JP2003171556A - Method for forming silicon film and composition therefor - Google Patents

Method for forming silicon film and composition therefor

Info

Publication number
JP2003171556A
JP2003171556A JP2001375992A JP2001375992A JP2003171556A JP 2003171556 A JP2003171556 A JP 2003171556A JP 2001375992 A JP2001375992 A JP 2001375992A JP 2001375992 A JP2001375992 A JP 2001375992A JP 2003171556 A JP2003171556 A JP 2003171556A
Authority
JP
Japan
Prior art keywords
integer
thin film
compound
semiconductor thin
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001375992A
Other languages
Japanese (ja)
Inventor
Kouji Shiho
浩司 志保
Hitoshi Kato
仁史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2001375992A priority Critical patent/JP2003171556A/en
Priority to EP02018077A priority patent/EP1284306B1/en
Priority to AT02018077T priority patent/ATE518972T1/en
Priority to KR1020020047677A priority patent/KR100627203B1/en
Priority to US10/216,790 priority patent/US7067069B2/en
Priority to TW091118186A priority patent/TW555690B/en
Priority to CNB021297975A priority patent/CN100392008C/en
Publication of JP2003171556A publication Critical patent/JP2003171556A/en
Priority to US11/404,921 priority patent/US7173180B2/en
Priority to KR1020060068949A priority patent/KR100676341B1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/228Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a semiconductor thin film easily and in an inexpensive way, the method not requiring expensive, energy-intensive, large-scale equipment, and being applicable to a large-area substrate, and to provide a silane composition therefor. <P>SOLUTION: A solar battery with a structure having, between a pair of electrodes, at least two laminated semiconductor thin film layers having different impurity concentrations and/or different kind of impurities, is manufactured by forming at least one of the semiconductor thin film layers according to the method comprising the steps of forming a coating film by applying onto the substrate a silane composition comprising (A) a polysilane compound represented by the formula: Si<SB>n</SB>R<SB>m</SB>, (B) at least one type of silane compound selected from the group consisting of cyclopentasilane, cyclohexasilane and silylcyclopentasilane, (C) silicon particles, and optionally, (D) a boron compound, an arsenic compound, a phosphorus compound, an antimony compound and a modified silane compound, and by thermally and/or optically processing the coating film. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はシリコン膜の形成方
法、およびそのためのシラン組成物に関する。さらに詳
しくは、太陽電池をはじめ、LSI、TFT、および感
光体等の電子デバイス全般に応用されるシリコン膜の形
成方法およびそのために用いられるシラン組成物に関す
る。
TECHNICAL FIELD The present invention relates to a method for forming a silicon film and a silane composition therefor. More specifically, the present invention relates to a method for forming a silicon film applied to general electronic devices such as solar cells, LSIs, TFTs, and photoconductors, and a silane composition used therefor.

【0002】[0002]

【従来の技術】従来、太陽電池の製造に用いられるアモ
ルファスシリコン膜やポリシリコン膜の形成方法として
は、モノシランガスやジシランガスの熱CVD(Che
mical Vapor Deposition)法や
プラズマCVD、光CVD等が利用されている。一般的
にはポリシリコン膜の形成には熱CVD(J.Vac.
Sci.Technology.,14巻1082頁
(1977年)参照)法が、またアモルファスシリコン
膜の形成にはプラズマCVD(Solid State
Com.,17巻1193頁(1975年)参照)法
が広く用いられている。
2. Description of the Related Art Conventionally, as a method for forming an amorphous silicon film or a polysilicon film used for manufacturing a solar cell, thermal CVD (Che of a monosilane gas or a disilane gas is used.
The metallic vapor deposition method, plasma CVD, photo-CVD and the like are used. Generally, thermal CVD (J. Vac.
Sci. Technology. , Vol. 14, p. 1082 (1977)), and plasma CVD (Solid State) for forming an amorphous silicon film.
Com. , 17: 1193 (1975)) is widely used.

【0003】しかし、CVD法によるシリコン膜の形成
では、気相反応を用いるため気相でシリコン粒子の副生
による装置の汚染や異物の発生が生じ、生産歩留まりが
低くなったり、原料がガス状であるため表面に凹凸のあ
る基板上には均一膜厚のものが得られにくかったり、あ
るいは膜の形成速度が遅いため生産性が低いといった改
良すべき点があり、またプラズマCVD法では複雑で高
価な高周波発生装置や真空装置などが必要であるなどの
問題があり、さらなる改良が待たれていた。
However, in the formation of a silicon film by the CVD method, since a gas phase reaction is used, by-production of silicon particles in the gas phase causes contamination of the device and generation of foreign matter, resulting in a low production yield and a gaseous raw material. Therefore, it is difficult to obtain a film having a uniform film thickness on a substrate having an uneven surface, or productivity is low due to a low film forming speed, and the plasma CVD method is complicated. There are problems such as the need for expensive high-frequency generators and vacuum devices, and further improvements have been awaited.

【0004】また、材料面では毒性、反応性の高いガス
状の水素化ケイ素が用いられるため取り扱いに難点があ
るのみならず、ガス状であるため密閉状の真空装置を必
要とする点で新たな問題を生じている。すなわち、一般
にこれらの装置は大掛かりなもので装置自体が高価であ
るだけでなく、真空系やプラズマ系に多大のエネルギー
を消費するため製品のコスト高につながっている。
Further, in terms of materials, since gaseous silicon hydride which is highly toxic and reactive is used, it is difficult to handle, and since it is gaseous, a closed vacuum device is required. Is causing problems. That is, in general, these devices are large-scaled and not only expensive, but also a large amount of energy is consumed in the vacuum system and the plasma system, which leads to high product cost.

【0005】近年、これに対して真空系を使わずに液体
状の水素化ケイ素を塗布する方法が提案されている。特
開平1−29661号公報にはガス状の原料を冷却した
基板上に液体化して吸着させ、化学的に活性な原子状の
水素と反応させてシリコン系の薄膜を形成する方法が開
示されているが、この方法では原料の水素化ケイ素を先
ず気化し続いて冷却するため複雑な装置を必要とするだ
けでなく、膜厚の制御が困難であるという問題がある。
In recent years, there has been proposed a method of applying liquid silicon hydride without using a vacuum system. Japanese Unexamined Patent Publication No. 1-29661 discloses a method of forming a silicon-based thin film by liquefying a gaseous raw material on a cooled substrate, adsorbing it, and reacting it with chemically active atomic hydrogen. However, this method has a problem in that it is difficult to control the film thickness in addition to requiring a complicated device because the raw material silicon hydride is first vaporized and then cooled.

【0006】また、特開平7−267621号公報に
は、低分子量の液体状の水素化ケイ素を基板に塗布する
方法が開示されているが、この方法は系が不安定なため
に取り扱いに難点があるとともに、液体状であるため、
大面積基板に応用する場合に均一膜厚を得るのが困難で
ある。
Further, Japanese Patent Application Laid-Open No. 7-267621 discloses a method of applying a low molecular weight liquid silicon hydride to a substrate, but this method is difficult to handle because the system is unstable. And because it is liquid,
When applied to a large area substrate, it is difficult to obtain a uniform film thickness.

【0007】一方、固体状の水素化ケイ素ポリマーの例
が英国特許GB−2077710Aに報告されている
が、溶媒に不溶なためコーティング法によって膜を形成
することはできない。
On the other hand, although an example of a solid silicon hydride polymer is reported in British Patent GB-2077710A, a film cannot be formed by a coating method because it is insoluble in a solvent.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、高価
かつエネルギー多消費型の大掛かりな装置を必要とせ
ず、大面積の基板にも対応可能であり且つ容易にシリコ
ン膜を形成することのできる、シリコン膜の形成方法お
よびそのための組成物を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to form a silicon film which does not require a large-scale apparatus which is expensive and consumes a lot of energy and which can be applied to a large-area substrate and which can be easily formed. Another object of the present invention is to provide a method for forming a silicon film and a composition therefor.

【0009】本発明の他の目的は、上記本発明のシリコ
ン形成方法を利用した太陽電池の製造方法を提供するこ
とにある。本発明のさらに他の目的は、本発明方法に用
いられるシリコン組成物を提供することにある。本発明
のさらに他の目的および利点は、以下の説明から明らか
になろう。
Another object of the present invention is to provide a method of manufacturing a solar cell using the above-described silicon forming method of the present invention. Still another object of the present invention is to provide a silicon composition used in the method of the present invention. Other objects and advantages of the present invention will be apparent from the following description.

【0010】[0010]

【課題を解決するための手段】本発明によれば、本発明
の上記目的および利点は、第1に、(A)式Sin
m(ここで、nは3以上の整数であり、mはn〜(2n
+2)の整数でありそしてm個のRは互いに独立に水素
原子、アルキル基、フェニル基またはハロゲン原子であ
る、但しm個のRの全てが水素原子であり且つm=2n
であるとき、nは7以上の整数であるものとする。)で
表されるポリシラン化合物、(B)シクロペンタシラ
ン、シクロヘキサシランおよびシリルシクロペンタシラ
ンよりなる群から選ばれる少なくとも1種のシラン化合
物 並びに(C)シリコン粒子を含有することを特徴と
するシラン組成物によって達成される。
According to the present invention, in order to solve the problems], the above objects and advantages of the present invention, the first 1, (A) formula Si n R
m (where n is an integer of 3 or more, and m is n to (2n
+2) and m R independently of one another are hydrogen, alkyl, phenyl or halogen, provided that all R of m are hydrogen and m = 2n.
And n is an integer of 7 or more. ) At least one silane compound selected from the group consisting of a polysilane compound represented by the formula (B), cyclopentasilane, cyclohexasilane, and silylcyclopentasilane, and a silane containing (C) silicon particles. Achieved by the composition.

【0011】本発明の上記目的および利点は、第2に、
(1)上記シラン組成物を基板上に塗布して塗膜を形成
する工程そして(2)該塗膜を熱処理および/または光
処理する工程を含むことを特徴とするシリコン膜の形成
方法によって達成される。
The above objects and advantages of the present invention are, secondly, as follows:
Achieved by a method for forming a silicon film, which comprises the steps of (1) applying the silane composition onto a substrate to form a coating film, and (2) subjecting the coating film to heat treatment and / or phototreatment. To be done.

【0012】さらに本発明の上記目的および利点は、は
第3に、一対の電極の間に、不純物の濃度および/また
は種類の異なる半導体薄膜を少なくとも二層以上積層し
た構造を有する太陽電池を製造する方法において、 (1)(A)式Sinm (ここで、nは3以上の整数であり、mはn〜(2n+
2)の整数でありそしてm個のRは互いに独立に水素原
子、アルキル基、フェニル基またはハロゲン原子であ
る、但しm個のRの全てが水素原子であり且つm=2n
であるとき、nは7以上の整数であるものとする。)で
表されるポリシラン化合物、(B)シクロペンタシラ
ン、シクロヘキサシランおよびシリルシクロペンタシラ
ンよりなる群から選ばれる少なくとも1種のシラン化合
物 並びに(C)シリコン粒子 を含有するシラン組成
物を基板上に塗布して塗膜を形成する工程および(2)
該塗膜を熱処理および/または光処理する工程を含む方
法により該半導体薄膜のうちの少なくとも一層を形成す
ることを特徴とする太陽電池の製造方法によって達成さ
れる。
Thirdly, the above objects and advantages of the present invention are as follows. Thirdly, a solar cell having a structure in which at least two semiconductor thin films having different impurity concentrations and / or different kinds are laminated between a pair of electrodes is manufactured. a method of, (1) (a) formula Si n R m (where, n is an integer of 3 or more, m is n to (2n +
2) is an integer and m R are independently of each other a hydrogen atom, an alkyl group, a phenyl group or a halogen atom, provided that all of the m R are hydrogen atoms and m = 2n.
And n is an integer of 7 or more. ) A silane composition containing at least one silane compound selected from the group consisting of (B) cyclopentasilane, cyclohexasilane, and silylcyclopentasilane; and (C) silicon particles on a substrate. Forming a coating film by applying to (2)
This is achieved by a method for producing a solar cell, which comprises forming at least one layer of the semiconductor thin film by a method including a step of heat-treating and / or photo-treating the coating film.

