JP2003175104A - Anesthetic depth measuring instrument - Google Patents

Anesthetic depth measuring instrument

Info

Publication number
JP2003175104A
JP2003175104A JP2001375925A JP2001375925A JP2003175104A JP 2003175104 A JP2003175104 A JP 2003175104A JP 2001375925 A JP2001375925 A JP 2001375925A JP 2001375925 A JP2001375925 A JP 2001375925A JP 2003175104 A JP2003175104 A JP 2003175104A
Authority
JP
Japan
Prior art keywords
data
subject
pulse wave
anesthesia
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001375925A
Other languages
Japanese (ja)
Other versions
JP3639813B2 (en
Inventor
Shinji Kondo
針次 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K and S KK
Original Assignee
K and S KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K and S KK filed Critical K and S KK
Priority to JP2001375925A priority Critical patent/JP3639813B2/en
Priority to EP02027552A priority patent/EP1317902B1/en
Priority to DE60207183T priority patent/DE60207183T2/en
Priority to US10/314,245 priority patent/US6953435B2/en
Publication of JP2003175104A publication Critical patent/JP2003175104A/en
Application granted granted Critical
Publication of JP3639813B2 publication Critical patent/JP3639813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anesthetic depth measuring instrument capable of measuring an anesthetic depth with high accuracy. <P>SOLUTION: This anesthetic depth measuring instrument 1 is equipped with a pulse wave measuring instrument 20, a perspiration quantity measuring instrument 30 and a temperature sensor 60 for detecting the temperature of the skin, and the pulse wave amplitude signal, blood oxygen saturated quantity signal, perspiration quantity signal, skin temperature signal and pulsation signal detected from the respective instruments are taken in a data processor 10. The data processor 10 calculates pulse wave amplitude data p1, perspiration quantity data p2, blood oxygen saturated quantity data p3, skin temperature data p4 and pulsation data p5 on the basis of the respective signals and further calculates synthetic data A from these obtained living body data. Thereafter, the anesthetic depth T is calculated as an absolute value on the basis of the peak value Ap of the synthetic data A and a value At of the synthetic data A to be displayed on a monitor 40. Accordingly, by calculating the anesthetic depth T on the basis of the plurality of living body data, the anesthetic depth T highly accurate as compared with a case for calculating the anesthetic depth T on the basis of a single living body datum can be obtained. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、麻酔深度測定装置
に関する。
TECHNICAL FIELD The present invention relates to an anesthesia depth measuring device.

【0002】[0002]

【従来の技術】従来より、麻酔を伴う治療を行う場合、
投与される麻酔の量は医師の経験に委ねられている。一
方、麻酔の効き具合は個人差が大きく、同量だけ投与し
た場合でも人によっては効き過ぎであったり、逆に、不
十分であったりする。そこで、医師は麻酔の投与中に臨
床兆候、例えば血圧、心拍数、発汗、流涙、瞳孔径等を
確実にモニターする必要があった。
2. Description of the Related Art Conventionally, when performing treatment involving anesthesia,
The amount of anesthesia administered is up to the physician's experience. On the other hand, the effectiveness of anesthesia varies greatly among individuals, and even if the same amount of anesthesia is administered, it may be too effective for some people or, on the contrary, insufficient. Therefore, a doctor needs to reliably monitor clinical signs such as blood pressure, heart rate, sweating, tearing, and pupil diameter during administration of anesthesia.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの兆候
をモニターしても、これら個々のパラメータは反応に個
体差があり麻酔深度との対応関係が必ずしも一致せず正
確な麻酔深度を得ることが出来ないという問題が懸念さ
れた。また、単に臨床兆候をモニターするだけでは麻酔
深度を数量的に知ることも困難な状況にある。本発明は
上記のような事情に基づいて完成されたものであって、
麻酔深度を高精度に測定することができる麻酔深度測定
装置を提供することを目的とする。
However, even if these signs are monitored, there is an individual difference in the response of each of these parameters, and the correspondence with the depth of anesthesia does not necessarily match, and an accurate depth of anesthesia can be obtained. There was a concern that it could not be done. In addition, it is difficult to quantitatively know the depth of anesthesia simply by monitoring clinical signs. The present invention has been completed based on the above circumstances,
An object of the present invention is to provide an anesthesia depth measuring device capable of measuring the anesthesia depth with high accuracy.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めの手段として、請求項1の発明は、被験者における脈
波振幅を含む複数の生体信号の時間的変化を検出する検
出部を備え、これら複数の生体信号をそれぞれ個別に演
算処理して前記生体信号と対応する生体データをそれぞ
れ算出しつつ、この生体データから既知のアルゴリズム
に基づいて合成データAを算出するとともに、前記合成
データAの任意の時点での値を基準値Aoとして記憶し
つつ、この基準値Aoと当該基準値Aoが選定された以
降の時点での前記合成データAの値Atに基づいて麻酔
深度を算出する演算手段と、この演算手段により得られ
た麻酔深度を表示する表示手段とを備えてなる構成とし
たところに特徴を有する。
As means for achieving the above object, the invention of claim 1 is provided with a detector for detecting a temporal change of a plurality of biological signals including pulse wave amplitude in a subject, The plurality of biological signals are individually calculated to calculate the biological data corresponding to the biological signals, and the synthetic data A is calculated from the biological data based on a known algorithm. A calculation means for storing the value at any time as the reference value Ao and calculating the depth of anesthesia based on the reference value Ao and the value At of the combined data A at the time after the reference value Ao is selected. And a display means for displaying the depth of anesthesia obtained by the calculation means.

【0005】請求項2の発明は、請求項1に記載のもの
において、前記検出部は前記被験者における前記脈波振
幅の時間的変化を測定する脈波検出手段と、前記被験者
における発汗量の時間的変化を測定する発汗量検出手段
と、前記被験者における皮膚温度の時間的変化を測定す
る皮膚温検出手段と、前記被験者における血中酸素飽和
量の時間的変化を測定する血中酸素飽和量検出手段とを
備えてなる構成としたところに特徴を有する。
According to a second aspect of the present invention, in the first aspect of the present invention, the detection unit is a pulse wave detecting means for measuring a temporal change of the pulse wave amplitude in the subject, and a time of a sweating amount in the subject. -Perspiration detection means for measuring physical changes, skin temperature detection means for measuring temporal changes in skin temperature in the subject, and blood oxygen saturation detection for measuring temporal changes in blood oxygen saturation in the subject It is characterized in that it is configured to include means.

【0006】請求項3の発明は、請求項2に記載のもの
において、前記検出部は前記脈波検出手段、前記発汗量
検出手段、前記皮膚温検出手段及び前記血中酸素飽和量
検出手段に加えて、前記被験者における脳波の時間的変
化を検出する脳波検出手段と、前記被験者における心拍
の時間的変化を検出する心拍検出手段と、前記被験者に
おける脈拍の時間的変化を測定する脈拍検出手段と、前
記被験者における1心拍血流量の時間的変化を測定する
1心拍血流量検出手段のうち、少なくとも1つの検出手
段を備えてなる構成としたところに特徴を有する。
According to a third aspect of the present invention, in the second aspect, the detecting unit includes the pulse wave detecting unit, the sweating amount detecting unit, the skin temperature detecting unit and the blood oxygen saturation amount detecting unit. In addition, an electroencephalogram detecting means for detecting a temporal change of the electroencephalogram in the subject, a heartbeat detecting means for detecting a temporal change of the heartbeat in the subject, and a pulse detecting means for measuring a temporal change of the pulse in the subject. The present invention is characterized in that at least one of the one-beat blood flow detection means for measuring the temporal change of one-heart blood flow in the subject is provided.

