JP2003171507A - Polyolefin-based resin composition having ability to expand and its production method - Google Patents

Polyolefin-based resin composition having ability to expand and its production method

Info

Publication number
JP2003171507A
JP2003171507A JP2001375513A JP2001375513A JP2003171507A JP 2003171507 A JP2003171507 A JP 2003171507A JP 2001375513 A JP2001375513 A JP 2001375513A JP 2001375513 A JP2001375513 A JP 2001375513A JP 2003171507 A JP2003171507 A JP 2003171507A
Authority
JP
Japan
Prior art keywords
foaming
polyolefin resin
heat
resin composition
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001375513A
Other languages
Japanese (ja)
Inventor
Muneaki Tsukada
宗暁 塚田
Futoshi Sasamoto
笹本  太
Mihoko Makino
美保子 牧野
Toshiyuki Kobayashi
敏幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Toyota Motor Corp
Original Assignee
Toray Industries Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc, Toyota Motor Corp filed Critical Toray Industries Inc
Priority to JP2001375513A priority Critical patent/JP2003171507A/en
Publication of JP2003171507A publication Critical patent/JP2003171507A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyolefin-based resin composition having ability to expand which particularly excels in heat resistance and has properties such as recycling properties and can select an expanded structure and a molding method having a high degree of freedom when inserted into a specified space or joined to another article, heated and expanded in various processings to form an expanded structure. <P>SOLUTION: The polyolefin-based resin composition having the ability to expand is constituted of a resin composition obtained by melt kneading at least two kinds of resins of (A) a polyolefin-based resin having a melting point (Tma) of ≤100°C and (B) a polyolefin-based resin having a melting point (Tmb) of >100°C and a powdered blowing agent having an expanding initiation temperature of 100-180°C, and has the ability to expand to form an expanded structure by inserting the resin composition into a specified space or joining the resin composition and another article, and heating and expanding the resin composition in such a state and having an energy (Ea) of the crystal fusion at ≤100°C of a foam obtained by heat-processing the resin composition of 20-100 mJ/mg and, simultaneously, an energy (Eb) of the crystal fusion at ≥120°C of 10-150 mJ/mg. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発泡能力を有する
ポリオレフィン系樹脂組成物及びその製法に関するもの
である。さらに詳しくは、建材用断熱材、産業資材、家
具、家庭用電気器具、保温・保冷箱、自動車内装用材な
どの緩衝材、充填材、断熱材などに適用する、所定の空
間に挿入するか、他の物品と接合し、各種加工下で加熱
発泡せしめ発泡構造体とする発泡能力を有するポリオレ
フィン系樹脂組成物に関するものである。
TECHNICAL FIELD The present invention relates to a polyolefin resin composition having a foaming ability and a method for producing the same. More specifically, it is applied to building insulation materials, industrial materials, furniture, household appliances, heat / cool boxes, cushioning materials such as automobile interior materials, fillers, heat insulating materials, etc. The present invention relates to a polyolefin resin composition having a foaming ability which is bonded to other articles and heat-foamed under various processes to form a foamed structure.

【0002】[0002]

【従来の技術】独立気泡を有する発泡体は、軽量かつ緩
衝性や断熱性などに優れ、幅広い分野に使用されてい
る。一方ポリウレタン注入発泡などは加工性に優れ、成
形と同時に発泡体の供給が可能であり、簡素化した加工
工程で様々な形状に対応した発泡構造体を製造すること
ができる。また様々な形状において複合材との密着性に
優れ、発泡体の特徴である緩衝性、充填性、断熱性等の
性能が余すことなく生かされている。しかし、廃棄処理
やリサイクルの点では問題があった。
2. Description of the Related Art Foams having closed cells are lightweight and have excellent cushioning properties and heat insulating properties, and are used in a wide variety of fields. On the other hand, polyurethane injection foaming has excellent processability, and the foam can be supplied at the same time as molding, and the foamed structure corresponding to various shapes can be manufactured by a simplified processing step. In addition, in various shapes, it has excellent adhesiveness to the composite material, and the characteristics of the foam, such as cushioning properties, filling properties, and heat insulating properties, are fully utilized. However, there were problems in terms of disposal and recycling.

【0003】廃棄処理やリサイクルの点で優位であるポ
リオレフィン系樹脂発泡体でポリウレタンの注入発泡の
ように密着性に優れた発泡構造体とする方法として特公
平6−96273号公報には架橋度を高くした発泡体を
溶融した樹脂とプレス成形する方法が開示されている。
しかしながら、この方法では密着性は良好であるが、発
泡体の架橋度を高くしたことで、伸度低下のため成形適
用範囲が高低差の少ない形状に限定されたり、溶融粘性
増加のため再溶融押出しが困難でありリサイクル性に乏
しいなどの欠点があった。
Japanese Patent Publication No. 6-96273 discloses a cross-linking degree as a method of forming a foamed structure having excellent adhesiveness such as injection foaming of polyurethane by using a polyolefin resin foam which is superior in terms of disposal and recycling. A method of press molding elevated foam with molten resin is disclosed.
However, although the adhesion is good with this method, by increasing the degree of cross-linking of the foam, the range of molding application is limited to shapes with less height difference due to the decrease in elongation, and remelting due to increase in melt viscosity. It has drawbacks such as difficulty in extrusion and poor recyclability.

【0004】また、特公平7−45197号公報ではポ
リオレフィン樹脂に熱分解によって気体を発生する化学
発泡剤と有機過酸化物などを混練し、シート化した後に
合成樹脂シートと張り合わせ、しかる後に加熱し発泡さ
せ、直ちに真空成形とプレス成形を同時に行い成形体と
する方法が開示されている。しかしながら加熱下で縦・
横・厚み方向に同時に膨らむ発泡体を保持することは困
難であり、本例は発泡時の発泡体体積変化が小さい低発
泡倍率に適用が限定される。このため断熱性、緩衝性、
軽量性などに劣るだけではなく、また成形時伸ばされた
発泡体が部分的に薄くなり、このため断熱性や緩衝性が
不均一となる。これを回避するには適用範囲が高低差の
少ない形状に限定されるなどの欠点があった。
Further, in Japanese Patent Publication No. 7-45197, a polyolefin foaming resin is kneaded with a chemical foaming agent which generates gas by thermal decomposition, an organic peroxide and the like, formed into a sheet and then laminated with a synthetic resin sheet, and then heated. There is disclosed a method of foaming and immediately performing vacuum molding and press molding simultaneously to obtain a molded body. However, when heated vertically
It is difficult to hold a foam that swells in the lateral and thickness directions at the same time, and the application of this example is limited to a low expansion ratio in which the change in foam volume during foaming is small. Therefore, heat insulation, cushioning,
Not only is it inferior in lightness, but the foam stretched at the time of molding is partially thinned, so that the heat insulating property and the buffer property are not uniform. In order to avoid this, there is a drawback that the applicable range is limited to a shape with a small height difference.

【0005】また、特開平8−192436号公報には
特定の組み合わせで配合したポリオレフィン系樹脂をア
ゾジカルボンアミド系または重炭酸ソーダ系発泡剤と有
機過酸化物系架橋剤及び特定の難燃剤を混合し、パウダ
ースラシュ成形法に限定した成形工法により表皮と一体
的に発泡体を形成した成形工法が開示されている。しか
しながらこの成形工法では均一な気泡形状の独立気泡発
泡体を得ることは難しい。何故なら均一な気泡を形成す
るには、加熱により、まず樹脂を軟化させ、次に有機過
酸化物の分解により樹脂を架橋して発泡ガスを保持する
適度な粘度を付与し、熱分解型発泡剤が分解して独立気
泡を形成するという順序が必要であるが、樹脂、発泡
剤、架橋剤などを溶融混練した樹脂組成物の粉末化原料
を用いるものではなく本例の如く単に混合しただけの組
成物では熱源近傍に存在する部分から軟化や分解が開始
するため上記の順序が満たされず、均一な気泡形成や、
高い発泡倍率の発泡体とすることは困難である。
Further, in JP-A-8-192436, a polyolefin resin blended in a specific combination is mixed with an azodicarbonamide or sodium bicarbonate foaming agent, an organic peroxide crosslinking agent and a specific flame retardant, A molding method is disclosed in which a foam is integrally formed with the skin by a molding method limited to the powder slush molding method. However, it is difficult to obtain a closed cell foam having a uniform cell shape by this molding method. This is because in order to form uniform bubbles, the resin is first softened by heating, and then the resin is decomposed by the organic peroxide to crosslink the resin to give it an appropriate viscosity to hold the foaming gas, and the pyrolysis foaming. The order is such that the agent decomposes to form closed cells, but it does not use the powdered raw material of the resin composition obtained by melt-kneading the resin, the foaming agent, the crosslinking agent, etc. In the composition of the above, because the softening and decomposition start from the portion existing near the heat source, the above order is not satisfied, uniform bubble formation,
It is difficult to obtain a foam having a high expansion ratio.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述した欠
点を解消し、ポリウレタン樹脂を代替可能で種々の用途
で緩衝材、充填材、断熱材として機能する所定の空間に
挿入するか、他の物品と接合し、かかる状態下で加熱発
泡せしめ発泡構造体とする発泡能力を有するポリオレフ
ィン系樹脂組成物とその製造方法を提供するものであ
る。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks by inserting a polyurethane resin into a predetermined space which can be substituted and functions as a cushioning material, a filling material, and a heat insulating material in various applications, or The present invention provides a polyolefin-based resin composition having a foaming ability, which is bonded to the article described above and is heat-foamed under such a state to form a foamed structure, and a method for producing the same.

【0007】該樹脂組成物は耐熱性を有し、リサイクル
性に優れ、種々の形状を有することで加熱を伴う加工に
対し、密着性を高め自由度の高い発泡構造体及び加工方
法を選択することのできる発泡能力を有するポリオレフ
ィン系樹脂組成物である。
Since the resin composition has heat resistance, excellent recyclability, and has various shapes, a foamed structure and a processing method are selected which have a high degree of adhesion and a high degree of freedom in processing involving heating. It is a polyolefin-based resin composition having a possible foaming ability.

【0008】[0008]

【課題を解決するための手段】本発明の課題は、所定の
空間に挿入するか、他の物品と接合し、かかる状態下で
加熱発泡せしめ発泡構造体とする発泡能力を有するポリ
オレフィン系樹脂を主体とした樹脂組成物であって、熱
による発泡開始温度が100〜180℃である粉末状発
泡剤を含有し、その形状が板状、チップ状、粉末状、ま
たはこれらの混合体であり、該組成物を構成するポリオ
レフィン系樹脂が100℃以下の結晶融解ピーク(融点
Tma)を有するポリオレフィン系樹脂(A)と、10
0℃を越える結晶融解ピーク(融点Tmb)を有するポ
リオレフィン系樹脂(B)との少なくとも2種類の樹脂
から構成され、該組成物を加熱加工した発泡体を示差走
査熱量分析で測定したDSC曲線の結晶融解ピーク面積
から得られる単位重量当たりの結晶融解エネルギーの
内、100℃以下の結晶融解エネルギー(Ea)が20
〜100mJ/mgであり、かつ、120℃以上の結晶
融解エネルギー(Eb)が10〜150mJ/mgであ
ることを特徴とする発泡能力を有するポリオレフィン系
樹脂組成物によって達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polyolefin resin having a foaming ability which is inserted into a predetermined space or is joined to another article to form a foamed structure by heat foaming under such a condition. A resin composition mainly containing a powdery foaming agent having a foaming initiation temperature by heat of 100 to 180 ° C., and having a plate shape, a chip shape, a powder shape, or a mixture thereof. The polyolefin-based resin (A) having a crystal melting peak (melting point Tma) of 100 ° C. or lower, which constitutes the composition, and 10
Of a DSC curve obtained by differential scanning calorimetry analysis of a foam which is composed of at least two kinds of resin including a polyolefin resin (B) having a crystal melting peak (melting point Tmb) exceeding 0 ° C. Among the crystal melting energies per unit weight obtained from the crystal melting peak area, the crystal melting energy (Ea) at 100 ° C. or lower is 20
˜100 mJ / mg and a crystal melting energy (Eb) at 120 ° C. or higher of 10 to 150 mJ / mg, which is achieved by a polyolefin resin composition having a foaming ability.

【0009】また、上記発泡能力を有するポリオレフィ
ン系樹脂組成物の製造方法は、前記記載のポリオレフィ
ン系樹脂(A)及び(B)の少なくとも2種類と粉末状
発泡剤をポリオレフィン系樹脂(A)の結晶融解ピーク
(融点Tma)以上、かつ、該発泡剤の熱による発泡開
始温度未満で溶融混練した樹脂組成物を、後工程で板
状、チップ状、または粉末状の形状にすることを特徴と
するものである。
Further, in the method for producing a polyolefin resin composition having the above foaming ability, at least two kinds of the above-mentioned polyolefin resins (A) and (B) and a powdery foaming agent are added to the polyolefin resin (A). A resin composition melt-kneaded at a crystal melting peak (melting point Tma) or more and less than a foaming start temperature due to heat of the foaming agent is formed into a plate shape, a chip shape, or a powder shape in a subsequent step. To do.

【0010】[0010]

【発明の実施の形態】本発明の発泡能力を有するポリオ
レフィン系樹脂組成物に用いるにポリオレフィン系樹脂
とは、オレフィン系炭化水素の重合体または共重合体で
ある。かかる樹脂は粉末状発泡剤の熱による分解や膨張
を抑制し、かつ、得られる発泡体の耐熱性を満足させる
ため、100℃以下の結晶融解ピーク(融点Tma)を
有するポリオレフィン系樹脂(A)と、100℃を越え
る結晶融解ピーク(融点Tmb)を有するポリオレフィ
ン系樹脂(B)との少なくとも2種類の樹脂から構成さ
れ、得られる発泡体の100℃以下の結晶融解エネルギ
ー(Ea)を特定範囲に制限することで、外観不良や発
泡不良に関与する該組成物調整時の粉末状発泡剤の熱に
よる分解や膨張の抑制精度を向上させ、かつ、該発泡体
の熱的特性向上の上で120℃以上の結晶融解エネルギ
ー(Eb)を特定範囲に制限する必要がある。
BEST MODE FOR CARRYING OUT THE INVENTION The polyolefin resin used in the polyolefin resin composition having the foaming ability of the present invention is a polymer or copolymer of olefinic hydrocarbon. Such a resin has a crystalline melting peak (melting point Tma) of 100 ° C. or less in order to suppress decomposition and expansion of the powdery foaming agent due to heat and to satisfy the heat resistance of the resulting foam (A). And a polyolefin resin (B) having a crystal melting peak (melting point Tmb) of more than 100 ° C., the crystalline melting energy (Ea) of 100 ° C. or less of the obtained foam is within a specific range. To improve the accuracy of suppressing the decomposition and expansion of the powdery foaming agent due to heat at the time of adjusting the composition involved in poor appearance and foaming failure, and in improving the thermal characteristics of the foamed material. It is necessary to limit the crystal melting energy (Eb) at 120 ° C. or higher to a specific range.

【0011】本発明の発泡能力を有するポリオレフィン
系樹脂組成物に用いるにポリオレフィン系樹脂は100
℃以下の結晶融解ピーク(融点Tma)を有するポリオ
レフィン系樹脂(A)と、100℃を越える結晶融解ピ
ーク(融点Tmb)を有するポリオレフィン系樹脂
(B)との少なくとも2種類の樹脂から構成することが
必要であり、ポリオレフィン系樹脂(A)は、100℃
以下の結晶融解エネルギーを多く有するポリエチレン系
樹脂が好ましく、ポリオレフィン系樹脂(B)は120
℃以上の結晶融解エネルギーを多く有するポリエチレン
系樹脂、ポリプロピレン系樹脂またはこれらの混合物で
あることが好ましい。
The polyolefin resin used in the polyolefin resin composition having the foaming ability of the present invention is 100
Consist of at least two kinds of resins: a polyolefin-based resin (A) having a crystal melting peak (melting point Tma) of 100 ° C or lower and a polyolefin-based resin (B) having a crystal melting peak (melting point Tmb) of higher than 100 ° C. Is required, and the polyolefin resin (A) is 100 ° C.
The following polyethylene-based resins having a large amount of crystal melting energy are preferable, and the polyolefin-based resin (B) is 120
A polyethylene resin, a polypropylene resin, or a mixture thereof, which has a large amount of crystal melting energy at or above 0 ° C., is preferable.

【0012】また、発泡能力を有するポリオレフィン系
樹脂組成物を加熱加工して得られた発泡体を示差走査熱
量分析で測定したDSC曲線の結晶融解ピーク面積から
得られる単位重量当たりの結晶融解エネルギーの内、1
00℃以下の結晶融解エネルギー(Ea)は粉末状発泡
剤を溶融混練する際に、該発泡剤が熱による分解や膨張
といった発泡化に起因する外観不良や発泡不良が生じな
いよう加工温度を低くする目的であり、かつ、同様に上
記方法で測定した120℃以上の結晶融解エネルギー
(Eb)は、加熱加工し発泡体とした時に耐熱性を付与
することが目的であるため、かかる観点から該結晶融解
エネルギー(Ea)は20〜100mJ/mgであり、
かつ、該結晶融解エネルギー(Eb)は10〜150m
J/mgに制限され、好ましくは該結晶融解エネルギー
(Ea)は25〜60mJ/mgであり、かつ、該結晶
融解エネルギー(Eb)は20〜100mJ/mgであ
る。
Further, the crystalline melting energy per unit weight obtained from the crystalline melting peak area of the DSC curve measured by differential scanning calorimetry of the foam obtained by heat-processing the polyolefin resin composition having the foaming ability. Of which 1
When the powdery foaming agent is melt-kneaded, the crystal melting energy (Ea) of 00 ° C. or lower is low at the processing temperature so that the foaming agent does not cause defective appearance or foaming failure due to foaming such as decomposition or expansion due to heat. The crystal melting energy (Eb) of 120 ° C. or higher, which is also measured by the above-mentioned method, is to impart heat resistance when heat-processed to form a foam. Crystal melting energy (Ea) is 20 to 100 mJ / mg,
And the crystal melting energy (Eb) is 10 to 150 m
It is limited to J / mg, preferably the crystal melting energy (Ea) is 25 to 60 mJ / mg, and the crystal melting energy (Eb) is 20 to 100 mJ / mg.

【0013】該結晶融解エネルギー(Ea)が20mJ
/mg未満であれば、発泡能力を有する樹脂組成物を溶
融混練する際に加える熱の高温化や剪断発熱による温度
上昇が発生し、粉末状発泡剤の熱による分解や膨張とい
った気泡核を形成する発泡化の頻度が著しく多くなるた
め、該組成物の外観が劣る場合や、該組成物を加熱加工
し発泡体としたとき緩衝性や断熱性などの発泡体基本特
性を損なうような発泡倍率の未達や良好な気泡形状の発
泡体が得られない場合があり、該結晶融解エネルギー
(Ea)が100mJ/mgを越えれば、該発泡剤の分
解や膨張といった気泡核を形成する発泡化なく該組成物
を溶融混練することは可能であるが、該組成物を加熱加
工し発泡体とした時に著しく耐熱性が低下するため実用
性に乏しい場合がある。かつ、該結晶融解エネルギー
(Eb)が10mJ/mg未満であれば、発泡能力を有
する樹脂組成物を加熱加工し発泡体としたときに著しく
耐熱性が低下するため実用性に乏しい場合があり、該結
晶融解エネルギー(Eb)が150mJ/mgを越えれ
ば、該組成物を溶融混練する際に加える熱の高温化や剪
断発熱による温度上昇が発生し、粉末状発泡剤の熱によ
る分解や膨張といった気泡核を形成する発泡化の頻度が
著しく多くなるため、該組成物の外観が劣る場合や、該
組成物を加熱加工し発泡体としたとき緩衝性や断熱性な
どの発泡体基本特性を損なうような発泡倍率の未達や良
好な気泡形状の発泡体が得られない場合がある。
The crystal melting energy (Ea) is 20 mJ
If it is less than / mg, the temperature of the heat applied when the resin composition having the foaming ability is melt-kneaded and the temperature rise due to heat generation by shearing occur, and a bubble nucleus such as decomposition or expansion due to heat of the powdery foaming agent is formed. When the composition is inferior in appearance, or when the composition is heat-processed to form a foam, a foaming ratio that impairs basic foam properties such as cushioning properties and heat insulation properties. In some cases, a foam having a good cell shape may not be obtained, and if the crystal melting energy (Ea) exceeds 100 mJ / mg, there is no foaming such as decomposition or expansion of the foaming agent to form a cell nucleus. It is possible to melt-knead the composition, but when the composition is heat-processed to form a foam, the heat resistance is remarkably reduced, which may be impractical. Further, if the crystal melting energy (Eb) is less than 10 mJ / mg, the heat resistance of the resin composition having a foaming ability is remarkably lowered when it is formed into a foam, which may be impractical. If the crystal melting energy (Eb) exceeds 150 mJ / mg, the temperature of the heat applied when the composition is melt-kneaded and the temperature rise due to shear heat generation occur, and the powdery foaming agent decomposes or expands due to heat. Since the frequency of foaming to form cell nuclei is significantly increased, the appearance of the composition is inferior, and when the composition is heat-processed to form a foam, basic foam properties such as buffering properties and heat insulating properties are impaired. Such a foaming ratio may not be achieved or a foam having a good cell shape may not be obtained.

【0014】ここで示す結晶融解ピーク(融点)及び結
晶融解エネルギーとは、示差走査熱量分析で測定したD
SC曲線から得られるものであり、この測定方法は次に
示すとおりである。
The crystal melting peak (melting point) and the crystal melting energy shown here are D measured by differential scanning calorimetry.
It is obtained from the SC curve and the measuring method is as follows.

【0015】示差走査熱量分析装置を用い、−50℃か
ら200℃の間で10℃/分の速度で昇温し、5分間保
持した後200℃から−50℃の間で10℃/分の速度
で降温し、更に5分間保持した後−50℃から200℃
の間で10℃/分の速度で昇温した2度目の昇温で得ら
れたDSC曲線の結晶融解ピーク温度を融点とし、この
DSC曲線に25℃から融解終了温度の間に引いた直線
のベースラインで囲んだ面積の単位重量当たりのエネル
ギーに占める25〜100℃で囲んだ面積の単位重量当
たりのエネルギーを結晶融解エネルギー(Ea)、12
0℃〜融解終了温度で囲んだ面積の単位重量当たりのエ
ネルギーを結晶融解エネルギー(Eb)としてそれぞれ
算出した。
Using a differential scanning calorimeter, the temperature was raised from −50 ° C. to 200 ° C. at a rate of 10 ° C./min, held for 5 minutes, and then 10 ° C./min from 200 ° C. to −50 ° C. After decreasing the temperature at a speed and holding for 5 minutes, -50 ℃ to 200 ℃
The melting point is the crystal melting peak temperature of the DSC curve obtained by the second temperature increase at a rate of 10 ° C./min. The energy per unit weight of the area surrounded by 25 to 100 ° C. occupying the energy per unit weight of the area surrounded by the baseline is defined as the crystal melting energy (Ea), 12
The energy per unit weight of the area surrounded by 0 ° C to the melting end temperature was calculated as the crystal melting energy (Eb).

【0016】本発明の発泡能力を有するポリオレフィン
系樹脂組成物を構成するポリオレフィン系樹脂(A)と
ポリオレフィン系樹脂(B)との配合は、上記理由によ
り該組成物を加熱加工した発泡体を示差走査熱量分析で
測定したDSC曲線の結晶融解ピーク面積から得られる
単位重量当たりの結晶融解エネルギーの内、100℃以
下の結晶融解エネルギー(Ea)が20〜100mJ/
mg、同様に測定した120℃以上の結晶融解エネルギ
ー(Eb)が10〜150mJ/mgとなるよう調整す
る必要がある。
The blending of the polyolefin resin (A) and the polyolefin resin (B) constituting the polyolefin resin composition having the foaming ability of the present invention is different from that of the foamed product obtained by heating the composition for the above-mentioned reason. Among the crystal melting energies per unit weight obtained from the crystal melting peak area of the DSC curve measured by scanning calorimetry, the crystal melting energy (Ea) at 100 ° C. or lower is 20 to 100 mJ /
It is necessary to adjust so that the crystal melting energy (Eb) at 120 ° C. or higher measured in the same manner is 10 to 150 mJ / mg.

【0017】ポリオレフィン系樹脂(A)とポリオレフ
ィン系樹脂(B)の配合割合は、選択するポリオレフィ
ン系樹脂によってことなるが、 (A):20〜80重量% (B):20〜80重量% であることが好ましく、さらに、 (A):30〜60重量% (B):40〜70重量% であることがより好ましい。
The mixing ratio of the polyolefin-based resin (A) and the polyolefin-based resin (B) depends on the selected polyolefin-based resin. (A): 20-80% by weight (B): 20-80% by weight It is preferable that (A) is 30 to 60% by weight, and (B) is 40 to 70% by weight.

【0018】ポリオレフィン系樹脂(A)が20重量%
未満かつポリオレフィン系樹脂(B)が80重量%を超
える場合は、発泡能力を有するポリオレフィン系樹脂組
成物を加熱加工した発泡体を示差走査熱量分析で測定し
たDSC曲線の結晶融解ピーク面積から得られる単位重
量当たりの結晶融解エネルギーの内、100℃以下の結
晶融解エネルギー(Ea)が20mJ/mg未満である
場合や、同様に測定した120℃以上の結晶融解エネル
ギー(Eb)が150mJ/mgを超える場合があり、
該組成物を溶融混練する際に加える熱の高温化や剪断発
熱による温度上昇が発生し、粉末状発泡剤の熱による分
解や膨張といった気泡核を形成する発泡化の頻度が著し
く多くなるため、該組成物の外観が劣る場合や、該組成
物を加熱加工し発泡体としたとき緩衝性や断熱性などの
発泡体基本特性を損なうような発泡倍率の未達や良好な
気泡形状の発泡体が得られない場合がある。
20% by weight of polyolefin resin (A)
If less than 80% by weight of the polyolefin-based resin (B), it is obtained from the crystal melting peak area of the DSC curve of the foamed product obtained by heat-processing the polyolefin-based resin composition having the foaming ability, which is measured by differential scanning calorimetry. Of the crystal melting energies per unit weight, when the crystal melting energy (Ea) at 100 ° C. or lower is less than 20 mJ / mg, or the crystal melting energy (Eb) at 120 ° C. or higher measured similarly exceeds 150 mJ / mg. Sometimes,
Since the temperature of the heat applied when the composition is melt-kneaded and the temperature rise due to heat generation due to shearing occur, the frequency of foaming to form bubble nuclei such as decomposition or expansion of the powdery foaming agent due to heat is significantly increased. A foam having a poor expansion ratio or having a good cell shape when the appearance of the composition is inferior or when the composition is heat-processed to form a foam, which impairs the basic properties of the foam such as cushioning and heat insulating properties. May not be obtained.

【0019】また、ポリオレフィン系樹脂(A)が80
重量%を超え、かつポリオレフィン系樹脂(B)が20
重量%を未満である場合は、発泡能力を有するポリオレ
フィン系樹脂組成物を加熱加工した発泡体を示差走査熱
量分析で測定したDSC曲線の結晶融解ピーク面積から
得られる単位重量当たりの結晶融解エネルギーの内、1
00℃以下の結晶融解エネルギー(Ea)が100mJ
/mgを超える場合や、同様に測定した120℃以上の
結晶融解エネルギー(Eb)が10mJ/mg未満であ
る場合があり、粉末状発泡剤の分解や膨張といった気泡
核を形成する発泡化なく該組成物を溶融混練することは
可能であるが、該組成物を加熱加工し発泡体としたとき
に著しく耐熱性が低下するため実用性に乏しい場合があ
る。
Further, the polyolefin resin (A) is 80
More than 20% by weight and the polyolefin resin (B) is 20
When the amount is less than 10% by weight, the crystal melting energy per unit weight obtained from the crystal melting peak area of the DSC curve measured by differential scanning calorimetry of a foam obtained by heat-processing a polyolefin resin composition having a foaming ability Of which 1
Crystal melting energy (Ea) below 100 ℃ is 100mJ
In some cases, the crystal melting energy (Eb) at 120 ° C. or higher measured in the same manner is less than 10 mJ / mg, and there is no foaming that forms a cell nucleus such as decomposition or expansion of the powdery foaming agent. It is possible to melt-knead the composition, but when the composition is heat-processed to form a foam, the heat resistance is remarkably lowered, which may be impractical.

【0020】本発明の発泡能力を有するポリオレフィン
系樹脂組成物に用いるポリエチレン系樹脂としては、特
に限定されないが例えばエチレンを主鎖とするポリエチ
レン系樹脂あるいはその共重合体などが例示され、例え
ばエチレン−酢酸ビニル共重合体、エチレン−エチルア
クリレート共重合体、エチレン−ジエン共重合体、エチ
レン−プロピレン−ジエン3元共重合体、エチレン−オ
クテン共重合体、低密度ポリエチレン、エチレンと炭素
数が4〜12のα−オレフィンとを共重合した直鎖状の
ポリエチレン、高密度ポリエチレン、エチレン系樹脂を
ハードセグメントとする熱可塑性エラストマーが例示さ
れ、それぞれ単独あるいは2種類以上を組み合わせて使
用することができる。エチレンに共重合させるα−オレ
フィンについては特に限定されないが、たとえばプロピ
レン、1−ブテン、1−ペンテン、3,3−ジメチル−
1−ブテン、4−メチル−1−ペンテン、4,4−ジメ
チル−1−ペンテン、1−デセン、1−ドデセン、1−
テトラデセン、1−オクタデセン等が好ましい。以上例
示したポリエチレン系樹脂の内、100℃以下の融点を
有するものをポリオレフィン系樹脂(A)、100℃を
越える融点を有するものをポリオレフィン系樹脂(B)
に用いることが好ましい。
The polyethylene resin used in the polyolefin resin composition having the foaming ability of the present invention is not particularly limited, but for example, a polyethylene resin having ethylene as a main chain or a copolymer thereof is exemplified. Vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-diene copolymer, ethylene-propylene-diene terpolymer, ethylene-octene copolymer, low density polyethylene, ethylene and carbon number 4 to Examples include linear polyethylene copolymerized with 12 α-olefins, high-density polyethylene, and thermoplastic elastomers having an ethylene-based resin as a hard segment, and each may be used alone or in combination of two or more kinds. The α-olefin copolymerized with ethylene is not particularly limited, but for example, propylene, 1-butene, 1-pentene, 3,3-dimethyl-
1-butene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-decene, 1-dodecene, 1-
Tetradecene, 1-octadecene and the like are preferable. Among the polyethylene resins exemplified above, those having a melting point of 100 ° C. or lower are polyolefin resins (A), and those having a melting point higher than 100 ° C. are polyolefin resins (B).
It is preferable to use

【0021】また、190℃で測定したMFRにおいて
1〜100g/10分であることが好ましく、さらに1
〜50g/10分であることが好ましい。MFRが1g
/10分未満であると、発泡能力を有するポリオレフィ
ン系樹脂を溶融混練する際に加える熱の高温化や剪断発
熱による温度上昇が発生し、粉末状発泡剤の熱による分
解や膨張といった気泡核を形成する発泡化の頻度が著し
く多くなるため、該組成物の外観が劣る場合や、該組成
物を加熱加工し発泡体としたとき緩衝性や断熱性などの
発泡体基本特性を損なうような発泡倍率の未達や良好な
気泡形状の発泡体が得られない場合があり、一方、50
g/10分を越えると該発泡剤の分解や膨張といった気
泡核を形成する発泡化なく溶融混練することは可能であ
るが、ポリオレフィン系樹脂の溶融粘度が低いため該組
成物を加熱加工し発泡体としたときに緩衝性や断熱性な
どの発泡体基本特性を損なうような発泡倍率の未達や、
熱による変形が大きくなり耐熱性不良となる場合があ
る。ここで示すMFRとはJIS K−6922−2に
準じた測定方法で測定したものである。
The MFR measured at 190 ° C. is preferably 1 to 100 g / 10 minutes, and further 1
It is preferably -50 g / 10 minutes. MFR is 1g
If it is less than / 10 minutes, the temperature of the heat applied when melt-kneading the polyolefin resin having the foaming ability and the temperature rise due to the shear heat generation occur, and the bubble nuclei such as decomposition and expansion due to the heat of the powdery foaming agent are generated. When the composition is inferior in appearance because the frequency of foaming to be formed remarkably increases, or when the composition is heat-processed to form a foam, foaming that impairs basic foam properties such as cushioning properties and heat insulation properties. In some cases, it may not be possible to obtain a foam having a good expansion ratio or a bubble shape.
If it exceeds g / 10 minutes, it is possible to melt-knead without foaming to form cell nuclei such as decomposition and expansion of the foaming agent, but since the melt viscosity of the polyolefin resin is low, the composition is heat-processed to foam. When the body does not reach the expansion ratio that impairs the basic properties of the foam, such as cushioning and heat insulation,
Deformation due to heat may increase, resulting in poor heat resistance. The MFR shown here is measured by a measuring method according to JIS K-6922-2.

【0022】また、ポリプロピレン系樹脂としては、特
に限定されないが例えばプロピレンを主鎖とするポリエ
チレン系樹脂あるいはその共重合体などが例示され、ポ
リプロピレン、プロピレンを主体とするエチレンまたは
α−オレフィンとのランダムもしくはブロック共重合
体、プロピレン系樹脂をハードセグメントとする熱可塑
性エラストマーが例示され、それぞれ単独あるいは2種
類以上を組み合わせて使用することができる。プロピレ
ンに共重合させるα−オレフィンの種類や数は特に限定
されないが、たとえばエチレン、1−ブテン、1−ペン
テン、3,3−ジメチル−1−ブテン、4−メチル−1
−ペンテン、4,4−ジメチル−1−ペンテン、1−デ
セン、1−ドデセン、1−テトラデセン、1−オクタデ
セン等が好ましい。
The polypropylene-based resin is not particularly limited, and examples thereof include a polyethylene-based resin having propylene as a main chain or a copolymer thereof, and polypropylene, propylene-based ethylene or α-olefin random resin. Alternatively, a block copolymer and a thermoplastic elastomer having a propylene-based resin as a hard segment are exemplified, and each can be used alone or in combination of two or more kinds. The type and number of α-olefin to be copolymerized with propylene are not particularly limited, but for example, ethylene, 1-butene, 1-pentene, 3,3-dimethyl-1-butene, 4-methyl-1.
-Pentene, 4,4-dimethyl-1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene and the like are preferable.

【0023】また、230℃で測定したMFRにおいて
0.5〜50g/10分であることが好ましく、さらに
1〜20g/10分であることが好ましい。MFRが
0.5g/10分未満であると、発泡能力を有するポリ
オレフィン系樹脂組成物を溶融混練する際に加える熱の
高温化や剪断発熱による温度上昇が発生し、粉末状発泡
剤の熱による分解や膨張といった気泡核を形成する発泡
化の頻度が著しく多くなるため、該組成物の外観が劣る
場合や、該組成物を加熱加工し発泡体としたとき緩衝性
や断熱性などの発泡体基本特性を損なうような発泡倍率
の未達や良好な気泡形状の発泡体が得られない場合があ
り、一方、50g/10分を越えると該発泡剤の分解や
膨張といった気泡核を形成する発泡化なく溶融混練する
ことは可能であるが、ポリオレフィン系樹脂の溶融粘度
が低いため該組成物を加熱加工し発泡体としたときに緩
衝性や断熱性などの発泡体基本特性を損なうような発泡
倍率の未達や、熱による変形が大きくなり耐熱性不良と
なる場合がある。ここで示すMFRとはJIS K−6
921−2に準じた測定方法で測定したものである。
The MFR measured at 230 ° C. is preferably 0.5 to 50 g / 10 minutes, more preferably 1 to 20 g / 10 minutes. If the MFR is less than 0.5 g / 10 minutes, the heat applied during the melt-kneading of the polyolefin-based resin composition having the foaming ability will rise and the temperature will rise due to the heat generated by shearing. Since the frequency of foaming such as decomposition and expansion to form cell nuclei is significantly increased, the appearance of the composition is inferior, or when the composition is heat-processed to form a foam, the foam has a cushioning property and a heat insulating property. In some cases, a foaming ratio that does not satisfy the basic characteristics may not be achieved, or a foam having a good cell shape may not be obtained. On the other hand, when it exceeds 50 g / 10 minutes, foaming that forms a cell nucleus such as decomposition or expansion of the foaming agent. Although it is possible to melt-knead the composition without foaming, foaming that impairs the basic properties of the foam such as cushioning and heat insulation when the composition is heat-processed to form a foam due to the low melt viscosity of the polyolefin resin. Unscaled And, in some cases deformed by heat is a heat-resistant poor increased. The MFR shown here is JIS K-6.
It is measured by the measuring method according to 921-2.

【0024】本発明の発泡能力を有するポリオレフィン
系樹脂組成物に使用する粉末状発泡剤は、熱による分解
や膨張といった発泡の開始する温度(以下発泡開始温度
と表する。)が100〜180℃であることが必要であ
り、更に120〜160℃がより好ましく、また熱分解
型化学発泡剤、熱膨張型マイクロカプセルまたはこれら
の混合物であることが好ましい。
The powdery foaming agent used in the polyolefin resin composition having the foaming ability of the present invention has a temperature at which foaming such as decomposition and expansion due to heat starts (hereinafter referred to as foaming start temperature) from 100 to 180 ° C. And more preferably 120 to 160 ° C., more preferably a pyrolytic chemical blowing agent, a thermal expansion microcapsule, or a mixture thereof.

【0025】粉末状発泡剤の発泡開始温度が100℃未
満であれば、ポリオレフィン系樹脂と溶融混練する際
に、該発泡剤の熱による分解や膨張といった気泡核を形
成する発泡化の頻度が著しく多くなるため、発泡能力を
有する樹脂組成物の外観が劣る場合や、該組成物を加熱
加工し発泡体としたとき緩衝性や断熱性などの発泡体基
本特性を損なうような発泡倍率の未達や良好な気泡形状
の発泡体が得られない場合があり、該発泡剤の発泡開始
温度が180℃を越えると該組成物の発泡加工時に加え
る熱が高温化しポリオレフィン系樹脂粘度が低下するた
め気泡膜の形成保持が困難となり、緩衝性や断熱性など
の発泡体基本特性を満足しない低発泡倍率となる場合
や、加工時間の遅延のため経済面で実用性に欠ける場合
がある。
When the foaming starting temperature of the powdery foaming agent is less than 100 ° C., the frequency of foaming to form cell nuclei such as decomposition and expansion due to heat of the foaming agent when melt-kneading with the polyolefin resin is remarkable. If the appearance of the resin composition having foaming ability is poor, or if the composition is heat-processed to form a foam, a foaming ratio that does not meet the basic foam characteristics such as cushioning and heat insulating properties is not reached. In some cases, a foam having a good cell shape may not be obtained, and when the foaming start temperature of the foaming agent exceeds 180 ° C., the heat applied during foaming processing of the composition becomes high and the viscosity of the polyolefin resin decreases, resulting in foaming. It may be difficult to form and maintain the film, resulting in a low expansion ratio that does not satisfy the basic properties of the foam such as cushioning properties and heat insulation properties, or it may be economically impractical due to a delay in processing time.

【0026】ここで示す粉末状発泡剤の発泡開始温度は
次に示す方法で測定したものである。
The foaming onset temperature of the powdery foaming agent shown here is measured by the following method.

【0027】熱重量測定装置を用い、粉末状発泡剤試料
10mgを25℃から300℃の間で2℃/分の速度で
昇温したときに得られたTG曲線において、基準サンプ
ル重量に対し5%の重量が減量した温度を発泡開始温度
とする。なお、水分等の影響により測定開始から微量変
化を発生する場合があり、基準サンプル重量は25〜8
0℃の平均重量とした。
In the TG curve obtained when 10 mg of the powdery foaming agent sample was heated at a rate of 2 ° C./minute from 25 ° C. to 300 ° C. by using a thermogravimetric measuring device, 5 with respect to the reference sample weight. The temperature at which the weight% is reduced is defined as the foaming start temperature. In addition, a slight change may occur from the start of measurement due to the influence of water content, and the reference sample weight is 25 to 8
The average weight was 0 ° C.

【0028】熱分解型化学発泡剤としては、熱を加える
ことで分解しガスを放出する化学発泡剤であれば特に限
定するものではなく、例えば有機、無機系の各種があ
り、有機系にはアゾジカルボンアミド、N,N´−ジニ
トロソペンタメチレンテトラミン、P.P´−オキシベ
ンゼンスルフォニルヒドラジドなど、無機系には重炭酸
ナトリウム、炭酸アンモニウム、重炭酸アンモニウム、
カルシウムアジドなどが例示され、それぞれ単独あるい
は2種類以上を組み合わせて使用することができる。
The thermal decomposition type chemical foaming agent is not particularly limited as long as it is a chemical foaming agent that decomposes by releasing heat and releases gas, and for example, various types such as organic and inorganic types are available. Azodicarbonamide, N, N'-dinitrosopentamethylenetetramine, P.I. Inorganic compounds such as P'-oxybenzenesulfonyl hydrazide include sodium bicarbonate, ammonium carbonate, ammonium bicarbonate,
Calcium azide and the like are exemplified, and each can be used alone or in combination of two or more kinds.

【0029】また、熱膨張型マイクロカプセルとして
は、熱を加えることで低沸点炭化水素を包含した樹脂微
小球が膨張するものであれば特に限定するものではな
く、例えばエタン、プロパン、ブタン、ペンタン、ヘキ
サン、ヘプタンなどの低沸点炭化水素をポリ塩化ビニリ
デン、塩化ビニリデン−アクリロニトリル共重合体、ポ
リアクリロニトリル、アクリロニトリル−アクリル酸メ
チル共重合体などからなる外殻壁で包含したものが例示
され、それぞれ単独あるいは2種類以上を組み合わせて
使用することができる。
The heat-expandable microcapsules are not particularly limited as long as the resin microspheres containing the low boiling point hydrocarbon expand by the application of heat, for example, ethane, propane, butane, pentane. , Hexane, low boiling point hydrocarbons such as heptane, polyvinylidene chloride, vinylidene chloride-acrylonitrile copolymer, polyacrylonitrile, acrylonitrile-methyl acrylate, etc. are included in the outer shell wall is exemplified, and each is alone. Alternatively, two or more kinds can be used in combination.

【0030】上記熱分解型化学発泡剤、熱膨張型マイク
ロカプセルは、それぞれ単独あるいは2種類以上を組み
合わせて使用することができる。
The thermal decomposition type chemical foaming agent and the thermal expansion type microcapsule can be used alone or in combination of two or more kinds.

【0031】粉末状発泡剤の添加量は、加熱加工し発泡
体としたときの発泡倍率が5倍以上、より好ましくは5
〜30倍の範囲となるように調整をすることが好まし
い。発泡倍率が5倍未満であると緩衝性、断熱性、軽量
性などの発泡体の特徴が著しく損なわれる場合があり、
発泡倍率が30倍を越えると圧縮回復性や圧縮永久歪な
どの圧縮に対する特性が著しく損なわれるが場合があ
り、熱膨張型マイクロカプセルでは大量の添加が必要で
あるためポリオレフィン系樹脂との溶融混練不良が発生
し、外観不良や目的とする発泡倍率を得られない場合が
ある。
The amount of the powdery foaming agent added is such that the foaming ratio of the foamed product obtained by heat processing is 5 times or more, more preferably 5 times.
It is preferable that the adjustment is made within a range of up to 30 times. If the expansion ratio is less than 5 times, the characteristics of the foam such as cushioning properties, heat insulation properties, and lightweight properties may be significantly impaired.
When the expansion ratio exceeds 30 times, compression recovery properties and compression set properties may be significantly impaired, and since a large amount of thermal expansion type microcapsules needs to be added, melt kneading with a polyolefin resin is required. In some cases, defects may occur, resulting in poor appearance or the desired expansion ratio.

【0032】ここで示す発泡倍率とは、発泡能力を有す
るポリオレフィン系樹脂組成物を加熱加工し発泡体とし
た上で、JIS K−6767に準じた測定方法で測定
した見掛け密度の逆数を示す。
The expansion ratio shown here is the reciprocal of the apparent density measured by a measuring method according to JIS K-6767 after a polyolefin resin composition having a foaming ability is heat-processed to form a foam.

【0033】本発明の発泡能力を有するポリオレフィン
系樹脂組成物は、100℃を越える結晶融解ピーク(融
点Tmb)を有するポリオレフィン系樹脂(B)を含む
ため、発泡加工時に気泡膜を保持するための溶融粘度を
高く保つことが可能であり、リサイクル性に優位な微架
橋状態での加工発泡体を得ることが可能である。
Since the polyolefin resin composition having a foaming ability of the present invention contains the polyolefin resin (B) having a crystal melting peak (melting point Tmb) of more than 100 ° C., it is used for holding a foam film during the foaming process. It is possible to keep the melt viscosity high, and it is possible to obtain a processed foam in a finely crosslinked state which is superior in recyclability.

【0034】更に加工発泡体の外観向上や高倍率化のた
め、リサイクル性を損なわない範囲で架橋による樹脂の
溶融粘度増加を行っても良い。この時の架橋度は、0〜
30%が好ましいく、さらに0〜20%がより好まし
い。架橋度が30%を越えるとポリオレフィン系樹脂組
成物を加熱加工した発泡体や該発泡体と接合する他の物
品を含む発泡構造体を、リサイクルのため熱を加え各種
加工を行うとき溶融不良、未溶融物のための加工不良、
外観不良などの問題が発生する場合がある。
Further, in order to improve the appearance of the processed foam and increase the magnification, the melt viscosity of the resin may be increased by cross-linking within a range not impairing the recyclability. The degree of crosslinking at this time is 0 to
30% is preferable, and 0 to 20% is more preferable. When the degree of cross-linking exceeds 30%, a foamed structure including a foam obtained by heat-processing a polyolefin resin composition and other articles joined to the foam is melted poorly when heat is applied for recycling to perform various processes. Processing defects due to unmelted material,
Problems such as poor appearance may occur.

【0035】架橋方法は、特に限定されないが、電離性
放射線を照射し架橋させる電子線架橋法、有機過酸化物
を混練し発泡時に有機過酸化物を分解し架橋させる化学
架橋法、シラン基を持つポリオレフィン系樹脂を混合し
水分と接触することで架橋させるシラン架橋法が例示さ
れ、これらの架橋方法はそれぞれ単独あるいは2種類以
上を組み合わせて使用することができる。電離性放射線
を照射するエネルギー、有機過酸化物を添加する量、樹
脂中に含まれるシラン基の量や水分の接触条件などの諸
条件は、架橋度が0〜30%の範囲であれば特に限定す
るものではない。 ここで示す架橋度とは、細かく裁断
した発泡体0.1gを130℃のテトラリン中で抽出し
た後100メッシュのステンレス製金網で濾過し、金網
上の抽出残量から次式により求めたものである。
The cross-linking method is not particularly limited, but an electron beam cross-linking method of irradiating with ionizing radiation to cross-link, a chemical cross-linking method of kneading an organic peroxide to decompose and cross-link the organic peroxide during foaming, and a silane group are used. The silane cross-linking method is exemplified in which the polyolefin resin is mixed and brought into contact with water to cross-link, and these cross-linking methods can be used alone or in combination of two or more kinds. Various conditions such as energy for irradiation of ionizing radiation, amount of organic peroxide added, amount of silane group contained in resin, and contact condition of water are particularly preferable as long as the degree of crosslinking is in the range of 0 to 30%. It is not limited. The degree of crosslinking shown here is obtained by extracting 0.1 g of finely chopped foam in tetralin at 130 ° C., filtering it with a 100-mesh stainless steel wire net, and using the following formula from the extraction residual amount on the wire net. is there.

【0036】 架橋度=〔抽出残量/0.1〕×100 (%) 本発明の発泡能力を有するポリオレフィン系樹脂組成物
は、必要に応じて例えば熱安定剤、耐候剤、難燃剤、難
燃助剤、分散剤、顔料、流動性改良剤、離型剤、充填
剤、造核剤など公知の各種添加剤を添加しても良い。
Crosslinking degree = [remaining amount of extraction / 0.1] × 100 (%) The polyolefin resin composition having the foaming ability of the present invention may be, for example, a heat stabilizer, a weather resistance agent, a flame retardant, a flame retardant agent, if necessary. Various known additives such as a combustion aid, a dispersant, a pigment, a fluidity improver, a release agent, a filler and a nucleating agent may be added.

【0037】本発明の発泡能力を有するポリオレフィン
系樹脂組成物の製造方法は、ポリオレフィン系樹脂
(A)とポリオレフィン系樹脂(B)及び粉末状発泡剤
や必要に応じた各種添加剤などを混合し、該ポリオレフ
ィン系樹脂(A)の融点(Tma)以上、かつ、該発泡
剤の発泡開始温度以下の温度範囲内で押出機やミキシン
グロールなどの汎用の混練装置を用いて溶融混練する方
法が挙げられる。 また、ポリオレフィン樹脂(A)及
びポリオレフィン樹脂(B)を該ポリオレフィン系樹脂
(B)の融点(Tmb)以上で押出機やミキシングロー
ルなどの汎用の混練装置を用いて溶融状態で混練した原
料を準備し、これに粉末状発泡剤や必要に応じた各種添
加剤などを混合し、該ポリオレフィン系樹脂(A)の融
点(Tma)以上、かつ、該発泡剤の発泡開始温度以下
の温度範囲内で押出機やミキシングロールなどの汎用の
混練装置を用いて溶融混練する方法も挙げられる。かか
る方法によりシート状やストランド状などの形状の長尺
物に成形した発泡能力を有するポリオレフィン系樹脂組
成物得ることができる。
The method for producing a polyolefin resin composition having the foaming ability of the present invention comprises mixing the polyolefin resin (A) and the polyolefin resin (B), a powdery foaming agent and various additives as required. A method of melt-kneading using a general-purpose kneading device such as an extruder or a mixing roll within a temperature range not lower than the melting point (Tma) of the polyolefin resin (A) and not higher than the foaming start temperature of the foaming agent. To be Further, a raw material prepared by kneading the polyolefin resin (A) and the polyolefin resin (B) in a molten state at a melting point (Tmb) of the polyolefin resin (B) or higher using a general-purpose kneading device such as an extruder or a mixing roll is prepared. Then, this is mixed with a powdery foaming agent, various additives as required, and the like, within a temperature range not lower than the melting point (Tma) of the polyolefin resin (A) and not higher than the foaming start temperature of the foaming agent. A method of melt-kneading using a general-purpose kneading device such as an extruder or a mixing roll can also be used. By such a method, it is possible to obtain a polyolefin resin composition having a foaming ability, which is formed into a long product such as a sheet or a strand.

【0038】ポリオレフィン系樹脂組成物の形状は、後
工程で所定の空間に挿入するか、他の物品と接合し、か
かる状態下で加熱発泡せしめ発泡構造体とする際の加工
性を考慮し、該組成物を板状、チップ状、粉末状の形状
に裁断加工する必要がある。事前に架橋処理を施す場
合、例えば電子線架橋法やシラン架橋法のように発泡前
に架橋を行う場合はシート状やストランド状などの長尺
物で架橋処理を行った後、単板カット機、ペレタイザ
ー、粉砕機などの汎用の裁断機で板状、チップ状、粉末
状の形状に裁断加工する。また、架橋処理を行わない場
合や化学架橋法のような発泡中に架橋を行う場合のよう
に事前に架橋処理を必要としない場合は、シート状やス
トランド状などの長尺物に成形した後、単板カット機、
ペレタイザー、粉砕機などの汎用の裁断機で板状状、チ
ップ状、粉末状の形状に裁断加工する。かかる方法によ
り形状を板状、チップ状、粉末状に加工した本発明の発
泡能力を有するポリオレフィン系樹脂組成物を製造す
る。
The shape of the polyolefin-based resin composition is inserted in a predetermined space in a later step or bonded to another article, and in consideration of the workability in forming a heat-foamed foamed structure under such a condition, It is necessary to cut the composition into a plate shape, a chip shape, and a powder shape. When performing cross-linking treatment in advance, for example, when performing cross-linking before foaming such as electron beam cross-linking method or silane cross-linking method, after performing cross-linking treatment with a long object such as sheet or strand, single plate cutting machine It is cut into a plate, chip, or powder with a general-purpose cutting machine such as a pelletizer or a crusher. In addition, if no crosslinking treatment is required in advance, such as when not performing crosslinking treatment or when performing crosslinking during foaming as in the chemical crosslinking method, after molding into a long object such as a sheet or a strand. , Single plate cutting machine,
It is cut into a plate shape, chip shape, or powder shape with a general-purpose cutting machine such as a pelletizer or a crusher. A polyolefin resin composition having a foaming ability of the present invention, which is processed into a plate shape, a chip shape, or a powder shape by such a method, is produced.

【0039】[0039]

【実施例】次に、本発明を実施例及び比較例により具体
的に説明する。
EXAMPLES Next, the present invention will be specifically described with reference to Examples and Comparative Examples.

【0040】本発明における測定法、評価基準は次の通
りである。 1.組成物混練性 発泡能力を有するポリオレフィン系樹脂組成物を40m
mφ単軸押出機で板状に成形加工する際、粉末状発泡剤
が分解しない温度で溶融混練が可能であるか判定する。
樹脂が軟化し、該発泡剤が温度による分解や膨張といっ
た発泡化がなく溶融混練可能であるものを合格(◎)、
多少の不備が見られるが発泡体に加工可能であり緩衝性
や断熱性などの発泡体基本特性を損なわないものを合格
(○)、緩衝性や断熱性などの発泡体基本特性に影響す
る顕著な該発泡剤の分解や膨張といった発泡化があるも
のを不合格(×)と判定する。
The measuring methods and evaluation criteria in the present invention are as follows. 1. 40 m of a polyolefin resin composition having a kneadable foaming ability
When forming into a plate shape with an mφ single screw extruder, it is determined whether melt kneading is possible at a temperature at which the powdery foaming agent does not decompose.
The resin is softened and the foaming agent is melted and kneadable without being foamed such as decomposition or expansion due to temperature (pass),
Some defects are found, but those that can be processed into foam and do not impair the basic foam characteristics such as cushioning and heat insulation properties are passed (○), and the foam basic characteristics such as cushioning and heat insulation properties are affected significantly If there is foaming such as decomposition or expansion of the foaming agent, it is judged as unacceptable (x).

【0041】2.発泡体外観 板状、チップ状、粉末状の発泡能力を有するポリオレフ
ィン系樹脂組成物を加熱発泡加工した発泡体の歪み、表
面の平面性、気泡の均一性を目視判定する。発泡体の歪
み、表面の発泡剤分解ガス逃散孔、発泡ムラによる凹凸
がなく、均一な気泡形状を保ち、化学発泡剤未分解物等
の影響による黄色着色の少ないものを合格(◎)、多少
の不備が見られるが緩衝性や断熱性などの発泡体基本特
性を損なわないものを合格(○)、緩衝性や断熱性など
の発泡体基本特性を損なうような不備があるものを不合
格(×)と判定する。
2. Foam appearance Visual evaluation is performed on the strain, surface flatness, and uniformity of foam of a foam obtained by heat-foaming a polyolefin resin composition having a foaming ability in the form of a plate, a chip, or a powder. Passed those with little yellow coloring due to the influence of undecomposed chemical foaming agent, with no distortion of foam, gas escape holes of foaming agent on the surface, unevenness due to unevenness of foaming, and maintaining uniform bubble shape (◎), somewhat Although there are some defects, those that do not impair the basic properties of the foam such as cushioning and heat insulation are passed (○), and those that have defects that impair the basic properties of foam such as cushioning and heat insulation are rejected ( X).

【0042】3.発泡倍率 板状、チップ状、粉末状の発泡能力を有するポリオレフ
ィン系樹脂組成物を加熱発泡加工した発泡体の見かけ密
度をJIS K−6767に準じた測定方法で測定し、
この見かけ密度の逆数値を発泡倍率とする。すべての形
状において発泡倍率が5倍以上のものを合格(○)、5
倍未満を含む場合を不合格(×)と判定する。
3. Foaming ratio Plate-like, chip-like, powder-like, and the apparent density of a foamed product obtained by heat-foaming a polyolefin resin composition having a foaming ability is measured by a measuring method according to JIS K-6767,
The reciprocal value of this apparent density is taken as the expansion ratio. Passed with a foaming ratio of 5 times or more in all shapes (○), 5
If less than double is included, it is judged as rejected (x).

【0043】4.耐熱温度 板状、チップ状、粉末状の発泡能力を有するポリオレフ
ィン系樹脂組成物を加熱発泡加工した発泡体から15×
15cmの正方形サンプルを切り出し、その中心の厚み
Z0cmの測定及び各辺に平行となる各々長さ10cm
の直交した標線を書き、このサンプルを熱風循環オ−ブ
ンに入れ22時間加熱後、取出し、室温になるまで自然
冷却する。この加熱処理サンプルの厚みZ1cm及び各
縦横の標線長さL1、L2cmを測定し、下記の式に従
って加熱体積変化率を算出する。
4. Heat-resistant temperature plate-shaped, chip-shaped, powder-like foamed polyolefin resin composition having foaming ability
Cut out a 15 cm square sample, measure the thickness Z0 cm at its center, and measure 10 cm in length parallel to each side.
Draw the crossed lines, and put this sample in a hot air circulation oven, heat it for 22 hours, remove it, and let it cool naturally to room temperature. The thickness Z1 cm of this heat-treated sample and the lengths L1 and L2 cm of the vertical and horizontal marked lines are measured, and the heating volume change rate is calculated according to the following formula.

【0044】加熱体積変化率(%)=[{(10×10
×Z0)−(L1×L2×Z1)}/(10×10×Z
0)]×100 (%) 10℃間隔に設定した各熱風温度の加熱体積変化を測定
し、±10%以下となる最高温度を耐熱温度とし、耐熱
性に優れた温度である100℃以上を合格(○)、10
0℃未満を不合格(×)と判定する。
Heating volume change rate (%) = [{(10 × 10
XZ0)-(L1xL2xZ1)} / (10x10xZ
0)] × 100 (%) The heating volume change of each hot air temperature set at 10 ° C. intervals is measured, and the maximum temperature of ± 10% or less is set as the heat resistant temperature, and 100 ° C. or more, which is a temperature excellent in heat resistance, is set. Pass (○), 10
A temperature of less than 0 ° C is determined as a failure (x).

【0045】5.総合評価 組成物混練性、発泡体外観、耐熱温度の項目でいずれも
合格判定であるものを総合評価で合格とし、組成物混練
性、発泡体外観、耐熱温度の項目でいずれか1つでも不
合格の判定のあるものを総合評価で不合格と判定する。
5. Comprehensive evaluation Composition kneadability, foam appearance, and heat resistance temperature are all judged to pass, and the overall evaluation is passed, and any one of composition kneadability, foam appearance, and heat resistance temperature is not acceptable. If there is a pass judgment, it is judged as a failure in the comprehensive evaluation.

【0046】実施例1 ポリオレフィン系樹脂(A)としてエチレン−酢酸ビニ
ル共重合体(融点76℃、MFR4.0g/10分)6
0重量部、ポリオレフィン系樹脂(B)としてエチレン
−プロピレンランダム共重合体(融点143℃、MFR
2.0g/10分)40重量部、熱安定剤として“Ir
ganox1010”を0.3重量部を210℃に設定
した40mmφ単軸押出機で予め溶融混練し粉砕加工し
たポリオレフィン系樹脂と、粉末状発泡剤としてアゾジ
カルボンアミド(発泡開始温度138℃)10重量部を
ヘンシェルミキサーで混合し、110℃に設定した40
mmφ単軸押出機で溶融混練して厚さ2mmの板状シー
トを作成した。この板状シートに加速電圧800kVの
電子線を2Mrad照射し架橋させた。この板状シート
は該発泡剤の分解による気泡混入は認められず、良好な
発泡能力を有するポリオレフィン系樹脂組成物であっ
た。板状である該組成物を160℃の熱風オーブン中で
発泡した加工発泡体と、この板状シートを約2mm角の
チップ状に裁断加工した該組成物、及び粉砕機で直径2
mm以下に粉砕加工し粉末状とした該組成物のそれぞれ
を厚さ5mmの型枠内に入れ160℃に設定したプレス
加工機で加熱発泡成形した加工発泡体の3種類を得た。
該組成物の混練性、加熱加工発泡体の100℃以下の結
晶融解エネルギー(Ea)、120℃以上の結晶融解エ
ネルギー(Eb)、発泡体外観、発泡倍率、耐熱温度な
どの物性及び評価した結果を表1に示す。いずれの評価
項目においても合格であった。
Example 1 As a polyolefin resin (A), an ethylene-vinyl acetate copolymer (melting point: 76 ° C., MFR: 4.0 g / 10 minutes) 6
0 parts by weight, ethylene-propylene random copolymer (melting point 143 ° C., MFR as polyolefin-based resin (B)
2.0 g / 10 minutes) 40 parts by weight, "Ir
0.3 parts by weight of ganox 1010 ″ is melt-kneaded and pulverized in advance by a 40 mmφ single screw extruder set to 210 ° C. and azodicarbonamide (foaming start temperature 138 ° C.) as a powdery foaming agent 10 parts by weight Was mixed with a Henschel mixer and set to 110 ° C.
A plate sheet having a thickness of 2 mm was prepared by melt-kneading with a mmφ single screw extruder. This plate-shaped sheet was irradiated with 2 Mrad of an electron beam with an acceleration voltage of 800 kV to crosslink. This plate-like sheet was a polyolefin-based resin composition having good foaming ability, with no bubbles being recognized due to decomposition of the foaming agent. A processed foam obtained by foaming the plate-shaped composition in a hot air oven at 160 ° C., the composition obtained by cutting the plate-shaped sheet into chips of about 2 mm square, and a diameter of 2 with a crusher.
Each of the powdered compositions pulverized into a size of not more than mm was put in a mold having a thickness of 5 mm, and heat foamed by a press machine set at 160 ° C. to obtain three types of processed foams.
Kneadability of the composition, crystal melting energy of heat-processed foam at 100 ° C. or lower (Ea), crystal melting energy at 120 ° C. or higher (Eb), physical appearance of foam, expansion ratio, heat resistant temperature and other physical properties and evaluation results Is shown in Table 1. All the evaluation items passed.

【0047】実施例2 加速電圧800kVの電子線を0.5Mrad照射し、
架橋度の測定値を0.3%としたほかは実施例1と同様
に発泡能力を有するポリオレフィン系樹脂組成物及びそ
の加工発泡体を得た。該組成物及び加熱加工発泡体の物
性及び評価した結果を表1に示す。該組成物の形状によ
っては外観上で部分的に粗大気泡が見られたが、いずれ
の評価項目においても合格であった。
Example 2 An electron beam with an accelerating voltage of 800 kV was irradiated with 0.5 Mrad,
A polyolefin resin composition having a foaming ability and a processed foam thereof were obtained in the same manner as in Example 1 except that the measured value of the degree of crosslinking was 0.3%. Table 1 shows the physical properties of the composition and the heat-processed foam and the evaluation results. Depending on the shape of the composition, coarse bubbles were partially observed on the appearance, but all the evaluation items passed.

【0048】実施例3 加速電圧800kVの電子線を3.8Mrad照射し、
架橋度の測定値を23.2%としたほかは実施例1と同
様に発泡能力を有するポリオレフィン系樹脂組成物及び
その加工発泡体を得た。該組成物及び加熱加工発泡体の
物性及び評価した結果を表1に示す。該組成物の形状に
よっては外観上で部分的に粗大気泡が見られたが、いず
れの評価項目においても合格であった。
Example 3 An electron beam having an acceleration voltage of 800 kV was irradiated with 3.8 Mrad,
A polyolefin resin composition having a foaming ability and a processed foam thereof were obtained in the same manner as in Example 1 except that the measured value of the degree of crosslinking was 23.2%. Table 1 shows the physical properties of the composition and the heat-processed foam and the evaluation results. Depending on the shape of the composition, coarse bubbles were partially observed on the appearance, but all the evaluation items passed.

【0049】実施例4 ポリオレフィン系樹脂(A)としてエチレン−酢酸ビニ
ル共重合体(融点76℃、MFR4.0g/10分)6
0重量部、ポリオレフィン系樹脂(B)として高密度ポ
リエチレン(融点135℃、MFR5.0g/10分)
40重量部としたほかは実施例1と同様に発泡能力を有
するポリオレフィン系樹脂組成物及びその加工発泡体を
得た。該組成物及び加熱加工発泡体の物性及び評価した
結果を表1に示す。いずれの評価項目においても合格で
あった。
Example 4 As a polyolefin resin (A), an ethylene-vinyl acetate copolymer (melting point: 76 ° C., MFR: 4.0 g / 10 minutes) 6
0 parts by weight, high density polyethylene as a polyolefin resin (B) (melting point 135 ° C., MFR 5.0 g / 10 minutes)
A polyolefin resin composition having a foaming ability and a processed foam thereof were obtained in the same manner as in Example 1 except that the amount was 40 parts by weight. Table 1 shows the physical properties of the composition and the heat-processed foam and the evaluation results. All the evaluation items passed.

【0050】実施例5 ポリオレフィン系樹脂(A)としてメタロセン化合物を
重合触媒としたエチレン−α−オレフィン共重合体(融
点84℃、MFR3.0g/10分)60重量部、ポリ
オレフィン系樹脂(B)としてエチレン−プロピレンラ
ンダム共重合体(融点143℃、MFR2.0g/10
分)40重量部としたほかは実施例1と同様に発泡能力
を有するポリオレフィン系樹脂組成物及びその加工発泡
体を得た。該組成物及び加熱加工発泡体の物性及び評価
した結果を表1に示す。いずれの評価項目においても合
格であった。
Example 5 As a polyolefin resin (A), 60 parts by weight of an ethylene-α-olefin copolymer (melting point 84 ° C., MFR 3.0 g / 10 minutes) using a metallocene compound as a polymerization catalyst, polyolefin resin (B) Ethylene-propylene random copolymer (melting point 143 ° C., MFR 2.0 g / 10
Min) A polyolefin resin composition having a foaming ability and a processed foam thereof were obtained in the same manner as in Example 1 except that the amount was 40 parts by weight. Table 1 shows the physical properties of the composition and the heat-processed foam and the evaluation results. All the evaluation items passed.

【0051】実施例6 ポリオレフィン系樹脂(A)としてエチレン−酢酸ビニ
ル共重合体(融点76℃、MFR4.0g/10分)6
0重量部、ポリオレフィン系樹脂(B)としてエチレン
−プロピレンランダム共重合体をハードセグメントとす
る熱可塑性エラストマー(融点141℃、MFR3.0
g/10分)40重量部としたほかは実施例1と同様に
発泡能力を有するポリオレフィン系樹脂組成物及びその
加工発泡体を得た。該組成物及び加熱加工発泡体の物性
及び評価した結果を表1に示す。いずれの評価項目にお
いても合格であった。
Example 6 As a polyolefin resin (A), an ethylene-vinyl acetate copolymer (melting point: 76 ° C., MFR: 4.0 g / 10 min) 6
0 part by weight, a thermoplastic elastomer (melting point 141 ° C., MFR 3.0) having a hard segment of ethylene-propylene random copolymer as the polyolefin resin (B).
g / 10 minutes) A polyolefin resin composition having a foaming ability and a processed foam thereof were obtained in the same manner as in Example 1 except that the amount was 40 parts by weight. Table 1 shows the physical properties of the composition and the heat-processed foam and the evaluation results. All the evaluation items passed.

【0052】実施例7 粉末状発泡剤として熱膨張型マイクロカプセル(発泡開
始温度 152℃)30重量部、電子線照射を行わない
で無架橋としたほかは実施例1と同様に発泡能力を有す
るポリオレフィン系樹脂組成物及びその加工発泡体を得
た。該組成物及び加熱加工発泡体の物性及び評価した結
果を表1に示す。いずれの評価項目においても合格であ
った。
Example 7 It has the same foaming ability as in Example 1 except that 30 parts by weight of thermal expansion type microcapsules (foaming start temperature: 152 ° C.) as a powdery foaming agent and non-crosslinked without electron beam irradiation. A polyolefin resin composition and a processed foam thereof were obtained. Table 1 shows the physical properties of the composition and the heat-processed foam and the evaluation results. All the evaluation items passed.

【0053】比較例1 ポリオレフィン系樹脂(B)を加えず、ポリオレフィン
系樹脂(A)としてエチレン−酢酸ビニル共重合体(融
点76℃、MFR4.0g/10分)100重量部とし
たほかは実施例1と同様に発泡能力を有するポリオレフ
ィン系樹脂組成物及びその加工発泡体を得た。該組成物
及び加熱加工発泡体の物性及び評価した結果を表2に示
す。加熱加工発泡体の結晶融解エネルギー(Eb)が1
0mJ/mg未満で、該発泡体の耐熱温度が100℃未
満となった。このため総合評価としては不合格であっ
た。
Comparative Example 1 The procedure was repeated except that the polyolefin resin (B) was not added, and the polyolefin resin (A) was 100 parts by weight of an ethylene-vinyl acetate copolymer (melting point 76 ° C., MFR 4.0 g / 10 minutes). As in Example 1, a polyolefin resin composition having a foaming ability and a processed foam thereof were obtained. Table 2 shows the physical properties of the composition and the heat-processed foam and the evaluation results. Crystal melting energy (Eb) of heat-processed foam is 1
When it was less than 0 mJ / mg, the heat resistant temperature of the foam became less than 100 ° C. Therefore, the overall evaluation was unacceptable.

【0054】比較例2 ポリオレフィン系樹脂(A)を加えず、ポリオレフィン
系樹脂(B)として直鎖状低密度ポリエチレン(融点1
22℃、MFR8.0g/10分)100重量部とした
ほかは実施例1と同様に発泡能力を有するポリオレフィ
ン系樹脂組成物の溶融混練を行った。該組成物の評価結
果を表2に示す。40mmφ単軸押出機で溶融混練の
際、110℃では溶融混練が困難であり、混練可能な溶
融状態となる温度(150℃)に上昇したところ、顕著
な粉末状発泡剤の分解が認められた。該組成物及び加熱
加工発泡体の物性及び評価した結果を表2に示す。粉末
状発泡財の分解が顕著であり、加熱加工発泡体が緩衝性
や断熱性などの発泡体基本特性を満足しない5倍未満と
なった。この結果総合評価としては不合格であった。
Comparative Example 2 The polyolefin resin (A) was not added, but a linear low-density polyethylene (melting point 1 was used as the polyolefin resin (B).
A polyolefin resin composition having a foaming ability was melt-kneaded in the same manner as in Example 1 except that 100 parts by weight of 22 ° C. and MFR of 8.0 g / 10 minutes) was used. The evaluation results of the composition are shown in Table 2. At the time of melt-kneading with a 40 mmφ single-screw extruder, it was difficult to melt-knead at 110 ° C., and when the temperature was raised to a kneadable melt state (150 ° C.), remarkable decomposition of the powdery foaming agent was observed. . Table 2 shows the physical properties of the composition and the heat-processed foam and the evaluation results. The decomposition of the powdered foamed material was remarkable, and the heat-processed foam was less than 5 times that did not satisfy the basic properties of the foam such as buffering property and heat insulating property. As a result, the overall evaluation was unacceptable.

【0055】比較例3 ポリオレフィン系樹脂(A)としてエチレン−酢酸ビニ
ル共重合体(融点76℃、MFR4.0g/10分)9
5重量部、ポリオレフィン系樹脂(B)としてエチレン
−プロピレンランダム共重合体(融点143℃、MFR
2.0g/10分)5重量部としたほかは実施例1と同
様に発泡能力を有するポリオレフィン系樹脂組成物及び
その加工発泡体を得た。該組成物及び加熱加工発泡体の
物性及び評価した結果を表2に示す。上記ポリオレフィ
ン系樹脂の混合割合では、加熱加工発泡体の結晶融解エ
ネルギー(Eb)が10mJ/mg未満で、該発泡体の
耐熱温度が100℃未満となった。このため総合評価と
しては不合格であった。
Comparative Example 3 As a polyolefin resin (A), an ethylene-vinyl acetate copolymer (melting point: 76 ° C., MFR: 4.0 g / 10 minutes) 9
5 parts by weight, ethylene-propylene random copolymer as a polyolefin resin (B) (melting point 143 ° C., MFR
2.0 g / 10 minutes) A polyolefin resin composition having a foaming ability and a processed foam thereof were obtained in the same manner as in Example 1 except that the amount was 5 parts by weight. Table 2 shows the physical properties of the composition and the heat-processed foam and the evaluation results. With respect to the mixing ratio of the polyolefin resin, the crystal melting energy (Eb) of the heat-processed foam was less than 10 mJ / mg, and the heat resistant temperature of the foam was less than 100 ° C. Therefore, the overall evaluation was unacceptable.

【0056】比較例4 ポリオレフィン系樹脂(A)としてエチレン−酢酸ビニ
ル共重合体(融点76℃、MFR4.0g/10分)9
5重量部、ポリオレフィン系樹脂(B)として高密度ポ
リエチレン(融点135℃、MFR5.0g/10分)
5重量部としたほかは実施例1と同様に発泡能力を有す
るポリオレフィン系樹脂組成物及びその加工発泡体を得
た。該組成物及び加熱加工発泡体の物性及び評価した結
果を表2に示す。上記ポリオレフィン系樹脂の混合割合
では、加熱加工発泡体の結晶融解エネルギー(Eb)が
10mJ/mg未満で、該発泡体の耐熱温度が100℃
未満となった。このため総合評価としては不合格であっ
た。
Comparative Example 4 As a polyolefin resin (A), an ethylene-vinyl acetate copolymer (melting point: 76 ° C., MFR: 4.0 g / 10 minutes) 9
5 parts by weight, high-density polyethylene (melting point 135 ° C., MFR 5.0 g / 10 minutes) as polyolefin resin (B)
A polyolefin resin composition having a foaming ability and a processed foam thereof were obtained in the same manner as in Example 1 except that the amount was 5 parts by weight. Table 2 shows the physical properties of the composition and the heat-processed foam and the evaluation results. With respect to the mixing ratio of the polyolefin resin, the heat melting foam has a crystal melting energy (Eb) of less than 10 mJ / mg and the foam has a heat resistant temperature of 100 ° C.
Was less than. Therefore, the overall evaluation was unacceptable.

【0057】比較例5 ポリオレフィン系樹脂(A)としてエチレン−酢酸ビニ
ル共重合体(融点76℃、MFR4.0g/10分)1
0重量部、ポリオレフィン系樹脂(B)としてエチレン
−プロピレンランダム共重合体(融点143℃、MFR
2.0g/10分)90重量部としたほかは実施例1と
同様に発泡能力を有するポリオレフィン系樹脂組成物の
溶融混練を行った。該組成物の評価結果を表2に示す。
40mmφ単軸押出機で溶融混練の際、110℃では溶
融混練が困難であり、混練可能な溶融状態となる温度
(160℃)に上昇したところ、顕著な粉末状発泡剤の
分解が認められた。該組成物及び加熱加工発泡体の物性
及び評価した結果を表2に示す。上記ポリオレフィン系
樹脂の混合割合では、加熱加工発泡体の結晶融解エネル
ギー(Ea)が20mJ/mg未満で、該組成物を混練
する温度を高温にする必要があり、このため混練時に粉
末状発泡剤の分解が顕著であり、加熱加工発泡体が緩衝
性や断熱性などの発泡体基本特性を満足しない5倍未満
となった。この結果総合評価としては不合格であった。
Comparative Example 5 As a polyolefin resin (A), an ethylene-vinyl acetate copolymer (melting point: 76 ° C., MFR: 4.0 g / 10 minutes) 1
0 parts by weight, ethylene-propylene random copolymer (melting point 143 ° C., MFR as polyolefin-based resin (B)
(2.0 g / 10 min) 90 parts by weight except that the polyolefin resin composition having a foaming ability was melt-kneaded in the same manner as in Example 1. The evaluation results of the composition are shown in Table 2.
During melt-kneading with a 40 mmφ single-screw extruder, it was difficult to melt-knead at 110 ° C., and when the temperature reached to a kneadable melt state (160 ° C.), remarkable decomposition of the powdery foaming agent was observed. . Table 2 shows the physical properties of the composition and the heat-processed foam and the evaluation results. With the mixing ratio of the above polyolefin resin, the crystal melting energy (Ea) of the heat-processed foam is less than 20 mJ / mg, and it is necessary to raise the temperature for kneading the composition. The decomposition was remarkable, and the heat-processed foam was less than 5 times which did not satisfy the basic foam characteristics such as cushioning property and heat insulating property. As a result, the overall evaluation was unacceptable.

【0058】比較例6 ポリオレフィン系樹脂(A)としてエチレン−酢酸ビニ
ル共重合体(融点76℃、MFR4.0g/10分)1
0重量部、ポリオレフィン系樹脂(B)として高密度ポ
リエチレン(融点135℃、MFR5.0g/10分)
90重量部としたほかは実施例1と同様に発泡能力を有
するポリオレフィン系樹脂組成物の溶融混練を行った。
該組成物の評価結果を表2に示す。40mmφ単軸押出
機で溶融混練の際、110℃では溶融混練が困難であ
り、混練可能な溶融状態となる温度(160℃)に上昇
したところ、顕著な粉末状発泡剤の分解が認められた。
該組成物及び加熱加工発泡体の物性及び評価した結果を
表2に示す。上記ポリオレフィン系樹脂の混合割合で
は、加熱加工発泡体の結晶融解エネルギー(Ea)が2
0mJ/mg未満、結晶融解エネルギー(Eb)が15
0mJ/mgを超え、該組成物を混練する温度を高温に
する必要があり、このため混練時に粉末状発泡剤の分解
が顕著であり、加熱加工発泡体が緩衝性や断熱性などの
発泡体基本特性を満足しない5倍未満となった。この結
果総合評価としては不合格であった。
Comparative Example 6 As a polyolefin resin (A), an ethylene-vinyl acetate copolymer (melting point: 76 ° C., MFR: 4.0 g / 10 minutes) 1
0 parts by weight, high density polyethylene as a polyolefin resin (B) (melting point 135 ° C., MFR 5.0 g / 10 minutes)
A polyolefin resin composition having a foaming ability was melt-kneaded in the same manner as in Example 1 except that the amount was 90 parts by weight.
The evaluation results of the composition are shown in Table 2. During melt-kneading with a 40 mmφ single-screw extruder, it was difficult to melt-knead at 110 ° C., and when the temperature reached to a kneadable melt state (160 ° C.), remarkable decomposition of the powdery foaming agent was observed. .
Table 2 shows the physical properties of the composition and the heat-processed foam and the evaluation results. At the mixing ratio of the above polyolefin resin, the crystal melting energy (Ea) of the heat-processed foam is 2
Less than 0 mJ / mg, crystal melting energy (Eb) is 15
It exceeds 0 mJ / mg, and the temperature for kneading the composition needs to be high. Therefore, the decomposition of the powdery foaming agent is remarkable during the kneading, and the heat-processed foam has a foaming property such as buffering property or heat insulating property. It was less than 5 times that does not satisfy the basic characteristics. As a result, the overall evaluation was unacceptable.

【0059】比較例7 粉末状発泡剤として熱膨張型マイクロカプセル(発泡開
始温度83℃)30重量部、電子線照射を行わないで無
架橋としたほかは実施例1と同様に発泡能力を有するポ
リオレフィン系樹脂組成物の溶融混練を行った。該組成
物の評価結果を表2に示す。40mmφ単軸押出機で溶
融混練の際、顕著な該発泡剤の膨張が認められた。該組
成物及び加熱加工発泡体の物性及び評価した結果を表2
に示す。粉末状発泡剤の分解が顕著であり、加熱加工発
泡体が緩衝性や断熱性などの発泡体基本特性を満足しな
い5倍未満となった。この結果総合評価としては不合格
であった。
Comparative Example 7 The same foaming ability as in Example 1 except that 30 parts by weight of thermal expansion type microcapsules (foaming start temperature 83 ° C.) as a powdery foaming agent and non-crosslinked without electron beam irradiation were used. The polyolefin resin composition was melt-kneaded. The evaluation results of the composition are shown in Table 2. During the melt-kneading with a 40 mmφ single screw extruder, remarkable expansion of the foaming agent was observed. Table 2 shows the physical properties of the composition and the heat-processed foam and the evaluation results.
Shown in. The decomposition of the powdery foaming agent was remarkable, and the heat-processed foam was less than 5 times which did not satisfy the basic foam characteristics such as buffering property and heat insulating property. As a result, the overall evaluation was unacceptable.

【0060】比較例8 粉末状発泡剤としてアゾジカルボンアミド(発泡開始温
度191℃)10重量部、発泡加工温度を240℃とし
たほかは実施例1と同様に発泡能力を有するポリオレフ
ィン系樹脂組成物の溶融混練を行った。同様に発泡能力
を有するポリオレフィン系樹脂組成物及びその加工発泡
体を得た。該組成物及び加熱加工発泡体の物性及び評価
した結果を表2に示す。得られた加工発泡体は、樹脂溶
融粘度不足による該発泡剤分解ガスの逃散のため緩衝性
や断熱性などの発泡体基本特性を満足しない発泡倍率5
倍未満であった。この結果総合評価としては不合格であ
った。
Comparative Example 8 A polyolefin resin composition having the same foaming ability as in Example 1 except that 10 parts by weight of azodicarbonamide (foaming start temperature 191 ° C.) as a powdery foaming agent and a foaming processing temperature of 240 ° C. were used. Was melt-kneaded. Similarly, a polyolefin resin composition having a foaming ability and a processed foam thereof were obtained. Table 2 shows the physical properties of the composition and the heat-processed foam and the evaluation results. The obtained processed foam has an expansion ratio of 5 which does not satisfy the basic properties of the foam such as cushioning and heat insulation due to the escape of the decomposition gas of the foaming agent due to insufficient resin melt viscosity.
It was less than twice. As a result, the overall evaluation was unacceptable.

【0061】以上述べたように、実施例に示した本発明
による樹脂組成物は、少なくとも、2つ以上の特定の融
点を有するポリオレフィン系樹脂と熱による発泡開始温
度が特定である粉末状発泡剤を溶融混練した特定形状の
樹脂組成物で、該組成物を加熱加工した発泡体が特定の
結晶融解エネルギーを有する所定の空間に挿入するか、
他の物品と接合し、かかる状態下で加熱発泡せしめ発泡
構造体とする発泡能力を有するポリオレフィン系樹脂組
成物であり、特に加工性、耐熱性に優れ、再溶融加工に
よるリサイクル性を有するものである。
As described above, the resin composition according to the present invention shown in the examples comprises at least two polyolefin resins having specific melting points and a powdery foaming agent having a specific foaming initiation temperature by heat. In a resin composition of a specific shape obtained by melt-kneading, the foam processed by heating the composition is inserted into a predetermined space having a specific crystal melting energy,
A polyolefin-based resin composition that has the foaming ability of being joined to another article and heat-foamed under such a state to have a foaming ability, and particularly has excellent processability and heat resistance, and has recyclability by remelting processing. is there.

【0062】以上の実施例及び比較例をまとめたのが次
の表1〜2である。
The following Tables 1 and 2 summarize the above Examples and Comparative Examples.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】[0065]

【発明の効果】本発明の樹脂組成物によると、耐熱性、
リサイクル性などの特性を有した発泡能力を有するポリ
オレフィン系樹脂組成物が得られる。また、本発明の製
造方法によると、上記樹脂組成物を所定の空間に挿入す
るか、他の物品と接合し、各種加工下で加熱発泡せし
め、発泡構造体とするとき、加熱を伴う各種加工に対し
自由度の高い発泡構造体及び加工方法を選択することの
できる発泡能力を有するポリオレフィン系樹脂組成物を
容易に得ることができる。
According to the resin composition of the present invention, heat resistance,
A polyolefin resin composition having properties such as recyclability and foaming ability can be obtained. Further, according to the production method of the present invention, the resin composition is inserted into a predetermined space or joined to another article, and heat-foamed under various processes to form a foamed structure, and various processes involving heating. On the other hand, it is possible to easily obtain a polyolefin resin composition having a foaming ability capable of selecting a foamed structure having a high degree of freedom and a processing method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笹本 太 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内 (72)発明者 牧野 美保子 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内 (72)発明者 小林 敏幸 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 4F071 AA15 AA15X AA20 AA20X AA28X AA80 AA87 AC02 AC12 AC13 AD02 AD04 AE01 BA01 BB06 BC01 4J002 BB03W BB05W BB06W BB07W BB10W BB11X BB12X BB15W BB15X BF03W DE226 DF006 EA026 EN046 EQ016 EV346 FA106 FD326    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Futoshi Sasamoto             1-1 1-1 Sonoyama, Otsu City, Shiga Prefecture Toray Co., Ltd.             Ceremony company Shiga business site (72) Inventor Mihoko Makino             1-1 1-1 Sonoyama, Otsu City, Shiga Prefecture Toray Co., Ltd.             Ceremony company Shiga business site (72) Inventor Toshiyuki Kobayashi             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. F term (reference) 4F071 AA15 AA15X AA20 AA20X                       AA28X AA80 AA87 AC02                       AC12 AC13 AD02 AD04 AE01                       BA01 BB06 BC01                 4J002 BB03W BB05W BB06W BB07W                       BB10W BB11X BB12X BB15W                       BB15X BF03W DE226 DF006                       EA026 EN046 EQ016 EV346                       FA106 FD326

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 所定の空間に挿入するか、他の物品と接
合し、かかる状態下で加熱発泡せしめ発泡構造体とする
発泡能力を有するポリオレフィン系樹脂を主体とした樹
脂組成物であって、熱による発泡開始温度が100〜1
80℃である粉末状発泡剤を含有し、その形状が板状、
チップ状、粉末状、またはこれらの混合体であり、該組
成物を構成するポリオレフィン系樹脂が100℃以下の
結晶融解ピーク(融点Tma)を有するポリオレフィン
系樹脂(A)と、100℃を越える結晶融解ピーク(融
点Tmb)を有するポリオレフィン系樹脂(B)との少
なくとも2種類の樹脂から構成され、該組成物を加熱加
工した発泡体を示差走査熱量分析で測定したDSC曲線
の結晶融解ピーク面積から得られる単位重量当たりの結
晶融解エネルギーの内、100℃以下の結晶融解エネル
ギー(Ea)が20〜100mJ/mgであり、かつ、
120℃以上の結晶融解エネルギー(Eb)が10〜1
50mJ/mgであることを特徴とする発泡能力を有す
るポリオレフィン系樹脂組成物。
1. A resin composition mainly composed of a polyolefin-based resin having a foaming ability, which is inserted into a predetermined space or bonded to another article to form a foamed structure which is heat-foamed under such a condition, Foaming start temperature due to heat is 100-1
It contains a powdery foaming agent at 80 ° C and its shape is plate-like,
Polyolefin resin (A) having a crystal melting peak (melting point Tma) of 100 ° C. or less, and crystals exceeding 100 ° C., which are in the form of chips, powder, or a mixture thereof. From a crystal melting peak area of a DSC curve of a foamed product which is composed of at least two kinds of resins including a polyolefin resin (B) having a melting peak (melting point Tmb) and which is subjected to heat processing of the composition, by a differential scanning calorimetry analysis. Of the crystal melting energies per unit weight obtained, the crystal melting energy (Ea) at 100 ° C. or lower is 20 to 100 mJ / mg, and
Crystal melting energy (Eb) above 120 ° C is 10-1
A polyolefin resin composition having a foaming ability, which is 50 mJ / mg.
【請求項2】 ポリオレフィン系樹脂(A)が、ポリエ
チレン系樹脂である請求項1に記載の発泡能力を有する
ポリオレフィン系樹脂組成物。
2. The polyolefin resin composition having a foaming ability according to claim 1, wherein the polyolefin resin (A) is a polyethylene resin.
【請求項3】 ポリオレフィン系樹脂(B)が、ポリエ
チレン系樹脂、ポリプロピレン系樹脂またはこれらの混
合物である請求項1または2のいずれかに記載の発泡能
力を有するポリオレフィン系樹脂組成物。
3. The polyolefin resin composition having a foaming ability according to claim 1, wherein the polyolefin resin (B) is a polyethylene resin, a polypropylene resin or a mixture thereof.
【請求項4】 粉末状発泡剤が、熱分解型化学発泡剤、
熱膨張型マイクロカプセルまたはこれらの混合物である
請求項1〜3のいずれかに記載の発泡能力を有するポリ
オレフィン系樹脂組成物。
4. The powdery foaming agent is a pyrolytic chemical foaming agent,
The polyolefin resin composition having a foaming ability according to any one of claims 1 to 3, which is a thermal expansion type microcapsule or a mixture thereof.
【請求項5】 加熱加工した発泡体の架橋度が、0〜3
0%の範囲である請求項1〜4のいずれかに記載の発泡
能力を有するポリオレフィン系樹脂組成物。
5. The degree of crosslinking of the heat-processed foam is 0 to 3
The polyolefin resin composition having a foaming ability according to any one of claims 1 to 4, which is in the range of 0%.
【請求項6】 請求項1〜5のいずれかに記載のポリオ
レフィン系樹脂(A)及びポリオレフィン系樹脂(B)
の少なくとも2種類と、粉末状発泡剤をポリオレフィン
系樹脂(A)の結晶融解ピーク(融点Tma)以上、か
つ、該発泡剤の熱による発泡開始温度未満で溶融混練し
た樹脂組成物を、後工程で板状、チップ状、または粉末
状の形状にすることを特徴とする発泡能力を有するポリ
オレフィン系樹脂組成物の製造方法。
6. The polyolefin resin (A) and the polyolefin resin (B) according to any one of claims 1 to 5.
And a powdery foaming agent at a crystal melting peak (melting point Tma) of the polyolefin-based resin (A) or more and less than the foaming start temperature due to heat of the foaming agent, the resin composition is subjected to a post-process. 1. A method for producing a polyolefin resin composition having a foaming ability, which is characterized in that it is formed into a plate shape, a chip shape, or a powder shape.
JP2001375513A 2001-12-10 2001-12-10 Polyolefin-based resin composition having ability to expand and its production method Pending JP2003171507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001375513A JP2003171507A (en) 2001-12-10 2001-12-10 Polyolefin-based resin composition having ability to expand and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001375513A JP2003171507A (en) 2001-12-10 2001-12-10 Polyolefin-based resin composition having ability to expand and its production method

Publications (1)

Publication Number Publication Date
JP2003171507A true JP2003171507A (en) 2003-06-20

Family

ID=19183880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001375513A Pending JP2003171507A (en) 2001-12-10 2001-12-10 Polyolefin-based resin composition having ability to expand and its production method

Country Status (1)

Country Link
JP (1) JP2003171507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182500A (en) * 2006-01-06 2007-07-19 Daicel Novafoam Ltd Resin composition for foam and foam
JP2015162568A (en) * 2014-02-27 2015-09-07 三菱樹脂株式会社 Solar battery module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182500A (en) * 2006-01-06 2007-07-19 Daicel Novafoam Ltd Resin composition for foam and foam
JP2015162568A (en) * 2014-02-27 2015-09-07 三菱樹脂株式会社 Solar battery module

Similar Documents

Publication Publication Date Title
JP5475991B2 (en) Soft polyolefin with high heat resistance
JPWO2007004524A1 (en) Foam board for heat insulating building material and method for manufacturing the same
JP3735538B2 (en) Polyolefin resin composition having foaming ability, method for producing the same, and method for producing foamed structure using the composition
JP2003171507A (en) Polyolefin-based resin composition having ability to expand and its production method
JP2010037367A (en) Polyolefin resin foam and production method thereof
JP2755109B2 (en) Continuous sheet flame-retardant polypropylene-based crosslinked foam
JP5905660B2 (en) Method for producing crosslinked polyolefin resin foam and laminated product using the resin foam
JP2002146075A (en) Polyolefin-based resin foam and polyolefin based resin composition
JP2003105117A (en) Crosslinked polyolefinic resin foam
JP3982310B2 (en) Polyolefin resin composition and method for producing the same
JP3308696B2 (en) Crosslinked polyolefin resin foam
JP3308724B2 (en) Crosslinked polyolefin resin foam
JP4027730B2 (en) Polyolefin resin composition having foaming ability and method for producing the same
JPH0257576B2 (en)
JPH08142155A (en) Polyolefinic resin crosslinked foam and production thereof
JPH03139535A (en) Composition for crosslinked polyolefin foam
JPWO2009001959A1 (en) Method for producing polyolefin resin non-crosslinked foam
JPH08245820A (en) Polyolefin resin foam and production thereof
JPH03126736A (en) Production of polypropylene crosslinked form
JP2004182897A (en) Foamed material of crosslinked polyolefin resin
JP2004149665A (en) Crosslinked olefin resin foam
JPH04248847A (en) Foaming polyolefin-based rein composition
JPH08109277A (en) Cross-linked polyolefin resin foam
JPH01272640A (en) Production of heat-resistant soft foamed material
JPH06166767A (en) Polyolefin resin foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040428

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

A131 Notification of reasons for refusal

Effective date: 20051206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060202

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060314

Free format text: JAPANESE INTERMEDIATE CODE: A02