JP2003172206A - Turbo fan engine and method for operating the same - Google Patents

Turbo fan engine and method for operating the same

Info

Publication number
JP2003172206A
JP2003172206A JP2001374070A JP2001374070A JP2003172206A JP 2003172206 A JP2003172206 A JP 2003172206A JP 2001374070 A JP2001374070 A JP 2001374070A JP 2001374070 A JP2001374070 A JP 2001374070A JP 2003172206 A JP2003172206 A JP 2003172206A
Authority
JP
Japan
Prior art keywords
fan
outlet guide
engine
drive mechanism
guide vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001374070A
Other languages
Japanese (ja)
Other versions
JP4061635B2 (en
Inventor
Ikuhisa Mizuta
郁久 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001374070A priority Critical patent/JP4061635B2/en
Publication of JP2003172206A publication Critical patent/JP2003172206A/en
Application granted granted Critical
Publication of JP4061635B2 publication Critical patent/JP4061635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbo fan engine capable of reducing noise and improving fuel consumption. <P>SOLUTION: This turbo fan engine is provided with a core engine having a compressor, a combustor and a turbine arranged on an axle from front in order, a front part fan provided on a tip of the core engine in such a manner the same can be rotationally driven around the axle and having a plurality of fan moving blades arranged in a circumference direction, a fan nacell circumferentially enclosing the front part fan and at least the tip part of the core engine, a plurality of outlet guide stationary blades arranged between the core engine and the fan nacell in the circumference direction, and an interval changing means capable of changing an interval between the fan moving blade and the outlet guide stationary blade in an axial direction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ターボファンエン
ジンに係る。特にバイパス部の構造に特徴のあるターボ
ファンエンジンに関する。
TECHNICAL FIELD The present invention relates to a turbofan engine. In particular, the present invention relates to a turbofan engine characterized by the structure of a bypass section.

【0002】[0002]

【従来の技術】従来のターボファンエンジンの構造を、
図を基に説明する。図4は、従来の装置の概念図であ
る。ターボファンエンジン1は、コアエンジン10とバ
イパス部20とを備える。コアエンジン10はターボフ
ァンエンジン1の中心に設けられ、コアナセル11と高
圧圧縮機12と燃焼器13と高圧タービン14とを有し
ている。高圧圧縮機12と燃焼器13と高圧タービン1
4とは、コアナセル11の内部の軸線上に前方から順に
並んでいる。高圧圧縮機12は、コアエンジン10の前
方から入ってくる空気を圧縮する。燃焼器13は、その
圧縮された空気と燃料を混ぜて燃焼させて燃焼ガスを作
る。高圧タービン14は、その燃焼ガスを膨張させて回
転力を取り出す。高圧タービン14と高圧圧縮機12と
は一般に中空の回転軸で連結されている。コアナセル1
1が高圧圧縮機12と燃焼器13と高圧タービン14と
を囲い、コアエンジン10の外形を形成している。
2. Description of the Related Art The structure of a conventional turbofan engine is
It will be described with reference to the drawings. FIG. 4 is a conceptual diagram of a conventional device. The turbofan engine 1 includes a core engine 10 and a bypass section 20. The core engine 10 is provided at the center of the turbofan engine 1, and has a core nacelle 11, a high pressure compressor 12, a combustor 13, and a high pressure turbine 14. High-pressure compressor 12, combustor 13 and high-pressure turbine 1
4 are arranged in order from the front on the axial line inside the core nacelle 11. The high-pressure compressor 12 compresses air coming in from the front of the core engine 10. The combustor 13 mixes the compressed air and fuel and combusts them to produce combustion gas. The high-pressure turbine 14 expands the combustion gas to take out rotational force. The high pressure turbine 14 and the high pressure compressor 12 are generally connected by a hollow rotating shaft. Core nacelle 1
1 surrounds the high-pressure compressor 12, the combustor 13, and the high-pressure turbine 14, and forms the outer shape of the core engine 10.

【0003】ターボファンエンジン1のバイパス部20
は、ファンナセル21と前部ファン22と出口案内静翼
24と低圧圧縮機26と低圧タービン27とを備える。
前部ファン22は、コアエンジン10の前方に回転駆動
できる様に設けられ、周囲に所定ピッチで設けられたフ
ァン動翼23を有する。ファンナセル21は、前部ファ
ン22と少なくともコアエンジン10の先端部とを円周
方向に囲う様に設けられた円筒形状のダクトである。フ
ァンナセル21は、コアナセル11の外周から伸びた複
数の支持柱25に支持される。複数の出口案内静翼24
が、コアナセル11とファンナセル21との間でファン
動翼23と支持柱25との間の円筒形状隙間に円周方向
へ配置されて設けられる。低圧圧縮機26は、前部ファ
ン22と高圧圧縮機12との間に設けられ、低圧圧縮空
気を高圧圧縮機12に送る。低圧タービン27は、高圧
タービン14の後方に設けられ、高圧タービン14の排
気により駆動される。低圧タービン27と前部ファン2
2、低圧圧縮機26は駆動軸で連結されている。その駆
動軸は、コアエンジンの回転軸の中心を貫通している。
Bypass section 20 of turbofan engine 1
Includes a fan nacelle 21, a front fan 22, an outlet guide vane 24, a low pressure compressor 26, and a low pressure turbine 27.
The front fan 22 is provided so as to be rotationally driven in front of the core engine 10, and has fan rotor blades 23 provided around the periphery thereof at a predetermined pitch. The fan nacelle 21 is a cylindrical duct provided so as to surround the front fan 22 and at least the tip of the core engine 10 in the circumferential direction. The fan nacelle 21 is supported by a plurality of support columns 25 extending from the outer circumference of the core nacelle 11. Multiple outlet guide vanes 24
Is provided in the cylindrical space between the core nacelle 11 and the fan nacelle 21 in the cylindrical gap between the fan rotor blades 23 and the support columns 25. The low-pressure compressor 26 is provided between the front fan 22 and the high-pressure compressor 12, and sends low-pressure compressed air to the high-pressure compressor 12. The low-pressure turbine 27 is provided behind the high-pressure turbine 14 and driven by the exhaust of the high-pressure turbine 14. Low-pressure turbine 27 and front fan 2
2. The low pressure compressor 26 is connected by a drive shaft. The drive shaft penetrates the center of the rotary shaft of the core engine.

