温度が例え
ば5℃以上である場合は、冷却器12に着氷していない
と判断され(ステップS1が「YES」)、ステップS
2において、既述したように、サーミスタ41で測定さ
れた水温と、貯氷センサ29で測定された抵抗値に基づ
いて、冷却用水Wが通常の水か、導電物質の含有量の多
い水かが判別され、引き続きステップS3において、そ
の判別結果に対応して第1基準値または第2基準値のい
ずれかのパターンが比較回路31に取り込まれる。
The operation of the second embodiment will be described with reference to the flowchart of FIG. When the power is turned on to start the operation, the temperature of the cooling water W is detected using the thermistor 41 described above. When the temperature of the cooling water W is around 0 ° C., it is determined that there is icing in the cooler 12 (“NO” in step S1), and the reference value already taken into the comparison circuit 31 is used. On the other hand, when the temperature of the cooling water W is, for example, 5 ° C. or higher, it is determined that the cooler 12 is not iced (step S1 is “YES”), and step S is performed.
2, as described above, based on the water temperature measured by the thermistor 41 and the resistance value measured by the ice storage sensor 29, whether the cooling water W is normal water or water containing a large amount of conductive substance is used. After being determined, the pattern of either the first reference value or the second reference value is fetched into the comparison circuit 31 corresponding to the determination result in step S3.

【0021】そののち製氷が開始され、冷却用水Wが通
常の水であれば、第1基準値が選択されていることか
ら、既述した図3の特性線Xに示すように、貯氷センサ
29の測定値が上基準値である170KΩに達すると、
導通なし、すなわち貯氷センサ29の回りが氷で覆われ
たと判断され(ステップS5が「YES」、ステップS
6が「NO」)、ステップS8で圧縮機14が停止さ
れ、すなわち製氷が終了する。氷が融け出し、貯氷セン
サ29の測定値が下基準値である74KΩに下がると、
導通あり、すなわち貯氷センサ29の回りの氷が無くな
って冷却用水W内に露出した状態となったと判断され
(ステップS5が「NO」、ステップS7が「N
O」)、ステップS9で圧縮機14が再駆動され、すな
わち製氷が再開される。この繰り返しによって、氷層I
の厚みがほぼ一定に保持される。
After that, when ice making is started and the cooling water W is normal water, the first reference value has been selected. Therefore, as shown by the characteristic line X in FIG. When the measured value of reaches the upper reference value of 170 KΩ,
It is determined that there is no continuity, that is, the area around the ice storage sensor 29 is covered with ice (YES in step S5, step S5).
6 is "NO"), the compressor 14 is stopped in step S8, that is, the ice making ends. When the ice melts and the measured value of the ice storage sensor 29 falls to the lower reference value of 74 KΩ,
It is determined that there is conduction, that is, the ice around the ice storage sensor 29 has disappeared and the ice is exposed in the cooling water W (“NO” in step S5 and “N” in step S7).
O ”), the compressor 14 is restarted in step S9, that is, ice making is restarted. By repeating this, the ice layer I
Is kept almost constant.

【0022】一方、冷却用水Wが、導電物質の含有量の
多い水であれば、第2基準値が選択されていることか
ら、図3の特性線Yに示すように、貯氷センサ29の測
定値が上基準値110KΩに達すると、導通なし、すな
わち貯氷センサ29の回りが氷で覆われたと判断され
て、圧縮機14が停止され、すなわち製氷が終了する。
氷が融け出し、貯氷センサ29の測定値が下基準値40
KΩに下がると、導通あり、すなわち貯氷センサ29の
回りの氷が無くなって冷却用水W内に露出した状態とな
ったと判断され、圧縮機14が再駆動され、すなわち製
氷が再開される。
On the other hand, if the cooling water W is water containing a large amount of conductive material, the second reference value is selected. Therefore, as shown by the characteristic line Y in FIG. When the value reaches the upper reference value 110 KΩ, it is determined that there is no conduction, that is, the area around the ice storage sensor 29 is covered with ice, and the compressor 14 is stopped, that is, ice making ends.
The ice melts and the measured value of the ice storage sensor 29 is the lower reference value 40.
When it decreases to KΩ, it is determined that there is conduction, that is, the ice around the ice storage sensor 29 has disappeared and the ice is exposed in the cooling water W, and the compressor 14 is restarted, that is, ice making is restarted.

【0023】この第2実施形態によれば、第1実施形態
と同様に、導電物質の含有量の多い水が冷却用水Wとし
て使用される場合も、着氷が多過ぎたり、さらには冷水
タンク内全体が凍り付くといった事態の発生が防止され
る。これに付随し、冷水の注出動作が担保され、また安
定した冷却能力が発揮されて一定品質の冷水を注出する
ことができる。もちろん、撹拌部材であるインペラ27
が損傷を受けることもない。しかも、冷却用水Wの水質
を未然に検知し、それに応じて圧縮機14の駆動と停止
を制御する基準となる基準値を自動的に選択できるよう
にしたから、ユーザーに冷却用水Wの水質に関する特別
な知識が無くても、水質によらず氷層Iを正規に生成す
ることができる。
According to the second embodiment, as in the first embodiment, when water containing a large amount of conductive material is used as the cooling water W, too much icing occurs, and furthermore, a cold water tank. It prevents the situation where the whole is frozen. Accompanying this, the operation of pouring cold water is secured, and stable cooling capacity is exerted, so that cold water of a certain quality can be poured. Of course, the impeller 27 which is a stirring member
Is not damaged. Moreover, since the water quality of the cooling water W is detected in advance and the reference value serving as the reference for controlling the drive and stop of the compressor 14 can be automatically selected in accordance with the detected water quality, the user can be notified of the water quality of the cooling water W. Even without special knowledge, the ice layer I can be regularly generated regardless of the water quality.

【0024】<第2実施形態の変形例>前述したよう
に、導電物質の含有量の少ない水が冷却用水Wとして使
用された場合には、着氷量が少なくなるおそれがあるた
め、それを回避するためには、水質検知手段42でその
ような水を検知できるようにするとともに、上下の基準
値が第1基準値のそれよりも高く設定された別の基準値
のパターンを準備し、このパターンを自動的に選択して
これを基準に製氷を制御することにより、同様に適正な
着氷量を得ることができる。また、製氷終了用を司る上
基準値と、製氷再開を司る下基準値とを、それぞれ独立
して選択できるようにしてもよい。さらに、冷却用水W
が純水化することで導電率が下がったり、冷却用水Wが
汚れる等で導電率が上がったりと、後発的な要因で導電
率が替わった場合にも、これが自動的に検知されて、適
正な基準値により製氷を制御することができる。
<Modification of Second Embodiment> As described above, when water containing a small amount of the conductive material is used as the cooling water W, the amount of icing may be reduced, and therefore, the In order to avoid it, the water quality detection means 42 is allowed to detect such water, and another reference value pattern in which the upper and lower reference values are set higher than that of the first reference value is prepared, By automatically selecting this pattern and controlling the ice making based on this pattern, an appropriate amount of ice accretion can be similarly obtained. Further, the upper reference value that controls the end of ice making and the lower reference value that controls the restart of ice making may be independently selectable. Furthermore, the cooling water W
When the conductivity changes due to a later factor, such as the conductivity decreasing due to deionization of water, or the conductivity increasing due to contamination of the cooling water W, this is automatically detected and appropriate Ice making can be controlled by the reference value.

【0025】<他の実施形態>本発明は上記記述及び図
面によって説明した実施形態に限定されるものではな
く、例えば次のような実施形態も本発明の技術的範囲に
含まれ、さらに、下記以外にも要旨を逸脱しない範囲内
で種々変更して実施することができる。 (1)本発明は、冷水に限らず、ジュース、コーヒ等の
他の飲料を冷却して供給する冷飲料冷却装置全般に広く
適用することができる。
<Other Embodiments> The present invention is not limited to the embodiments described above and illustrated in the drawings. For example, the following embodiments are also included in the technical scope of the present invention. In addition to the above, various modifications can be made without departing from the scope of the invention. (1) The present invention is not limited to cold water, but can be widely applied to all cold beverage cooling devices that cool and supply other beverages such as juice and coffee.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施形態に係る概略断面図及び
ブロック図
FIG. 1 is a schematic sectional view and block diagram according to a first embodiment of the present invention.

【図2】 製氷制御機構のブロック図[Figure 2] Block diagram of ice making control mechanism

【図3】 圧縮機の駆動のタイミングチャートFIG. 3 is a timing chart of driving the compressor.

【図4】 第2実施形態に係る製氷制御機構のブロック
FIG. 4 is a block diagram of an ice making control mechanism according to a second embodiment.

【図5】 動作を示すフローチャートFIG. 5 is a flowchart showing the operation.

【図6】 従来例の概略断面図FIG. 6 is a schematic sectional view of a conventional example.

【図7】 圧縮機の駆動のタイミングチャートFIG. 7 is a timing chart of driving the compressor.

【符号の説明】[Explanation of symbols]

W…冷却用水 I…氷層 10…冷水タンク 12…冷
却器(冷却手段) 13…冷凍装置 14…圧縮機 2
0…注出管 28A,28B…電極 29…貯氷センサ
(貯氷検知手段) 30…制御手段 31…比較回路
32…駆動制御回路 33…記憶部 34…切替スイッ
チ 40…制御手段 41…サーミスタ 42…水質検知手段
W ... Cooling water I ... Ice layer 10 ... Cold water tank 12 ... Cooler (cooling means) 13 ... Refrigerating device 14 ... Compressor 2
0 ... Pour out pipe 28A, 28B ... Electrode 29 ... Ice storage sensor (ice storage detection means) 30 ... Control means 31 ... Comparison circuit
32 ... Drive control circuit 33 ... Storage part 34 ... Changeover switch 40 ... Control means 41 ... Thermistor 42 ... Water quality detection means

フロントページの続き (72)発明者 島 剛史 愛知県豊明市栄町南館3番の16 ホシザキ 電機株式会社内 Fターム(参考) 3E044 DB16 FB11 3E082 AA02 BB01 CC01 EE02 3L045 AA02 BA01 CA01 DA02 FA02 LA05 MA19 NA09 PA01 PA02 PA03 PA04 Continued front page    (72) Inventor Takeshi Shima             16 Hoshizaki, 3rd South Building, Sakaemachi, Toyoake City, Aichi Prefecture             Electric Co., Ltd. F term (reference) 3E044 DB16 FB11                 3E082 AA02 BB01 CC01 EE02                 3L045 AA02 BA01 CA01 DA02 FA02                       LA05 MA19 NA09 PA01 PA02                       PA03 PA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷却用水の貯留された冷水タンク内には
冷凍装置と接続された冷却手段が装備され、貯氷検知手
段による氷の有無の検知に基づいて前記冷凍装置の駆動
を制御して前記冷却手段の回りに所定厚さの氷層を形成
しつつ前記冷却用水を冷却し、この冷却用水中に浸漬さ
れた注出管に飲料を流通させることにより冷飲料を供給
するようにした冷飲料供給装置において、 前記貯氷検知手段における氷の有無を検知する基準値を
変更する変更手段を設けたことを特徴とする冷飲料供給
装置。
1. A cooling means connected to a refrigerating apparatus is provided in a cold water tank storing cooling water, and the drive of the refrigerating apparatus is controlled by controlling the driving of the refrigerating apparatus based on detection of the presence or absence of ice by the ice storage detecting means. A cold beverage prepared by cooling the cooling water while forming an ice layer having a predetermined thickness around the cooling means, and supplying the cold beverage by circulating the beverage through the pouring pipe immersed in the cooling water. In the supply device, the cold beverage supply device is provided with changing means for changing a reference value for detecting the presence or absence of ice in the ice storage detecting means.
【請求項2】 前記変更手段には、前記冷却用水の水質
を検知する水質検知手段と、水質に対応した各基準値の
データが取り込まれた記憶手段とが付設され、水質検知
手段で検知された水質に応じた基準値を記憶手段から呼
び出してこの基準値に変更する機能を備えていることを
特徴とする請求項1記載の冷飲料供給装置。
2. The changing means is additionally provided with a water quality detecting means for detecting the water quality of the cooling water and a storage means for storing data of respective reference values corresponding to the water quality, which are detected by the water quality detecting means. The cold beverage supply apparatus according to claim 1, further comprising a function of calling a reference value according to the water quality from the storage means and changing the reference value to the reference value.
JP2001373895A 2001-12-07 2001-12-07 Cold beverage supply device Expired - Fee Related JP4445688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001373895A JP4445688B2 (en) 2001-12-07 2001-12-07 Cold beverage supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001373895A JP4445688B2 (en) 2001-12-07 2001-12-07 Cold beverage supply device

Publications (2)

Publication Number Publication Date
JP2003176970A true JP2003176970A (en) 2003-06-27
JP4445688B2 JP4445688B2 (en) 2010-04-07

Family

ID=19182538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373895A Expired - Fee Related JP4445688B2 (en) 2001-12-07 2001-12-07 Cold beverage supply device

Country Status (1)

Country Link
JP (1) JP4445688B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040641A1 (en) * 2009-10-01 2011-04-07 アサヒビール株式会社 Liquid supply device, operating state management device and cooling water condition determination device
JP2011122793A (en) * 2009-12-14 2011-06-23 Asahi Breweries Ltd Liquid supply device and cooling water condition determining device
CN104359285A (en) * 2010-10-06 2015-02-18 朝日啤酒株式会社 Liquid supply device, operating condition management device and cooling water state judgment device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040641A1 (en) * 2009-10-01 2011-04-07 アサヒビール株式会社 Liquid supply device, operating state management device and cooling water condition determination device
JP2011122793A (en) * 2009-12-14 2011-06-23 Asahi Breweries Ltd Liquid supply device and cooling water condition determining device
CN104359285A (en) * 2010-10-06 2015-02-18 朝日啤酒株式会社 Liquid supply device, operating condition management device and cooling water state judgment device
CN104359285B (en) * 2010-10-06 2017-05-17 朝日啤酒株式会社 Liquid supply device, operating condition management device and cooling water state judgment device

Also Published As

Publication number Publication date
JP4445688B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
KR100729962B1 (en) Water purifying system to simultaneously make ice and clod water using one evaporator and water purifier
US5285718A (en) Combination beverage brewer with cold water supply
KR100853445B1 (en) Water cooler and water heater being able to make ice
US6581391B2 (en) Ice thickness control system and sensor probe
JP2017165445A (en) Beverage dispenser
JP2003176970A (en) Cold potable water supply device
JP4972430B2 (en) Beverage dispenser
JP4147026B2 (en) Cold beverage supply device
US20100072225A1 (en) Dispenser
JP2003192097A (en) Cold drink feed device
JP2001133109A (en) Cold water pour-out device
JP4393305B2 (en) Dispenser
JP2003185319A (en) Cold water supply device
JPH06227595A (en) Beverage feeding device
JP4008393B2 (en) Water cooler
JP2001082841A (en) Auger type ice machine
JP2003176969A (en) Cold water supply device
JP5316176B2 (en) Auger ice machine
JP2002372349A (en) Auger type ice maker
JP3970620B2 (en) Ice storage type beverage dispenser
KR20030078234A (en) Coffee vending machine
JP2008121928A (en) Cold water supply device
JP4060140B2 (en) Ice thickness control method for beverage cooling device
JPH0956596A (en) Potable liquid supplying device
JP2006336980A (en) Drink cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070914

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees