JP2003176865A - Low noise gear mechanism - Google Patents

Low noise gear mechanism

Info

Publication number
JP2003176865A
JP2003176865A JP2001378570A JP2001378570A JP2003176865A JP 2003176865 A JP2003176865 A JP 2003176865A JP 2001378570 A JP2001378570 A JP 2001378570A JP 2001378570 A JP2001378570 A JP 2001378570A JP 2003176865 A JP2003176865 A JP 2003176865A
Authority
JP
Japan
Prior art keywords
gear
oil
noise
fluid
fluid chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001378570A
Other languages
Japanese (ja)
Other versions
JP3838348B2 (en
Inventor
Yuji Yajima
祐二 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2001378570A priority Critical patent/JP3838348B2/en
Publication of JP2003176865A publication Critical patent/JP2003176865A/en
Application granted granted Critical
Publication of JP3838348B2 publication Critical patent/JP3838348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gear Transmission (AREA)
  • Gears, Cams (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low noise gear structure capable of certainly reducing a noise accompanied with an engagement of a gear by previously preventing an inadequate increase in an inertia mass of the gear and sufficiently exhibiting an inhibition action of a tooth-beating noise. <P>SOLUTION: An annular liquid chamber 11 is formed on an idler gear 3 engaged with a driven gear of a fuel injection pump and an oil is fed into the liquid chamber 11. The oil is stored at an outer periphery side in the liquid chamber 11 by a centrifugal force at the time of rotation of the gear. When a transmission torque between the gears is varied according to a fuel injection, a rapid variation of a rotation speed of the idler gear 3 is prevented utilizing a shearing resistance of the stored oil. Thereby, the tooth-beating noise is inhibited. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ギアを介した回転
伝達の際に発生する歯打音を抑制して騒音を低減するギ
ア構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gear structure that suppresses a rattling noise generated during rotation transmission through a gear to reduce noise.

【0002】[0002]

【関連する背景技術】ギアを介した回転伝達は、工作機
械や内燃機関等の様々な分野で広く実施されているが、
伝達トルクが変動すると、ギア間のバックラッシにより
歯面同士が衝突して歯打音を発し、この歯打音が騒音増
大の要因となるという問題を抱えている。歯打音を抑制
するための対策として、例えば実開平6−32818号
公報に記載の技術が提案されている。この技術では、ギ
アの中心から外周側の各歯底に向けて放射状にオイル通
路を形成し、回転軸から供給されたオイルをオイル通路
を介して歯底から噴出させ、これにより歯打音の抑制を
図っている。
[Related Background Art] Transmission of rotation through gears is widely implemented in various fields such as machine tools and internal combustion engines.
When the transmission torque fluctuates, there is a problem that the tooth flanks collide with each other due to backlash between the gears to generate a tooth tap noise, which causes a noise increase. As a measure for suppressing the rattling noise, for example, the technique described in Japanese Utility Model Publication No. 6-32818 has been proposed. In this technique, an oil passage is formed radially from the center of the gear toward each tooth bottom on the outer peripheral side, and the oil supplied from the rotating shaft is jetted from the tooth bottom through the oil passage, which results in a rattling noise. We are trying to control it.

【0003】又、別の対策として、実開平4−9354
3号公報に記載の技術では、ギアのリムの内周に環状ウ
エイトを周方向に摺動可能に嵌め込むと共に、この環状
ウエイトをカバーにより覆って内部に粘性流体を充填し
ている。この技術は、所謂ビスカスダンパとして機能す
るものであり、ギアの回転変動に伴って環状ウエイトが
周方向に変位したときのリム内周との間の摩擦抵抗、及
び環状ウエイトが粘性流体をせん断したときのせん断抵
抗を利用してギアの回転変動を減衰させ、これにより歯
打音の抑制を図っている。
In addition, as another measure, the actual Kaihei 4-9354 is used.
In the technique described in Japanese Patent Publication No. 3, the annular weight is slidably fitted in the inner circumference of the rim of the gear in the circumferential direction, and the annular weight is covered with a cover to fill the viscous fluid inside. This technology functions as a so-called viscous damper, and friction resistance between the annular weight and the inner circumference of the rim when the annular weight is displaced in the circumferential direction due to the rotational fluctuation of the gear, and the annular weight sheared the viscous fluid. The shear resistance at this time is utilized to damp the rotation fluctuation of the gear, thereby suppressing the rattling noise.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記前
者の技術は、ギアの歯面にオイルを確実に供給するため
の対策に過ぎない。従って、供給されたオイルによる歯
面の潤滑以上の歯打音の抑制作用は得られず、十分な騒
音低減は期待できなかった。又、後者の技術では、上記
ビスカスダンパとしての機能を得るには、環状ウエイト
に十分な慣性質量を与える必要があり、結果としてギア
自体の慣性質量が不当に増大し、このギアを適用した装
置の作動に支障をきたすという別の問題が生じた。
However, the former technique is merely a measure for reliably supplying the oil to the tooth surface of the gear. Therefore, the effect of suppressing the rattling noise beyond the lubrication of the tooth surface by the supplied oil cannot be obtained, and sufficient noise reduction cannot be expected. Further, in the latter technique, in order to obtain the function as the above-mentioned viscous damper, it is necessary to give a sufficient inertial mass to the annular weight, and as a result, the inertial mass of the gear itself unduly increases, and the device to which this gear is applied is increased. Another problem has arisen that interferes with the operation of the.

【0005】本発明の目的は、ギアの慣性質量の不当な
増加を未然に防止した上で、歯打音の抑制作用を十分に
発揮し、もって、ギアの噛合に伴う騒音を確実に低減す
ることができる低騒音ギア構造を提供することにある。
An object of the present invention is to prevent unduly an increase in the inertial mass of the gear and to sufficiently exert the effect of suppressing the rattling noise, thereby reliably reducing the noise associated with the gear meshing. It is to provide a low-noise gear structure that can perform.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明では、回転軸に支持されたハブを中
心として円盤状のウェブを介してリムが連結され、リム
の外周面に形成された歯部を相手側ギアに噛合させたギ
アと、ギアの一側面に配設されて、ギアの側面との間に
流体室を形成するカバー体と、流体室内に粘性流体を供
給する流体供給手段とを備えたものである。
In order to achieve the above-mentioned object, in the invention of claim 1, the rim is connected via a disc-shaped web centering on a hub supported by a rotating shaft, and the rim is connected to the outer peripheral surface of the rim. A gear in which the formed tooth portion is meshed with a counterpart gear, a cover body that is disposed on one side surface of the gear and forms a fluid chamber between the side surface of the gear, and a viscous fluid is supplied into the fluid chamber. And a fluid supply means.

【0007】ギアは相手側ギアと噛合して、相手側ギア
に駆動力を伝達したり、逆に相手側ギアから駆動力を伝
達されたりし、このときの伝達トルクに変動が生じる
と、両ギア間のバックラッシにより歯面同士が衝突して
歯打音を発生させる。一方、円盤状のウェブを有するギ
アの側面とカバー体との間には流体室が形成され、この
流体室には流体供給手段から粘性流体が供給され、供給
された粘性流体はギアの回転に伴う遠心力で流体室内の
外周側に滞留している。
If the gear meshes with the counterpart gear to transmit the driving force to the counterpart gear, or conversely, the driving force is transmitted from the counterpart gear, and if the transmission torque at this time fluctuates, both The backlash between the gears causes the tooth flanks to collide with each other and generate a rattling noise. On the other hand, a fluid chamber is formed between the side surface of the gear having the disk-shaped web and the cover body, and the viscous fluid is supplied to the fluid chamber from the fluid supply means, and the supplied viscous fluid is applied to the rotation of the gear. Accumulated centrifugal force causes the fluid to stay on the outer peripheral side in the fluid chamber.

【0008】そして、上記伝達トルクの変動に伴ってギ
アの回転速度が急変すると、流体室内に滞留した粘性流
体と流体室の外周との間にせん断抵抗が生じ、回転速度
の急変を妨げるダンピング作用を奏するため、歯面の衝
突が緩和される。一方、このように粘性流体のせん断抵
抗を利用して歯面の衝突を緩和しており、衝突緩和のた
めにウエイト等の重量物を用いていないため、ギアの慣
性質量を増大させることなく実施可能である。
When the rotational speed of the gear suddenly changes due to the fluctuation of the transmission torque, shear resistance is generated between the viscous fluid staying in the fluid chamber and the outer periphery of the fluid chamber, and a damping action that prevents the sudden change in rotational speed. As a result, the collision of the tooth surfaces is alleviated. On the other hand, the shear resistance of the viscous fluid is used to mitigate the collision of the tooth surfaces, and since heavy objects such as weights are not used to mitigate the collision, it is possible to carry out without increasing the inertial mass of the gear. It is possible.

【0009】請求項2の発明では、回転軸に支持された
ハブを中心として透孔を有するウェブを介してリムが連
結され、リムの外周面に形成された歯部を相手側ギアに
噛合させたギアと、ギアの両側面にそれぞれ配設され
て、ギアの両側との間に、ウェブの透孔を介して相互に
連通する一対の流体室を形成する一対のカバー体と、各
流体室内に粘性流体をそれぞれ供給する流体供給手段と
を備えたものである。
According to the second aspect of the present invention, the rim is connected through a web having a through hole centering on the hub supported by the rotary shaft, and the tooth portion formed on the outer peripheral surface of the rim is meshed with the mating gear. And a pair of cover bodies that are respectively disposed on both side surfaces of the gear and that form a pair of fluid chambers that communicate with each other through the through holes of the web between the both sides of the gear and the respective fluid chambers. And a fluid supply means for respectively supplying a viscous fluid.

【0010】従って、ギアの両側面とカバー体との間に
は、ウェブの透孔を介して相互に連通する一対の流体室
が形成され、これらの流体室が、請求項1に記載した単
一の流体室と同様の作用をそれぞれ発揮する。よって、
請求項1に記載のように、ギア間の伝達トルクが変動し
たときには、粘性流体のせん断抵抗を利用して歯面の衝
突が緩和され、且つ、ギアの慣性質量を増大させること
なく実施可能となる。
Therefore, a pair of fluid chambers communicating with each other through the through holes of the web are formed between the both side surfaces of the gear and the cover body, and these fluid chambers are defined by the unit of claim 1. The same action as one fluid chamber is exhibited. Therefore,
As described in claim 1, when the transmission torque between the gears fluctuates, the collision of the tooth surfaces is mitigated by utilizing the shear resistance of the viscous fluid, and it can be performed without increasing the inertial mass of the gear. Become.

【0011】好ましい態様として、上記流体供給手段
を、ハブに形成された供給路を介して、回転軸から供給
される粘性流体を流体室内に供給するように構成するこ
とが望ましい。この場合には、回転軸から供給される粘
性流体がハブの供給路を経て流体室内に供給され、流体
室内の外周側に滞留する。又、別の好ましい態様とし
て、上記流体供給手段を、カバー体に形成された供給口
を介して、相対向する噴出ノズルから噴出された粘性流
体を流体室内に供給するように構成することが望まし
い。この場合には、噴出ノズルから噴出された粘性流体
がカバー体の供給口を経て流体室内に供給され、流体室
内の外周側に滞留する。
As a preferred mode, it is desirable that the fluid supply means is configured to supply the viscous fluid supplied from the rotating shaft into the fluid chamber through the supply passage formed in the hub. In this case, the viscous fluid supplied from the rotating shaft is supplied into the fluid chamber through the supply path of the hub and stays on the outer peripheral side of the fluid chamber. As another preferable aspect, it is desirable that the fluid supply unit is configured to supply the viscous fluid ejected from the ejection nozzles facing each other into the fluid chamber via the supply port formed in the cover body. . In this case, the viscous fluid ejected from the ejection nozzle is supplied into the fluid chamber through the supply port of the cover body and stays on the outer peripheral side of the fluid chamber.

【0012】請求項3の発明では、ギアに、流体室内と
ギアの歯部の一側とを連通させる排出路が形成されたも
のである。従って、両ギア間の伝達トルクの変動時に
は、排出路から排出された粘性流体が歯面に付着し、そ
の粘性抵抗によっても歯面の衝突が緩和されるため、結
果として歯打音が抑制される。請求項4の発明では、ギ
アが、相手側ギアとの間で周期的なトルク変動を伴って
回転伝達するものであり、トルク変動時に相手側ギアと
噛合する歯部の位置に排出路が形成されたものである。
According to the third aspect of the present invention, the gear is provided with a discharge passage for communicating the fluid chamber with one side of the tooth portion of the gear. Therefore, when the transmission torque between both gears fluctuates, the viscous fluid discharged from the discharge path adheres to the tooth surface, and the viscous resistance also reduces the collision of the tooth surfaces, resulting in suppression of the rattling noise. It According to the invention of claim 4, the gear transmits rotation with the counterpart gear with periodic torque fluctuation, and the discharge path is formed at the position of the tooth portion that meshes with the counterpart gear when the torque varies. It was done.

【0013】従って、両ギア間の伝達トルクの変動時に
は、ギアの排出路が相手側ギアとの噛合位置に到達して
いるため、歯面同士の衝突が排出路から排出される粘性
流体中で行われて、粘性抵抗による衝突緩和がより確実
に発揮される。好ましい態様として、上記相手側ギア
を、内燃機関の複数気筒に燃料を圧送する燃料噴射ポン
プの入力軸に支持されたものとし、上記ギアの排出路
を、各気筒への燃料噴射に伴って発生する燃料噴射ポン
プの駆動トルク変動時に相手側ギアと噛合する歯部の位
置に形成することが望ましい。従って、各気筒の燃料噴
射時には、ギアの排出路が相手側ギアとの噛合位置に到
達して、粘性流体中で確実に歯面の衝突が緩和され、燃
料噴射ポンプの駆動に起因する歯打音が抑制される。
Therefore, when the transmission torque between the two gears fluctuates, the gear discharge path has reached the meshing position with the mating gear, so that the collision of the tooth surfaces in the viscous fluid discharged from the discharge path. Therefore, the collision mitigation due to the viscous resistance is more reliably exhibited. In a preferred embodiment, the counterpart gear is supported by an input shaft of a fuel injection pump that pressure-feeds fuel to a plurality of cylinders of an internal combustion engine, and a discharge passage of the gear is generated along with fuel injection into each cylinder. It is desirable to form at the position of the tooth portion that meshes with the counterpart gear when the driving torque of the fuel injection pump changes. Therefore, at the time of fuel injection of each cylinder, the discharge passage of the gear reaches the meshing position with the counterpart gear, and the collision of the tooth surface is surely alleviated in the viscous fluid. The sound is suppressed.

【0014】別の好ましい態様として、上記相手側ギア
を、内燃機関の吸気弁又は排気弁を開閉駆動するカム軸
に支持されたものとし、上記ギアの排出路を、吸気弁又
は排気弁の開閉駆動に伴って発生するカム軸の駆動トル
ク変動時に相手側ギアと噛合する歯部の位置に形成する
ことが望ましい。従って、吸気弁又は排気弁の開閉駆動
時には、ギアの排出路が相手側ギアとの噛合位置に到達
して、粘性流体中で確実に歯面の衝突が緩和され、吸気
弁又は排気弁の開閉駆動に起因する歯打音が抑制され
る。
In another preferred embodiment, the mating gear is supported by a cam shaft that opens and closes an intake valve or an exhaust valve of an internal combustion engine, and an exhaust passage of the gear is opened and closed by an intake valve or an exhaust valve. It is desirable to form it at the position of the tooth portion that meshes with the mating gear when the driving torque of the cam shaft changes due to driving. Therefore, when the intake valve or the exhaust valve is driven to open or close, the discharge path of the gear reaches the meshing position with the mating gear, and the collision of the tooth surface is reliably alleviated in the viscous fluid, so that the intake valve or the exhaust valve is opened or closed. The rattling noise caused by driving is suppressed.

【0015】[0015]

【発明の実施の形態】[第1実施形態]以下、本発明を
ディーゼル式内燃機関の燃料噴射ポンプを駆動するため
のアイドラギアに適用した第1実施形態を説明する。
尚、本実施形態は、請求項1、3、4の発明に相当する
ものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] A first embodiment in which the present invention is applied to an idler gear for driving a fuel injection pump of a diesel internal combustion engine will be described below.
The present embodiment corresponds to the invention of claims 1, 3, and 4.

【0016】図1は本実施形態の低騒音ギア構造を示す
断面図、図2はそのアイドラギアを示す図1のII−II線
断面図である。内燃機関は4サイクル4気筒ディーゼル
機関として構成されており、図1中には、シリンダブロ
ック1の前面が示されている。シリンダブロック1の前
面に形成された下穴1aには回転軸2の基端が嵌合固定
され、この回転軸2にはアイドラギア3(ギア)が嵌め
込まれている。アイドラギア3は、回転軸2の基端側に
形成された規制段部2aと、回転軸2の先端側に固着さ
れた規制板4とにより軸方向の移動を規制されて、回転
軸2を中心として回転し得るようになっている。
FIG. 1 is a sectional view showing the low noise gear structure of this embodiment, and FIG. 2 is a sectional view taken along line II-II of FIG. 1 showing the idler gear. The internal combustion engine is configured as a 4-cycle 4-cylinder diesel engine, and the front surface of the cylinder block 1 is shown in FIG. A base end of a rotary shaft 2 is fitted and fixed in a prepared hole 1a formed in the front surface of the cylinder block 1, and an idler gear 3 (gear) is fitted in the rotary shaft 2. The idler gear 3 is restricted from moving in the axial direction by a restricting step portion 2a formed on the base end side of the rotating shaft 2 and a restricting plate 4 fixed to the tip end side of the rotating shaft 2 so that the idler gear 3 is centered on the rotating shaft 2. As it can rotate.

【0017】アイドラギア3は、上記回転軸2に嵌め込
まれた中心側のハブ5と、このハブ5の外周側に配設さ
れた環状のリム6と、ハブ5とリム6の間に位置して両
部材を連結する円盤状のウェブ7とから構成されてお
り、これらのハブ5、リム6、ウェブ7は、例えば鍛造
により一体成形されている。ウェブ7はハブ5及びリム
6に対して反エンジン側に位置し(以下、図1中の左方
をエンジン側、右方を反エンジン側として説明する)、
アイドラギア3のエンジン側の側面は環状に凹設されて
いる。
The idler gear 3 is located between the hub 5 on the center side fitted into the rotary shaft 2, an annular rim 6 arranged on the outer peripheral side of the hub 5, and between the hub 5 and the rim 6. It is composed of a disk-shaped web 7 that connects both members, and these hub 5, rim 6, and web 7 are integrally formed by, for example, forging. The web 7 is located on the side opposite to the engine with respect to the hub 5 and the rim 6 (hereinafter, the left side in FIG. 1 will be referred to as the engine side, and the right side will be described as the opposite engine side).
The side surface of the idler gear 3 on the engine side is annularly recessed.

【0018】上記リム6の外周面に形成された歯部6a
は、下側位置において内燃機関のクランク軸に固定され
た図示しない駆動ギアと噛合する一方、上側位置におい
て燃料噴射ポンプの入力軸に固定された被動ギア8(相
手側ギア)と噛合している。駆動ギアと被動ギア8との
ギア比は1:2に設定されており、内燃機関の運転時に
は、クランク軸の回転に伴ってアイドラギア3を介して
燃料噴射ポンプが半分の速度で回転駆動される。よっ
て、クランク軸が2回転して各気筒の燃焼が一巡する間
に燃料噴射ポンプの入力軸は1回転し、入力軸の90°
毎に何れかの気筒が圧縮上死点に至って、当該気筒に対
して燃料噴射ポンプから高圧燃料が圧送される。
A tooth portion 6a formed on the outer peripheral surface of the rim 6
Meshes with a drive gear (not shown) fixed to the crankshaft of the internal combustion engine at the lower position, and meshes with a driven gear 8 (mating gear) fixed to the input shaft of the fuel injection pump at the upper position. . The gear ratio between the driving gear and the driven gear 8 is set to 1: 2, and during operation of the internal combustion engine, the fuel injection pump is rotationally driven at a half speed via the idler gear 3 as the crankshaft rotates. . Therefore, the input shaft of the fuel injection pump makes one rotation while the crankshaft makes two revolutions to complete the combustion of each cylinder, and the input shaft has 90 ° of rotation.
Every time one of the cylinders reaches the compression top dead center, high-pressure fuel is pressure-fed to the cylinder by the fuel injection pump.