【0007】請求項4の発明は、請求項1ないし請求項
3のいずれか1項に記載のものにおいて、前記演算手段
は前記合成データAの変化パターンが記憶可能とされ、
前記被験者の前記生体データの測定が前記基準値Aoが
選定されるべき時点以降に開始された場合には、当該生
体データに基づく合成データBの変化パターンと前記演
算手段に記憶された過去の合成データの変化パターンと
を照合して類似する合成データCを抽出し、抽出された
前記合成データCの基準値Coを前記合成データBに置
換して置換された前記基準値Coと前記合成データBの
値Btに基づいて前記被験者の麻酔深度を算出するとこ
ろに特徴を有する。
According to a fourth aspect of the present invention, in any one of the first to third aspects, the arithmetic means can store the change pattern of the composite data A,
When the measurement of the biometric data of the subject is started after the time when the reference value Ao should be selected, the change pattern of the synthetic data B based on the biometric data and the past synthesis stored in the computing unit. A similar synthetic data C is extracted by collating with a change pattern of data, the reference value Co of the extracted synthetic data C is replaced with the synthetic data B, and the replaced reference value Co and synthetic data B are replaced. The feature is that the depth of anesthesia of the subject is calculated based on the value Bt of.

【0008】[0008]

【発明の作用及び効果】<請求項1の発明>麻酔の効き
具合(麻酔深度)を判断する場合に、よく対応するパラ
メータは複数あるが、個々のパラメータは個体者間及び
被験者の体調等によってその反応にばらつきがあるため
複数個観察することが好ましい。そこで、請求項1では
麻酔深度に関連性のある複数の生体信号を検出するとと
もに、これを演算手段に取り込んで個別に演算処理して
脈波振幅を含む複数の生体データを算出し、更に、得ら
れた生体データに基づき合成データAを算出する。この
ように、麻酔深度と関連性の高い複数の生体データに基
づいて麻酔深度を算出することで、単一の生体データに
基づいて麻酔深度を算出する場合に比較して高精度のも
のが得られる。また、麻酔深度は合成データAの任意の
時点での値である基準値Aoと合成データAの値Atに
基づいて絶対値化され、医師はこの絶対値化された麻酔
深度に基づき被験者の麻酔の効き具合を把握することが
出来る。尚、被験者の生体信号(生体データ)に脈波振
幅を含めたのは、脈波振幅は麻酔深度との関連性がもっ
とも高いパラメータと考えられるからである。
[Operation and effect of the invention] <Invention of claim 1> There are a plurality of parameters that correspond well when judging the effectiveness of anesthesia (depth of anesthesia). However, each parameter depends on the physical condition of individual subjects and subjects. Since the reaction varies, it is preferable to observe a plurality of reactions. Therefore, in claim 1, a plurality of biological signals related to the depth of anesthesia are detected, and the biological signals including the pulse wave amplitude are calculated by incorporating the biological signals into an arithmetic means and individually performing arithmetic processing. The synthetic data A is calculated based on the obtained biometric data. In this way, by calculating the depth of anesthesia based on multiple biometric data that are highly related to the depth of anesthesia, it is possible to obtain a more accurate one than when calculating the depth of anesthesia based on single biometric data. To be Further, the depth of anesthesia is made into an absolute value based on the reference value Ao, which is a value at any time of the synthetic data A, and the value At of the synthetic data A, and the doctor anesthetizes the subject based on the absolute value of the anesthesia depth. You can grasp the effectiveness of. The reason why the pulse wave amplitude is included in the biological signal (biological data) of the subject is that the pulse wave amplitude is considered to be the parameter that has the highest relation with the depth of anesthesia.

【0009】<請求項2の発明>請求項2の発明によれ
ば、検出手段は脈波検出手段、発汗量検出手段、皮膚温
検出手段、血中酸素飽和量検出手段を備えており、これ
らから得られる生体信号に基づき演算手段が脈波振幅デ
ータ、発汗量データ、皮膚温データ及び血中酸素飽和量
データを算出し、更に合成データAを算出する。これら
各生体データは特に麻酔深度との関連性が高いものであ
るため、麻酔深度を正確に把握することが出来る。
<Invention of Claim 2> According to the invention of Claim 2, the detection means includes a pulse wave detection means, a sweating amount detection means, a skin temperature detection means, and a blood oxygen saturation amount detection means. The calculation means calculates pulse wave amplitude data, perspiration amount data, skin temperature data, and blood oxygen saturation amount data based on the biological signal obtained from the above, and further calculates synthetic data A. Since each of these biometric data is highly related to the depth of anesthesia, the depth of anesthesia can be accurately grasped.

【0010】<請求項3の発明>請求項3の発明によれ
ば、演算手段には脈波検出手段、発汗量検出手段、皮膚
温検出手段、血中酸素飽和量検手段からの生体信号に加
えて、脳波検出手段からの脳波信号、心拍検出手段から
の心拍信号、脈拍検出手段からの脈拍信号及び1心拍血
流量検出手段からの1心拍血流量信号のうち少なくとも
1つの生体信号が取り込まれ、これら生体信号から得ら
れる生体データに基づき合成データAが算出される。す
なわち、出願人の知見によれば、脳波、心拍、脈拍、1
心拍血流量に関するデータも麻酔深度との関連性が高い
パラメータであるため、これら生体データを加味するこ
とで麻酔深度を一層正確に把握することができる。
<Invention of Claim 3> According to the invention of Claim 3, the calculation means includes a pulse wave detecting means, a sweating amount detecting means, a skin temperature detecting means, and a biological signal from the blood oxygen saturation detecting means. In addition, at least one biological signal among the electroencephalogram signal from the electroencephalogram detection means, the heartbeat signal from the heartbeat detection means, the pulse signal from the pulse detection means, and the one-heartbeat blood flow signal from the one-heartbeat blood flow detection means is captured. The synthetic data A is calculated based on the biometric data obtained from these biometric signals. That is, according to the applicant's knowledge, EEG, heartbeat, pulse, 1
Since the data relating to the cardiac blood flow rate is also a parameter highly related to the depth of anesthesia, the depth of anesthesia can be more accurately grasped by adding these biometric data.

【0011】<請求項4の発明>請求項4の発明によれ
ば、例えば、過誤により被験者の生体データの測定が本
来基準値Aoが選定されるべき時点以降に開始された場
合には、演算手段が当該生体データに基づいて算出され
た合成データBの変化パターンと記憶された過去の合成
データの変化パターンを照合して類似する合成データC
を抽出する。そして、抽出された合成データCの基準値
Coを当該合成データBに置換する。このように、生体
データの測定が本来開始されるべき測定時期から遅れて
開始された場合でも、置換された基準値Coと合成デー
タBの値Btに基づいて被験者の麻酔深度を算出するこ
とが出来る。
<Invention of Claim 4> According to the invention of Claim 4, for example, when the measurement of the biometric data of the subject is started after the time when the reference value Ao should originally be selected due to an error, the calculation is performed. The means collates the change pattern of the synthetic data B calculated based on the biometric data with the change pattern of the stored past synthetic data, and the similar synthetic data C is obtained.
To extract. Then, the reference value Co of the extracted combined data C is replaced with the combined data B. As described above, even when the measurement of the biological data is started after the measurement time when it should originally be started, the anesthesia depth of the subject can be calculated based on the replaced reference value Co and the value Bt of the combined data B. I can.