【0013】本発明の上記目的および利点は、第4に、
(A)式Sinm(ここで、nは3以上の整数であり、
mはn〜(2n+2)の整数でありそしてm個のRは互
いに独立に水素原子、アルキル基、フェニル基またはハ
ロゲン原子である、但しm個のRの全てが水素原子であ
り且つm=2nであるとき、nは7以上の整数であるも
のとする。)で表されるポリシラン化合物、(B)シク
ロペンタシラン、シクロヘキサシランおよびシリルシク
ロペンタシランよりなる群から選ばれる少なくとも1種
のシラン化合物、(C)シリコン粒子 並びに(D)ホ
ウ素化合物、ヒ素化合物、リン化合物、アンチモン化合
物、および一般式Siabc(ここで、Xは水素原子
および/またはハロゲン原子を表し、Yはホウ素原子ま
たはリン原子を表し、aは3以上の整数を表し、bは1
以上a以下の整数を表し、cはa以上で2a+b+2以
下の整数を表す)で表される変性シラン化合物よりなる
群から選ばれる少なくとも一種の化合物、を含有するこ
とを特徴とするシラン組成物によって達成される。
Fourthly, the above objects and advantages of the present invention are as follows.
(A) Formula Si n R m (where n is an integer of 3 or more,
m is an integer from n to (2n + 2) and m Rs are independently of each other a hydrogen atom, an alkyl group, a phenyl group or a halogen atom, provided that all m Rs are hydrogen atoms and m = 2n. And n is an integer of 7 or more. (B) cyclopentasilane, (B) at least one silane compound selected from the group consisting of cyclohexasilane and silylcyclopentasilane, (C) silicon particles, and (D) boron compound, arsenic compound , A phosphorus compound, an antimony compound, and a general formula Si a X b Y c (wherein X represents a hydrogen atom and / or a halogen atom, Y represents a boron atom or a phosphorus atom, and a represents an integer of 3 or more. , B is 1
A silane composition characterized by containing at least one compound selected from the group consisting of modified silane compounds represented by the following: an integer of a or more and a or less, and c is an integer of a or more and 2a + b + 2 or less) To be achieved.

【0014】さらに本発明の上記目的および利点は第5
に、一対の電極の間に、不純物の濃度および/または種
類の異なる半導体薄膜を少なくとも二層以上積層した構
造を有する太陽電池を製造する方法において、(1)上
記記載のシラン組成物を基板上に塗布して塗膜を形成す
る工程および(2)該塗膜を熱処理および/または光処
理する工程を含む方法により該半導体薄膜のうちの少な
くとも一層をp型またはn型のシリコン薄膜として形成
することを特徴とする太陽電池の製造方法によって達成
される。
Further, the above objects and advantages of the present invention are the fifth.
In the method for producing a solar cell having a structure in which at least two semiconductor thin films having different impurity concentrations and / or different kinds are laminated between a pair of electrodes, (1) the silane composition described above on a substrate At least one of the semiconductor thin films is formed as a p-type or n-type silicon thin film by a method including a step of applying a coating film on the substrate to form a coating film, and (2) a step of heat-treating and / or phototreating the coating film. This is achieved by a method for manufacturing a solar cell, which is characterized in that

【0015】[0015]

【発明の好ましい実施の形態】以下、本発明を詳細に説
明する。本発明に使用するシラン組成物は、下記する
(A)、(B)および(C)成分、または(A)、
(B)、(C)および(D)成分を必須成分として含有
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The silane composition used in the present invention comprises the following components (A), (B) and (C), or (A),
It contains the components (B), (C) and (D) as essential components.

【0016】(A)成分 本発明に用いられる(A)成分は、式Sinm(ここ
で、nは3以上の整数であり、mはn〜(2n+2)の
整数でありそしてm個のRは互いに独立に水素原子、ア
ルキル基、フェニル基またはハロゲン原子である、但し
m個のRの全てが水素原子であり且つm=2nであると
き、nは7以上の整数であるものとする。)で表され
る。
Component (A) The component (A) used in the present invention is represented by the formula Si n R m (where n is an integer of 3 or more, m is an integer of n to (2n + 2), and m pieces are included). R's are each independently a hydrogen atom, an alkyl group, a phenyl group or a halogen atom, provided that when all m R's are hydrogen atoms and m = 2n, n is an integer of 7 or more. Yes.).

【0017】上記のRが表すアルキル基としては、例え
ばメチル基、エチル基、n−プロピル基、i−プロピル
基、n−ブチル基、sec−ブチル基、t−ブチル基、
n−ペンチル基、i−ペンチル基、ネオペンチル基、n
−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n
−オクチル基、n−ノニル基およびn−デシル基などの
炭素数1〜10のアルキル基を好ましいものとして挙げ
ることができる。また、ハロゲン原子としては、例えば
フッ素、塩素および臭素を好ましいものとして挙げるこ
とができる。上記ポリシラン化合物は、鎖状、環状、ま
たはかご状であることができる。
Examples of the alkyl group represented by R include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a sec-butyl group, a t-butyl group,
n-pentyl group, i-pentyl group, neopentyl group, n
-Hexyl group, cyclohexyl group, n-heptyl group, n
Preferred examples include alkyl groups having 1 to 10 carbon atoms such as an -octyl group, an n-nonyl group, and an n-decyl group. Further, as the halogen atom, for example, fluorine, chlorine and bromine can be mentioned as preferable ones. The polysilane compound may have a chain shape, a ring shape, or a cage shape.

【0018】上記ポリシラン化合物のうち、Rのすべて
が水素原子である水素化ポリシラン化合物が好ましく用
いられる。このような水素化ポリシラン化合物として
は、式Sin2n+2で表される水素化鎖状ポリシラン、
式Sin2nで表される水素化環状ポリシラン、および
式Sinnで表される水素化かご状ポリシラン化合物が
好適に用いられる。なお、「かご状」とは、プリズマン
骨格、キューバン骨格、5角柱型骨格等を含むものを意
味する。
Of the above polysilane compounds, hydrogenated polysilane compounds in which all R are hydrogen atoms are preferably used. Such hydrogenated polysilane compound, hydrogenated chain polysilane represented by the formula Si n H 2n + 2,
Hydrogenated cyclic polysilane represented by the formula Si n H 2n, and hydrogenated cage-like polysilane compound represented by the formula Si n H n is preferably used. In addition, "cage-like" means a thing including a Prisman skeleton, a Cuban skeleton, a pentagonal prism skeleton, and the like.

【0019】ただし、上記各式におけるnは、水素化鎖
状ポリシランにおいて3〜100,000、好ましくは
5〜50,000の整数であり、水素化環状ポリシラン
において7〜100,000、好ましくは8〜50,0
00の整数であり、そして水素化かご状ポリシランにお
いて6〜100,000、好ましくは7〜50,000
の整数である。
However, n in each of the above formulas is an integer of 3 to 100,000, preferably 5 to 50,000 in the hydrogenated chain polysilane, and 7 to 100,000, preferably 8 in the hydrogenated cyclic polysilane. ~ 50,0
Is an integer of 0, and in hydrogenated cage polysilanes 6 to 100,000, preferably 7 to 50,000.
Is an integer.

【0020】この場合、nが上記した最小値より小さい
場合にはポリシラン化合物の成膜性に難点が生じる場合
があり、またnが上記した最大値より大きい場合にはポ
リシラン化合物の凝集力に起因する溶解性の低下が認め
られる場合がある。このようなポリシラン化合物は、単
独で、または、2種以上を一緒に使用することができ
る。
In this case, if n is smaller than the above-mentioned minimum value, the film-forming property of the polysilane compound may be difficult, and if n is larger than the above-mentioned maximum value, the cohesive force of the polysilane compound may be caused. A decrease in solubility may be observed. Such polysilane compounds may be used alone or in combination of two or more.

【0021】本発明で使用するポリシラン化合物は、所
望の構造単位を有するモノマ−を原料として、例えば以
下の方法により製造することができる。(a)アルカリ
金属の存在下にハロシラン類を脱ハロゲン縮重合させる
方法(いわゆる「キッピング法」、J.Am.Che
m.Soc.,110,2342(1988)およびM
acromolecules,23,3423(199
0)参照);(b)電極還元によりハロシラン類を脱ハ
ロゲン縮重合させる方法(J.Chem.Soc.,C
hem.Commun.,1161(1990)および
J.Chem.Soc.,Chem.Commun.,
896(1992)参照);(c)金属触媒の存在下に
ヒドロシラン類を脱水素縮重合させる方法(特開平4−
334551号公報参照):(d)ビフェニルなどで架
橋されたジシレンのアニオン重合による方法(Macr
o molecules,23,4494(1990)
参照)。(e)フェニル基やアルキル基で置換された環
状ケイ素化合物を上記の方法で合成した後、公知の方法
(例えば、Z.Anorg.Allg.Chem.,
59,123−130 (1979)、E.Hengg
eら Mh.Chem.第106巻、503頁、197
5年など)によりヒドロ置換体やハロゲン置換体などに
誘導することができ、(f)上記の方法で合成したシラ
ン化合物に光照射することによりさらに高分子量のポリ
シラン化合物とすることができる。
The polysilane compound used in the present invention can be produced, for example, by the following method using a monomer having a desired structural unit as a raw material. (A) A method of dehalogenating polycondensation of halosilanes in the presence of an alkali metal (so-called "kipping method", J. Am. Che
m. Soc. , 110 , 2342 (1988) and M.
acromolecules, 23 , 3423 (199
0)); (b) Method of dehalogenating polycondensation of halosilanes by electrode reduction (J. Chem. Soc., C.
hem. Commun. 1161 (1990) and J. Chem. Soc. Chem. Commun. ,
896 (1992)); (c) A method for dehydrogenative condensation polymerization of hydrosilanes in the presence of a metal catalyst (JP-A-4-26
No. 334551): (d) Method by anionic polymerization of disilene crosslinked with biphenyl or the like (Macr
o molecules, 23, 4494 (1990)
reference). (E) After synthesizing the cyclic silicon compound substituted with a phenyl group or an alkyl group by the above method, a known method (for example, Z. Anorg. Allg. Chem., 4
59 , 123-130 (1979), E.I. Henggg
e et al Mh. Chem. Volume 106, Pages 503, 197
It can be converted to a hydro-substituted product, a halogen-substituted product or the like after 5 years), and (f) the silane compound synthesized by the above method can be irradiated with light to obtain a higher molecular weight polysilane compound.

【0022】シラン化合物に光照射してポリシラン化合
物を合成する場合、その原料となるシラン化合物として
は、式Sii2i+2(ここでiは2〜8の整数であり、
好ましくは2〜4の整数である。)で表される水素化鎖
状シラン化合物、式Sij2 j(ここでjは3〜10の
整数であり、好ましくは3〜6の整数である。)で表さ
れる水素化環状シラン化合物、および式Sikk(ここ
でkは6〜10の整数である。)で表される水素化かご
状シラン化合物が好ましい。そのうちでも上記水素化環
状シラン化合物がさらに好ましく、特に好ましくはシク
ロペンタシラン、シクロヘキサシランおよびシリルシク
ロペンタシランよりなる群から選ばれる少なくとも1種
の化合物である。これらはそれぞれ、下記式(1)〜
(3)で表される。
When a polysilane compound is synthesized by irradiating a silane compound with light, a silane compound as a raw material is represented by the formula Si i H 2i + 2 (where i is an integer of 2 to 8,
It is preferably an integer of 2 to 4. ) A hydrogenated chain silane compound represented by the formula: Si j H 2 j (where j is an integer of 3 to 10, preferably an integer of 3 to 6) A compound and a hydrogenated cage silane compound represented by the formula Si k H k (k is an integer of 6 to 10) are preferable. Of these, the hydrogenated cyclic silane compounds are more preferable, and at least one compound selected from the group consisting of cyclopentasilane, cyclohexasilane, and silylcyclopentasilane is particularly preferable. These are respectively represented by the following formulas (1) to
It is represented by (3).

【0023】[0023]

【化1】 [Chemical 1]

【0024】これらのシラン化合物は、ジフェニルジク
ロロシランから製造されるデカフェニルシクロペンタシ
ランおよびドデカフェニルシクロペンタシランを経て製
造することができる。
These silane compounds can be produced via decaphenylcyclopentasilane and dodecaphenylcyclopentasilane produced from diphenyldichlorosilane.

【0025】これらのシラン化合物は単独であるいは2
種以上の混合物として用いることができる。
These silane compounds may be used alone or in the form of 2
It can be used as a mixture of two or more species.