【0019】一方、アイドラギア3のエンジン側の側面
には、ウェブ7と対応する円盤状をなすカバー体9が配
設されている。このカバー体9は、ハブ5及びリム6に
形成された段差により位置決めされた状態で、ハブ5側
に装着されたスナップリング10によりアイドラギア3
に固定されている。これによりアイドラギア3とカバー
体9との間には、回転軸2を中心とした環状の流体室1
1が形成されている。
On the other hand, on the side surface of the idler gear 3 on the engine side, a disk-shaped cover body 9 corresponding to the web 7 is provided. The cover body 9 is positioned by the step formed on the hub 5 and the rim 6, and the idler gear 3 is attached by the snap ring 10 mounted on the hub 5 side.
It is fixed to. As a result, between the idler gear 3 and the cover body 9, an annular fluid chamber 1 centered on the rotating shaft 2 is provided.
1 is formed.

【0020】図2に示すように、カバー体9には回転軸
2を中心とした90°間隔の4箇所に略四角状の供給口
9aが形成され、これらの供給口9aを介して上記流体
室11内はエンジン側に向けて開口している。尚、供給
口9aの個数や配置状態はこれに限定されるものではな
く、任意に変更可能である。一方、上記シリンダブロッ
ク1の前面には、カバー体9に相対向するように噴出ノ
ズル12が配置され、アイドラギア3の回転に伴って噴
出ノズル12は各供給口9aと順次対向する。噴出ノズ
ル12は内燃機関の軸受等を潤滑するためのオイル通路
13と連通し、機関の運転中は常にオイル通路13から
オイル供給を受けてオイルを噴出し、噴出されたオイル
はカバー体9の各供給口9aを経て流体室11内に供給
される(流体供給手段)。
As shown in FIG. 2, the cover body 9 is formed with four substantially square supply ports 9a at 90 ° intervals around the rotary shaft 2, and the above-mentioned fluid is supplied through these supply ports 9a. The inside of the chamber 11 is open toward the engine side. The number and arrangement of the supply ports 9a are not limited to this, and can be arbitrarily changed. On the other hand, on the front surface of the cylinder block 1, jet nozzles 12 are arranged so as to face the cover body 9, and the jet nozzles 12 sequentially face the supply ports 9a as the idler gear 3 rotates. The jet nozzle 12 communicates with an oil passage 13 for lubricating the bearings of the internal combustion engine, and while the engine is operating, it is constantly supplied with oil from the oil passage 13 and jets oil. It is supplied into the fluid chamber 11 through each supply port 9a (fluid supply means).

【0021】図2に示すように、上記アイドラギア3の
リム6には、90°間隔で4箇所に各々3本の排出油路
14(排出路)が形成され、図3の詳細図に示すよう
に、これらの排出油路14により、リム6の内周側の流
体室11と外周側の歯部6aの歯底とが相互に連通して
いる。アイドラギア3の歯数は、燃料噴射ポンプ側の被
動ギア8の歯数と同一に設定され、且つ、4箇所の排出
油路14の位置は燃料噴射時(図2に示す)に被動ギア
8と噛合する位置に設定されている。よって、燃料噴射
の度に何れかの排出油路14が両ギア3,8の噛合位置
に到達することになる。
As shown in FIG. 2, the rim 6 of the idler gear 3 is provided with three discharge oil passages 14 (discharge passages) at four locations at 90 ° intervals, as shown in the detailed view of FIG. Moreover, the fluid chamber 11 on the inner peripheral side of the rim 6 and the tooth bottom of the tooth portion 6a on the outer peripheral side communicate with each other by these discharge oil passages 14. The number of teeth of the idler gear 3 is set to be the same as the number of teeth of the driven gear 8 on the fuel injection pump side, and the positions of the four discharge oil passages 14 are the same as those of the driven gear 8 during fuel injection (shown in FIG. 2). It is set to the meshing position. Therefore, one of the discharge oil passages 14 reaches the meshing position of the gears 3 and 8 each time fuel is injected.

【0022】ここで、アイドラギア3の回転に伴う遠心
力で、上記流体室11内のオイルは各排出油路14から
外周側に排出されるが、このときにオイルが流体室11
内で適度に滞留するように、上記噴出ノズル12から流
体室11へのオイル供給量等を勘案した上で、各排出油
路14の総断面積が設定されている。尚、上記回転軸2
には軸方向の第1供給油路15、及び直交する第2供給
油路16が形成され、上記オイル通路13のオイルは、
下穴1a及びこれらの供給油路15,16を介して回転
軸2の外周に案内され、アイドラギア3の摺動部分を潤
滑するようになっている。
Here, the oil in the fluid chamber 11 is discharged from the discharge oil passages 14 to the outer peripheral side by the centrifugal force caused by the rotation of the idler gear 3. At this time, the oil is discharged.
The total cross-sectional area of each discharge oil passage 14 is set in consideration of the amount of oil supplied from the jet nozzle 12 to the fluid chamber 11 so that the oil is appropriately retained therein. The rotary shaft 2
A first supply oil passage 15 in the axial direction and a second supply oil passage 16 orthogonal to each other are formed in the axial direction, and the oil in the oil passage 13 is
The sliding portion of the idler gear 3 is lubricated by being guided to the outer periphery of the rotary shaft 2 through the prepared hole 1a and these oil supply passages 15 and 16.

【0023】次に、以上のように構成された低騒音ギア
構造の作用を説明する。内燃機関の運転時には、クラン
ク軸の回転に伴ってアイドラギア3を介して燃料噴射ポ
ンプが回転駆動され、この燃料噴射ポンプから圧送され
る燃料により各気筒の圧縮上死点近傍で燃料噴射が行わ
れる。一方、オイル通路13からのオイルは噴出ノズル
12から噴出され、カバー体9の各供給口9aを経て流
体室11内に供給されている。供給されたオイルは、ア
イドラギア3の回転に伴う遠心力で図2のように流体室
11内の外周側に滞留し、各排出油路14を経て外周に
向けて順次排出される。
Next, the operation of the low noise gear structure configured as described above will be described. During operation of the internal combustion engine, the fuel injection pump is rotationally driven via the idler gear 3 in accordance with the rotation of the crankshaft, and the fuel pumped from the fuel injection pump injects fuel in the vicinity of the compression top dead center of each cylinder. . On the other hand, the oil from the oil passage 13 is ejected from the ejection nozzle 12 and is supplied into the fluid chamber 11 via each supply port 9a of the cover body 9. The supplied oil stays on the outer peripheral side in the fluid chamber 11 as shown in FIG. 2 due to the centrifugal force associated with the rotation of the idler gear 3, and is sequentially discharged to the outer peripheral side through the respective discharge oil passages 14.

【0024】燃料噴射ポンプの駆動負荷は一定ではな
く、燃料を圧送する瞬間に急増する特性を有する。よっ
て、燃料噴射の度にアイドラギア3から被動ギア8への
伝達トルクが変動し、両ギア3,8間のバックラッシに
より歯面同士が衝突して歯打音が発生する。ここで、流
体室11内に滞留したオイルは、伝達トルク変動により
アイドラギア3の回転速度が急変したときに、流体室1
1内の外周との間にせん断抵抗を生じて、回転速度の急
変を妨げるダンピング作用を奏する。よって、上記歯面
の衝突が緩和されて、歯打音が大幅に抑制される。
The driving load of the fuel injection pump is not constant, and has a characteristic of rapidly increasing at the moment of pumping fuel. Therefore, the torque transmitted from the idler gear 3 to the driven gear 8 fluctuates each time fuel is injected, and the tooth flanks collide with each other due to backlash between the gears 3 and 8 to generate a rattling noise. Here, the oil staying in the fluid chamber 11 can be stored in the fluid chamber 1 when the rotation speed of the idler gear 3 suddenly changes due to the transmission torque variation.
A shearing resistance is generated between the inner circumference and the outer circumference, and a damping action that prevents a sudden change in the rotation speed is achieved. Therefore, the collision of the tooth surfaces is mitigated, and the rattling noise is significantly suppressed.

【0025】又、各気筒の燃料噴射時には、アイドラギ
ア3の何れかの排出油路14が被動ギア8との噛合位置
に到達しているため、歯面同士の衝突は排出油路14か
ら排出されるオイル中で行われることになる。このとき
のオイルの噴出状況は、実開平6−32818号公報に
記載の従来技術のようにギアの全周に噴出させる場合と
は異なり、噛合箇所に集中的に噴出されることから、歯
面は十分なオイル中で衝突し、上記せん断抵抗に加えて
オイルの粘性抵抗によっても歯面の衝突が緩和されるこ
とになる。結果として歯打音はより一層抑制され、ギア
3,8の噛合に伴う騒音を確実に低減できる。
Further, when fuel is injected into each cylinder, one of the discharge oil passages 14 of the idler gear 3 has reached the meshing position with the driven gear 8, so that the collision of the tooth surfaces is discharged from the discharge oil passage 14. Will be done in oil. Unlike the case where the oil is jetted over the entire circumference of the gear as in the prior art described in Japanese Utility Model Laid-Open No. 6-32818, the oil is jetted intensively at the meshing point, and therefore the tooth surface Will collide in sufficient oil, and the collision of the tooth surface will be alleviated not only by the shear resistance but also by the viscous resistance of the oil. As a result, the rattling noise is further suppressed, and the noise accompanying the meshing of the gears 3 and 8 can be reliably reduced.

【0026】しかも、以上の騒音低減作用は、ギア3,
8間の伝達トルクの大小に関わらず得られ、例えば、バ
ネ力により歯打音を抑制するシザースギアのように、伝
達トルクが高い運転状態(燃料噴射ポンプの駆動負荷が
大)にはバネ力が不足して騒音を低減できない等の不具
合はなく、全ての運転領域で十分な効果を得ることがで
きる。
Moreover, the above noise reducing action is achieved by the gear 3,
Can be obtained regardless of the magnitude of the transmission torque between the gears 8, and for example, in a driving state where the transmission torque is high (the driving load of the fuel injection pump is large), such as a scissors gear that suppresses the rattling noise by the spring force, the spring force is high. There is no problem such as noise being insufficient and noise cannot be reduced, and sufficient effects can be obtained in all operating regions.

【0027】図4は燃料噴射に伴ってアイドラギア3に
発生した振動の減衰状態を示し、従来技術に比較して本
実施形態のものでは、燃料噴射時の振動の振幅Wが小さ
いと共に、振動が減衰するまでの所要時間Tも短く、こ
の振動と相関する歯打音が十分に抑制できることがわか
る。言うまでもないが、これによる騒音低減効果は、車
内及び車外の何れにおいても発揮される。
FIG. 4 shows the damping state of the vibration generated in the idler gear 3 due to the fuel injection. In this embodiment, the vibration amplitude W at the time of fuel injection is small and the vibration is small in comparison with the prior art. It can be seen that the time T required for the damping is short, and the rattling noise correlated with this vibration can be sufficiently suppressed. Needless to say, this noise reduction effect is exhibited both inside and outside the vehicle.

【0028】又、以上の騒音の低減により、燃料噴射ポ
ンプの高圧化を実現可能になるという別の利点も得られ
る。即ち、エミッション低減を目的とした高圧化が近年
要望されているが、燃料噴射ポンプの負荷変動が増加す
ることから騒音面で制限を受けている。ここで、上記作
用により歯打音を抑制できれば、低騒音を保ったまま高
圧化を実現することができる。
Further, by reducing the noise as described above, another advantage that the high pressure of the fuel injection pump can be realized can be obtained. That is, there has recently been a demand for a high pressure for the purpose of reducing emissions, but the load fluctuation of the fuel injection pump increases, which limits the noise. Here, if the rattling noise can be suppressed by the above-described action, it is possible to realize high pressure while maintaining low noise.

【0029】一方、以上の説明から明らかなように、噴
出ノズル12から供給されるオイルを一旦流体室11内
に滞留させて、そのせん断抵抗を歯面の衝突緩和に利用
し、その後に排出油路14から排出させて、その粘性抵
抗を歯面の衝突緩和に利用しており、その構成は、アイ
ドラギア3にカバー体9を固定して、供給油路15,1
6,22や排出油路14を形成しただけの非常に簡単な
ものであり、既存のアイドラギアを仕様変更して容易に
実施できる。しかも、実開平4−93543号公報に記
載の従来技術のように重量物である環状ウエイトを用い
ていないため、アイドラギア3の慣性質量は一般的なギ
アとほとんど変わらない。従って、アイドラギア3の慣
性質量が増大したときの弊害、例えば内難機関の回転応
答性が悪化する等の弊害を未然に防止することができ
る。
On the other hand, as is clear from the above description, the oil supplied from the jet nozzle 12 is temporarily retained in the fluid chamber 11 and the shear resistance thereof is utilized for mitigating the collision of the tooth surface, and then the discharged oil is discharged. It is discharged from the passage 14 and its viscous resistance is used for cushioning the collision of the tooth surfaces. The configuration is such that the cover body 9 is fixed to the idler gear 3 and the supply oil passages 15, 1
6, 22 and the discharge oil passage 14 are simply formed, and the existing idler gear can be easily modified by changing the specifications. Moreover, since the annular weight, which is a heavy load, is not used unlike the conventional technique described in Japanese Utility Model Laid-Open No. 4-93543, the inertial mass of the idler gear 3 is almost the same as that of a general gear. Therefore, it is possible to prevent adverse effects when the inertial mass of the idler gear 3 is increased, for example, adverse effects such as deterioration of the rotational response of the internal combustion engine.