【0012】[0012]

【発明の実施の形態】<第1実施形態>本発明の第1実
施形態を図1ないし図5を参照して説明する。図1は本
実施形態における麻酔深度測定装置1の全体構成を示す
ものである。麻酔深度測定装置1は、被験者5の生体信
号(後述する脈波振幅信号、血中酸素飽和量信号、脈拍
信号、発汗量信号、皮膚温信号)を検出する検出部を備
えている。本実施形態において検出部は被験者5の脈波
振幅、血中酸素飽和量、脈拍を測定する脈波測定装置
(本発明の脈波検出手段、血中酸素飽和量検出手段、脈
拍検出手段に相当する)20と、被験者5の発汗量を測
定する発汗量測定装置(本発明の発汗量検出手段に相当
する)30、及び被験者5の皮膚温を測定する皮膚温検
出のための温度センサー(本発明の皮膚温検出手段に相
当する)60とから構成されている。更に、これらの各
出力ラインがデータ処理装置(本発明の演算手段に相当
する)10に接続されている。上記データ処理装置10
はA/Dコンバータ11、CPU12及びメモリ13を
備えており、脈波測定装置20、発汗量測定装置30及
び皮膚温検出のための温度センサー60により測定した
被験者5の生体信号をディジタル化して連続的に取り込
み、演算処理を行うようになっている。そして、このデ
ータ処理装置10にはモニタ40が接続され演算処理さ
れた麻酔深度に関するデータ(後述)が表示される。
BEST MODE FOR CARRYING OUT THE INVENTION <First Embodiment> A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows the overall configuration of the anesthesia depth measuring device 1 in this embodiment. The anesthesia depth measurement device 1 includes a detection unit that detects a biological signal of the subject 5 (a pulse wave amplitude signal, a blood oxygen saturation amount signal, a pulse signal, a sweating amount signal, and a skin temperature signal, which will be described later). In the present embodiment, the detection unit is a pulse wave measuring device that measures the pulse wave amplitude, blood oxygen saturation amount, and pulse of the subject 5 (corresponding to the pulse wave detection unit, blood oxygen saturation amount detection unit, and pulse detection unit of the present invention. 20), a sweat rate measuring device (corresponding to the sweat rate detecting means of the present invention) 30 for measuring the sweat rate of the subject 5, and a temperature sensor (book) for detecting the skin temperature of the subject 5. (Corresponding to the skin temperature detecting means of the invention) 60. Further, each of these output lines is connected to a data processing device (corresponding to the calculating means of the present invention) 10. The data processing device 10
Is equipped with an A / D converter 11, a CPU 12 and a memory 13, and digitizes the biological signal of the subject 5 measured by a pulse wave measuring device 20, a sweating amount measuring device 30 and a temperature sensor 60 for detecting skin temperature, and continuously. It is designed to be taken in and to perform arithmetic processing. A monitor 40 is connected to the data processing device 10 to display data (described later) on the anesthesia depth that has been subjected to arithmetic processing.

【0013】発汗量測定装置30は、本願と同一の出願
人による特開平10−262958号公報掲載の発汗量
測定装置と基本原理を同じくする。すなわち、発汗量測
定装置30には、図2に示すようなカプセル31が備え
られ、そのカプセル31に形成した凹所32の開口32
Aを、被験者5の皮膚面で閉塞して取付けられる。そし
て、カプセル31の側面には、凹所32に連通する供給
口33と排出口34とが設けられ、供給口33に連なる
ゴム管33Aを介してボンベ(図示せず)から凹所32
内に例えば低湿度窒素ガスが一定流量で供給される。
The sweat rate measuring device 30 has the same basic principle as the sweat rate measuring device disclosed in Japanese Patent Application Laid-Open No. 10-262958 by the same applicant as this application. That is, the sweat rate measuring device 30 is provided with the capsule 31 as shown in FIG. 2, and the opening 32 of the recess 32 formed in the capsule 31.
A is attached by closing the skin surface of the subject 5. A supply port 33 and a discharge port 34 that communicate with the recess 32 are provided on the side surface of the capsule 31, and a recess 32 is provided from a cylinder (not shown) via a rubber tube 33A that communicates with the supply port 33.
A low humidity nitrogen gas, for example, is supplied at a constant flow rate.

【0014】一方、排出口34に連なるゴム管34Aの
途中には湿度計(図示せず)が設けられ、排出空気の湿
度を測定している。また、このカプセル31には、温度
計と加熱冷却器(例えば、ペルチェ素子)とが内臓され
て、凹所32内の温度を一定に保つように制御されてい
る。そして、湿度計及び温度計の出力結果が発汗量信号
としてデータ処理装置10に取り込まれて演算され、発
汗量データp2が得られる(図4(b)参照)。
On the other hand, a hygrometer (not shown) is provided in the middle of the rubber tube 34A connected to the exhaust port 34 to measure the humidity of the exhaust air. Further, a thermometer and a heating / cooling device (for example, a Peltier element) are incorporated in the capsule 31, and the capsule 31 is controlled so as to keep the temperature in the recess 32 constant. Then, the output results of the hygrometer and the thermometer are taken into the data processing device 10 as a sweat rate signal and calculated, and sweat rate data p2 is obtained (see FIG. 4B).

【0015】次に、脈波測定装置20について説明す
る。脈波測定装置20は、図3に示すように、被験者5
の手指51に巻き付けるカフバンド21、カフバンド2
1の両側に被験者5の手指51に挟むように配置した光
電投光器22及び光電受光器23、カフ圧をかけるカフ
ポンプ24及びカフ圧センサ25を有している。このう
ち、光電投光器22及び光電受光器23によって被験者
5の脈波振幅信号及び血中酸素飽和量信号を検出するこ
とが出来る。
Next, the pulse wave measuring device 20 will be described. The pulse wave measuring device 20 is, as shown in FIG.
Cuff band 21 and cuff band 2 to be wrapped around your fingers 51
On both sides of 1, there are a photoelectric projector 22 and a photoelectric receiver 23 arranged so as to be sandwiched between the fingers 51 of the subject 5, a cuff pump 24 for applying a cuff pressure, and a cuff pressure sensor 25. Among them, the photoelectric projector 22 and the photoelectric receiver 23 can detect the pulse wave amplitude signal and the blood oxygen saturation amount signal of the subject 5.