【0026】光照射する際には、可視光線、紫外線、遠
紫外線の他、低圧あるいは高圧の水銀ランプ、重水素ラ
ンプあるいはアルゴン、クリプトン、キセノン等の希ガ
スの放電光の他、YAGレーザー、アルゴンレーザー、
炭酸ガスレーザー、XeF、XeCl、XeBr、Kr
F、KrCl、ArF、ArClなどのエキシマレーザ
ーなどを光源として使用することができる。これらの光
源としては、好ましくは10〜5,000Wの出力のも
のが用いられる。通常100〜1,000Wで十分であ
る。これらの光源の波長は原料のシラン化合物が多少で
も吸収するものであれば特に限定されないが、170n
m〜600nmが好ましい。
When irradiating light, in addition to visible light, ultraviolet light, far ultraviolet light, low-pressure or high-pressure mercury lamp, deuterium lamp, discharge light of rare gas such as argon, krypton, xenon, YAG laser, argon. laser,
Carbon dioxide laser, XeF, XeCl, XeBr, Kr
An excimer laser such as F, KrCl, ArF, or ArCl can be used as a light source. As these light sources, those having an output of 10 to 5,000 W are preferably used. Usually 100 to 1,000 W is sufficient. The wavelength of these light sources is not particularly limited as long as it is absorbed by the silane compound as a raw material, but 170n
m-600 nm is preferable.

【0027】光照射処理を行う際の温度は、好ましくは
室温〜300℃以下である。処理時間は0.1〜30分
程度である。光照射処理は、非酸化性雰囲気下で行うこ
とが好ましい。また、光照射処理は、適当な溶媒の存在
下に行ってもよい。このような溶媒としては、本発明の
組成物の任意添加成分として後述する溶媒と同様のもの
を使用することができる。
The temperature for the light irradiation treatment is preferably room temperature to 300 ° C. or lower. The processing time is about 0.1 to 30 minutes. The light irradiation treatment is preferably performed in a non-oxidizing atmosphere. Further, the light irradiation treatment may be carried out in the presence of a suitable solvent. As such a solvent, those similar to the solvent described below as an optional addition component of the composition of the present invention can be used.

【0028】(B)成分 本発明で使用される(B)成分は、シクロペンタシラ
ン、シクロヘキサシランおよびシリルシクロペンタシラ
ンよりなる群から選ばれる少なくとも1種のシラン化合
物である。本発明において、これらのシラン化合物は単
独であるいは2種以上の混合物として用いることができ
る。
Component (B) The component (B) used in the present invention is at least one silane compound selected from the group consisting of cyclopentasilane, cyclohexasilane and silylcyclopentasilane. In the present invention, these silane compounds can be used alone or as a mixture of two or more kinds.

【0029】上記の(A)成分であるポリシラン化合物
は、式Sinmにおける重合度nが10程度以上の高分
子量体になると、炭化水素系溶媒、エーテル系溶媒等の
汎用溶媒に対する溶解性が著しく低くなり、実質的に不
溶性となるので、このようなポリシラン化合物を基板上
に成膜し、シリコン膜に変換することは実質的に不可能
であった。
When the polysilane compound as the above-mentioned component (A) becomes a high molecular weight compound having a degree of polymerization n in the formula Si n R m of about 10 or more, the polysilane compound is soluble in a general-purpose solvent such as a hydrocarbon solvent or an ether solvent. Since it becomes extremely low and becomes substantially insoluble, it was virtually impossible to form such a polysilane compound on a substrate and convert it into a silicon film.

【0030】本発明において、このような本来は溶媒不
溶のポリシラン化合物に対し、特定の液状のシラン化合
物(上記(B)成分)が良好な溶解性を示すことを見い
出し、ポリシラン化合物を半導体薄膜の原料として使用
することが可能となった。このような比較的高分子量の
ポリシラン化合物をシリコン膜の原料として使用するこ
とにより、形成された膜が緻密で均一性に優れた高品位
のものとなる利点がある。
In the present invention, it was found that a specific liquid silane compound (the above-mentioned component (B)) exhibits a good solubility in such an originally solvent-insoluble polysilane compound, and the polysilane compound is used as a semiconductor thin film. It has become possible to use it as a raw material. By using such a relatively high molecular weight polysilane compound as a raw material for the silicon film, there is an advantage that the formed film becomes dense and has excellent uniformity and high quality.

【0031】本発明の溶液組成物を構成する上記シラン
化合物に対するポリシラン化合物の割合は好ましくは
0.01〜1,000重量%、さらに好ましくは0.0
5〜500重量%、特に好ましくは0.1〜100重量
%である。この値が0.01重量%未満の場合は、塗布
した後に塗膜が薄すぎ最終的に連続したシリコン膜にな
らない場合がある。一方、この値が1,000重量%を
超える場合は、ポリシラン化合物が完全に溶解しない場
合がある。
The ratio of the polysilane compound to the silane compound constituting the solution composition of the present invention is preferably 0.01 to 1,000% by weight, more preferably 0.0.
It is 5 to 500% by weight, particularly preferably 0.1 to 100% by weight. If this value is less than 0.01% by weight, the coating film may be too thin after coating to finally form a continuous silicon film. On the other hand, if this value exceeds 1,000% by weight, the polysilane compound may not be completely dissolved.

【0032】(C)成分 本発明に用いられるシリコン粒子としては、市販のもの
あるいは特開平11−49507号公報記載の方法など
により合成したもの等を使用することができる。シリコ
ン粒子の純度は好ましくは99%以上、さらに好ましく
は99.9%以上、特に好ましくは99.99%以上で
ある。99%未満であると形成したシリコン膜が半導体
特性を発現しない場合があり好ましくない。
Component (C) As the silicon particles used in the present invention, commercially available ones or those synthesized by the method described in JP-A No. 11-49507 can be used. The purity of the silicon particles is preferably 99% or more, more preferably 99.9% or more, and particularly preferably 99.99% or more. If it is less than 99%, the formed silicon film may not exhibit semiconductor characteristics, which is not preferable.

【0033】シリコン粒子の粒子径は、好ましくは0.
005〜1,000μm、特に好ましくは0.005〜
100μmであり、所望の膜厚により適宜粒子径を選ぶ
ことができ、シリコン粒子の形状や粒径分布には特に制
限はない。シリコン粒子の使用量は、上記(A)成分と
(B)成分の合計量に対し、好ましくは0.01〜20
0重量%、さらに好ましくは0.1〜100重量%であ
る。
The particle size of the silicon particles is preferably 0.
005 to 1,000 μm, particularly preferably 0.005
The particle size is 100 μm, the particle size can be appropriately selected according to the desired film thickness, and the shape and particle size distribution of the silicon particles are not particularly limited. The amount of silicon particles used is preferably 0.01 to 20 with respect to the total amount of the components (A) and (B).
It is 0% by weight, more preferably 0.1 to 100% by weight.

【0034】シリコン粒子はアモルファス状でも結晶質
のものでもよいが、600℃以下で良質の結晶性のシリ
コン薄膜を形成したい場合は、結晶質のシリコン粒子を
用いることが好ましい。結晶質のシリコン粒子を用いる
と、本発明のシラン組成物を塗布して熱および/または
光処理してシリコン膜を形成する際に結晶核として働
き、結晶成長を促進させることができる。また、シラン
組成物中にシリコン粒子が分散されていることにより、
シリコン膜形成時の基板との密着性が大幅に向上し、膜
厚を大幅に厚くしてもクラックや剥がれが生じることな
く均質なシリコン膜を形成することができる。
The silicon particles may be amorphous or crystalline, but if it is desired to form a good quality crystalline silicon thin film at 600 ° C. or lower, it is preferable to use crystalline silicon particles. When crystalline silicon particles are used, they act as crystal nuclei when a silane composition of the present invention is applied and heat and / or phototreated to form a silicon film, and crystal growth can be promoted. Further, by dispersing the silicon particles in the silane composition,
Adhesion to the substrate during the formation of the silicon film is significantly improved, and even if the film thickness is significantly increased, a uniform silicon film can be formed without causing cracks or peeling.

【0035】(D)成分 本発明のシラン組成物は、上記(A)成分、(B)成分
および(C)成分を必須成分として含有するものである
が、さらに(D)成分を含有することができる。
Component (D) The silane composition of the present invention contains the above-mentioned component (A), component (B) and component (C) as essential components, but it must further contain component (D). You can

【0036】本発明に使用される(D)成分は、ホウ素
化合物、ヒ素化合物、リン化合物、アンチモン化合物、
および式Siabc(ここで、Xは水素原子および/
またはハロゲン原子を表し、Yはホウ素原子またはリン
原子を表し、aは3以上の整数を表し、bは1以上a以
下の整数を表し、cはa以上で2a+b+2以下の整数
を表す)で表される変性シラン化合物から選ばれる少な
くとも一種の化合物である。
The component (D) used in the present invention is a boron compound, an arsenic compound, a phosphorus compound, an antimony compound,
And the formula Si a X b Y c (where X is a hydrogen atom and / or
Or a halogen atom, Y represents a boron atom or a phosphorus atom, a represents an integer of 3 or more, b represents an integer of 1 or more and a or less, and c represents an integer of a or more and 2a + b + 2 or less). Is at least one compound selected from the modified silane compounds.

【0037】上記ホウ素化合物としては例えばホウ素水
素化物、ホウ素アルキル化物、ホウ素アリール化物およ
びトリメチルシリル基を有するホウ素化合物が挙げられ
る。これらの具体例としては、例えばB26、BP
3、BMePh2、B(t−Bu)3、B(SiMe3
3、PhB(SiMe32、Cl2B(SiMe3)など
が挙げられる。ここで、Phはフェニル基を意味し、M
eはメチル基を意味する。また以下においても同様であ
る。
Examples of the boron compound include boron hydrides, boron alkylates, boron arylates, and boron compounds having a trimethylsilyl group. Specific examples of these include B 2 H 6 and BP.
h 3, BMePh 2, B ( t-Bu) 3, B (SiMe 3)
3 , PhB (SiMe 3 ) 2 , Cl 2 B (SiMe 3 ) and the like. Here, Ph means a phenyl group, and M
e means a methyl group. The same applies to the following.

【0038】上記ヒ素化合物としては、例えばヒ素アル
キル化物、ヒ素アリール化物およびトリメチルシリル基
を有するヒ素化合物が挙げられる。これらの具体例とし
ては、例えば、AsPh3、AsMePh2、As(t−
Bu)3、As(SiMe3 3、PhAs(SiMe3
2、Cl2As(SiMe3)等が挙げられる。ここで、
t−Buは第3級ブチル基を意味する。また、以下にお
いても同様である。
Examples of the arsenic compound include arsenic alkanes.
Killed compounds, arsenic aryl compounds and trimethylsilyl groups
And an arsenic compound having As specific examples of these
For example, AsPh3, AsMePh2, As (t-
Bu)3, As (SiMe3) 3, PhAs (SiMe3)
2, Cl2As (SiMe3) And the like. here,
t-Bu means a tertiary butyl group. Also,
The same is true.

【0039】上記リン化合物としては、例えばリンアル
キル化物、リンアリール化物およびトリメチルシリル基
を有するリン化合物が挙げられる。これらの具体例とし
ては、PPh3、PMePh2、P(t−Bu)3、P
(SiMe33、PhP(SiMe32、Cl2P(S
iMe33等が挙げられる。
Examples of the phosphorus compound include phosphorus alkyl compounds, phosphorus aryl compounds and phosphorus compounds having a trimethylsilyl group. Specific examples of these include PPh 3 , PMePh 2 , P (t-Bu) 3 and P
(SiMe 3 ) 3 , PhP (SiMe 3 ) 2 , Cl 2 P (S
iMe 3 ) 3 and the like.

【0040】上記アンチモン化合物としては、例えばア
ンチモンアルキル化物、およびアンチモンアリール化物
が挙げられる。それらの具体例としては、例えばSbP
3、SbMePh2、Sb(t−Bu)3等が挙げられ
る。
Examples of the antimony compound include antimony alkyl compounds and antimony aryl compounds. Specific examples thereof include SbP
h 3, SbMePh 2, Sb ( t-Bu) 3 and the like.

【0041】これらの他、アンチモンとヒ素を一分子内
に含有するSbAs(SiMe32、Sb2As(Si
Me3)等も好適に用いられる。
In addition to these, SbAs (SiMe 3 ) 2 and Sb 2 As (Si containing antimony and arsenic in one molecule
Me 3 ) and the like are also preferably used.

【0042】上記式Siabc(ここで、Xは水素原
子および/またはハロゲン原子を表し、Yはホウ素原子
またはリン原子を表し、aは3以上の整数を表し、bは
1以上a以下の整数を表し、cはa以上で(2a+b+
2)以下の整数を表す)で表される変性シラン化合物か
ら選ばれる少なくとも一種の化合物の具体例としては、
例えば下記式で表される化合物を挙げることができる。
The above formula Si a X b Y c (wherein X represents a hydrogen atom and / or a halogen atom, Y represents a boron atom or a phosphorus atom, a represents an integer of 3 or more, and b represents 1 or more. represents an integer less than or equal to a, and c is greater than or equal to a and is (2a + b +
2) represents at least the following integer), as a specific example of at least one compound selected from the modified silane compounds,
For example, the compound represented by the following formula can be mentioned.

【0043】[0043]

【化2】 [Chemical 2]

【0044】[0044]

【化3】 [Chemical 3]

【0045】SiH3(SiH2eBH2 化合物21 SiCl3(SiCl2eBCl2 化合物22 上記式中のdは0以上の整数を表し、eは2以上の整数
を表す。
SiH 3 (SiH 2 ) e BH 2 compound 21 SiCl 3 (SiCl 2 ) e BCl 2 compound 22 In the above formula, d represents an integer of 0 or more, and e represents an integer of 2 or more.

【0046】なお、上記式にはホウ素原子を含有する変
性シラン化合物のみを例示したが、リン原子を含有する
変性シラン化合物についても、上記式と同様の骨格を有
するものすなわち上記各式のホウ素原子をリン原子に変
えたものを例示することができる。
Although only the modified silane compound containing a boron atom has been exemplified in the above formula, the modified silane compound containing a phosphorus atom also has a skeleton similar to that of the above formula, that is, the boron atom of each of the above formulas. It is possible to exemplify one in which is changed to a phosphorus atom.

【0047】これらの化合物の合成方法としては、通常
それぞれの構造単位を有するハロゲン化ホウ素、ハロゲ
ン化リン、ハロゲン化シラン等のモノマーを原料とし
て、例えば、前述の(A)成分と同様の方法により合成
することができる。
As a method for synthesizing these compounds, a monomer such as boron halide, phosphorus halide or silane having each structural unit is usually used as a raw material and, for example, the same method as the above-mentioned component (A) is used. Can be synthesized.

【0048】本発明に用いるシラン組成物が(D)成分
を含有するものであるとき、その含有量は、(A)成分
100重量部あたり、好ましくは100重量部以下、よ
り好ましくは0.01〜50重量部、特に好ましくは
0.1〜10重量部である。その他の成分本発明に使用
する組成物は、上記(A)成分、(B)成分、(C)成
分および場合により(D)成分を必須成分として含有す
るものであるが、本発明の機能を損なわない限りにおい
て、その他の成分を含有することができる。このような
その他の成分としては、例えば界面活性剤が挙げられ
る。
When the silane composition used in the present invention contains the component (D), its content is preferably 100 parts by weight or less, more preferably 0.01 part by weight, per 100 parts by weight of the component (A). ˜50 parts by weight, particularly preferably 0.1 to 10 parts by weight. Other Components The composition used in the present invention contains the above-mentioned component (A), component (B), component (C) and optionally component (D) as essential components. Other components may be contained as long as they are not impaired. Examples of such other components include a surfactant.

【0049】かかる界面活性剤は、カチオン系、アニオ
ン系、両イオン系、または非イオン系であることができ
る。特に非イオン系界面活性剤は、組成物の塗布対象物
への濡れ性を良好にし、塗布した膜のレベルリング性を
改良し、塗膜のぶつぶつの発生、ゆず肌の発生などの防
止に役立つので好ましく使用できる。
Such surfactants can be cationic, anionic, zwitterionic, or nonionic. In particular, nonionic surfactants improve the wettability of the composition to the object to be coated, improve the leveling property of the coated film, and help prevent the occurrence of crushing of the coating film and the occurrence of orange peel skin. Therefore, it can be preferably used.

【0050】かかる非イオン性界面活性剤としては、例
えばフッ化アルキル基もしくはパーフルオロアルキル基
を有するフッ素系界面活性剤、またはオキシアルキル基
を有するポリエーテルアルキル系界面活性剤を挙げるこ
とができる。
Examples of such nonionic surfactants include fluorochemical surfactants having a fluorinated alkyl group or perfluoroalkyl group, and polyether alkyl surfactants having an oxyalkyl group.

【0051】前記フッ素系界面活性剤としては、例えば
エフトップEF301、同EF303、同EF352
(新秋田化成(株)製)、メガファックF171、同F
173(大日本インキ(株)製)、アサヒガードAG7
10(旭硝子(株)製)、フロラードFC−170C、
同FC430、同FC431(住友スリーエム(株)
製)、サーフロンS−382、同SC101、同SC1
02、同SC103、同SC104、同SC105、同
SC106(旭硝子(株)製)、BM−1000、同1
100(B.M−Chemie社製)、Schsego
−Fluor(Schwegmann社製)、C919
CONHC1225、C817SO2NH−(C24O)6
H、C917O(プルロニックL−35)C917、C9
17O(プルロニックP−84)C917、C917
(テトロニック−704)(C9172などを挙げるこ
とができる。(ここで、プルロニックL−35:旭電化
工業(株)製、ポリオキシプロピレン−ポリオキシエチ
レンブロック共重合体、平均分子量1,900;プルロ
ニックP−84:旭電化工業(株)製、ポリオキシプロ
ピレン−ポリオキシエチレンブロック共重合体、平均分
子量4,200;テトロニック−704:旭電化工業
(株)製、N,N,N’,N’−テトラキス(ポリオキシ
プロピレン−ポリオキシエチレンブロック共重合体)、
平均分子量5,000である。) またポリエーテルアルキル系界面活性剤としては、ポリ
オキシエチレンアルキルエーテル、ポリオキシエチレン
アリルエーテル、ポリオキシエチレンアルキルフェノー
ルエーテル、ポリオキシエチレン脂肪酸エステル、ソル
ビタン脂肪酸エステル、ポリオキシエチレンソルビタン
脂肪酸エステル、オキシエチレンオキシプロピレンブロ
ックポリマーなどを挙げることができる。
Examples of the above-mentioned fluorine-containing surfactant include F-top EF301, EF303, EF352.
(Manufactured by Shin-Akita Kasei Co., Ltd.), Megafac F171, F
173 (manufactured by Dainippon Ink and Chemicals, Inc.), Asahi Guard AG7
10 (manufactured by Asahi Glass Co., Ltd.), Florard FC-170C,
FC430 and FC431 (Sumitomo 3M Limited)
Manufactured), Surflon S-382, SC101, SC1
02, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.), BM-1000, SC1
100 (manufactured by BM Chemie), Schsego
-Fluor (manufactured by Schwegmann), C 9 F 19
CONHC 12 H 25 , C 8 F 17 SO 2 NH- (C 2 H 4 O) 6
H, C 9 F 17 O (Pluronic L-35) C 9 F 17 , C 9
F 17 O (Pluronic P-84) C 9 F 17 , C 9 F 17 O
(Tetronic-704) (C 9 F 17 ) 2 and the like can be mentioned. (Here, Pluronic L-35: Asahi Denka Kogyo KK, polyoxypropylene-polyoxyethylene block copolymer, average molecular weight 1,900; Pluronic P-84: Asahi Denka Kogyo KK, polyoxy Propylene-polyoxyethylene block copolymer, average molecular weight 4,200; Tetronic-704: Asahi Denka Co., Ltd., N, N, N ', N'-tetrakis (polyoxypropylene-polyoxyethylene block copolymer Polymer),
The average molecular weight is 5,000. ) Further, as the polyether alkyl-based surfactant, polyoxyethylene alkyl ether, polyoxyethylene allyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, oxyethyleneoxy A propylene block polymer etc. can be mentioned.

【0052】これらのポリエーテルアルキル系界面活性
剤の具体例としては、エマルゲン105、同430、同
810、同920、レオドールSP−40S、同TW−
L120、エマノール3199、同4110、エキセル
P−40S、ブリッジ30、同52、同72、同92、
アラッセル20、エマゾール320、ツィーン20、同
60、マージ45(いずれも(株)花王製)、ノニボー
ル55(三洋化成(株)製)などを挙げることができ
る。上記以外の非イオン性界面活性剤としては、例えば
ポリオキシエチレン脂肪酸エステル、ポリオキシエチレ
ンソルビタン脂肪酸エステル、ポリアルキレンオキサイ
ドブロック共重合体などがあり、具体的にはケミスタッ
ト2500(三洋化成工業(株)製)、SN−EX92
28(サンノプコ(株)製)、ノナール530(東邦化
学工業(株)製)などを挙げることができる。
Specific examples of these polyether alkyl-based surfactants include Emulgen 105, 430, 810, 920, Rhodol SP-40S and TW-.
L120, Emanol 3199, Same 4110, Exel P-40S, Bridge 30, Same 52, Same 72, Same 92,
Examples include Arassel 20, Emazol 320, Tween 20, 60, Merge 45 (all manufactured by Kao Corporation), Noniball 55 (manufactured by Sanyo Kasei Co., Ltd.) and the like. Examples of nonionic surfactants other than the above include polyoxyethylene fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyalkylene oxide block copolymer, and the like. Specifically, Chemistat 2500 (Sanyo Chemical Co., Ltd.) Manufactured), SN-EX92
28 (manufactured by San Nopco Co., Ltd.) and Nonal 530 (manufactured by Toho Chemical Industry Co., Ltd.).

【0053】このような界面活性剤の使用量は、組成物
の総量100重量部に対して、好ましくは10重量部以
下、特に好ましくは0.1〜5重量部である。ここで、
10重量部を超えると得られる組成物が発泡し易くなる
と共に、熱変色を起こす場合があり好ましくない。
The amount of such a surfactant used is preferably 10 parts by weight or less, particularly preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the total composition. here,
If it exceeds 10 parts by weight, the resulting composition is likely to foam, and thermal discoloration may occur, which is not preferable.

【0054】本発明で使用するシラン組成物は上記各成
分の他、溶媒を含有することができる。本発明で使用で
きる溶媒は、好ましくは、大気圧下での沸点が30〜3
50℃のものである。使用する溶媒の沸点が30℃より
低い場合には、コーティングで塗膜を形成する場合に溶
媒が先に蒸発してしまい良好な塗膜を形成することが困
難となる場合がある。一方、沸点が350℃を超える場
合には溶媒の散逸が遅くなり塗布膜中に溶媒が残留し易
くなり、後工程の熱および/または光処理後にも良質の
シリコン膜が得られ難い場合がある。
The silane composition used in the present invention may contain a solvent in addition to the above components. The solvent that can be used in the present invention preferably has a boiling point of 30 to 3 at atmospheric pressure.
It is one at 50 ° C. When the boiling point of the solvent used is lower than 30 ° C., when forming a coating film by coating, the solvent may evaporate first and it may be difficult to form a good coating film. On the other hand, when the boiling point is higher than 350 ° C., the dissipation of the solvent is delayed, the solvent is likely to remain in the coating film, and it may be difficult to obtain a good-quality silicon film even after the heat and / or light treatment in the subsequent step. .

【0055】本発明で使用できる溶媒としては、(A)
成分、(B)成分、(C)成分および場合により含有さ
れる(D)成分を析出させたり、相分離させたり、かつ
これらと反応したりしないものであれば特に限定され
ず、例えば、n−ペンタン、n−ヘキサン、n−ヘプタ
ン、n−オクタン、デカン、ドデカン、シクロヘキサ
ン、シクロオクタン、スチレン、ジシクロペンタン、ベ
ンゼン、トルエン、キシレン、クメン、デュレン、イン
デン、テトラヒドロナフタレン、デカヒドロナフタレ
ン、スクワランなどの炭化水素系溶媒;ジエチルエーテ
ル、ジプロピルエーテル、エチレングリコールジメチル
エーテル、エチレングリコールジエチルエーテル、エチ
レングリコールメチルエチルエーテル、ジエチレングリ
コールジメチルエーテル、ジエチレングリコールジエチ
ルエーテル、ジエチレングリコールメチルエチルエーテ
ル、テトラヒドロフランテトラヒドロピラン、1,2−
ジメトキシエタン、ビス(2−メトキシエチル)エーテ
ル、p−ジオキサン、テトラヒドロフランなどのエーテ
ル系溶媒;およびプロピレンカーボネート、γ−ブチロ
ラクトン、N−メチル−2−ピロリドン、ジメチルホル
ムアミド、アセトニトリル、ジメチルスルホキシド、塩
化メチレン、クロロホルムなどの極性溶媒を挙げること
ができる。これらのうち、該溶液の安定性の点で炭化水
素系溶媒が好ましい。これらの溶媒は、単独でも、ある
いは2種以上の混合物としても使用できる。
The solvent which can be used in the present invention includes (A)
The component, the component (B), the component (C), and the component (D), which is optionally contained, are not particularly limited as long as they do not precipitate, phase-separate, or react with them. For example, n -Pentane, n-hexane, n-heptane, n-octane, decane, dodecane, cyclohexane, cyclooctane, styrene, dicyclopentane, benzene, toluene, xylene, cumene, durene, indene, tetrahydronaphthalene, decahydronaphthalene, squalane. Hydrocarbon solvents such as diethyl ether, dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene Recall methyl ethyl ether, tetrahydrofuran tetrahydropyran, 1,2
Ether-based solvents such as dimethoxyethane, bis (2-methoxyethyl) ether, p-dioxane, tetrahydrofuran; and propylene carbonate, γ-butyrolactone, N-methyl-2-pyrrolidone, dimethylformamide, acetonitrile, dimethylsulfoxide, methylene chloride, Mention may be made of polar solvents such as chloroform. Of these, hydrocarbon solvents are preferable from the viewpoint of stability of the solution. These solvents can be used alone or as a mixture of two or more kinds.

【0056】上記の溶媒を使用する場合、その使用量
は、所望の半導体薄膜の膜厚に応じて適宜調製すること
ができるが、好ましくは上記(A)成分、(B)成分お
よび(C)成分、または(A)成分、(B)成分、
(C)成分および(D)成分の合計量100重量部に対
し、10,000重量部以下であり、特に好ましくは
5,000重量%以下である。10,000重量部を超
えるとポリシリコン化合物が析出する場合があり好まし
くない。
When the above-mentioned solvent is used, the amount thereof can be appropriately adjusted according to the desired thickness of the semiconductor thin film, but preferably the above-mentioned components (A), (B) and (C). Component, or (A) component, (B) component,
The total amount of the components (C) and (D) is 100 parts by weight or less, particularly 10,000 parts by weight or less, and particularly preferably 5,000% by weight or less. If it exceeds 10,000 parts by weight, a polysilicon compound may be precipitated, which is not preferable.

【0057】本発明に使用される組成物は、所望により
光照射処理した後に半導体薄膜形成工程に供することも
できる。このときの光照射条件は、後述の、組成物塗膜
を半導体薄膜に変換する工程で行われる光照射処理と同
様の条件を採用することができる。
The composition used in the present invention may be subjected to a light irradiation treatment if desired and then subjected to a semiconductor thin film forming step. As the light irradiation conditions at this time, the same conditions as the light irradiation treatment performed in the step of converting the composition coating film into a semiconductor thin film, which will be described later, can be adopted.

【0058】太陽電池の形成方法 本発明の太陽電池の製造方法は、一対の電極の間に、不
純物の濃度および/または種類の異なる半導体薄膜を少
なくとも二層以上積層した構造を有する太陽電池を製造
する際に、該半導体薄膜のうちの少なくとも一層を、上
記シラン組成物から形成することを特徴とする。本発明
においては、上記のシラン組成物を基板上に塗布し、熱
および/または光で処理することにより半導体薄膜を形
成する。
Method for Forming Solar Cell A method for manufacturing a solar cell according to the present invention is a method for producing a solar cell having a structure in which at least two semiconductor thin films having different impurity concentrations and / or types are laminated between a pair of electrodes. At this time, at least one layer of the semiconductor thin film is formed from the silane composition. In the present invention, a semiconductor thin film is formed by applying the above silane composition onto a substrate and treating it with heat and / or light.

【0059】このとき使用される基板の種類としては、
例えばガラス、金属、プラスチック、セラミックスなど
を挙げることができる。ガラスとしては、例えば石英ガ
ラス、ホウ珪酸ガラス、ソーダガラス、鉛ガラス、ラン
タン系ガラス等が使用できる。金属としては、例えば
金、銀、銅、ニッケル、シリコン、アルミニウム、鉄、
タングステンの他ステンレス鋼などが使用できる。さら
にこれらの導電性金属やITOなどの導電性金属酸化膜
を表面に有するガラス、プラスチック基板などを使用す
ることができる。プラスチックとしては、例えばポリイ
ミド、ポリエーテルスルホン、ノルボルネン系開環重合
体およびその水素添加物等を使用することができる。さ
らにこれらの材質形状は塊状、板状、フィルム形状など
で特に制限されず、また塗膜を形成すべき面は平面でも
段差のある非平面でもよい。塗膜を半導体薄膜に変換す
る工程に熱処理工程を含む場合は、その熱に耐えられる
材質の基板が好ましい。
As the type of substrate used at this time,
For example, glass, metal, plastic, ceramics, etc. can be mentioned. As the glass, for example, quartz glass, borosilicate glass, soda glass, lead glass, lanthanum glass, etc. can be used. Examples of metals include gold, silver, copper, nickel, silicon, aluminum, iron,
In addition to tungsten, stainless steel can be used. Further, glass, plastic substrate or the like having a conductive metal or a conductive metal oxide film such as ITO on the surface can be used. As the plastic, for example, polyimide, polyether sulfone, norbornene ring-opening polymer and hydrogenated product thereof can be used. Furthermore, the shape of these materials is not particularly limited to lumps, plates, films, etc., and the surface on which the coating film is to be formed may be flat or non-planar with steps. When the step of converting the coating film into a semiconductor thin film includes a heat treatment step, a substrate made of a material that can withstand the heat is preferable.

【0060】基板上にシラン組成物を塗布する際には、
例えばスプレー法、ロールコート法、カーテンコート
法、スピンコート法、スクリーン印刷法、オフセット印
刷法、インクジェット法、ディップコート法などの適宜
の方法により、膜厚が好ましくは0.005〜10μ
m、特に好ましくは0.01〜5μm程度になるように
塗布する。このとき、シラン組成物が溶媒を含有するも
のであるときは、前記膜厚は溶媒除去後の値と理解され
るべきである。
When applying the silane composition onto the substrate,
The film thickness is preferably 0.005 to 10 μm by an appropriate method such as a spray method, a roll coating method, a curtain coating method, a spin coating method, a screen printing method, an offset printing method, an inkjet method, a dip coating method.
m, particularly preferably 0.01 to 5 μm. At this time, when the silane composition contains a solvent, the film thickness should be understood as a value after removing the solvent.

【0061】上記の塗膜形成工程は好ましくは非酸化性
雰囲気下で実施するのが好ましい。このような雰囲気を
実現するためには、酸素、二酸化炭素等の酸化性物質を
実質的に含有しない雰囲気とすればよく、具体的には、
窒素、水素、希ガスおよびこれらの混合ガス中の雰囲気
が好ましく使用できる。
The above coating film forming step is preferably carried out in a non-oxidizing atmosphere. In order to realize such an atmosphere, an atmosphere that does not substantially contain an oxidizing substance such as oxygen or carbon dioxide may be used. Specifically,
Atmospheres in nitrogen, hydrogen, noble gases and mixed gases thereof can be preferably used.

【0062】このような塗布工程は、光照射処理を施し
ながら実施することもできる。このときの光照射条件
は、後述の、組成物塗膜を半導体薄膜に変換する工程で
行われる光照射処理と同様の条件を採用することができ
る。
Such a coating process can be carried out while applying a light irradiation treatment. As the light irradiation conditions at this time, the same conditions as the light irradiation treatment performed in the step of converting the composition coating film into a semiconductor thin film, which will be described later, can be adopted.

【0063】上記、組成物塗膜を半導体薄膜に変換する
ための熱処理の際には、非酸化性雰囲気下で、好ましく
は100〜1,000℃、より好ましくは200〜85
0℃、さらに好ましくは300〜750℃の温度におい
て、好ましくは1〜600分、より好ましくは5〜30
0分、さらに好ましくは10〜150分熱処理される。
一般に到達温度が約550℃以下の温度ではアモルファ
ス状、それ以上の温度では多結晶状の半導体薄膜が得ら
れる。到達温度が300℃未満の場合は、ポリシラン化
合物の熱分解が十分に進行せず、所望のシリコン膜を形
成できない場合がある。
During the heat treatment for converting the composition coating film into a semiconductor thin film, it is preferably under a non-oxidizing atmosphere, preferably 100 to 1,000 ° C., more preferably 200 to 85.
At 0 ° C, more preferably 300 to 750 ° C, preferably 1 to 600 minutes, more preferably 5 to 30 minutes.
Heat treatment is performed for 0 minutes, more preferably for 10 to 150 minutes.
Generally, an amorphous semiconductor thin film is obtained at a temperature of about 550 ° C. or lower, and a polycrystalline semiconductor thin film is obtained at a temperature of 550 ° C. or higher. When the ultimate temperature is lower than 300 ° C., the thermal decomposition of the polysilane compound does not proceed sufficiently and the desired silicon film may not be formed.

【0064】上記非酸化性雰囲気は、通常アルゴン雰囲
気中あるいは水素を含有したアルゴン中等で熱処理を施
すことで実現できる。
The above non-oxidizing atmosphere can be realized by heat treatment in an argon atmosphere or an argon atmosphere containing hydrogen.

【0065】上記、組成物塗膜を半導体薄膜に変換する
ための光処理に当たっては、可視光線、紫外線、遠紫外
線の他、低圧あるいは高圧の水銀ランプ、重水素ランプ
あるいはアルゴン、クリプトン、キセノン等の希ガスの
放電光の他、YAGレーザー、アルゴンレーザー、炭酸
ガスレーザー、XeF、XeCl、XeBr、KrF、
KrCl、ArF、ArClなどのエキシマレーザーな
どを光源として使用することができる。これらの光源と
しては一般には、10〜5,000Wの出力のものが用
いられるが、通常100〜1,000Wで十分である。
これらの光源の波長は組成物または塗膜中のポリシラン
化合物が多少でも吸収するものであれば特に限定されな
いが170nm〜600nmが好ましい。
In the light treatment for converting the composition coating film into a semiconductor thin film, visible light, ultraviolet light, far ultraviolet light, low pressure or high pressure mercury lamp, deuterium lamp, argon, krypton, xenon, etc. may be used. In addition to rare gas discharge light, YAG laser, argon laser, carbon dioxide gas laser, XeF, XeCl, XeBr, KrF,
An excimer laser such as KrCl, ArF or ArCl can be used as a light source. As these light sources, those having an output of 10 to 5,000 W are generally used, but 100 to 1,000 W is usually sufficient.
The wavelength of these light sources is not particularly limited as long as the polysilane compound in the composition or the coating film absorbs even a little, but 170 nm to 600 nm is preferable.

【0066】光照射処理を行う際の温度は、好ましくは
室温〜300℃であり、処理時間は0.1〜30分程度
である。これらの光照射処理は、塗膜形成工程と同様の
非酸化性雰囲気下で行うことが好ましい。
The temperature during the light irradiation treatment is preferably room temperature to 300 ° C., and the treatment time is about 0.1 to 30 minutes. These light irradiation treatments are preferably performed in a non-oxidizing atmosphere similar to the coating film forming step.

【0067】本発明においては、上記のようにして半導
体薄膜を形成するが、このとき本発明に使用する組成物
が、(A)成分、(B)成分および(C)成分を含有す
るが(D)成分を含有しないものである場合、形成され
る半導体薄膜はi型の半導体薄膜となる。こうして形成
されたi型の半導体薄膜は、ホウ素原子をドープする工
程を経ることによりp型の半導体薄膜とすることがで
き、他方ヒ素、リンおよびアンチモンから選ばれる少な
くとも一種の原子をドープする工程を経ることによりn
型の半導体とすることができる。
In the present invention, the semiconductor thin film is formed as described above. At this time, the composition used in the present invention contains the component (A), the component (B) and the component (C) ( When the component (D) is not contained, the formed semiconductor thin film is an i-type semiconductor thin film. The i-type semiconductor thin film thus formed can be made into a p-type semiconductor thin film by undergoing a step of doping a boron atom, while a step of doping at least one atom selected from arsenic, phosphorus and antimony is performed. N by passing
Can be a semiconductor of the type.

【0068】またこのとき、本発明に使用する組成物
が、(A)成分、(B)成分、(C)成分および(D)
成分を含有するものである場合、形成される半導体薄膜
は(D)成分がホウ素化合物を含有するものであるとき
p型の半導体薄膜となり、他方(D)成分がヒ素化合
物、リン化合物およびアンチモン化合物から選ばれる少
なくとも一種の化合物を含有するものであるときn型の
半導体薄膜となる。
At this time, the composition used in the present invention is the component (A), the component (B), the component (C) and the component (D).
When the component (D) component contains a boron compound, the formed semiconductor thin film becomes a p-type semiconductor thin film, while the component (D) contains an arsenic compound, a phosphorus compound and an antimony compound. When it contains at least one compound selected from the following, it becomes an n-type semiconductor thin film.