【0004】従来のターボファンエンジンの作用を説明
する。図5は、従来のバイパス空気流れの説明図であ
る。前部ファン22が回転し、前方の空気を後方に押し
やる。空気の流れは、コアエンジン11に流れるコアエ
ンジン空気流とその他のバイパス空気流に分離される。
コアエンジン空気流は、低圧圧縮機26と高圧圧縮機1
2とで順に圧縮され、燃焼器13で燃料を燃焼させて高
圧ガスとなり、その高圧ガスが膨張して高圧タービン1
4と低圧タービン27とを順に回転させて、ターボファ
ンエンジン1の後方から排気される。バイパス空気流
は、ファン動翼23により後方に押し出された際に回転
流れとなり、出口案内静翼24で案内されて軸心に平行
な流れとなり、支持柱25の隙間を通過して、ファンナ
セル21の後部(ファンノズルという。)から後方に吹
きだし、推進力を発生する。航空機用の高バイパスエン
ジンの場合であれば、バイパス空気流の推力が、エンジ
ン推進力の大部分を占める。
The operation of the conventional turbofan engine will be described. FIG. 5: is explanatory drawing of the conventional bypass air flow. The front fan 22 rotates, pushing the air in the front backward. The air stream is separated into a core engine air stream flowing to the core engine 11 and other bypass air streams.
The core engine airflow consists of a low pressure compressor 26 and a high pressure compressor 1.
2 is sequentially compressed, and the combustor 13 burns the fuel into high-pressure gas, which is then expanded and the high-pressure turbine 1
4 and the low-pressure turbine 27 are sequentially rotated and exhausted from the rear of the turbofan engine 1. The bypass airflow becomes a rotational flow when it is pushed rearward by the fan rotor blade 23, is guided by the outlet guide vanes 24 and becomes a flow parallel to the axial center, passes through the gap of the support column 25, and passes through the fan nacelle. It blows out from the rear part of 21 (called a fan nozzle) to the rear and generates a propulsive force. In the case of high bypass engines for aircraft, the thrust of the bypass airflow makes up the majority of engine propulsion.

【0005】次に、バイパス部の騒音特性と空力特性
を、図を基に説明する。図3は、騒音レベルと空力効率
のグラフである。前部ファンのファン動翼と出口案内静
翼とで組み合わされた空力特性は、ターボファンエンジ
ン1の効率に大きな影響を与える。特に、出口案内静翼
24は、ファン動翼23で出来た回転流を軸に平行な直
線流れに変更する重要な役目を果たす。出口案内静翼2
4の後流に残った旋回流は推進力を発生せずに、後方に
捨てられてエネルギーロスとなる。一方、前部ファンの
ファン動翼と出口案内静翼とは、ターボファンエンジン
の主要な騒音源の一つである。ファン動翼23と出口案
内静翼24とで発生した騒音は、ファンナセル21の前
部と後部の開口部から遮るものなく周囲に放射される。
Next, the noise characteristics and aerodynamic characteristics of the bypass section will be described with reference to the drawings. FIG. 3 is a graph of noise level and aerodynamic efficiency. The aerodynamic characteristics that are combined by the fan moving blades of the front fan and the outlet guide stationary blades have a great influence on the efficiency of the turbofan engine 1. In particular, the outlet guide vanes 24 play an important role of changing the rotational flow generated by the fan rotor blades 23 into a linear flow parallel to the axis. Exit guide vane 2
The swirling flow remaining in the wake of No. 4 does not generate propulsive force, but is thrown backward and becomes an energy loss. On the other hand, the fan rotor blades and the outlet guide vanes of the front fan are one of the main noise sources of the turbofan engine. The noise generated by the fan rotor blades 23 and the outlet guide vanes 24 is radiated to the surroundings from the front and rear openings of the fan nacelle 21 without interruption.

【0006】図3に示すように、ファン動翼と出口案内
静翼の軸方向距離を離すと騒音が低減する。ターボファ
ンエンジンの運転時には、出口案内静翼のバイパス空気
流がぶつかる先縁部aに高い圧力bが発生する。隣り合
う出口案内静翼24の隙間の圧力は低いので、前部ファ
ンの後方には異なる圧力が円周方向に並んだ流れが生じ
ている。ファン動翼が前部ファンの回転に伴って、その
後方の流れに直交して回転すると、大きな騒音が発生す
る。従来の設計では、騒音が環境に許容される範囲に収
まる様に、ファン動翼と出口案内静翼との距離Hを決定
していた。この場合、ファン動翼23と出口案内静翼2
4との間の距離Hは、空力的な効率が最大になるファン
動翼23と出口案内静翼24との間の距離Hよりも長く
なり、バイパス部の空力効率が低下する結果、燃費が悪
くなっていた。
As shown in FIG. 3, noise is reduced if the axial distance between the fan rotor blade and the outlet guide vane is increased. During operation of the turbofan engine, a high pressure b is generated at the leading edge portion a where the bypass air flow of the outlet guide vanes collides. Since the pressure in the gap between the adjacent outlet guide vanes 24 is low, different pressures flow circumferentially behind the front fan. When the fan rotor blades rotate in a direction orthogonal to the flow behind them as the front fan rotates, a large amount of noise is generated. In the conventional design, the distance H between the fan rotor blades and the outlet guide vanes is determined so that the noise falls within the allowable range for the environment. In this case, the fan rotor blade 23 and the outlet guide vane 2
4 is longer than the distance H between the fan rotor blade 23 and the outlet guide vane 24, which maximizes aerodynamic efficiency, and the aerodynamic efficiency of the bypass portion is reduced, resulting in fuel consumption. It was getting worse.

【0007】[0007]

【発明が解決しようとする課題】上述のターボファンエ
ンジンの場合、ターボファンエンジンの高出力化により
騒音が大きくなる傾向があり、環境問題からも一層の騒
音低下が求められる。また、燃費の改善のために、空力
効率の向上が要請されている。ところで、騒音が問題に
なるのは、飛行機が低空飛行をしている時であり、特に
離発着時には、空港付近の環境の改善のために、低騒音
が求められる。それに比較して、高高度を巡航中は、タ
ーボファンエンジンの騒音は問題になっていない。一
方、飛行機の運用時間のほとんどは高高度を巡航してお
り、この時間のターボファンエンジンの空力効率を改善
すると、全体の燃費を下げることが出来る。
In the above turbofan engine, the noise tends to increase due to the higher output of the turbofan engine, and further noise reduction is required due to environmental problems. In addition, improvement of aerodynamic efficiency is required to improve fuel efficiency. By the way, noise becomes a problem when an airplane is flying at low altitude, and especially when taking off and landing, low noise is required to improve the environment near the airport. In comparison, the noise of the turbofan engine is not a problem when cruising at high altitudes. On the other hand, most of the operating time of an airplane is cruising at high altitude, and improving the aerodynamic efficiency of the turbofan engine during this time can reduce the overall fuel consumption.