【0016】すなわち、光電投光器22は、近赤外光波
長を持った光を皮膚に向けて照射可能な発光赤色LE
D、青外光波長を持った光を皮膚に向けて照射可能な発
光青色LEDを設けるとともに、光電受光器23は発光
赤色LEDの反射光を受光するフォトトランジスタ及び
発光青色LEDの反射光を受光するフォトトランジスタ
を設けている。このうち、発光赤色LEDにより照射さ
れた赤外光は皮膚深部にある撓骨動脈に至ることができ
るため対応するフォトトランジスタの出力は血管の容量
変動に伴う吸光度の変化により血流量の相対変化を検出
する。このようにして検出された測定結果は脈波振幅信
号としてデータ処理装置10に取り込まれて演算処理が
なされ脈波振幅データp1が算出される(図4(a)参
照)。上記のようにして得られる脈波振幅データp1
は、測定方法の都合上測定中の被験者5の微少な動き
(体動)による誤差分を含んだものとなる。従って、デ
ータの補正を行うために被験者5の体動を検出してい
る。すなわち、前記した発光青色LEDにより照射され
た青外光は皮膚表面で反射するため、対応するフォトト
ランジスタの出力は被験者5の体動によって変化する。
これにより、被験者5の体動を検出することが出来る。
That is, the photoelectric projector 22 is a luminescent red LE capable of irradiating the skin with light having a near-infrared light wavelength.
D, a light emitting blue LED capable of irradiating the skin with light having an outside blue wavelength is provided, and the photoelectric receiver 23 receives the phototransistor for receiving the reflected light of the light emitting red LED and the reflected light of the light emitting blue LED. A phototransistor is provided. Of these, the infrared light emitted by the red light emitting LED can reach the radial artery deep in the skin, so that the output of the corresponding phototransistor changes the relative change in blood flow due to the change in absorbance due to the change in blood vessel capacity. To detect. The measurement result detected in this way is taken into the data processing device 10 as a pulse wave amplitude signal and subjected to arithmetic processing to calculate the pulse wave amplitude data p1 (see FIG. 4A). Pulse wave amplitude data p1 obtained as described above
For the sake of convenience of the measuring method, the error includes an error due to a minute movement (body movement) of the subject 5. Therefore, the body movement of the subject 5 is detected in order to correct the data. That is, since the blue light emitted by the above-mentioned light emitting blue LED is reflected on the skin surface, the output of the corresponding phototransistor changes according to the body movement of the subject 5.
Thereby, the body movement of the subject 5 can be detected.

【0017】更に、本実施形態では光電投光器22は発
光赤色LEDとは波長の異なる他の発光LEDを備える
とともに、光電受光器に23はこの発光LEDの反射光
を受光するフォトトランジスタを設けており、これにて
血中酸素飽和量を測定することが出来る。すなわち、血
中酸素飽和量は血中の酸素量を示すものであるが、血中
の酸素と結びついたヘモグロビンは赤色光を吸収しにく
い性質であることが知られている。従って、この性質を
利用して、2波長の光をそれぞれ照射し吸光度を検出す
ることで血中酸素飽和量を測定することが出来る。この
ようにして検出された測定結果は血中飽和酸素量信号と
してデータ処理装置10に取り込まれて演算処理がなさ
れ血中酸素飽和量データp3が算出される。
Further, in this embodiment, the photoelectric projector 22 is provided with another light emitting LED having a different wavelength from the light emitting red LED, and the photoelectric receiver 23 is provided with a phototransistor for receiving the reflected light of this light emitting LED. With this, blood oxygen saturation can be measured. That is, although the blood oxygen saturation level indicates the blood oxygen level, it is known that hemoglobin associated with blood oxygen has a property of hardly absorbing red light. Therefore, by utilizing this property, it is possible to measure the blood oxygen saturation level by irradiating light of two wavelengths and detecting the absorbance. The measurement result thus detected is taken into the data processing device 10 as a blood saturated oxygen amount signal and subjected to arithmetic processing to calculate blood oxygen saturated amount data p3.

【0018】更に、本実施形態の脈波測定装置20は血
圧データ、脈拍データp5を測定可能となっている。す
なわち、カフポンプ24の出力を制御してカフ圧と血管
内圧とをつり合わせることで最大血圧及び最小血圧を得
るとともに、カフ圧センサ25によって被験者5の脈拍
を測定することが出来る。検出された結果は脈拍信号と
してデータ処理装置10に取り込まれて演算処理がなさ
れ脈拍データp5が算出される。
Further, the pulse wave measuring device 20 of this embodiment can measure blood pressure data and pulse data p5. That is, the output of the cuff pump 24 is controlled to balance the cuff pressure and the intravascular pressure to obtain the maximum blood pressure and the minimum blood pressure, and the cuff pressure sensor 25 can measure the pulse of the subject 5. The detected result is taken into the data processing device 10 as a pulse signal and subjected to arithmetic processing to calculate pulse data p5.

【0019】次に、皮膚温検出のための温度センサー6
0は、例えば、熱膨張式、熱電式あるいはサーミスタ式
のものを使用すればよく、被験者5の腕などに取付けて
測定を行うことで被験者5の皮膚温に関する信号を検出
するようになっている。検出された測定結果は皮膚温信
号としてデータ処理装置10に取り込まれて演算処理が
なされ皮膚温データp4が算出される。
Next, a temperature sensor 6 for detecting the skin temperature.
As for 0, for example, a thermal expansion type, a thermoelectric type, or a thermistor type may be used, and a signal relating to the skin temperature of the subject 5 is detected by attaching it to the arm of the subject 5 for measurement. . The detected measurement result is taken into the data processor 10 as a skin temperature signal and subjected to arithmetic processing to calculate skin temperature data p4.

【0020】上記のように各測定装置20、30、60
により検出された各生体信号は、データ処理装置10に
取り込まれて演算処理され脈波振幅データp1、発汗量
データp2、血中酸素飽和量データp3、皮膚温データ
p4、脈拍データp5が算出される。続いてデータ処理
装置10はこれら生体データに基づいて麻酔深度Tの算
出を行うようになっており、以下、算出方法について説
明する。
As described above, each measuring device 20, 30, 60
Each biological signal detected by the above is taken into the data processing device 10 and subjected to arithmetic processing to calculate pulse wave amplitude data p1, perspiration amount data p2, blood oxygen saturation amount data p3, skin temperature data p4, and pulse data p5. It Subsequently, the data processing device 10 is adapted to calculate the depth of anesthesia T based on these biological data, and the calculation method will be described below.

【0021】まず、脈波振幅データp1を基準データと
し、この基準データに対し他の生体データ(発汗量デー
タp2、血中酸素飽和量データp3、皮膚温データp
4、脈拍データp5)を既知のアルゴリズムに基づいて
加算して合成データAを算出する。(下記の式に示
す) A=C1×p1+C2×F(p2)+C3×G(p3)+C4×H(p4)+ C5×I(p5) ・・・・・・式 p1;脈波振幅データ p2;発汗量データ p3;血中酸素飽和量データ p4:皮膚温データ p5:脈拍データ C1〜C5は定数, F〜Iは関数を示す。ここで、基準
データに脈波振幅データp1を選択した理由は、麻酔深
度Tを数字化して表すのに際し、脈波振幅データp1が
最もよい対応関係を示すためである。
First, the pulse wave amplitude data p1 is used as reference data, and other biological data (perspiration amount data p2, blood oxygen saturation amount data p3, skin temperature data p) are used for this reference data.
4, pulse data p5) is added based on a known algorithm to calculate the composite data A. (Shown in the following formula) A = C1 × p1 + C2 × F (p2) + C3 × G (p3) + C4 × H (p4) + C5 × I (p5) ··· Formula p1; pulse wave amplitude data p2 Perspiration data p3; blood oxygen saturation data p4: skin temperature data p5: pulse data C1 to C5 are constants, and F to I are functions. Here, the reason why the pulse wave amplitude data p1 is selected as the reference data is that the pulse wave amplitude data p1 has the best correspondence when the anesthesia depth T is expressed numerically.

【0022】上記生体データの合成方法は次のようにし
て行われる。まず、発汗量データp2を脈波振幅データ
p1に加算する。すなわち、発汗量データp2と脈波振
幅データp1との合成データA2は上記式から A2=C1×p1+C2×F(p2)となる。ここで、
F(p2)=1−EXP(−C6×p2)で与えられる
ため、A2=C1×p1+C2×((1−EXP(−C
6×p2))となる。尚、C6は定数である。
The biometric data synthesizing method is performed as follows. First, the perspiration amount data p2 is added to the pulse wave amplitude data p1. That is, the combined data A2 of the perspiration amount data p2 and the pulse wave amplitude data p1 is A2 = C1 × p1 + C2 × F (p2) from the above equation. here,
Since F (p2) = 1-EXP (-C6 * p2) is given, A2 = C1 * p1 + C2 * ((1-EXP (-C
6 × p2)). C6 is a constant.

【0023】かくして得られた脈波振幅データp1と発
汗量データp2との合成データA2は、図4(c)に示
すように、脈波振幅データp1の推移がベースとなって
おり、それに発汗量データp2の推移が加算される。具
体的には、発汗量データp2の小さな推移はほとんど脈
波振幅データp1の推移に影響を与えず、発汗量データ
p2の大きな推移のみがスケールを小さくして脈波振幅
データp1上に現れるようになっている(図4の(c)
のハッチング部)。更に、上記した合成方法と同様にし
て合成データA2に対し、血中酸素飽和量データp3、
皮膚温データp4、脈拍データp5をそれぞれ合成して
ゆき合成データAを算出する(図5参照)。
The composite data A2 of the pulse wave amplitude data p1 and the sweating amount data p2 thus obtained is based on the transition of the pulse wave amplitude data p1 as shown in FIG. The transition of the quantity data p2 is added. Specifically, a small transition of the sweat rate data p2 hardly affects the transition of the pulse wave amplitude data p1, and only a large transition of the sweat rate data p2 appears on the pulse wave amplitude data p1 with a reduced scale. ((C) in FIG. 4)
Hatching section). Further, in the same manner as the above-described synthesizing method, the blood oxygen saturation data p3,
The skin temperature data p4 and the pulse data p5 are respectively synthesized to calculate the synthesized data A (see FIG. 5).

【0024】以上のようにして得られた合成データAに
基づいて麻酔深度Tが算出される。 T=At/Ap×100・・・・・ Ap;麻酔投与後の合成データAのピーク値(本発明の
基準値Aoに相当) At;当該ピーク値Apが選定された以降の時点での合
成データAの値At 上記のようにして麻酔深度Tは合成データAのピーク値
Apと合成データAの値Atとの比率に基づいて算出さ
れることで絶対値化されるとともに、算出された麻酔深
度Tの推移が合成データAとともにモニタ40に表示さ
れるようになっている。尚、データ処理装置10は合成
データAの所定時間における変化量Δtを算出してお
り、この変化量Δtが概ねプラスからマイナスに転じた
ところの値を合成データAのピーク値Apとして算出し
ている。
The anesthesia depth T is calculated based on the synthetic data A obtained as described above. T = At / Ap × 100 Ap: peak value of synthetic data A after administration of anesthesia (corresponding to the reference value Ao of the present invention) At: synthesis at a time point after the peak value Ap is selected Value At of Data A As described above, the anesthesia depth T is calculated as an absolute value by being calculated based on the ratio between the peak value Ap of the synthetic data A and the value At of the synthetic data A, and the calculated anesthesia is obtained. The transition of the depth T is displayed on the monitor 40 together with the synthetic data A. The data processing device 10 calculates the amount of change Δt of the combined data A in a predetermined time, and calculates the value at which the amount of change Δt generally changes from positive to negative as the peak value Ap of the combined data A. There is.

【0025】また、このようにして算出された合成デー
タAは前記したメモリ13に記憶されており、仮に被験
者5の生体データ(生体信号)の測定が本来合成データ
Aがピーク値Apをとるべき時点より以降に開始された
場合には、データ処理装置10が当該生体データに基づ
いて算出される合成データBの変化パターン(測定開始
から合成データAが安定するまでの推移で、特にピーク
値Apに近い付近が望ましい)と、蓄積された過去のい
くつかの合成データの変化パターンとを照合して類似す
る合成データCを抽出する。続いて、抽出された合成デ
ータCのピーク値Cpを当該合成データBに置換し、置
換されたピーク値Cpと合成データBの値Btに基づい
て被験者5の麻酔深度が算出される。 T=Bt/Cp×100
Further, the synthetic data A calculated in this way is stored in the memory 13 described above, and if the biological data (biological signal) of the subject 5 is to be measured, the synthetic data A should originally take the peak value Ap. When it is started after the point of time, the data processing device 10 changes pattern of the synthetic data B calculated based on the biometric data (transition from the start of measurement to the stabilization of the synthetic data A, especially the peak value Ap). Close to is desirable) and the accumulated change patterns of some past synthetic data are collated to extract similar synthetic data C. Subsequently, the peak value Cp of the extracted combined data C is replaced with the combined data B, and the anesthesia depth of the subject 5 is calculated based on the replaced peak value Cp and the value Bt of the combined data B. T = Bt / Cp × 100

【0026】尚、本実施形態では、麻酔深度Tを算出す
る際の基準値には、麻酔投与後のピーク値Apを選出し
たが、合成データAを構成する値であればよく、例えば
麻酔投与前の合成データAの値(初期値)や、ピーク値
Apの周辺の値であってもよい。
In this embodiment, the peak value Ap after administration of anesthesia was selected as the reference value for calculating the depth of anesthesia T, but any value that constitutes the synthetic data A may be used, for example, administration of anesthesia. It may be a value (initial value) of the previous combined data A or a value around the peak value Ap.

【0027】次に本実施形態の作用、効果を具体的に説
明する。被験者5の麻酔深度Tを測定する手順について
説明する。まず、被験者5に麻酔を投与する前に、被験
者5に対し麻酔深度測定装置1をセットする。具体的に
は、脈波測定装置20に備えたカフバンド21、発汗量
測定装置30に備えられたカプセル31及び被験者5の
皮膚温検出のための温度センサー60を被験者5の体に
取付け各装置10、20、30、60の電源を投入す
る。
Next, the operation and effect of this embodiment will be specifically described. A procedure for measuring the anesthesia depth T of the subject 5 will be described. First, before administering anesthesia to the subject 5, the anesthesia depth measuring device 1 is set for the subject 5. Specifically, the cuff band 21 provided in the pulse wave measuring device 20, the capsule 31 provided in the sweat rate measuring device 30, and the temperature sensor 60 for detecting the skin temperature of the subject 5 are attached to the body of the subject 5 and each device 10 is attached. , 20, 30, 60 are turned on.