【0069】また、基板上に(A)成分、(B)成分お
よび(C)成分を含有するが(D)成分を含有しない組
成物の塗膜と、(A)成分、(B)成分、(C)成分お
よび(D)成分を含有する組成物の塗膜とを積層して形
成し、次いで熱および/または光処理をすることによっ
てもp型またはn型の半導体薄膜を形成することができ
る。
Further, a coating film of a composition containing the component (A), the component (B) and the component (C) but not the component (D) on the substrate, the component (A) and the component (B), A p-type or n-type semiconductor thin film can also be formed by laminating a coating film of a composition containing the component (C) and the component (D), and then performing heat and / or light treatment. it can.

【0070】こうして形成されたp型またはn型の半導
体薄膜は、さらにホウ素原子、またはヒ素、リン、およ
びアンチモンから選ばれる少なくとも一種の原子をドー
プする工程を経ることにより、半導体薄膜中の不純物濃
度を増加することができる。上記ドープ工程としては、
公知の熱拡散法やイオン打ち込み法が採用できるほか、
上記の如くして形成された半導体薄膜上に上記(D)成
分を含有する塗膜を形成し、次いで熱処理することによ
っても実施することができる。
The p-type or n-type semiconductor thin film thus formed is further doped with a boron atom or at least one atom selected from arsenic, phosphorus and antimony to obtain an impurity concentration in the semiconductor thin film. Can be increased. As the doping step,
In addition to the well-known thermal diffusion method and ion implantation method,
It can also be carried out by forming a coating film containing the component (D) on the semiconductor thin film formed as described above, and then performing heat treatment.

【0071】半導体薄膜上に(D)成分を含有する塗膜
を形成するには、通常、半導体薄膜上に(D)成分およ
び必要に応じて溶媒を含有する組成物、または(D)成
分および(B)成分並びに必要に応じて溶媒を含有する
組成物を塗布した後、溶媒を除去することにより行うこ
とができる。このとき使用される溶媒としては、本発明
に使用される組成物の溶媒として例示したものを使用す
ることができる。上記組成物中の(D)成分濃度は好ま
しくは1〜100重量%である。このときの熱処理条件
としては、半導体薄膜形成の際の熱処理として前述した
条件と同様の条件を採用することができる。
To form a coating film containing the component (D) on the semiconductor thin film, a composition containing the component (D) and optionally a solvent, or the component (D) and This can be carried out by applying the composition containing the component (B) and optionally a solvent, and then removing the solvent. As the solvent used at this time, those exemplified as the solvent of the composition used in the present invention can be used. The component (D) concentration in the composition is preferably 1 to 100% by weight. As the heat treatment conditions at this time, the same conditions as those described above as the heat treatment at the time of forming the semiconductor thin film can be adopted.

【0072】上記のようにして得られた半導体薄膜がア
モルファス状のものである場合、さらにエキシマレーザ
ー等の高エネルギー光で処理することにより、多結晶状
半導体薄膜に変換することもできる。この照射処理を実
施する際の雰囲気としては、前記塗膜形成工程と同様の
非酸化性雰囲気とすることが望ましい。
When the semiconductor thin film obtained as described above is amorphous, it can be converted into a polycrystalline semiconductor thin film by further treating it with high energy light such as an excimer laser. The atmosphere for carrying out this irradiation treatment is preferably the same non-oxidizing atmosphere as in the coating film forming step.

【0073】本発明で製造される太陽電池は、一対の電
極の間に、不純物の濃度および/または種類の異なる半
導体薄膜を少なくとも二層以上積層し、pn、pin、
ip、in等の半導体接合を有する構造を持つ。本発明
で製造される太陽電池は、上記積層される半導体薄膜の
うちの少なくとも一層が前記の方法により形成されたも
のである。積層される半導体薄膜の層のすべてを前記の
方法により形成することも可能である。また、積層され
る半導体薄膜のすべてがアモルファス状であってもよ
く、すべてが多結晶状の半導体薄膜であってもよく、両
者が混在していてもよい。
The solar cell manufactured according to the present invention has a structure in which at least two semiconductor thin films having different impurity concentrations and / or types are laminated between a pair of electrodes, and pn, pin,
It has a structure having a semiconductor junction such as ip or in. The solar cell manufactured by the present invention is one in which at least one layer of the above-mentioned laminated semiconductor thin films is formed by the above method. It is also possible to form all the layers of the semiconductor thin films to be laminated by the above method. Further, all of the laminated semiconductor thin films may be amorphous, all may be polycrystalline semiconductor thin films, or both may be mixed.

【0074】本発明の製造方法で製造される太陽電池
は、上記半導体薄膜の他、電極および配線用の導電膜、
ならびに必要に応じて絶縁膜を具備するが、これらは特
に限定されるものではなく、例えば一般的に太陽電池に
使用される金属膜、ITOなどの透明導電膜、SiO2
等の絶縁膜を用いることができる。それらの形成方法も
一般的な蒸着法、スパッタ法、CVD法等を用いること
ができる他、真空プロセスを必要としない液体材料を用
いて行うこともできる。
The solar cell manufactured by the manufacturing method of the present invention comprises, in addition to the above-mentioned semiconductor thin film, a conductive film for electrodes and wiring,
In addition, if necessary, an insulating film is provided, but these are not particularly limited, and include, for example, metal films generally used in solar cells, transparent conductive films such as ITO, and SiO 2
An insulating film such as the above can be used. As a forming method thereof, a general vapor deposition method, a sputtering method, a CVD method or the like can be used, and also a liquid material which does not require a vacuum process can be used.

【0075】液体材料から導電膜を形成する方法として
は、例えば金属粒子を有機溶媒に分散させた懸濁液を用
いる方法、メッキによる方法、インジウムとスズを含む
有機化合物を塗布した後に熱処理をしてITO薄膜を形
成する方法等が挙げられる。
As a method of forming a conductive film from a liquid material, for example, a method of using a suspension in which metal particles are dispersed in an organic solvent, a method of plating, or a method of applying an organic compound containing indium and tin and then performing heat treatment And a method of forming an ITO thin film.

【0076】また液体材料から絶縁膜を形成する方法と
しては、例えば上述した半導体薄膜形成用組成物の塗膜
を、酸素および/またはオゾンの存在下、例えば空気中
で、熱処理および/または光照射処理をすることによっ
て形成するか、基板にポリシラザンを塗布した後、熱処
理によりSiO2に変換する方法が挙げられる。
As a method for forming an insulating film from a liquid material, for example, a coating film of the above-mentioned semiconductor thin film forming composition is heat-treated and / or irradiated with light in the presence of oxygen and / or ozone, for example, in the air. There is a method of forming by treatment or applying polysilazane to the substrate and then converting it into SiO 2 by heat treatment.

【0077】本発明の太陽電池の製造方法において、前
記のシリコン膜、導電膜、絶縁膜は成膜後にパターニン
グして用いられる場合があるが、その方法としてはマス
ク法、リソグラフィー法などの一般的な方法を用いるこ
とができる他、インクジェット法を用いて液体材料の塗
布とパターニングを同時に行う方法を用いることも可能
である。
In the method of manufacturing a solar cell of the present invention, the above-mentioned silicon film, conductive film, and insulating film may be used by patterning after film formation. As a method therefor, a mask method, a lithography method and the like are generally used. In addition to various methods, it is also possible to use a method of simultaneously applying and patterning a liquid material using an inkjet method.

【0078】[0078]

【実施例】以下に、本発明を実施例により詳細に説明す
るが、本発明はこれら実施例に限定されるものではな
い。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

【0079】合成例1 温度計、冷却コンデンサー、滴下ロートおよび攪拌装置
を取り付けた内容量が3Lの4つ口フラスコ内をアルゴ
ンガスで置換した後、乾燥したテトラヒドロフラン1L
とリチウム金属18.3gを仕込み、アルゴンガスでバ
ブリングした。この懸濁液を0℃で攪拌しながらジフェ
ニルジクロロシラン333gを滴下ロートより添加し、
滴下終了後、室温下でリチウム金属が完全に消失するま
でさらに12時間攪拌を続けた。反応混合物を5Lの氷
水に注ぎ、反応生成物を沈殿させた。この沈殿物を濾別
し、水でよく洗滌した後シクロヘキサンで洗滌し、真空
乾燥することにより白色固体140gを得た。この白色
固体100gと乾燥したシクロヘキサン1,000mL
を2Lのフラスコに仕込み、塩化アルミニウム4gを加
え、攪拌しながら室温下で乾燥した塩化水素ガスを8時
間バブリングした。ここで別途に、水素化リチウムアル
ミニウム40gとジエチルエーテル400mLを3Lの
フラスコに仕込み、アルゴン雰囲気下、0℃で攪拌しな
がら上記反応混合物を加え、同温にて1時間撹拌後さら
に室温で12時間撹拌を続けた。反応混合物より副生物
を除去した後、70℃、10mmHgで減圧蒸留を行った
ところ、無色の液体が10g得られた。このものはI
R、1H−NMR、29Si−NMR、GC−MSの各ス
ペクトルより、シクロペンタシランであることが判っ
た。
Synthesis Example 1 After replacing the inside of a 4-necked flask having a capacity of 3 L equipped with a thermometer, a cooling condenser, a dropping funnel and a stirrer with argon gas, dried tetrahydrofuran 1 L
And 18.3 g of lithium metal were charged, and argon gas was bubbled. While stirring this suspension at 0 ° C., 333 g of diphenyldichlorosilane was added from a dropping funnel,
After the dropwise addition was completed, stirring was continued for 12 hours at room temperature until the lithium metal completely disappeared. The reaction mixture was poured into 5 L of ice water to precipitate the reaction product. This precipitate was separated by filtration, washed well with water, then washed with cyclohexane, and vacuum dried to obtain 140 g of a white solid. 100 g of this white solid and 1,000 mL of dry cyclohexane
Was charged into a 2 L flask, 4 g of aluminum chloride was added, and hydrogen chloride gas dried at room temperature was bubbled for 8 hours while stirring. Here, separately, 40 g of lithium aluminum hydride and 400 mL of diethyl ether were charged into a 3 L flask, the above reaction mixture was added with stirring at 0 ° C. under an argon atmosphere, and the mixture was stirred at the same temperature for 1 hour and further at room temperature for 12 hours. Stirring was continued. After removing by-products from the reaction mixture, vacuum distillation was carried out at 70 ° C. and 10 mmHg to obtain 10 g of a colorless liquid. This is I
From each spectrum of R, 1 H-NMR, 29 Si-NMR and GC-MS, it was found to be cyclopentasilane.

【0080】合成例2 アルゴン雰囲気下、合成例1で得られたシクロペンタシ
ラン10gを100mLのフラスコに加え、攪拌しなが
ら500Wの高圧水銀灯を30分間照射したところ、白
色固体が得られた。ここで得られた白色固体はトルエ
ン、シクロヘキサンには不溶であった。このものに、合
成例1で得られたシクロペンタシランを100g加えた
ところ、無色透明の溶液が得られた。
Synthesis Example 2 Under an argon atmosphere, 10 g of the cyclopentasilane obtained in Synthesis Example 1 was added to a 100 mL flask and irradiated with a 500 W high pressure mercury lamp for 30 minutes while stirring to obtain a white solid. The white solid obtained here was insoluble in toluene and cyclohexane. When 100 g of the cyclopentasilane obtained in Synthesis Example 1 was added to this, a colorless transparent solution was obtained.

【0081】合成例3 温度計、コンデンサー、滴下ロートおよび攪拌装置を取
り付けた内容量が1Lの4つ口フラスコ内をアルゴンガ
スで置換した後、乾燥したテトラヒドロフラン500m
Lとリチウム金属9gを仕込み、アルゴンガスでバブリ
ングした。この懸濁液を室温下で攪拌しながらジフェニ
ルジクロルシラン126gと三臭化ホウ素25gの混合
物を滴下ロートより添加した。リチウム金属が完全に消
失するまで反応を続けた後、反応混合物を氷水に注ぎ反
応生成物を沈澱させた。この沈澱物を濾別し、水でよく
洗滌した後、乾燥することによりフェニル基とホウ素を
含有するケイ素化合物90gを得た。この化合物90g
をトルエン500mLに溶解させ塩化アルミニウム4g
を加えて、攪拌しながら氷冷下で乾燥した塩化水素ガス
を8時間バブリングした。ここで別途に、水素化リチウ
ムアルミニウム12gとジエチルエーテル250mLを
2Lのフラスコに仕込み、アルゴン雰囲気下、0℃で攪
拌しながら上記反応混合物を加え、同温にて1時間撹拌
後さらに室温で12時間撹拌を続けた。アルミニウム化
合物を除去した後、濃縮し精製することにより目的のホ
ウ素を含有する変性シラン化合物10gを得た。このも
のは元素分析の結果、Si511Bであることがわかっ
た。
Synthesis Example 3 A 4-necked flask having a capacity of 1 L equipped with a thermometer, a condenser, a dropping funnel and a stirrer was replaced with argon gas, and then dried in 500 m of tetrahydrofuran.
L and 9 g of lithium metal were charged and bubbled with argon gas. While stirring this suspension at room temperature, a mixture of 126 g of diphenyldichlorosilane and 25 g of boron tribromide was added from a dropping funnel. After continuing the reaction until the lithium metal disappeared completely, the reaction mixture was poured into ice water to precipitate the reaction product. The precipitate was filtered off, washed thoroughly with water, and dried to obtain 90 g of a silicon compound containing a phenyl group and boron. 90g of this compound
Dissolved in 500 mL of toluene, 4 g of aluminum chloride
Was added, and hydrogen chloride gas dried under ice cooling was bubbled for 8 hours with stirring. Separately, 12 g of lithium aluminum hydride and 250 mL of diethyl ether were separately charged into a 2 L flask, and the above reaction mixture was added with stirring at 0 ° C. under an argon atmosphere, followed by stirring at the same temperature for 1 hour and further at room temperature for 12 hours. Stirring was continued. After removing the aluminum compound, the product was concentrated and purified to obtain 10 g of a target modified silane compound containing boron. As a result of elemental analysis, this was found to be Si 5 H 11 B.

【0082】合成例4 上記合成例3において、三臭化ホウ素25gの代わりに
三臭化リン27gを使用した他は合成例3と同様に実施
して、リンを含有する変性シラン化合物を得た。このも
のは元素分析の結果、Si511Pであることがわかっ
た。
Synthesis Example 4 A modified silane compound containing phosphorus was obtained in the same manner as in Synthesis Example 3 except that 27 g of phosphorus tribromide was used instead of 25 g of boron tribromide. . As a result of elemental analysis, this was found to be Si 5 H 11 P.

【0083】実施例1 アルドリッチ製シリコン粉末(純度99.9995%)
を分級して得られた粒子径0.2〜1μmのシリコン粒
子10gと合成例2で調製した溶液40gを窒素雰囲気
下で混合し、ホモジナイザーで均一分散させた。このよ
うに調整したシラン組成物を窒素雰囲気下、ガラス基板
上に1,000rpmでスピンコートし、200℃で2
分間プレベークした後、400℃で10分間焼成した。
その後、さらに500℃で30分間焼成した。その結
果、ガラス基板上に多結晶性のシリコン膜が2μmの膜
厚で形成された。そのX線回折図を図1に示した。
Example 1 Silicon powder manufactured by Aldrich (purity 99.9995%)
10 g of silicon particles having a particle diameter of 0.2 to 1 μm obtained by classifying was mixed with 40 g of the solution prepared in Synthesis Example 2 under a nitrogen atmosphere and uniformly dispersed by a homogenizer. The silane composition thus prepared was spin-coated on a glass substrate at 1,000 rpm in a nitrogen atmosphere, and the spin coating was performed at 200 ° C. for 2 hours.
After prebaking for 10 minutes, it was baked at 400 ° C. for 10 minutes.
Then, it was further baked at 500 ° C. for 30 minutes. As a result, a polycrystalline silicon film having a film thickness of 2 μm was formed on the glass substrate. The X-ray diffraction pattern is shown in FIG.

【0084】実施例2 透明導電膜ITOが成膜された石英基板上に、以下のよ
うな方法で図2に模式的に示すような構造の太陽電池を
作成した。
Example 2 A solar cell having a structure as schematically shown in FIG. 2 was prepared by the following method on a quartz substrate on which a transparent conductive film ITO was formed.

【0085】まず、ITO膜上にp型のシリコン膜を形
成するために、合成例3で得られたSi511Bを0.
2g、実施例1で得られたシラン組成物10gを混合し
てシラン組成物を作成した。この組成物をアルゴン雰囲
気中、実施例1と同様の方法で0.4μm厚の多結晶性
シリコン膜を形成した。
First, in order to form a p-type silicon film on the ITO film, the Si 5 H 11 B obtained in Synthesis Example 3 was deposited on the ITO film.
A silane composition was prepared by mixing 2 g and 10 g of the silane composition obtained in Example 1. A 0.4 μm thick polycrystalline silicon film was formed from this composition in the same manner as in Example 1 in an argon atmosphere.

【0086】次に、i型のシリコン膜を積層するため
に、実施例1で得られた組成物をアルゴン雰囲気下で上
記シリコン膜を形成した基板上に1,000rpmでス
ピンコートし、実施例1と同様の焼成方法で焼成して膜
厚2μmのi型の多結晶シリコン膜を形成した。
Next, in order to deposit an i-type silicon film, the composition obtained in Example 1 was spin-coated at 1,000 rpm on the substrate on which the silicon film was formed under an argon atmosphere, Firing was performed in the same manner as in No. 1 to form an i-type polycrystalline silicon film having a film thickness of 2 μm.

【0087】さらに、n型のシリコン膜を積層するため
に、合成例4で得られたSi511Pを0.2gおよび
実施例1で調製した溶液10gを混合して塗布溶液を調
製した。この溶液をアルゴン雰囲気中で上記シリコン膜
を積層した基板上に2,000rpmでスピンコート
し、実施例1と同様の焼成方法で焼成して、膜厚0.4
μmのn型の多結晶シリコン膜を形成した。
Further, for laminating an n-type silicon film, 0.2 g of Si 5 H 11 P obtained in Synthesis Example 4 and 10 g of the solution prepared in Example 1 were mixed to prepare a coating solution. . This solution was spin-coated at 2,000 rpm on a substrate on which the above silicon film was laminated in an argon atmosphere, and baked by the same baking method as in Example 1 to obtain a film thickness of 0.4.
An n-type polycrystalline silicon film of μm was formed.

【0088】以上のようにして形成されたpin接続構
造の積層膜の上から、マスクを用いて積層膜の一部分に
アルミニウム膜を0.5μm蒸着した後、アルミニウム
膜のない部分を下部のITO膜が露出するまでエッチン
グし、図2で示すような構造の太陽電池を製造した。こ
の太陽電池の光起電力を測定して変換効率をもとめたと
ころ、14.0%であった。
An aluminum film of 0.5 μm is vapor-deposited on a part of the laminated film using a mask from the laminated film of the pin connection structure formed as described above, and a portion without the aluminum film is formed on the lower ITO film. Etching was performed until the exposed portions were exposed to manufacture a solar cell having a structure as shown in FIG. The photovoltaic efficiency of this solar cell was measured to find the conversion efficiency, which was 14.0%.

【0089】[0089]

【発明の効果】本発明によれば、高価かつエネルギー多
消費型の大掛かりな装置を必要とせず、大面積の基板に
も対応可能であり、容易、安価に半導体薄膜を形成する
方法、およびそのための組成物が提供される。
According to the present invention, it is possible to easily and inexpensively form a semiconductor thin film, which does not require a large-scale apparatus that is expensive and consumes a lot of energy, and can be applied to a large-area substrate. Is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた多結晶シリコン膜のX線回
折図である。
1 is an X-ray diffraction diagram of a polycrystalline silicon film obtained in Example 1. FIG.

【図2】太陽電池の構造を示す模式図である。FIG. 2 is a schematic diagram showing the structure of a solar cell.

【符号の説明】[Explanation of symbols]

1;基板 2;ITO膜 3;p型シリコン膜 4;i型シリコン膜 5;n型シリコン膜 6;アルミニウム膜 7;プローブ電極 1; substrate 2; ITO film 3; p-type silicon film 4; i-type silicon film 5; n-type silicon film 6; Aluminum film 7; probe electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G072 AA01 BB09 BB12 GG01 GG02 HH02 HH28 HH29 MM01 RR12 RR30 UU01 UU02 4J002 CP011 DA067 DA117 EX006 EX026 EY016 HA05 4J038 DL032 DL171 DL172 KA20 PA17 PA19 PB09 5F051 AA03 AA05 BA12 BA14 CA02 CA03 CA04 CA06 CA20 CB13 CB24 CB25 FA04    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4G072 AA01 BB09 BB12 GG01 GG02                       HH02 HH28 HH29 MM01 RR12                       RR30 UU01 UU02                 4J002 CP011 DA067 DA117 EX006                       EX026 EY016 HA05                 4J038 DL032 DL171 DL172 KA20                       PA17 PA19 PB09                 5F051 AA03 AA05 BA12 BA14 CA02                       CA03 CA04 CA06 CA20 CB13                       CB24 CB25 FA04

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 (A)式Sinm (ここで、nは3以上の整数であり、mはn〜(2n+
2)の整数でありそしてm個のRは互いに独立に水素原
子、アルキル基、フェニル基またはハロゲン原子であ
る、但しm個のRの全てが水素原子であり且つm=2n
であるとき、nは7以上の整数であるものとする。)で
表されるポリシラン化合物、(B)シクロペンタシラ
ン、シクロヘキサシランおよびシリルシクロペンタシラ
ンよりなる群から選ばれる少なくとも1種のシラン化合
物 並びに(C)シリコン粒子を含有することを特徴と
するシラン組成物。
1. A formula (A) Si n R m (where n is an integer of 3 or more, and m is n to (2n +).
2) is an integer and m R are independently of each other a hydrogen atom, an alkyl group, a phenyl group or a halogen atom, provided that all of the m R are hydrogen atoms and m = 2n.
And n is an integer of 7 or more. ) At least one silane compound selected from the group consisting of a polysilane compound represented by the formula (B), cyclopentasilane, cyclohexasilane, and silylcyclopentasilane, and a silane containing (C) silicon particles. Composition.
【請求項2】 (1)請求項1に記載のシラン組成物を
基板上に塗布して塗膜を形成する工程および(2)該塗
膜を熱処理および/または光処理する工程を含むことを
特徴とするシリコン膜の形成方法。
2. A method comprising: (1) a step of applying the silane composition according to claim 1 on a substrate to form a coating film; and (2) a step of heat-treating and / or phototreating the coating film. A method for forming a characteristic silicon film.
【請求項3】 一対の電極の間に、不純物の濃度および
/または種類の異なる半導体薄膜を少なくとも二層以上
積層した構造を有する太陽電池を製造する方法におい
て、 (1)(A)式Sinm (ここで、nは3以上の整数であり、mはn〜(2n+
2)の整数でありそしてm個のRは互いに独立に水素原
子、アルキル基、フェニル基またはハロゲン原子であ
る、但しm個のRの全てが水素原子であり且つm=2n
であるとき、nは7以上の整数であるものとする。)で
表されるポリシラン化合物、(B)シクロペンタシラ
ン、シクロヘキサシランおよびシリルシクロペンタシラ
ンよりなる群から選ばれる少なくとも1種のシラン化合
物 並びに(C)シリコン粒子 を含有するシラン組成
物を基板上に塗布して塗膜を形成する工程および(2)
該塗膜を熱処理および/または光処理する工程を含む方
法により該半導体薄膜のうちの少なくとも一層を形成す
ることを特徴とする太陽電池の製造方法。
3. A method for producing a solar cell having a structure in which at least two semiconductor thin films having different impurity concentrations and / or types are laminated between a pair of electrodes, the method comprising the steps of: (1) Formula Si n R m (where n is an integer of 3 or more, and m is n to (2n +
2) is an integer and m R's are independently of each other a hydrogen atom, an alkyl group, a phenyl group or a halogen atom, provided that all m R's are hydrogen atoms and m = 2n.
And n is an integer of 7 or more. ) A silane composition containing at least one silane compound selected from the group consisting of (B) cyclopentasilane, cyclohexasilane, and silylcyclopentasilane; and (C) silicon particles on a substrate. Forming a coating film by applying to (2)
A method for producing a solar cell, comprising forming at least one layer of the semiconductor thin film by a method including a step of heat-treating and / or photo-treating the coating film.
【請求項4】 形成される半導体薄膜がi型のシリコン
薄膜である請求項3に記載の方法。
4. The method according to claim 3, wherein the semiconductor thin film formed is an i-type silicon thin film.
【請求項5】 上記工程(2)の後、(3)ホウ素、ヒ
素、リンおよびアンチモンよりなる群から選ばれる少な
くとも一種の原子をドープしてp型またはn型のシリコ
ン薄膜を形成する工程をさらに含む請求項3に記載の方
法。
5. A step (3) of forming a p-type or n-type silicon thin film by doping at least one atom selected from the group consisting of boron, arsenic, phosphorus and antimony after the step (2). The method of claim 3, further comprising:
【請求項6】 (A)式Sinm (ここで、nは3以上の整数であり、mはn〜(2n+
2)の整数でありそしてm個のRは互いに独立に水素原
子、アルキル基、フェニル基またはハロゲン原子であ
る、但しm個のRの全てが水素原子であり且つm=2n
であるとき、nは7以上の整数であるものとする。)で
表されるポリシラン化合物、(B)シクロペンタシラ
ン、シクロヘキサシランおよびシリルシクロペンタシラ
ンよりなる群から選ばれる少なくとも1種のシラン化合
物、(C)シリコン粒子 並びに(D)ホウ素化合物、
ヒ素化合物、リン化合物、アンチモン化合物および式S
abc(ここで、Xは水素原子および/またはハロ
ゲン原子を表し、Yはホウ素原子またはリン原子を表
し、aは3以上の整数を表し、bは1以上a以下の整数
を表し、cはa以上で(2a+b+2)以下の整数を表
す)で表される変性シラン化合物よりなる群から選ばれ
る少なくとも一種の化合物を含有することを特徴とする
シラン組成物。
6. The formula (A) SinRm (Here, n is an integer of 3 or more, and m is n to (2n +
2) is an integer and m R are independently hydrogen atoms.
Child, an alkyl group, a phenyl group or a halogen atom
Provided that all R of m are hydrogen atoms and m = 2n
And n is an integer of 7 or more. )so
Represented polysilane compound, (B) cyclopentasila
, Cyclohexasilane and silylcyclopentasila
At least one silane compound selected from the group consisting of
Object, (C) silicon particles and (D) boron compound,
Arsenic compounds, phosphorus compounds, antimony compounds and formula S
i aXbYc(Where X is a hydrogen atom and / or halo
Represents a gen atom, and Y represents a boron atom or a phosphorus atom.
, A represents an integer of 3 or more, b is an integer of 1 or more and a or less
And c is an integer of a or more and (2a + b + 2) or less.
Selected from the group consisting of modified silane compounds represented by
Characterized by containing at least one compound
Silane composition.
【請求項7】 一対の電極の間に、不純物の濃度および
/または種類の異なる半導体薄膜を少なくとも二層以上
積層した構造を有する太陽電池を製造する方法におい
て、(1)請求項6に記載のシラン組成物を基板上に塗
布して塗膜を形成する工程および(2)該塗膜を熱処理
および/または光処理する工程を含む方法により該半導
体薄膜のうちの少なくとも一層をp型またはn型のシリ
コン薄膜として形成することを特徴とする、太陽電池の
製造方法。
7. A method for producing a solar cell having a structure in which at least two semiconductor thin films having different impurity concentrations and / or different kinds are laminated between a pair of electrodes, the method comprising the steps of (1) and (6). At least one of the semiconductor thin films is p-type or n-type by a method including a step of applying a silane composition onto a substrate to form a coating film, and (2) a step of heat-treating and / or photo-treating the coating film. The method for manufacturing a solar cell is characterized by forming the thin film as a silicon thin film.
【請求項8】 形成される半導体薄膜がアモルファスシ
リコン薄膜である請求項3〜7のいずれかに記載の方
法。
8. The method according to claim 3, wherein the semiconductor thin film formed is an amorphous silicon thin film.
【請求項9】 形成される半導体薄膜が多結晶シリコン
薄膜である請求項3〜7のいずれかに記載の方法。
9. The method according to claim 3, wherein the semiconductor thin film formed is a polycrystalline silicon thin film.
JP2001375992A 2001-08-14 2001-12-10 Method for forming silicon film and composition therefor Pending JP2003171556A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001375992A JP2003171556A (en) 2001-12-10 2001-12-10 Method for forming silicon film and composition therefor
EP02018077A EP1284306B1 (en) 2001-08-14 2002-08-13 Silane composition, silicon film forming method and solar cell production method
AT02018077T ATE518972T1 (en) 2001-08-14 2002-08-13 SILANE COMPOSITION, METHOD FOR PRODUCING A SILICON FILM AND A SOLAR CELL
KR1020020047677A KR100627203B1 (en) 2001-08-14 2002-08-13 Silane Composition, Method for Forming a Silicone Film, and Method for Manufacturing Solar Cell
US10/216,790 US7067069B2 (en) 2001-08-14 2002-08-13 Silane composition, silicon film forming method and solar cell production method
TW091118186A TW555690B (en) 2001-08-14 2002-08-13 Silane composition, silicon film forming method and solar cell production method
CNB021297975A CN100392008C (en) 2001-08-14 2002-08-14 Silane composition, silicon film forming method and manufacture of solar cells
US11/404,921 US7173180B2 (en) 2001-08-14 2006-04-17 Silane composition, silicon film forming method and solar cell production method
KR1020060068949A KR100676341B1 (en) 2001-08-14 2006-07-24 Silane Composition, Method for Forming a Silicone Film, and Method for Manufacturing Solar Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375992A JP2003171556A (en) 2001-12-10 2001-12-10 Method for forming silicon film and composition therefor

Publications (1)

Publication Number Publication Date
JP2003171556A true JP2003171556A (en) 2003-06-20

Family

ID=19184275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375992A Pending JP2003171556A (en) 2001-08-14 2001-12-10 Method for forming silicon film and composition therefor

Country Status (1)

Country Link
JP (1) JP2003171556A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055556A (en) * 2001-08-14 2003-02-26 Jsr Corp Method for forming silicon film or silicon oxide film and composition for them
JP2004186320A (en) * 2002-12-02 2004-07-02 Jsr Corp Composition for forming silicon film, and solar battery
JP2006310345A (en) * 2005-04-26 2006-11-09 Jsr Corp Method of forming laminated film
US7223802B2 (en) 2002-04-22 2007-05-29 Seiko Epson Corporation High order silane composition, and method of forming silicon film using the composition
JP2007277038A (en) * 2006-04-06 2007-10-25 Sony Corp Method for producing polysilane-modified silicon fine particle and method for forming silicon film
JP2007290950A (en) * 2006-04-20 2007-11-08 Heraeus Quarzglas Gmbh & Co Kg Material suitable for optical device used for microlithography, and method of fabricating blank from the material
JP2008049601A (en) * 2006-08-25 2008-03-06 Jsr Corp Method for manufacturing silica film-laminated film for gas barrier
EP2040310A2 (en) * 2007-09-18 2009-03-25 LG Electronics Inc. Solar cell manufactured using amorphous and nanocrystalline silicon composite thin film, and process for manufacturing the same
JP2010067801A (en) * 2008-09-11 2010-03-25 Seiko Epson Corp Photoelectric conversion device, electronic apparatus, method for manufacturing photoelectric conversion device, and method for manufacturing electronic apparatus
WO2011009017A2 (en) * 2009-07-17 2011-01-20 Boston Silicon Materials Llc Process for the formation of silicon metal sheets
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
JP2013511829A (en) * 2009-11-18 2013-04-04 エボニック デグサ ゲーエムベーハー Silicon layer manufacturing method
JP2013531740A (en) * 2010-04-06 2013-08-08 エヌディーエスユー リサーチ ファウンデーション Liquid silane-based compositions and methods for producing silicon-based materials
JP2013538454A (en) * 2010-09-03 2013-10-10 エボニック デグサ ゲーエムベーハー p-type doped silicon layer
JP2014209651A (en) * 2014-06-24 2014-11-06 セイコーエプソン株式会社 Photoelectric conversion device, electronic apparatus, photoelectric conversion device manufacturing method and electronic apparatus manufacturing method
CN109021211A (en) * 2012-10-19 2018-12-18 Ppg工业俄亥俄公司 The method of curable film-forming composition and the improvement resistance to polishability of substrate with resistance to polishability and low gloss

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055556A (en) * 2001-08-14 2003-02-26 Jsr Corp Method for forming silicon film or silicon oxide film and composition for them
US7223802B2 (en) 2002-04-22 2007-05-29 Seiko Epson Corporation High order silane composition, and method of forming silicon film using the composition
JP2004186320A (en) * 2002-12-02 2004-07-02 Jsr Corp Composition for forming silicon film, and solar battery
JP2006310345A (en) * 2005-04-26 2006-11-09 Jsr Corp Method of forming laminated film
US7943721B2 (en) 2005-10-05 2011-05-17 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
US8378050B2 (en) 2005-10-05 2013-02-19 Kovio, Inc. Linear and cross-linked high molecular weight polysilanes, polygermanes, and copolymers thereof, compositions containing the same, and methods of making and using such compounds and compositions
JP2007277038A (en) * 2006-04-06 2007-10-25 Sony Corp Method for producing polysilane-modified silicon fine particle and method for forming silicon film
JP2007290950A (en) * 2006-04-20 2007-11-08 Heraeus Quarzglas Gmbh & Co Kg Material suitable for optical device used for microlithography, and method of fabricating blank from the material
JP2008049601A (en) * 2006-08-25 2008-03-06 Jsr Corp Method for manufacturing silica film-laminated film for gas barrier
EP2040310A2 (en) * 2007-09-18 2009-03-25 LG Electronics Inc. Solar cell manufactured using amorphous and nanocrystalline silicon composite thin film, and process for manufacturing the same
EP2040310A3 (en) * 2007-09-18 2013-01-16 LG Electronics Inc. Solar cell manufactured using amorphous and nanocrystalline silicon composite thin film, and process for manufacturing the same
JP2010067801A (en) * 2008-09-11 2010-03-25 Seiko Epson Corp Photoelectric conversion device, electronic apparatus, method for manufacturing photoelectric conversion device, and method for manufacturing electronic apparatus
WO2011009017A2 (en) * 2009-07-17 2011-01-20 Boston Silicon Materials Llc Process for the formation of silicon metal sheets
WO2011009017A3 (en) * 2009-07-17 2011-05-19 Boston Silicon Materials Llc Process for the formation of silicon metal sheets
JP2013511829A (en) * 2009-11-18 2013-04-04 エボニック デグサ ゲーエムベーハー Silicon layer manufacturing method
JP2013531740A (en) * 2010-04-06 2013-08-08 エヌディーエスユー リサーチ ファウンデーション Liquid silane-based compositions and methods for producing silicon-based materials
JP2013538454A (en) * 2010-09-03 2013-10-10 エボニック デグサ ゲーエムベーハー p-type doped silicon layer
CN109021211A (en) * 2012-10-19 2018-12-18 Ppg工业俄亥俄公司 The method of curable film-forming composition and the improvement resistance to polishability of substrate with resistance to polishability and low gloss
CN109021211B (en) * 2012-10-19 2022-07-08 Ppg工业俄亥俄公司 Curable film-forming composition having polish resistance and low gloss and method of improving polish resistance of a substrate
JP2014209651A (en) * 2014-06-24 2014-11-06 セイコーエプソン株式会社 Photoelectric conversion device, electronic apparatus, photoelectric conversion device manufacturing method and electronic apparatus manufacturing method

Similar Documents

Publication Publication Date Title
US7067069B2 (en) Silane composition, silicon film forming method and solar cell production method
JP3926987B2 (en) Method for forming silicon film
US6503570B2 (en) Cyclosilane compound, and solution composition and process for forming a silicon film
JP4508428B2 (en) Coating composition
JP4042327B2 (en) Thin film transistor manufacturing method
JP3981528B2 (en) Manufacturing method of solar cell
US6517911B1 (en) Process for the formation of silicon oxide films
JP2003171556A (en) Method for forming silicon film and composition therefor
JP2003055556A (en) Method for forming silicon film or silicon oxide film and composition for them
JP4419357B2 (en) Silane composition and method for producing solar cell using the same
JP4462394B2 (en) Silicon film pattern forming method
JP2002246384A (en) Method of forming silicon oxide film and composition used for forming the same
JP4518222B2 (en) Silylcyclopentasilane and its uses
JP4548567B2 (en) Method for forming silicon oxide film
JP4748288B2 (en) Composition containing spiro [4.4] nonasilane
WO2004065659A1 (en) Composition for forming silicon·aluminum film, silicon·aluminum film and method for forming the same
JP2002324907A (en) Method of manufacturing solar battery
JP2008143782A (en) Method for manufacturing solar cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010