【0008】本発明は以上に述べた問題点に鑑み案出さ
れたもので、従来のターボファンエンジンにかわって、
騒音問題を低減でき、さらに燃費を改善できるターボフ
ァンエンジンを提供しようとする。
The present invention has been devised in view of the above-mentioned problems, and replaces the conventional turbofan engine by:
It aims to provide a turbofan engine that can reduce noise problems and improve fuel efficiency.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るターボファンエンジンは、前方から軸
心上に圧縮機と燃焼器とタービンとが順に並んだコアエ
ンジンと、コアエンジンの先端に前記軸心周りに回転駆
動可能に設けられ複数のファン動翼が円周方向にに並べ
られた前部ファンと、前部ファンと少なくともコアエン
ジンの先端部とを円周状に囲うファンナセルと、コアエ
ンジンとファンナセルとの間に円周方向へ並べられた複
数の出口案内静翼と、ファン動翼と出口案内静翼の軸方
向間隔を変更出来る間隔変更手段と、を備えたたものと
した。
In order to achieve the above object, a turbofan engine according to the present invention comprises a core engine in which a compressor, a combustor, and a turbine are arranged in order from the front on the axial center, and a core engine of the core engine. A front fan that is rotatably driven around the axis and has a plurality of fan rotor blades arranged in the circumferential direction at the tip, and a fan that circumferentially surrounds the front fan and at least the tip of the core engine. A nacelle, a plurality of outlet guide vanes arranged in the circumferential direction between the core engine and the fan nacelle, and a gap changing means capable of changing the axial gap between the fan rotor blade and the outlet guide vane are provided. I made it.

【0010】上記本発明の構成により、圧縮機と燃焼器
とタービンとがコアエンジンの軸心上に並び、複数のフ
ァン動翼が円周方向に並べられた前部ファンがコアエン
ジンの先端に軸心中心に回転駆動可能に設けられ、ファ
ンナセルが前部ファンと少なくともコアエンジンの先端
部との円周状に囲い、複数の出口案内静翼がコアエンジ
ンとファンナセルとの間に円周方向へ並べられ、間隔変
更手段がファン動翼と出口案内静翼の軸方向間隔を変更
出来るので、前部ファンで後ろに押し込まれた空気の一
部はコアエンジンに入り圧縮機と燃焼室とタービンを通
って排気され、その他の空気は出口案内静翼を通ってコ
アエンジンとファンナセルとの間を通って後ろへ排気さ
れ、ファン動翼と出口案内静翼の軸方向間隔を広げる
と、ファン動翼と出口案内静翼との空力的な相互作用が
弱まり、騒音が小さくなり、ファン動翼と出口案内静翼
の軸方向間隔を狭めると、出口案内静翼の整流効果が強
まり、空気効率が良くなるので、騒音を小さくしたい時
と空力効率を良くしたい時とを選択可能になる。
With the above-described structure of the present invention, the compressor, the combustor, and the turbine are arranged on the axial center of the core engine, and the front fan having a plurality of fan blades arranged in the circumferential direction is provided at the tip of the core engine. The fan nacelle is rotatably driven around the shaft center and surrounds the front fan and at least the tip of the core engine in a circle, and a plurality of outlet guide vanes are arranged between the core engine and the fan nacelle. Are arranged in the same direction, and the spacing changing means can change the axial spacing between the fan rotor blade and the outlet guide vane, so that part of the air pushed backward by the front fan enters the core engine and the compressor and combustion chamber. The other air is exhausted through the turbine, and the other air is exhausted backwards through the outlet guide vanes between the core engine and the fan nacelle, and when the axial distance between the fan rotor blades and the outlet guide vanes is increased, Fan moving out The aerodynamic interaction with the guide vanes is weakened, the noise is reduced, and if the axial distance between the fan blades and the outlet guide vanes is narrowed, the rectifying effect of the outlet guide vanes is strengthened and the air efficiency is improved. , It is possible to select when you want to reduce noise and when you want to improve aerodynamic efficiency.

【0011】さらに、本発明に係るターボファンエンジ
ンは、間隔変更手段が、コアエンジンとファンナセルと
の間で出口案内静翼を軸方向に移動可能にする移動駆動
機構を有するものとした。上記本発明の構成により、移
動駆動機構がコアエンジンとファンナセルとの間で出口
案内静翼を軸方向に移動可能にするので、出口案内静翼
を軸の前方向に移動するとファン動翼と出口案内静翼の
軸方向間隔がせまくなって空気効率が良くなり、出口案
内静翼を軸の後ろ方向に移動するとファン動翼と出口案
内静翼の軸方向間隔が広くなって騒音が小さくなり、騒
音を小さくしたい時と空力効率を良くしたい時とを選択
可能になる。
Further, in the turbofan engine according to the present invention, the space changing means has a moving drive mechanism for axially moving the outlet guide vanes between the core engine and the fan nacelle. With the above-described configuration of the present invention, the moving drive mechanism enables the outlet guide vanes to move axially between the core engine and the fan nacelle. The axial gap between the outlet guide vanes becomes narrower and the air efficiency improves, and when the outlet guide vanes are moved rearward of the shaft, the axial gap between the fan rotor blades and the outlet guide vanes becomes wider, reducing noise. , It is possible to select when you want to reduce noise and when you want to improve aerodynamic efficiency.

【0012】また、本発明に係るターボファンエンジン
は、移動駆動機構が、出口案内静翼を軸方向移動自在に
支持する直線ガイド機構と、出口案内静翼を軸方向に移
動させる直線駆動機構とを有するものとした。上記本発
明の構成により、直線ガイド機構が出口案内静翼を軸方
向移動自在に支持し、直線駆動機構が出口案内静翼を軸
方向に移動させるので、直線駆動機構が直線ガイド機構
に支持された出口案内静翼を軸方向に移動でき、直線駆
動機構を作動させることで、騒音を小さくしたい時と空
力効率を良くしたい時とを選択できる。
In the turbofan engine according to the present invention, the movement drive mechanism includes a linear guide mechanism that supports the outlet guide vanes so as to be axially movable, and a linear drive mechanism that moves the outlet guide vanes in the axial direction. To have. With the above configuration of the present invention, the linear guide mechanism supports the outlet guide vanes so as to be movable in the axial direction, and the linear drive mechanism moves the outlet guide vanes in the axial direction. Therefore, the linear drive mechanism is supported by the linear guide mechanism. The outlet guide vane can be moved in the axial direction, and the linear drive mechanism is operated, so that it is possible to select whether to reduce noise or improve aerodynamic efficiency.

【0013】さらに、本発明に係るターボファンエンジ
ンは、移動駆動機構が、出口案内静翼を軸方向に傾倒可
能に支持する回転支持機構と、出口案内静翼を軸方向に
傾倒する回転駆動機構とを有するものとした。上記本発
明の構成により、回転支持機構が出口案内静翼を軸方向
傾倒自在に支持し、回転駆動機構が出口案内静翼を軸方
向に傾倒させるので、回転駆動機構が回転支持機構に支
持された出口案内静翼を軸方向に傾倒でき、回転駆動機
構を作動させることで、騒音を小さくしたい時と空力効
率を良くしたい時とを選択できる。
Further, in the turbofan engine according to the present invention, the movement drive mechanism supports the outlet guide vanes so as to tilt in the axial direction, and the rotary drive mechanism that tilts the outlet guide vanes in the axial direction. And have. With the above configuration of the present invention, the rotation support mechanism supports the outlet guide vanes so as to be tiltable in the axial direction, and the rotation drive mechanism tilts the outlet guide vanes in the axial direction, so that the rotation drive mechanism is supported by the rotation support mechanism. The outlet guide vanes can be tilted in the axial direction, and by operating the rotary drive mechanism, it is possible to select whether to reduce noise or improve aerodynamic efficiency.

【0014】さらに、本発明に係るターボファンエンジ
ンの運転方法は、上記のターボファンエンジンを用意
し、離陸時又は着陸時にファン動翼と出口案内静翼の軸
方向間隔を広げ、高空巡航時にファン動翼と出口案内静
翼の軸方向間隔を狭めるものとした。上記本発明の構成
により、離陸時又は着陸時にファン動翼と出口案内静翼
の軸方向間隔を広げて騒音を小さくし、高空巡航時にフ
ァン動翼と出口案内静翼の軸方向間隔を狭め空力効率を
良くすることができるので、環境に騒音を放射せず、燃
費のよいターボファンエンジンを実現できる。
Further, in the method for operating a turbofan engine according to the present invention, the above turbofan engine is prepared, the axial interval between the fan rotor blade and the outlet guide vane is widened during takeoff or landing, and the fan is operated during high altitude cruise. The axial distance between the rotor blade and the outlet guide vane is reduced. With the above-described configuration of the present invention, during takeoff or landing, the axial distance between the fan rotor blade and the outlet guide vane is increased to reduce noise, and during high altitude cruise, the axial distance between the fan rotor blade and the outlet guide vane is narrowed to reduce aerodynamics. Since the efficiency can be improved, it is possible to realize a fuel-efficient turbofan engine that does not emit noise to the environment.

【0015】[0015]

【発明の実施の形態】以下、本発明の好ましい第一の実
施形態を、図面を参照して説明する。なお、各図におい
て、共通する部分には同一の符号を付し、重複した説明
を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first preferred embodiment of the present invention will be described below with reference to the drawings. In each drawing, common portions are denoted by the same reference numerals, and redundant description will be omitted.

【0016】本発明の第一の実施形態に係るターボファ
ンエンジンの構造を説明する。図1は、本発明の第一の
実施形態の概念図である。
The structure of the turbofan engine according to the first embodiment of the present invention will be described. FIG. 1 is a conceptual diagram of the first embodiment of the present invention.

【0017】コアエンジン10の構造は従来のものと同
じなので説明を省略する。ターボファンエンジン1のバ
イパス部20は、ファンナセル21と前部ファン22と
出口案内静翼24と低圧圧縮機26と低圧タービン27
と移動駆動機構30(間隔変更手段に相当する)とを備
える。前部ファン22は、コアエンジン10の前方に回
転駆動出来るように設けられ、周囲に所定ピッチで設け
られたファン動翼23を有する。ファンナセル21は、
前部ファン22と少なくともコアエンジン10の先端部
とを円周方向に囲う様に設けられた円筒形状のダクトで
ある。ファンナセル21は、コアナセル11の外周から
伸びた複数の支持柱25に支持される。出口案内静翼2
4が、コアナセル11とファンナセル21との間のファ
ン動翼23と支持柱25の間の円筒形状隙間に円周方向
へ所定ピッチで設けられる。低圧圧縮機26は、前部フ
ァン22と高圧圧縮機12の間に設けられ、低圧圧縮空
気を高圧圧縮機12に送る。低圧タービン27は、高圧
タービン14の後方に設けられ、高圧タービンの排気に
より駆動される。低圧タービン27と前部ファン22、
低圧圧縮機26とは駆動軸で連結されていいる。その駆
動軸は、コアエンジンの回転軸の中心を貫通している。
Since the structure of the core engine 10 is the same as the conventional one, its explanation is omitted. The bypass section 20 of the turbofan engine 1 includes a fan nacelle 21, a front fan 22, an outlet guide vane 24, a low pressure compressor 26, and a low pressure turbine 27.
And a movement drive mechanism 30 (corresponding to the interval changing means). The front fan 22 is provided in front of the core engine 10 so as to be rotationally driven, and has fan rotor blades 23 provided around the periphery thereof at a predetermined pitch. Fan nacelle 21
It is a cylindrical duct provided so as to surround the front fan 22 and at least the tip of the core engine 10 in the circumferential direction. The fan nacelle 21 is supported by a plurality of support columns 25 extending from the outer circumference of the core nacelle 11. Exit guide vane 2
4 are provided at a predetermined pitch in the circumferential direction in a cylindrical gap between the fan rotor blades 23 between the core nacelle 11 and the fan nacelle 21 and the support columns 25. The low pressure compressor 26 is provided between the front fan 22 and the high pressure compressor 12, and sends low pressure compressed air to the high pressure compressor 12. The low-pressure turbine 27 is provided behind the high-pressure turbine 14 and is driven by the exhaust of the high-pressure turbine. Low pressure turbine 27 and front fan 22,
The low pressure compressor 26 is connected by a drive shaft. The drive shaft penetrates the center of the rotary shaft of the core engine.

【0018】移動駆動機構30は、ファン動翼23と出
口案内静翼24との軸方向間隔を変更出来る手段であ
り、コアナセル11とファンナセル21との間で出口案
内静翼24を軸方向に移動可能である。移動駆動機構3
0は、直線ガイド機構31と直線駆動機構32とを有す
る。直線ガイド機構31は、出口案内静翼24をコアナ
セル11とファンナセル21との間で軸方向移動自在に
支持する機構であり、例えば、リニアガイド31であ
る。リニアガイド31は、ファンリニアガイドとコアリ
ニアガイドとからなる。ファンリニアガイドはファンナ
セルの中に設置され、出口案内静翼の外周側の端を軸方
向に移動自在に支持する。コアリニアガイドはコアナセ
ルの中に設置され、出口案内静翼の内周側の端を軸方向
に移動自在に支持する。直線駆動機構32は、出口案内
静翼24を軸方向に移動可能な機構であり、例えば、送
りねじとその送りねじを駆動する電動モータである。直
線駆動機構32はは、例えばファンナセル21の中に配
置される。電動モータが送りねじを回転すると、リニア
ガイド31にガイドされた出口案内静翼24を軸方向に
移動させる。例えば、電動モータを正転すると、出口案
内静翼24が軸の前方向に移動して、ファン動翼23と
出口案内静翼24との間隔が狭くなる。電動モータを逆
転すると、出口案内静翼24が軸の後方向に移動して、
ファン動翼23と出口案内静翼24との間隔が広くな
る。
The moving drive mechanism 30 is means for changing the axial distance between the fan rotor blade 23 and the outlet guide vane 24, and the outlet guide vane 24 is axially arranged between the core nacelle 11 and the fan nacelle 21. Can be moved. Movement drive mechanism 3
0 has a linear guide mechanism 31 and a linear drive mechanism 32. The linear guide mechanism 31 is a mechanism that supports the outlet guide vanes 24 so as to be axially movable between the core nacelle 11 and the fan nacelle 21, and is, for example, the linear guide 31. The linear guide 31 includes a fan linear guide and a core linear guide. The fan linear guide is installed in the fan nacelle and movably supports the outer peripheral end of the outlet guide vane in the axial direction. The core linear guide is installed in the core nacelle and movably supports the end of the outlet guide vane on the inner peripheral side in the axial direction. The linear drive mechanism 32 is a mechanism that can move the outlet guide vane 24 in the axial direction, and is, for example, a feed screw and an electric motor that drives the feed screw. The linear drive mechanism 32 is arranged in the fan nacelle 21, for example. When the electric motor rotates the feed screw, the outlet guide vane 24 guided by the linear guide 31 is moved in the axial direction. For example, when the electric motor rotates in the forward direction, the outlet guide vanes 24 move in the front direction of the shaft, and the distance between the fan rotor blades 23 and the outlet guide vanes 24 becomes narrow. When the electric motor is rotated in the reverse direction, the outlet guide vanes 24 move in the rearward direction of the shaft,
The distance between the fan rotor blades 23 and the outlet guide vanes 24 becomes wider.

【0019】次に、ターボファンエンジンの作用を、運
転手順に従って、説明する。飛行機の離陸時又は着陸時
には、電動モータを逆転させて、出口案内静翼24を軸
方向の後方に位置させる。ファン動翼23と出口案内静
翼24の間隔が広いので、ファン動翼23と出口案内静
翼24の空力的な相互作用が弱まり、バイパス部20の
騒音が低減される。一方、出口案内静翼24による整流
効果が減少するので空力効率が低下し、離着陸の短い時
間は、燃料を多く使用する。飛行機の高度巡航時には、
電動モータを正転させて、出口案内静翼24を軸方向の
前方に位置させる。ファン動翼23と出口案内静翼24
との間隔が狭いので、出口案内静翼24の整流効果が高
まり空力効率が向上し、燃費が改善される。一方、ファ
ン動翼23と出口案内静翼24の空力的な相互作用が弱
まり、バイパス部の騒音が大きくなるが、高度を巡航し
ているので環境に悪影響は与えない。
Next, the operation of the turbofan engine will be described according to the operating procedure. At the time of takeoff or landing of the airplane, the electric motor is rotated in the reverse direction so that the outlet guide vane 24 is positioned rearward in the axial direction. Since the distance between the fan rotor blade 23 and the outlet guide vane 24 is wide, the aerodynamic interaction between the fan rotor blade 23 and the outlet guide vane 24 is weakened, and the noise of the bypass section 20 is reduced. On the other hand, since the rectification effect of the outlet guide vanes 24 is reduced, the aerodynamic efficiency is reduced, and a large amount of fuel is used during a short takeoff and landing time. During altitude cruise of an airplane,
The electric motor is rotated in the forward direction to position the outlet guide vane 24 forward in the axial direction. Fan blade 23 and outlet guide vane 24
Since the interval between the and is narrow, the straightening effect of the outlet guide vanes 24 is enhanced, the aerodynamic efficiency is improved, and the fuel consumption is improved. On the other hand, the aerodynamic interaction between the fan rotor blades 23 and the outlet guide vanes 24 is weakened, and the noise in the bypass portion is increased, but since the cruise is performed at a high altitude, the environment is not adversely affected.

【0020】次に、本発明の好ましい第二の実施形態
を、図面を参照して説明する。なお、各図において、共
通する部分には同一の符号を付し、重複した説明を省略
する。
Next, a second preferred embodiment of the present invention will be described with reference to the drawings. In each drawing, common portions are denoted by the same reference numerals, and redundant description will be omitted.

【0021】本発明の第二の実施形態に係るターボファ
ンエンジンの構造を説明する。図2は、本発明の第二の
実施形態の概念図である。
The structure of the turbofan engine according to the second embodiment of the present invention will be described. FIG. 2 is a conceptual diagram of the second embodiment of the present invention.

【0022】コアエンジン10の構造は従来のものと同
じなので説明を省略する。ターボファンエンジン1のバ
イパス部20の構造は移動駆動機構を除き同一なので、
同一部分の説明を省略する。
Since the structure of the core engine 10 is the same as that of the conventional one, its explanation is omitted. Since the structure of the bypass section 20 of the turbofan engine 1 is the same except for the movement drive mechanism,
The description of the same parts is omitted.

【0023】移動駆動機構40は、ファン動翼23と出
口案内静翼24の軸方向間隔を変更出来る手段であり、
コアナセル11とファンナセル21との間で出口案内静
翼24を軸方向に移動可能である。移動駆動機構40
は、回転支持機構41と回転駆動機構42とを有する。
回転支持機構41は、出口案内静翼24をコアナセル1
1とファンナセル21との間で軸方向に傾倒可能に回転
支持する機構であり、例えば、ピン支持部である。ピン
支持部は、出口案内静翼24の内側の一端をコアナセル
11に回転自在に固定支持する。回転駆動機構42は、
出口案内静翼24を軸方向に傾倒可能な機構であり、例
えば、電動シリンダである。電動シリンダのロッド先端
が出口案内静翼24の外側の端に連結される。電動シリ
ンダが作動すると、ピン支持部に回転自在に固定された
出口案内静翼24を軸方向に傾倒させる。例えば、電動
シリンダがロッドを延ばすと、出口案内静翼24が軸の
前方向に傾倒して、ファン動翼23と出口案内静翼24
との間隔が狭くなる。電動シリンダがロッドを縮める
と、出口案内静翼24が軸の後方向に傾倒して、ファン
動翼23と出口案内静翼24との間隔が広くなる。
The moving drive mechanism 40 is means for changing the axial distance between the fan rotor blade 23 and the outlet guide vane 24.
The outlet guide vane 24 is axially movable between the core nacelle 11 and the fan nacelle 21. Movement drive mechanism 40
Has a rotation support mechanism 41 and a rotation drive mechanism 42.
The rotation support mechanism 41 connects the outlet guide vanes 24 to the core nacelle 1
1 and a fan nacelle 21. The mechanism is a mechanism for rotationally supporting the fan nacelle 21 so as to be tiltable in the axial direction, and is, for example, a pin support portion. The pin support portion rotatably fixedly supports one end inside the outlet guide vane 24 to the core nacelle 11. The rotary drive mechanism 42 is
It is a mechanism that can tilt the outlet guide vanes 24 in the axial direction, and is, for example, an electric cylinder. The rod tip of the electric cylinder is connected to the outer end of the outlet guide vane 24. When the electric cylinder operates, the outlet guide vane 24 rotatably fixed to the pin support portion is tilted in the axial direction. For example, when the electric cylinder extends the rod, the outlet guide vanes 24 tilt toward the front of the shaft, and the fan rotor blades 23 and the outlet guide vanes 24
The space between and becomes narrower. When the electric cylinder contracts the rod, the outlet guide vanes 24 are tilted rearward in the axis, and the distance between the fan rotor blades 23 and the outlet guide vanes 24 becomes wider.

【0024】次に、ターボファンエンジンの作用を、運
転手順に従って、説明する。飛行機の離着陸時には、電
動シリンダがロッドを縮めて、出口案内静翼25を軸方
向の後方に傾倒させる。ファン動翼23と出口案内静翼
24の間隔が広いので、ファン動翼23と出口案内静翼
24の空力的な相互作用が弱まり、バイパス部20の騒
音が低減される。一方、出口案内静翼24による整流効
果が減少するので空力効率が低下し、離着陸の短い時間
は、燃料を多く使用する。飛行機の高度巡航時には、電
動シリンダがロッドを延ばして、出口案内静翼24を軸
方向の前方に傾倒させる。ファン動翼23と出口案内静
翼24の間隔が狭いので、出口案内静翼24の整流効果
が高まり空力効率が向上し、燃費が改善される。一方、
ファン動翼23と出口案内静翼24の空力的な相互作用
が弱まり、バイパス部の騒音が大きくなるが、高度を巡
航しているので環境に悪影響は与えない。
Next, the operation of the turbofan engine will be described according to the operating procedure. At the time of takeoff and landing of the airplane, the electric cylinder contracts the rod to tilt the exit guide vane 25 rearward in the axial direction. Since the distance between the fan rotor blade 23 and the outlet guide vane 24 is wide, the aerodynamic interaction between the fan rotor blade 23 and the outlet guide vane 24 is weakened, and the noise of the bypass section 20 is reduced. On the other hand, since the rectification effect of the outlet guide vanes 24 is reduced, the aerodynamic efficiency is reduced, and a large amount of fuel is used during a short takeoff and landing time. During high altitude cruise of the airplane, the electric cylinder extends the rod and tilts the outlet guide vane 24 forward in the axial direction. Since the gap between the fan rotor blades 23 and the outlet guide vanes 24 is narrow, the rectifying effect of the outlet guide vanes 24 is enhanced, the aerodynamic efficiency is improved, and the fuel consumption is improved. on the other hand,
The aerodynamic interaction between the fan rotor blades 23 and the outlet guide vanes 24 weakens and the noise in the bypass portion increases, but since the cruise is at a high altitude, the environment is not adversely affected.

【0025】上述の実施形態のターボファンエンジンを
用いれば、航空機の運用状況に合わせて自由にファン動
翼の出口案内静翼の間隔を選ぶことが出来て、環境に騒
音を放射せず、なおかつ燃費の良い運転をすることがで
きる。また、出口案内静翼をコアナセルとファンナセル
との間で軸方向に移動させる機構により、出口案内静翼
とファン動翼の間隔距離を簡単に選ぶことが出来る。ま
た、移動駆動機構をコアナセルまたはファンナセルの内
部に仕込むことができ、ターボファンエンジンの他の空
力性能に影響を与えることなく、所定の効果を発揮でき
る。
By using the turbofan engine of the above-described embodiment, the interval between the outlet guide vanes of the fan rotor blades can be freely selected according to the operating conditions of the aircraft, and no noise is emitted to the environment. You can drive with high fuel efficiency. Further, the mechanism for moving the outlet guide vanes in the axial direction between the core nacelle and the fan nacelle allows the distance between the outlet guide vanes and the fan rotor blade to be easily selected. Further, the movement drive mechanism can be installed inside the core nacelle or the fan nacelle, and a predetermined effect can be exhibited without affecting other aerodynamic performance of the turbofan engine.

【0026】本発明は以上に述べた実施形態に限られる
ものではなく、発明の要旨を逸脱しない範囲で各種の変
更が可能である。移動駆動機構は、説明の構造に限定さ
れずその他の形式を採用しても良く、例えば、ファン動
翼を前後に移動可能にしてもよい。図示では、移動駆動
機構や回転駆動機構をファンナセル内に設置したがこれ
に限定されず、例えば、コアナセル内に置いてもよい。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit of the invention. The movement drive mechanism is not limited to the structure described above, and other forms may be adopted, for example, the fan rotor blade may be movable back and forth. Although the movement drive mechanism and the rotation drive mechanism are installed in the fan nacelle in the drawing, the invention is not limited to this and may be installed in the core nacelle, for example.

【0027】[0027]

【発明の効果】以上説明したように本発明のターボファ
ンエンジンは、その構成により、以下の効果を有する。
前部ファンで後ろに押し込まれた空気の一部はコアエン
ジンに入り圧縮機と燃焼室とタービンを通って排気さ
れ、その他の空気は出口案内静翼を通ってコアエンジン
とファンナセルとの間を通って後ろへ排気され、ファン
動翼と出口案内静翼の軸方向間隔を広げると、ファン動
翼と出口案内静翼との空力的な相互作用が弱まり、騒音
が小さくなり、ファン動翼と出口案内静翼の軸方向間隔
を狭めると、出口案内静翼と整流効果が強まり、空気効
率が良くなるので、騒音を小さくしたい時と空力効率を
良くしたい時とを選択可能になる。また、出口案内静翼
を軸の前方向に移動するとファン動翼と出口案内静翼の
軸方向間隔がせまくなって空気効率が良くなり、出口案
内静翼を軸の後ろ方向に移動するとファン動翼と出口案
内静翼の軸方向間隔が広くなって騒音が小さくなり、騒
音を小さくしたい時と空力効率を良くしたい時とを選択
可能になる。また、直線駆動機構が直線ガイド機構に支
持された出口案内静翼を軸方向に移動でき、直線駆動機
構を作動させることで、騒音を小さくしたい時と空力効
率を良くしたい時とを選択できる。また、回転駆動機構
が回転支持機構に支持された出口案内静翼を軸方向に傾
倒でき、回転駆動機構を作動させることで、騒音を小さ
くしたい時と空力効率を良くしたい時とを選択できる。
また、離陸時又は着陸時にファン動翼と出口案内静翼の
軸方向間隔を広げて騒音を小さくし、高空巡航時にファ
ン動翼と出口案内静翼の軸方向間隔を狭め空力効率を良
くすることができるので、環境に騒音を放射せず、燃費
のよいターボファンエンジンを実現できる。従って、騒
音問題を低減でき、さらに燃費を改善できるターボファ
ンエンジンとその運転方法を提供できる。
As described above, the turbofan engine of the present invention has the following effects due to its structure.
A part of the air pushed backward by the front fan enters the core engine and is exhausted through the compressor, the combustion chamber and the turbine, and the other air passes between the core engine and the fan nacelle through the outlet guide vanes. When exhausted to the rear through the fan blade and widening the axial distance between the fan rotor blade and the outlet guide vane, the aerodynamic interaction between the fan rotor blade and the outlet guide vane is weakened, noise is reduced, and the fan rotor blade When the axial distance between the outlet guide vanes and the outlet guide vanes is narrowed, the rectification effect with the outlet guide vanes is strengthened, and the air efficiency is improved, so that it is possible to select whether to reduce noise or improve aerodynamic efficiency. Also, moving the outlet guide vanes forward of the shaft reduces the axial gap between the fan rotor blades and the outlet guide vanes, improving air efficiency, and moving the outlet guide vanes rearward of the shaft causes fan movement. Since the axial distance between the blade and the outlet guide vane becomes wider and the noise becomes smaller, it is possible to select when the noise should be reduced or when the aerodynamic efficiency should be improved. Further, the linear drive mechanism can move the outlet guide vane supported by the linear guide mechanism in the axial direction, and by operating the linear drive mechanism, it is possible to select whether to reduce noise or improve aerodynamic efficiency. Further, the rotary drive mechanism can tilt the outlet guide vanes supported by the rotary support mechanism in the axial direction, and by operating the rotary drive mechanism, it is possible to select a time when noise is desired to be reduced and a time when aerodynamic efficiency is desired to be improved.
In addition, widen the axial distance between the fan rotor blade and the outlet guide vane during takeoff or landing to reduce noise, and reduce the axial distance between the fan rotor blade and outlet guide vane during high altitude cruise to improve aerodynamic efficiency. Therefore, it is possible to realize a turbofan engine that emits no noise to the environment and has good fuel efficiency. Therefore, it is possible to provide a turbofan engine that can reduce noise problems and further improve fuel efficiency and a method of operating the turbofan engine.

【0028】[0028]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施形態の概念図である。FIG. 1 is a conceptual diagram of a first embodiment of the present invention.

【図2】本発明の第二の実施形態の概念である。FIG. 2 is a concept of a second embodiment of the present invention.

【図3】騒音レベルと空力効率のグラフである。FIG. 3 is a graph of noise level and aerodynamic efficiency.

【図4】従来の装置の概念図である。FIG. 4 is a conceptual diagram of a conventional device.

【図5】従来のバイパス空気流れの説明図である。FIG. 5 is an explanatory diagram of a conventional bypass air flow.

【符号の説明】[Explanation of symbols]

1 ターボファンエンジン 10 コアエンジン 11 コアナセル 12 高圧圧縮機 13 燃焼器 14 高圧タービン 20 バイパス部 21 ファンナセル 22 前部ファン 23 ファン動翼 24 出口案内静翼 25 支持柱 26 低圧圧縮機 27 低圧タービン 30 移動駆動機構 31 ガイド機構 32 直線駆動機構 40 移動駆動機構 41 回転支持機構 42 回転駆動機構 1 turbofan engine 10 core engine 11 core nacelle 12 High pressure compressor 13 Combustor 14 High pressure turbine 20 Bypass section 21 Fan Nacelle 22 front fan 23 Fan blades 24 Exit guide vanes 25 support pillars 26 Low pressure compressor 27 Low pressure turbine 30 movement drive mechanism 31 Guide mechanism 32 Linear drive mechanism 40 movement drive mechanism 41 Rotation support mechanism 42 rotation drive mechanism

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F04D 29/56 F04D 29/56 C ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F04D 29/56 F04D 29/56 C

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ターボファンエンジンであって、前方か
ら軸心上に圧縮機と燃焼器とタービンとが順に並んだコ
アエンジンと、コアエンジンの先端に前記軸心周りに回
転駆動可能に設けられ複数のファン動翼が円周方向に並
べられた前部ファンと、前部ファンと少なくともコアエ
ンジンの先端部とを円周状に囲うファンナセルと、コア
エンジンとファンナセルとの間に円周方向へ並べられた
複数の出口案内静翼と、ファン動翼と出口案内静翼の軸
方向間隔を変更出来る間隔変更手段と、を備えたことを
特徴とするターボファンエンジン。
1. A turbofan engine, comprising a core engine in which a compressor, a combustor, and a turbine are arranged in order from the front on an axis, and a tip end of the core engine is rotatably driven around the axis. A front fan in which a plurality of fan blades are arranged in the circumferential direction, a fan nacelle that circumferentially surrounds the front fan and at least the tip of the core engine, and a circumference between the core engine and the fan nacelle A turbofan engine, comprising: a plurality of outlet guide vanes arranged in a direction; and a gap changing unit that can change the axial gap between the fan rotor blade and the outlet guide vane.
【請求項2】 間隔変更手段が、コアエンジンとファン
ナセルとの間で出口案内静翼を軸方向に移動可能にする
移動駆動機構を有することを特徴とする請求項1に記載
のターボファンエンジン。
2. The turbofan engine according to claim 1, wherein the space changing means has a moving drive mechanism that allows the outlet guide vanes to move axially between the core engine and the fan nacelle. .
【請求項3】 移動駆動機構が、出口案内静翼を軸方向
移動自在に支持する直線ガイド機構と、出口案内静翼を
軸方向に移動させる直線駆動機構とを有することを特徴
とする請求項2に記載のターボファンエンジン。
3. The moving drive mechanism has a linear guide mechanism for supporting the outlet guide vane so as to be movable in the axial direction, and a linear drive mechanism for moving the outlet guide vane in the axial direction. The turbofan engine described in 2.
【請求項4】 移動駆動機構が、出口案内静翼を軸方向
に傾倒可能に支持する回転支持機構と、出口案内静翼を
軸方向に傾倒する回転駆動機構とを有することを特徴と
する請求項2に記載のターボファンエンジン。
4. The moving drive mechanism has a rotation support mechanism for supporting the outlet guide vane so as to be tiltable in the axial direction, and a rotary drive mechanism for tilting the outlet guide vane in the axial direction. Item 3. A turbofan engine according to item 2.
【請求項5】 請求項1乃至請求項4に記載のターボフ
ァンエンジンを用意し、離陸時又は着陸時にファン動翼
と出口案内静翼の軸方向間隔を広げ、高空巡航時にファ
ン動翼と出口案内静翼の軸方向間隔を狭めることを特徴
とするターボファンエンジンの運転方法。
5. The turbofan engine according to any one of claims 1 to 4 is prepared, the axial interval between the fan rotor blade and the outlet guide vane is widened at the time of takeoff or landing, and the fan rotor blade and the outlet at high altitude cruise. A method for operating a turbofan engine, characterized by narrowing the axial spacing of the guide vanes.
JP2001374070A 2001-12-07 2001-12-07 Turbofan engine and its operation method Expired - Fee Related JP4061635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001374070A JP4061635B2 (en) 2001-12-07 2001-12-07 Turbofan engine and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001374070A JP4061635B2 (en) 2001-12-07 2001-12-07 Turbofan engine and its operation method

Publications (2)

Publication Number Publication Date
JP2003172206A true JP2003172206A (en) 2003-06-20
JP4061635B2 JP4061635B2 (en) 2008-03-19

Family

ID=19182688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001374070A Expired - Fee Related JP4061635B2 (en) 2001-12-07 2001-12-07 Turbofan engine and its operation method

Country Status (1)

Country Link
JP (1) JP4061635B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083856A (en) * 2004-09-15 2006-03-30 General Electric Co <Ge> Gas turbine engine having improved core system
EP2022949A2 (en) * 2007-07-27 2009-02-11 United Technologies Corporation Variable geometry guide vane system for the exit of a turbofan and corresponding operating method
JP2012145001A (en) * 2011-01-07 2012-08-02 Ihi Corp Engine exhaust nozzle and aircraft engine
US8459035B2 (en) 2007-07-27 2013-06-11 United Technologies Corporation Gas turbine engine with low fan pressure ratio
WO2014017585A1 (en) * 2012-07-26 2014-01-30 株式会社Ihi Engine duct, and aircraft engine
CN109578150A (en) * 2018-12-29 2019-04-05 中国船舶重工集团公司第七0三研究所 A kind of UGT6001 gas turbine inlet adjustable guide vane driving mechanism
JPWO2021199802A1 (en) * 2020-04-01 2021-10-07

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083856A (en) * 2004-09-15 2006-03-30 General Electric Co <Ge> Gas turbine engine having improved core system
EP3165718A1 (en) * 2007-07-27 2017-05-10 United Technologies Corporation Variable geometry guide vane system for the exit of a turbofan and corresponding operating method
EP2022949A2 (en) * 2007-07-27 2009-02-11 United Technologies Corporation Variable geometry guide vane system for the exit of a turbofan and corresponding operating method
EP2022949A3 (en) * 2007-07-27 2011-12-14 United Technologies Corporation Variable geometry guide vane system for the exit of a turbofan and corresponding operating method
US8347633B2 (en) 2007-07-27 2013-01-08 United Technologies Corporation Gas turbine engine with variable geometry fan exit guide vane system
US8459035B2 (en) 2007-07-27 2013-06-11 United Technologies Corporation Gas turbine engine with low fan pressure ratio
JP2012145001A (en) * 2011-01-07 2012-08-02 Ihi Corp Engine exhaust nozzle and aircraft engine
WO2014017585A1 (en) * 2012-07-26 2014-01-30 株式会社Ihi Engine duct, and aircraft engine
JP2014025395A (en) * 2012-07-26 2014-02-06 Ihi Corp Engine duct and aircraft engine
US9869276B2 (en) 2012-07-26 2018-01-16 Ihi Corporation Engine duct and aircraft engine
CN109578150A (en) * 2018-12-29 2019-04-05 中国船舶重工集团公司第七0三研究所 A kind of UGT6001 gas turbine inlet adjustable guide vane driving mechanism
JPWO2021199802A1 (en) * 2020-04-01 2021-10-07
WO2021199802A1 (en) * 2020-04-01 2021-10-07 株式会社Ihi Static blade and aircraft gas turbine engine
JP7294528B2 (en) 2020-04-01 2023-06-20 株式会社Ihi Stator blades and aircraft gas turbine engines
US11867090B2 (en) 2020-04-01 2024-01-09 Ihi Corporation Stator vane and aircraft gas turbine engine

Also Published As

Publication number Publication date
JP4061635B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP5132265B2 (en) Turbofan engine cowl assembly and method of operation
JP4856366B2 (en) FLADE gas turbine engine with counter-rotating fan
JP4619089B2 (en) FLADE gas turbine engine with fixed geometry inlet
JP4953924B2 (en) FLADE fan with different inner and outer airfoil stagger angles in the position of the shroud between the inner and outer airfoils
US3747343A (en) Low noise prop-fan
JP4920228B2 (en) Method and apparatus for assembling a gas turbine engine
JP5019721B2 (en) Method and apparatus for assembling a gas turbine engine
CA1233325A (en) Counter rotation power turbine
US5079916A (en) Counter rotation power turbine
JP4588306B2 (en) Aircraft gas turbine engine with non-intermeshing counter-rotating low pressure turbine
EP1403485B1 (en) Gas turbine engine with low pressure turbine comprising counter rotatable low pressure inner and outer shaft turbines
US6195983B1 (en) Leaned and swept fan outlet guide vanes
US6684626B1 (en) Aircraft gas turbine engine with control vanes for counter rotating low pressure turbines
US5261227A (en) Variable specific thrust turbofan engine
EP1731734B1 (en) Counterrotating turbofan engine
JP5572285B2 (en) Turbofan engine cowl assembly and thrust reverser assembly
US20060196164A1 (en) Dual mode turbo engine
US20130115083A1 (en) Turbine engine having two unducted propellers
JP2008019864A (en) Thrust reverser assembly and gas turbine engine assembly
CA1262409A (en) Counter rotation power turbine
US20180306123A1 (en) Annular airflow actuation system for variable cycle gas turbine engines
EP3067541B1 (en) Geared turbine engine
JP2017106465A (en) Gas turbine engine
JPH0696983B2 (en) Aircraft gas turbine engine particle sizer
EP0426500A1 (en) Tandem fan engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070830

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070913

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071203

A61 First payment of annual fees (during grant procedure)

Effective date: 20071216

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110111

LAPS Cancellation because of no payment of annual fees