【0028】このようにして麻酔深度測定装置1が起動
すると、脈波測定装置20から検出された脈波振幅信
号、血中酸素飽和量信号、脈拍信号、発汗量測定装置3
0から検出された発汗量信号及び皮膚温検出のための温
度センサー60から検出された皮膚温信号がA/Dコン
バータ11によってディジタル化されてCPU12に連
続して取り込まれる。測定の開始に続いて、被験者5に
麻酔を投与し被験者5の生体信号を引き続き測定する。
この間、データ処理装置10内ではCPU12が取り込
まれた各生体信号に基づき各生体データ(脈波振幅デー
タp1、血中酸素飽和量データp3、脈拍データp5、
発汗量データp2、皮膚温データp4)を算出する。そ
の後、脈波振幅データp1を基準データとし、他の生体
データ(発汗量データp2、血中酸素飽和量データp
3、皮膚温データp4、脈拍データp5)を前記式に
従って合成し合成データAを算出する。
When the anesthesia depth measuring device 1 is activated in this way, the pulse wave amplitude signal detected by the pulse wave measuring device 20, the blood oxygen saturation amount signal, the pulse signal, and the sweating amount measuring device 3 are detected.
The perspiration amount signal detected from 0 and the skin temperature signal detected from the temperature sensor 60 for detecting the skin temperature are digitized by the A / D converter 11 and continuously captured by the CPU 12. Following the start of the measurement, anesthesia is administered to the subject 5 and the biological signal of the subject 5 is continuously measured.
In the meantime, in the data processing device 10, the biological data (pulse wave amplitude data p1, blood oxygen saturation amount data p3, pulse data p5,
Perspiration amount data p2 and skin temperature data p4) are calculated. After that, the pulse wave amplitude data p1 is used as reference data, and other biological data (perspiration amount data p2, blood oxygen saturation amount data p
3. Skin temperature data p4 and pulse data p5) are synthesized according to the above formula to calculate synthetic data A.

【0029】更に、CPU12は合成データAからピー
ク値Apを算出して、このピーク値Apとピーク値Ap
が選定された以降の時点での合成データAの値Atに基
づいて麻酔深度Tを算出する(式参照)。データ処理
装置10にはモニタ40が接続されており算出された麻
酔深度T及び合成データAの推移が表示される(図5参
照)。そして、モニタ40に表示された合成データA、
麻酔深度Tの推移から医師は麻酔の投与量を調整してゆ
き被験者5の麻酔深度Tが適切な値で安定したことを確
認して手術が開始される。
Further, the CPU 12 calculates the peak value Ap from the synthetic data A, and the peak value Ap and the peak value Ap are calculated.
The anesthesia depth T is calculated on the basis of the value At of the synthetic data A at the time point after is selected (see formula). A monitor 40 is connected to the data processing device 10 and the calculated changes in the anesthesia depth T and the synthetic data A are displayed (see FIG. 5). Then, the composite data A displayed on the monitor 40,
From the transition of the anesthesia depth T, the doctor adjusts the dose of anesthesia, and after confirming that the anesthesia depth T of the subject 5 has stabilized at an appropriate value, the operation is started.

【0030】このように本実施形態では、麻酔深度測定
装置1の検出部は複数の測定装置20、30、60から
構成されており、これら測定装置20、30、60から
得られる複数の生体信号(脈波振幅信号、血中酸素飽和
量信号、脈拍信号、発汗量信号、皮膚温信号)をデータ
処理装置10に取り込んで各生体データが算出され、更
に合成データAが算出される。従って、被験者5の麻酔
深度Tを算出するに当たって、個々の生体データで検出
された被験者5の生体反応を一つのデータに集約させる
ことが出来る。すなわち、複数の生体データが相互に補
い合うため、単一の生体データに基づき算出する場合に
比べて正確な麻酔深度Tを得ることが出来る。
As described above, in this embodiment, the detection unit of the anesthesia depth measuring device 1 is composed of a plurality of measuring devices 20, 30, 60, and a plurality of biological signals obtained from these measuring devices 20, 30, 60. (Pulse wave amplitude signal, blood oxygen saturation amount signal, pulse signal, perspiration amount signal, skin temperature signal) are taken into the data processing device 10 to calculate each biometric data, and further the synthetic data A is calculated. Therefore, in calculating the anesthesia depth T of the subject 5, the biological reaction of the subject 5 detected by the individual biological data can be integrated into one data. That is, since a plurality of biometric data complement each other, it is possible to obtain an accurate anesthesia depth T as compared with the case of calculating based on a single biometric data.

【0031】また、本実施形態のデータ処理装置10は
メモリ13を備えており、得られた合成データAを記憶
しておくことが出来る。そのため、例えば、被験者5の
生体データの測定が本来合成データAがピーク値Apを
取るべき時点より以降に開始された場合には、データ処
理装置10が当該合成データBの変化パターンと蓄積さ
れた過去のいくつかの合成データの変化パターンを照合
して類似する合成データCを抽出する。そして、抽出さ
れた合成データCのピーク値Cpを当該合成データBに
置換し、置換されたピーク値Cpと合成データBの値B
tに基づいて被験者5の麻酔深度Tを算出することがで
きる。
Further, the data processing apparatus 10 of the present embodiment is provided with the memory 13 and can store the obtained combined data A. Therefore, for example, when the measurement of the biological data of the subject 5 is started after the time when the synthetic data A should originally have the peak value Ap, the data processing device 10 accumulates the change pattern of the synthetic data B. A similar synthetic data C is extracted by collating the change patterns of some past synthetic data. Then, the peak value Cp of the extracted combined data C is replaced with the combined data B, and the replaced peak value Cp and the value B of the combined data B are replaced.
The anesthesia depth T of the subject 5 can be calculated based on t.

【0032】<第2実施形態>次に、本発明の第2実施
形態を図6によって説明する。本実施形態は、第1実施
形態に対し被験者5の麻酔深度Tを算出するためのパラ
メータの数を増加したものである。その他の構成につい
ては、第1実施形態と同じであるため、同じ構成につい
ては同一符号を付し作用等の説明は省略する。第1実施
形態において検出部は脈波測定装置20、発汗量測定装
置30及び皮膚温検出のための温度センサー60により
構成されており、麻酔深度Tを算出するための合成デー
タAは、脈波振幅データp1、発汗量データp2、血中
酸素飽和量データp3、皮膚温データp4、脈拍データ
p5に基づいて算出したが、本実施形態における検出部
は第1実施形態に加えて心電計(本発明の心拍検出手段
に相当する)70及び脳波計(本発明の脳波検出手段に
相当する)80を備えており、第1実施形態における生
体データ(p1〜p5)に対し次のデータ(心拍データ
p6、脳波データp7)が追加される。
<Second Embodiment> Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the number of parameters for calculating the anesthesia depth T of the subject 5 is increased as compared with the first embodiment. Since other configurations are the same as those of the first embodiment, the same reference numerals are given to the same configurations, and the description of the operation and the like is omitted. In the first embodiment, the detection unit is composed of the pulse wave measuring device 20, the sweating amount measuring device 30, and the temperature sensor 60 for detecting the skin temperature, and the synthetic data A for calculating the anesthesia depth T is the pulse wave. The calculation is performed based on the amplitude data p1, the sweating amount data p2, the blood oxygen saturation amount data p3, the skin temperature data p4, and the pulse data p5. The detection unit in the present embodiment is the electrocardiograph (in addition to the first embodiment. The heartbeat detecting means 70 of the present invention) and the electroencephalograph (corresponding to the electroencephalogram detecting means of the present invention) 80 are provided, and the following data (heartbeat) is added to the biological data (p1 to p5) in the first embodiment. Data p6 and electroencephalogram data p7) are added.