【0030】[第2実施形態]次に、本発明を別のアイ
ドラギアに具体化した第2実施形態を説明する。尚、本
実施形態は、請求項2乃至4の発明に相当するものであ
る。本実施形態の低騒音ギア構造は、第1実施形態のも
のと比較して、オイルの供給手法、及び流体室11の構
成が相違しており、回転軸2に対するアイドラギア3の
支持構造や各ギアの歯数関係等は、第1実施形態と同様
である。従って、共通部分の説明は省略し、相違点を重
点的に説明する。
[Second Embodiment] Next, a second embodiment in which the present invention is embodied in another idler gear will be described. The present embodiment corresponds to the invention of claims 2 to 4. The low noise gear structure of the present embodiment is different from that of the first embodiment in the oil supply method and the configuration of the fluid chamber 11, and the support structure of the idler gear 3 with respect to the rotating shaft 2 and each gear. The relationship of the number of teeth, etc. is the same as in the first embodiment. Therefore, the description of the common parts will be omitted, and the differences will be mainly described.

【0031】図5は本実施形態の低騒音ギア構造を示す
断面図、図6はカバー体を取外した状態のアイドラギア
を示す図5のVI−VI線断面図である。本実施形態では、
アイドラギア3のウェブ7が透孔7aを有するスポーク
状をなして、回転軸2の軸方向においてハブ5及びリム
6の中央に位置しており、アイドラギア3の両側面に
は、それぞれカバー体9が第1実施形態と同様の構造に
より装着されている。尚、カバー体9には第1実施形態
で述べた供給口9aが省略されると共に、エンジン側の
噴出ノズル12も省略されている。
FIG. 5 is a sectional view showing the low noise gear structure of this embodiment, and FIG. 6 is a sectional view taken along line VI-VI of FIG. 5 showing the idler gear with the cover body removed. In this embodiment,
The web 7 of the idler gear 3 is in the shape of a spoke having a through hole 7a, and is located at the center of the hub 5 and the rim 6 in the axial direction of the rotary shaft 2, and the cover bodies 9 are provided on both side surfaces of the idler gear 3, respectively. It is mounted by the same structure as the first embodiment. It should be noted that the supply port 9a described in the first embodiment is omitted in the cover body 9, and the jet nozzle 12 on the engine side is also omitted.

【0032】これらのカバー体9によりアイドラギア3
の両側にはそれぞれ流体室11が形成され、各流体室1
1は、スポーク状のウェブ7の透孔7aを介して相互に
連通して単一の流体室を形作っている。又、これらの流
体室11に対応して排出油路14も個別に形成されてお
り、第1実施形態と同じく、各排出油路14の位置は、
燃料噴射時に被動ギア8と噛合する位置に設定されてい
る。
With these cover bodies 9, the idler gear 3
The fluid chambers 11 are formed on both sides of the
1 communicate with each other through the through holes 7a of the spoke-shaped web 7 to form a single fluid chamber. Further, the discharge oil passages 14 are individually formed corresponding to the fluid chambers 11, and the positions of the discharge oil passages 14 are the same as in the first embodiment.
It is set to a position where it meshes with the driven gear 8 during fuel injection.

【0033】一方、回転軸2には第1供給油路15と共
に2本の第2供給油路16が形成され、各第2供給油路
16は回転軸2の外周にそれぞれ開口している。各第2
供給油路16の開口箇所と対応するように、アイドラギ
ア3のハブ5の内周には周方向に2条のオイル溝21が
形成され、各オイル溝21内は第3供給油路22を介し
て上記流体室11とそれぞれ連通している。各オイル溝
21はハブ5の全周に亘って形成され、アイドラギア3
の回転角度に関わらず、第2供給油路16と第3供給油
路22とを常に連通させる。尚、図6では、第3供給油
路22を排出油路14と対応して90°間隔で4箇所に
形成しているが、その個数や配置状態はこれに限定され
るものではなく、任意に変更可能である。
On the other hand, two second supply oil passages 16 are formed on the rotary shaft 2 together with the first supply oil passage 15, and each second supply oil passage 16 is open to the outer periphery of the rotary shaft 2. Each second
Two oil grooves 21 are formed in the circumferential direction on the inner periphery of the hub 5 of the idler gear 3 so as to correspond to the opening portions of the oil supply passage 16, and each oil groove 21 has a third oil supply passage 22 interposed therebetween. And communicates with the fluid chamber 11, respectively. Each oil groove 21 is formed around the entire circumference of the hub 5, and the idler gear 3
The second supply oil passage 16 and the third supply oil passage 22 are always communicated with each other regardless of the rotation angle. In FIG. 6, the third supply oil passage 22 is formed at four positions at 90 ° intervals in correspondence with the discharge oil passage 14, but the number and arrangement of the third supply oil passage 22 are not limited to this, and are arbitrary. Can be changed to.

【0034】そして、オイル通路13からのオイルは、
第1供給油路15及び第2供給油路16を経てアイドラ
ギア3の摺動部分に案内されて潤滑に供されると共に、
更にオイル溝21及び第3供給油路22を経て各流体室
11に供給される(流体供給手段)。その後は第1実施
形態と同様であり、供給されたオイルは、アイドラギア
3の回転に伴う遠心力で流体室11内の外周側に滞留し
ながら、各排出油路14から外周に向けて順次排出さ
れ、重複した説明はしないが、第1実施形態同様の作用
効果を得ることができる。
The oil from the oil passage 13 is
While being guided to the sliding portion of the idler gear 3 through the first supply oil passage 15 and the second supply oil passage 16 for lubrication,
Further, it is supplied to each fluid chamber 11 via the oil groove 21 and the third supply oil passage 22 (fluid supply means). After that, the same as in the first embodiment, the supplied oil is sequentially discharged from the respective discharge oil passages 14 toward the outer periphery while staying on the outer peripheral side in the fluid chamber 11 by the centrifugal force caused by the rotation of the idler gear 3. Although not described again, it is possible to obtain the same operational effects as the first embodiment.

【0035】以上で実施形態の説明を終えるが、本発明
の態様はこの実施形態に限定されるものではない。例え
ば、上記各実施形態では、ディーゼル式内燃機関の燃料
噴射ポンプを駆動するためのアイドラギア3に具体化し
たが、適用箇所はこれに限らず、例えば内燃機関のカム
軸駆動用のギアに適用してもよい。即ち、燃料噴射ポン
プの場合と同様に、吸排気弁を開閉駆動するカム軸にも
バルブスプリングの反力に起因して負荷変動が発生する
ため、ギア列を介してクランク軸の回転をカム軸に伝達
する場合にはギア間で歯打音が生じる。そこで、ギア列
を構成するギアを上記実施形態のアイドラギア3と同様
の構成とすれば、吸排気弁の開閉駆動に起因する歯打音
を抑制することができる。更に、このようなアイドラギ
アに限らず、それ以外の駆動側或いは被動側のギアに具
体化してもよい。例えば上記実施形態の場合には、アイ
ドラギア3に代えてポンプ側の被動ギア8に同一機能を
付加すれば、同様の作用効果を得ることができる。
Although the embodiment has been described above, the aspect of the present invention is not limited to this embodiment. For example, in each of the above-described embodiments, the idler gear 3 for driving the fuel injection pump of the diesel internal combustion engine is embodied, but the application portion is not limited to this, and is applied to, for example, a gear for driving the cam shaft of the internal combustion engine. May be. That is, as in the case of the fuel injection pump, the cam shaft that drives the intake / exhaust valve to open and close also undergoes load fluctuations due to the reaction force of the valve spring. When it is transmitted to, gear rattle is generated between the gears. Therefore, if the gears forming the gear train have the same structure as the idler gear 3 of the above-described embodiment, it is possible to suppress the rattling noise caused by the opening and closing drive of the intake and exhaust valves. Further, the invention is not limited to such an idler gear, and may be embodied in other driving side or driven side gears. For example, in the case of the above-described embodiment, if the same function is added to the driven gear 8 on the pump side instead of the idler gear 3, the same operational effect can be obtained.

【0036】又、上記各実施形態では、アイドラギア3
の排出油路14を燃料噴射時に被動ギア8と噛合する位
置に形成したが、他の位置に変更してもよい。この場合
には、歯面の衝突をオイル中で行うことはできないが、
排出油路14から排出されたオイルが歯面に付着するた
め、その粘性抵抗で歯面の衝突を緩和できる。又、オイ
ルのせん断抵抗による衝突緩和については実施形態と同
様に得られるため、この場合でも歯打音を抑制すること
は十分に可能である。
In each of the above embodiments, the idler gear 3 is used.
Although the discharge oil passage 14 is formed at a position that meshes with the driven gear 8 at the time of fuel injection, it may be changed to another position. In this case, the collision of the tooth surfaces cannot be done in oil,
Since the oil discharged from the discharge oil passage 14 adheres to the tooth surface, its viscous resistance can alleviate the collision of the tooth surface. Further, the collision mitigation due to the shear resistance of the oil can be obtained in the same manner as in the embodiment, and even in this case, the rattling noise can be sufficiently suppressed.

【0037】更に、上記各実施形態では、アイドラギア
3の側面の凹状部分を利用して流体室11を形成した
が、代わりに凹状のカバー体9を用いることで流体室1
1を形成してもよい。一方、上記第2実施形態では、供
給油路15,16,22を経て流体室11内にオイルを
供給したが、第1実施形態のように噴出ノズル12を利
用して供給するようにしてもよい。尚、アイドラギア3
のウェブ7がスポーク状のため、噴出ノズル12からの
オイルは、エンジン側の流体室11を経て反エンジン側
の流体室11にも確実に供給される。
Furthermore, in each of the above-described embodiments, the fluid chamber 11 is formed by utilizing the concave portion on the side surface of the idler gear 3, but the fluid chamber 1 is formed by using the concave cover body 9 instead.
1 may be formed. On the other hand, in the second embodiment, the oil is supplied into the fluid chamber 11 via the supply oil passages 15, 16 and 22, but the jet nozzle 12 may be used to supply the oil as in the first embodiment. Good. In addition, idler gear 3
Since the web 7 is of a spoke shape, the oil from the jet nozzle 12 is reliably supplied to the fluid chamber 11 on the side opposite to the engine through the fluid chamber 11 on the engine side.

【0038】又、上記第2実施形態では、アイドラギア
3のウェブ7をスポーク状にしたが、第1実施形態のよ
うに円盤状として、両流体室11を完全に区画してもよ
い。上記のように各流体室11は第3供給油路22及び
排出油路14を個別に備えるため、このように構成した
場合でも、流体室11へのオイルの流通には何ら支障は
ない。
In the second embodiment, the web 7 of the idler gear 3 has a spoke shape, but it may have a disk shape as in the first embodiment so that both fluid chambers 11 are completely partitioned. As described above, since each fluid chamber 11 is provided with the third supply oil passage 22 and the discharge oil passage 14 individually, even with such a configuration, there is no problem in the flow of oil to the fluid chamber 11.

【0039】[0039]

【発明の効果】以上説明したように請求項1,2の発明
の低騒音ギア構造によれば、ギアの慣性質量の不当な増
加を未然に防止した上で、歯打音の抑制作用を十分に発
揮し、もって、ギアの噛合に伴う騒音を確実に低減する
ことができる。請求項3,4の発明の低騒音ギア構造に
よれば、請求項1,2の発明に加えて、粘性抵抗による
衝突緩和をより確実に発揮して、騒音を一層低減するこ
とができる。
As described above, according to the low noise gear structure of the inventions of claims 1 and 2, an undesired increase in the inertial mass of the gear is prevented, and the effect of suppressing the rattling noise is sufficient. Therefore, it is possible to reliably reduce the noise associated with the meshing of the gears. According to the low noise gear structure of the inventions of claims 3 and 4, in addition to the inventions of claims 1 and 2, it is possible to more reliably exhibit collision mitigation due to viscous resistance and further reduce noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施形態の低騒音ギア構造を示す断面図で
ある。
FIG. 1 is a cross-sectional view showing a low noise gear structure of a first embodiment.

【図2】アイドラギアを示す図1のII−II線断面図であ
る。
FIG. 2 is a sectional view taken along line II-II of FIG. 1 showing an idler gear.

【図3】排出油路の詳細を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing details of a discharge oil passage.

【図4】アイドラギアに発生した振動の減衰状態を示す
説明図である。
FIG. 4 is an explanatory diagram showing a damping state of vibration generated in an idler gear.

【図5】第2実施形態の低騒音ギア構造を示す断面図で
ある。
FIG. 5 is a sectional view showing a low noise gear structure according to a second embodiment.

【図6】カバー体を取外した状態のアイドラギアを示す
図5のVI−VI線断面図である。
6 is a sectional view taken along line VI-VI of FIG. 5, showing the idler gear with the cover body removed.

【符号の説明】 2 回転軸 3 アイドラギア(ギア) 5 ハブ 6 リム 6a 歯部 7 ウェブ 7a 透孔 8 被動ギア(相手側ギア) 9 カバー体 9a 供給口(流体供給手段) 11 流体室 12 噴出ノズル(流体供給手段) 14 排出油路(排出路) 15 第1供給油路(流体供給手段) 16 第2供給油路(流体供給手段) 22 第3供給油路(流体供給手段)[Explanation of symbols] 2 rotation axes 3 idler gear (gear) 5 hubs 6 rims 6a Teeth 7 Web 7a through hole 8 Driven gear (counter gear) 9 cover body 9a Supply port (fluid supply means) 11 Fluid chamber 12 Jet nozzle (fluid supply means) 14 Discharge oil passage (discharge passage) 15 First supply oil passage (fluid supply means) 16 Second supply oil passage (fluid supply means) 22 Third supply oil passage (fluid supply means)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転軸に支持されたハブを中心として円
盤状のウェブを介してリムが連結され、該リムの外周面
に形成された歯部を相手側ギアに噛合させたギアと、 上記ギアの一側面に配設されて、該ギアの側面との間に
流体室を形成するカバー体と、 上記流体室内に粘性流体を供給する流体供給手段とを備
えたことを特徴とする低騒音ギア構造。
1. A gear in which a rim is connected via a disc-shaped web centering on a hub supported by a rotating shaft, and a tooth portion formed on an outer peripheral surface of the rim is meshed with a mating gear, Low noise, comprising a cover body which is disposed on one side surface of the gear and forms a fluid chamber with the side surface of the gear, and a fluid supply means for supplying a viscous fluid into the fluid chamber. Gear structure.
【請求項2】 回転軸に支持されたハブを中心として透
孔を有するウェブを介してリムが連結され、該リムの外
周面に形成された歯部を相手側ギアに噛合させたギア
と、 上記ギアの両側面にそれぞれ配設されて、該ギアの両側
との間に、上記ウェブの透孔を介して相互に連通する一
対の流体室を形成する一対のカバー体と、 上記各流体室内に粘性流体をそれぞれ供給する流体供給
手段とを備えたことを特徴とする低騒音ギア構造。
2. A gear in which a rim is connected via a web having a through hole centered on a hub supported by a rotating shaft, and a tooth portion formed on an outer peripheral surface of the rim is meshed with a mating gear, A pair of cover bodies which are respectively disposed on both side surfaces of the gear and which form a pair of fluid chambers communicating with each other through the through holes of the web between the both sides of the gear, and the respective fluid chambers. A low-noise gear structure comprising:
【請求項3】 上記ギアは、上記流体室内と上記ギアの
歯部の一側とを連通させる排出路が形成されていること
を特徴とする請求項1又は2に記載の低騒音ギア構造。
3. The low-noise gear structure according to claim 1, wherein the gear has a discharge passage that connects the fluid chamber and one side of a tooth portion of the gear.
【請求項4】 上記ギアは、上記相手側ギアとの間で周
期的なトルク変動を伴って回転伝達するものであり、該
トルク変動時に相手側ギアと噛合する歯部の位置に上記
排出路が形成されていることを特徴とする請求項3に記
載の低騒音ギア構造。
4. The gear transmits rotation with the counterpart gear with periodic torque fluctuation, and the discharge path is located at a position of a tooth portion meshing with the counterpart gear during the torque fluctuation. The low noise gear structure according to claim 3, wherein the low noise gear structure is formed.
JP2001378570A 2001-12-12 2001-12-12 Low noise gear structure Expired - Fee Related JP3838348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001378570A JP3838348B2 (en) 2001-12-12 2001-12-12 Low noise gear structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001378570A JP3838348B2 (en) 2001-12-12 2001-12-12 Low noise gear structure

Publications (2)

Publication Number Publication Date
JP2003176865A true JP2003176865A (en) 2003-06-27
JP3838348B2 JP3838348B2 (en) 2006-10-25

Family

ID=19186254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001378570A Expired - Fee Related JP3838348B2 (en) 2001-12-12 2001-12-12 Low noise gear structure

Country Status (1)

Country Link
JP (1) JP3838348B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052824A (en) * 2009-08-28 2011-03-17 Ellergon Antriebstechnik Gmbh Torsional vibration damper
JP2014035034A (en) * 2012-08-09 2014-02-24 Isuzu Motors Ltd Gear structure
KR101849042B1 (en) * 2017-02-17 2018-04-13 주식회사 만도 Reducer for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052824A (en) * 2009-08-28 2011-03-17 Ellergon Antriebstechnik Gmbh Torsional vibration damper
JP2014035034A (en) * 2012-08-09 2014-02-24 Isuzu Motors Ltd Gear structure
KR101849042B1 (en) * 2017-02-17 2018-04-13 주식회사 만도 Reducer for vehicle

Also Published As

Publication number Publication date
JP3838348B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP2969951B2 (en) Valve drive system for internal combustion engine
US5215165A (en) Oil pump
JPH07259516A (en) Valve timing control device
JP3765399B2 (en) Lubricating oil supply structure for internal combustion engines
JP3838348B2 (en) Low noise gear structure
JP3029020B2 (en) Valve timing adjustment device for internal combustion engine
JP2000130117A (en) Valve opening and closing time control device
JPH07139327A (en) Cam shaft in engine with valve timing controller
JP2836427B2 (en) Variable valve timing device
JP2895710B2 (en) Valve timing control device
JP2842113B2 (en) Variable valve timing control device
KR20080033747A (en) A ballance shaft module
JP2895708B2 (en) Valve timing control device
JP3528385B2 (en) Valve timing control device
JP4035785B2 (en) Valve timing control device
JP3882178B2 (en) Valve timing adjusting device for internal combustion engine
JP2895711B2 (en) Valve timing control device
JPH08151907A (en) Valve timing controller of internal combustion engine
JP3815586B2 (en) Valve timing control device
JPS6283555A (en) Damper device of gear train
JP2836436B2 (en) Variable valve timing device
JP3344273B2 (en) Valve timing control device for internal combustion engine
JP2873180B2 (en) Variable valve timing mechanism
JPH06129492A (en) Balance shaft driver of internal combustion engine
JPS6283558A (en) Damper device of gear train

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040326

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060712

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100811

LAPS Cancellation because of no payment of annual fees