【0033】心電計70は、心臓の筋肉が鼓動を打つ際
に発生する微弱な電気信号を被験者5の体表面に取り付
けた電極によって検出し、これを更に増幅器によって増
幅して心拍信号として出力する。また、脳波計80は心
電計70と基本原理を同じくし、脳の活動によって脳内
に発生する微弱な電気信号を被験者5の頭部に取付けた
電極によって検出し、これを更に増幅器によって増幅し
て脳波信号として出力する。データ処理装置10は、こ
れら心拍信号、脳波信号を取り込んで演算処理して心拍
データp6、脳波データp7を算出するとともに、これ
ら各生体データを含めた7つの生体データ(脈波振幅デ
ータp1、発汗量データp2、血中酸素飽和量データp
3、皮膚温データp4、脈拍データp5、心拍データp
6、脳波データp7)に基づいて合成データDを算出
し、その後、当該合成データDに基づき麻酔深度Tが算
出される。心拍データp6、脈波データp7も麻酔深度
Tと関連性の深いパラメータであるため、これらパラメ
ータを含めて合成データDを算出することにより、一層
正確な麻酔深度Tを算出することが出来る。
The electrocardiograph 70 detects a weak electric signal generated when the muscle of the heart beats by an electrode attached to the body surface of the subject 5, and further amplifies this by an amplifier to output it as a heartbeat signal. To do. The electroencephalograph 80 has the same basic principle as the electrocardiograph 70, and detects a weak electric signal generated in the brain by the activity of the brain by an electrode attached to the head of the subject 5 and further amplifies it by an amplifier. And outputs as an electroencephalogram signal. The data processing device 10 takes in these heartbeat signals and electroencephalogram signals and performs arithmetic processing to calculate heartbeat data p6 and electroencephalogram data p7, as well as seven biometric data including these biometric data (pulse wave amplitude data p1, sweating data). Data p2, blood oxygen saturation data p
3, skin temperature data p4, pulse data p5, heartbeat data p
6. The composite data D is calculated based on the electroencephalogram data p7), and then the anesthesia depth T is calculated based on the composite data D. Since the heartbeat data p6 and the pulse wave data p7 are also parameters that are closely related to the anesthesia depth T, the more accurate anesthesia depth T can be calculated by calculating the combined data D including these parameters.

【0034】<他の実施形態>本発明は上記記述及び図
面によって説明した実施形態に限定されるものではな
く、例えば次のような実施形態も本発明の技術的範囲に
含まれ、さらに、下記以外にも要旨を逸脱しない範囲内
で種々変更して実施することができる。
<Other Embodiments> The present invention is not limited to the embodiments described above and illustrated in the drawings. For example, the following embodiments are also included in the technical scope of the present invention. In addition to the above, various modifications can be made without departing from the scope of the invention.

【0035】(1)第2実施形態では、検出部は脈波測
定装置20及び発汗量測定装置30、皮膚温検出のため
の温度センサー60、心電計70及び脳波計80により
構成したが、これら測定装置20、30、60、70、
80に加えて血流量測定装置(本発明における1心拍血
流量測定手段に相当するものであって、例えば、光電脈
波を検出することで血流量を測定する)を備え、脈波振
幅データp1、発汗量データp2、血中酸素飽和量デー
タp3、皮膚温データp4、脈拍データp5、心拍デー
タp6、脳波データp7及び1心拍血流量データに基づ
き合成データを算出してもよい。
(1) In the second embodiment, the detection unit is composed of the pulse wave measuring device 20, the sweating amount measuring device 30, the temperature sensor 60 for detecting the skin temperature, the electrocardiograph 70 and the electroencephalograph 80. These measuring devices 20, 30, 60, 70,
In addition to 80, a blood flow rate measuring device (corresponding to one heartbeat blood flow rate measuring means in the present invention, for example, the blood flow rate is measured by detecting a photoelectric pulse wave) is provided, and the pulse wave amplitude data p1 The synthetic data may be calculated based on the perspiration data p2, blood oxygen saturation data p3, skin temperature data p4, pulse data p5, heartbeat data p6, electroencephalogram data p7, and one heartbeat blood flow data.

【0036】(2)第1、第2実施形態では、麻酔深度
Tの推移をモニタ40に表示し、医師はこのモニタ40
に基づいて被験者5の状況を把握したが、データ処理装
置10に警報手段を設けておき、警報によって被験者5
の異常を医師に知らせるように構成しておいてもよい。
(2) In the first and second embodiments, the transition of the anesthesia depth T is displayed on the monitor 40, and the doctor 40
The situation of the subject 5 was grasped on the basis of the
It may be configured to notify the doctor of the abnormality of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態に係る麻酔深度測定装置
のブロック図
FIG. 1 is a block diagram of an anesthesia depth measurement device according to a first embodiment of the present invention.

【図2】発汗量測定装置のカプセルの部分破断斜視図FIG. 2 is a partially cutaway perspective view of a capsule of a sweat rate measuring device.

【図3】脈波測定装置の原理を示すブロック図FIG. 3 is a block diagram showing the principle of a pulse wave measuring device.

【図4】(a)脈波振幅データp1の推移を示すグラ
フ、(b)発汗量データp2の推移を示すグラフ、
(c)脈波振幅データp1と発汗量データp2との合成
データA2の推移を示すグラフ
4A is a graph showing a transition of pulse wave amplitude data p1, FIG. 4B is a graph showing a transition of perspiration amount data p2, FIG.
(C) Graph showing transition of combined data A2 of pulse wave amplitude data p1 and perspiration amount data p2

【図5】合成データA及び麻酔深度Tの推移を示すグラ
FIG. 5 is a graph showing changes in synthetic data A and anesthesia depth T.

【図6】本発明の第2実施形態に係る麻酔深度測定装置
のブロック図
FIG. 6 is a block diagram of an anesthesia depth measuring device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…麻酔深度測定装置 5…被験者 10…データ処理装置(演算手段) 11…CPU 12…A/Dコンバータ 13…メモリ 20…脈波測定装置(脈波検出手段) 30…発汗量測定装置(発汗量検出手段) 40…モニタ 60…皮膚温検出のための温度センサー(皮膚温検出手
段)
DESCRIPTION OF SYMBOLS 1 ... Anesthesia depth measuring device 5 ... Subject 10 ... Data processing device (calculating means) 11 ... CPU 12 ... A / D converter 13 ... Memory 20 ... Pulse wave measuring device (pulse wave detecting means) 30 ... Sweating amount measuring device (sweating) Quantity detecting means) 40 ... Monitor 60 ... Temperature sensor for detecting skin temperature (skin temperature detecting means)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被験者における脈波振幅を含む複数の生
体信号の時間的変化を検出する検出部を備え、 これら複数の生体信号をそれぞれ個別に演算処理して前
記生体信号と対応する生体データをそれぞれ算出しつ
つ、この生体データから既知のアルゴリズムに基づいて
合成データAを算出するとともに、 前記合成データAの任意の時点での値を基準値Aoとし
て記憶しつつ、この基準値Aoと当該基準値Aoが選定
された以降の時点での前記合成データAの値Atに基づ
いて麻酔深度を算出する演算手段と、この演算手段によ
り得られた麻酔深度を表示する表示手段とを備えてなる
ことを特徴とする麻酔深度測定装置。
1. A detection unit for detecting a temporal change of a plurality of biological signals including a pulse wave amplitude in a subject, wherein the plurality of biological signals are individually arithmetically processed to obtain biological data corresponding to the biological signals. While calculating each, while calculating the synthetic data A from this biometric data based on a known algorithm, while storing the value of the synthetic data A at any time as the reference value Ao, the reference value Ao and the reference value Comprising calculation means for calculating the depth of anesthesia based on the value At of the composite data A after the value Ao is selected, and display means for displaying the depth of anesthesia obtained by this calculation means. Anesthesia depth measuring device characterized by.
【請求項2】 前記検出部は前記被験者における前記脈
波振幅の時間的変化を測定する脈波検出手段と、 前記被験者における発汗量の時間的変化を測定する発汗
量検出手段と、 前記被験者における皮膚温度の時間的変化を測定する皮
膚温検出手段と、 前記被験者における血中酸素飽和量の時間的変化を測定
する血中酸素飽和量検出手段とを備えてなることを特徴
とする請求項1記載の麻酔深度測定装置。
2. The pulse wave detecting means for measuring a temporal change of the pulse wave amplitude in the subject, the sweat rate detecting means for measuring a temporal change of the sweat rate in the subject, and the detecting section in the subject. 2. A skin temperature detecting means for measuring a temporal change in skin temperature, and a blood oxygen saturation detecting means for measuring a temporal change in blood oxygen saturation in the subject. The anesthesia depth measurement device described.
【請求項3】 前記検出部は前記脈波検出手段、前記発
汗量検出手段、前記皮膚温検出手段及び前記血中酸素飽
和量検出手段に加えて、 前記被験者における脳波の時間的変化を検出する脳波検
出手段と、 前記被験者における心拍の時間的変化を検出する心拍検
出手段と、 前記被験者における脈拍の時間的変化を測定する脈拍検
出手段と、 前記被験者における1心拍血流量の時間的変化を測定す
る1心拍血流量検出手段のうち、少なくとも1つの検出
手段を備えてなることを特徴とする請求項2記載の麻酔
深度測定装置。
3. The detection unit detects a temporal change of an electroencephalogram in the subject in addition to the pulse wave detection unit, the sweating amount detection unit, the skin temperature detection unit and the blood oxygen saturation amount detection unit. An electroencephalogram detecting means, a heartbeat detecting means for detecting a temporal change of the heartbeat of the subject, a pulse detecting means for measuring a temporal change of the pulse of the subject, and a temporal change of one heartbeat blood flow in the subject. 3. The anesthesia depth measuring device according to claim 2, further comprising at least one detecting means among the one heartbeat blood flow detecting means.
【請求項4】 前記演算手段は前記合成データAの変化
パターンが記憶可能とされ、 前記被験者の前記生体データの測定が前記基準値Aoが
選定されるべき時点以降に開始された場合には、当該生
体データに基づく合成データBの変化パターンと前記演
算手段に記憶された過去の合成データの変化パターンと
を照合して類似する合成データCを抽出し、抽出された
前記合成データCの基準値Coを前記合成データBに置
換して置換された前記基準値Coと前記合成データBの
値Btに基づいて前記被験者の麻酔深度を算出すること
を特徴とする請求項1ないし請求項3のいずれか1項に
記載の麻酔深度測定装置。
4. The calculation means is capable of storing a change pattern of the synthetic data A, and when the measurement of the biometric data of the subject is started after the time when the reference value Ao should be selected, The similar synthetic data C is extracted by collating the variation pattern of the synthetic data B based on the biometric data with the variation pattern of the past synthetic data stored in the computing means, and the reference value of the extracted synthetic data C is extracted. 4. The anesthesia depth of the subject is calculated based on the reference value Co and the value Bt of the composite data B, which are replaced by replacing Co with the composite data B. 5. The anesthesia depth measurement device according to item 1.
JP2001375925A 2001-12-10 2001-12-10 Anesthesia depth measuring device Expired - Fee Related JP3639813B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001375925A JP3639813B2 (en) 2001-12-10 2001-12-10 Anesthesia depth measuring device
EP02027552A EP1317902B1 (en) 2001-12-10 2002-12-09 Biological data observation apparatus
DE60207183T DE60207183T2 (en) 2001-12-10 2002-12-09 Device for monitoring biological data
US10/314,245 US6953435B2 (en) 2001-12-10 2002-12-09 Biological data observation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375925A JP3639813B2 (en) 2001-12-10 2001-12-10 Anesthesia depth measuring device

Publications (2)

Publication Number Publication Date
JP2003175104A true JP2003175104A (en) 2003-06-24
JP3639813B2 JP3639813B2 (en) 2005-04-20

Family

ID=19184219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375925A Expired - Fee Related JP3639813B2 (en) 2001-12-10 2001-12-10 Anesthesia depth measuring device

Country Status (1)

Country Link
JP (1) JP3639813B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101111498B1 (en) 2010-07-19 2012-02-22 주식회사 멕 아이씨에스 Depth of anesthesia monitoring system and method using bio-signal analysis and learning process
KR101248055B1 (en) * 2011-05-24 2013-03-26 한국과학기술원 Model and simulator of EEG for quantifying the depth of anesthesia
KR101248118B1 (en) * 2011-05-24 2013-03-27 한국과학기술원 Apparatus of analyzing EEG for quantifying the depth of anesthesia and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101111498B1 (en) 2010-07-19 2012-02-22 주식회사 멕 아이씨에스 Depth of anesthesia monitoring system and method using bio-signal analysis and learning process
KR101248055B1 (en) * 2011-05-24 2013-03-26 한국과학기술원 Model and simulator of EEG for quantifying the depth of anesthesia
KR101248118B1 (en) * 2011-05-24 2013-03-27 한국과학기술원 Apparatus of analyzing EEG for quantifying the depth of anesthesia and method thereof

Also Published As

Publication number Publication date
JP3639813B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
US6953435B2 (en) Biological data observation apparatus
Shelley et al. Pulse oximeter waveform: photoelectric plethysmography
US7570979B2 (en) Methods and apparatus for patient monitoring
US6251081B1 (en) Blood-pressure monitoring apparatus
EP1970000B1 (en) Method and apparatus for cufflessly and non-invasively measuring wrist blood pressure in association with communication device
US8239010B2 (en) System for measuring vital signs during hemodialysis
US6527725B1 (en) Blood pressure estimating apparatus
KR20210005644A (en) Method for estimating blood pressure and arterial stiffness based on light volumetric variability recording (PPG) signal
US20090143655A1 (en) Apparatus, System and Method for Determining Cardio-Respiratory State
US20110066043A1 (en) System for measuring vital signs during hemodialysis
AU2005268811B2 (en) Non-invasive heart monitoring apparatus and method
JP2014039875A (en) Portable diagnosis device
CN101502414A (en) Apparatus and method for determining a physiological parameter
Khandpur Compendium of Biomedical Instrumentation, 3 Volume Set
WO2015147796A1 (en) Methods and apparatus for assessing vascular health
JP2011521702A (en) Method and apparatus for CO2 evaluation
WO1991011137A1 (en) Enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
US6482163B2 (en) Postoperative-condition evaluating apparatus
JP2001029318A (en) Patient monitor apparatus
JP3639813B2 (en) Anesthesia depth measuring device
US20200297225A1 (en) Vital sign measurement device
JP2003070754A (en) Vascular elasticity measurement instrument
JPH08322825A (en) Anesthetic depth detector
JP2003175105A (en) Anesthetic depth measuring instrument
US20230136992A1 (en) Method for blood pressure measurement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees