JP2003168469A - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell

Info

Publication number
JP2003168469A
JP2003168469A JP2001367644A JP2001367644A JP2003168469A JP 2003168469 A JP2003168469 A JP 2003168469A JP 2001367644 A JP2001367644 A JP 2001367644A JP 2001367644 A JP2001367644 A JP 2001367644A JP 2003168469 A JP2003168469 A JP 2003168469A
Authority
JP
Japan
Prior art keywords
gas
insulating material
material layer
heat insulating
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001367644A
Other languages
Japanese (ja)
Inventor
Kojiro Wakana
孝二郎 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP2001367644A priority Critical patent/JP2003168469A/en
Publication of JP2003168469A publication Critical patent/JP2003168469A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To prevent cracks in a cell while making it compact and raising power generation efficiency by obtaining high power generation output. <P>SOLUTION: Through a porous metal plate 6, which is inserted to each six recesses 8 arranged in the shape of a ring at the front and back surfaces of separators 7, each the single cells 5 are arranged by pressing, respectively, and the single cells 5 of six sheets are connected electrically in parallel. These separators 7 and the single cells 5 are laminated by turn, and a stack 4 is constituted. A fuel gas preheating pipe 17 and an oxidizer gas preheating pipe 16, which heat fuel gas and oxidizer gas beforehand, are arranged in the central penetration holes 7a of the separators 7, respectively. Each the gas beforehand heated even to the reaction temperature are supplied to recessed grooves 9 in each of the recesses 8 of each of the separators 7. The stack 4 is enclosed by the heat insulating material layer 20 and further, it is enclosed by a seal component 2 through the space 26 of its outside. The gas for heating is supplied inside of the heat insulating material layer 20 by the heating gas supplying component 25 and the gas for cooling is supplied to inside of the space 26 by cooling gas supplying component 27. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば平板型の固
体電解質からなる固体電解質型燃料電池であって、特に
セルとセパレータを交互に積層してなる固体電解質型燃
料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte fuel cell comprising, for example, a flat plate type solid electrolyte, and more particularly to a solid electrolyte fuel cell in which cells and separators are alternately laminated.

【0002】[0002]

【従来の技術】従来、600℃〜800℃程度の反応温
度で作動する低温作動形の固体電解質型燃料電池(SO
FC)の一例として、単セル等のセルとセパレータとを
交互に積層したスタック(積層体)タイプがある。この
固体電解質型燃料電池では、反応ガスとして燃料ガスと
酸化剤ガスを用い、セラミック等からなる固体電解質板
を両側から正極と負極とで挟み込んでなるセルとセパレ
ータとを交互に積層して構成されている。セパレータの
正極側と負極側にそれぞれ形成した反応ガス流路として
の凹溝の一方に酸素や空気等の酸化剤ガスを供給し、他
方に水素等の燃料ガスを供給して反応させるようにして
いる。このような固体電解質型燃料電池では、セパレー
タ両面の反応ガス流路である凹溝に反応ガスを供給する
ための反応ガス供給マニホールドをセル及びセパレータ
を積層したスタックの外側部に取り付けている。また別
の固体電解質型燃料電池として、例えば特開平3−12
9675号公報に開示されたものがあり、この燃料電池
では反応ガス供給マニホールドをスタックの中心軸付近
に嵌挿させて各セパレータの両側の凹溝に反応ガスをそ
れぞれ分配するようにしている。上述したいずれの場合
も外部から管路を介して反応ガスが反応ガス供給マニホ
ールドに供給されて、スタックの積層された各セパレー
タに分配されることになる。
2. Description of the Related Art Conventionally, a solid oxide fuel cell (SO) of a low temperature type which operates at a reaction temperature of 600 ° C. to 800 ° C.
As an example of FC), there is a stack type in which cells such as single cells and separators are alternately laminated. In this solid oxide fuel cell, a fuel gas and an oxidant gas are used as reaction gases, and a solid electrolyte plate made of ceramic or the like is sandwiched between positive and negative electrodes from both sides, and cells and separators are alternately laminated. ing. An oxidant gas such as oxygen or air is supplied to one of the concave grooves as a reaction gas flow path formed on the positive electrode side and the negative electrode side of the separator, and a fuel gas such as hydrogen is supplied to the other to cause a reaction. There is. In such a solid oxide fuel cell, a reaction gas supply manifold for supplying a reaction gas to the concave grooves which are the reaction gas flow paths on both sides of the separator is attached to the outer side of the stack in which the cells and the separators are stacked. As another solid oxide fuel cell, for example, JP-A-3-12
In this fuel cell, a reaction gas supply manifold is fitted in the vicinity of the central axis of the stack to distribute the reaction gas to the concave grooves on both sides of each separator. In any of the above-mentioned cases, the reaction gas is supplied from the outside to the reaction gas supply manifold via the pipe and distributed to the stacked separators of the stack.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの固体
電解質型燃料電池では、セル(電解質)がセラミックで
製造されているために、熱サイクル負荷により割れやす
いという欠点があった。特に反応ガス供給マニホールド
から各セパレータの両面側中心部に常温の燃料ガスと酸
化剤ガスとをそれぞれ供給して凹溝を通して外周側へ流
通させる際に、反応熱によって外周部が高温状態である
ために、セパレータの中心部と外周部とで温度差が生じ
てしまい、熱膨張差による割れの原因になっていた。こ
のような不具合を防ぐためには、スタックの周囲を囲う
断熱材層の厚み分の材料内に反応ガスの供給管路を埋設
したり、燃料電池内部にヒータを設けることなどが考え
られるが、燃料電池が大型化すると共にコスト高になる
という問題があった。一方で、高出力発電を達成するた
めにはセパレータ及びセル各1枚当たりの発電面積を増
やして取り出し電流値を上げる必要があるものの、セラ
ミックでセルを製造するに際して、現状の技術では最大
製作可能寸法は四角形板状タイプで150〜200mm
平方程度、円形板状タイプでΦ150mm程度が限界で
あり、これより大きい寸法のものは板部分に波打ち等の
不具合を生じやすく平らなセラミック板を製造できなか
った。そのためセルの大型化による発電出力の増大は困
難であった。そのために発電出力を上げるにはセルとセ
パレータの積層数を多くする必要があるが、セルの外径
を最大の約Φ150mmに形成するとして1つのステン
レス製からなるセパレータの重量は約0.75kg程度
であり、積層数が多すぎると最下部のセルにかかる負荷
応力が大きくなり、割れる原因となっていた。そのた
め、交互に重ねるセルとセパレータの積層数は約10〜
20段程度が実質的な限界であった。
However, in these solid oxide fuel cells, since the cells (electrolytes) are made of ceramics, there is a drawback that they are easily cracked by a thermal cycle load. Especially when the normal temperature fuel gas and oxidant gas are supplied from the reaction gas supply manifold to the center of both sides of each separator and flowed to the outer peripheral side through the groove, the outer peripheral part is in a high temperature state due to the reaction heat. In addition, a temperature difference occurs between the central portion and the outer peripheral portion of the separator, which causes cracking due to the difference in thermal expansion. In order to prevent such a problem, it is conceivable to bury the reaction gas supply pipeline in the material of the thickness of the heat insulating material layer surrounding the stack, or to provide a heater inside the fuel cell. There is a problem that the battery becomes large and the cost becomes high. On the other hand, in order to achieve high output power generation, it is necessary to increase the power generation area per separator and cell to increase the extraction current value, but when manufacturing cells with ceramics, it is possible to manufacture the maximum with current technology. Dimensions are square plate type 150-200mm
There is a limit of about Φ150 mm for a square plate type and a circular plate type, and a size larger than this is likely to cause a problem such as waviness in the plate portion, and a flat ceramic plate cannot be manufactured. Therefore, it was difficult to increase the power generation output due to the increase in size of the cell. Therefore, in order to increase the power generation output, it is necessary to increase the number of stacked cells and separators, but if the outer diameter of the cells is set to a maximum of about Φ150 mm, the weight of one stainless steel separator is about 0.75 kg. Therefore, if the number of stacked layers is too large, the load stress applied to the lowermost cell becomes large, which causes cracking. Therefore, the number of cells and separators stacked alternately is about 10
About 20 steps was the practical limit.

【0004】本発明は、このような実情に鑑み、セルの
割れを防止できるようにした固体電解質型燃料電池を提
供することを目的とする。また本発明の他の目的は、コ
ンパクトで発電効率を高めることができ、また従来より
も高い発電出力を得られるようにした固体電解質型燃料
電池を提供することである。
In view of such circumstances, it is an object of the present invention to provide a solid oxide fuel cell capable of preventing cell cracking. Another object of the present invention is to provide a solid oxide fuel cell which is compact and capable of enhancing power generation efficiency and which can obtain a higher power generation output than ever before.

【0005】[0005]

【課題を解決するための手段】本発明による固体電解質
型燃料電池は、セルとセパレータとが交互に積層されて
いると共に該各セパレータに反応ガスを供給するように
した固体電解質型燃料電池であって、セパレータに反応
ガスを供給する前に反応ガスを予熱する反応ガス予熱管
を固体電解質型燃料電池の内部に配設したことを特徴と
する。セパレータに供給すべき反応ガスを、固体電解質
型燃料電池内に設けた反応ガス予熱管内に供給して予熱
することで反応温度にまで加熱した状態でセパレータ内
に供給することができ、セパレータ内の反応ガスの供給
部分と他の部分との温度差をなくすことができてセパレ
ータの割れ等を抑制できる。尚、反応ガス予熱管は燃料
ガス予熱管と酸化剤ガス予熱管を含んでいる。
A solid oxide fuel cell according to the present invention is a solid oxide fuel cell in which cells and separators are alternately stacked and a reaction gas is supplied to each separator. The reaction gas preheating tube for preheating the reaction gas before supplying the reaction gas to the separator is arranged inside the solid oxide fuel cell. The reaction gas to be supplied to the separator can be supplied into the separator in a state of being heated to the reaction temperature by supplying it to the reaction gas preheating tube provided in the solid oxide fuel cell and preheating it, It is possible to eliminate the temperature difference between the portion where the reaction gas is supplied and the other portion, and it is possible to suppress cracking of the separator. The reaction gas preheating tube includes a fuel gas preheating tube and an oxidant gas preheating tube.

【0006】また1枚のセパレータに複数のセルが配列
されて相互に並列に電気的に接続されていて、これら複
数のセルの間に反応ガス予熱管を配設するようにしても
よい。1枚のセパレータ(の対向する二面またはいずれ
か一面)に並列に接続された複数のセルを設けて交互に
積層することで、セルの製造寸法を大きくすることなく
セパレータ1枚当たりの発電面積を増大して取り出し電
流値を上げることができて高出力発電を行え、しかもこ
れらセルの間に反応ガス予熱管を配設することで、スペ
ースの無駄がなくコンパクトで発電効率の高い固体電解
質型燃料電池を得ることができる。またセルとセパレー
タを積層してなるスタックは断熱材層で囲われており、
該断熱材層内に加熱用ガスを供給する加熱用ガス供給部
材が設けられていてもよい。加熱用ガスを断熱材層内に
供給することでスタックを保持する部屋の温度を反応温
度にまで高めることができ、この加熱用ガスは反応ガス
予熱管を予熱することができる。しかも発電が進めば加
熱用ガスの供給を停止しても反応ガスの反応熱によって
反応ガス予熱管を反応温度にまで加熱することができ
る。
A plurality of cells may be arranged on one separator and electrically connected in parallel with each other, and a reaction gas preheating tube may be arranged between the plurality of cells. A power generation area per separator without increasing the manufacturing size of the cell by providing a plurality of cells connected in parallel to one separator (two opposite surfaces or one surface of the separator) and stacking them alternately. Can be increased to increase the extraction current value and perform high-output power generation, and by disposing a reaction gas preheating tube between these cells, there is no waste of space and the solid electrolyte type has high power generation efficiency. A fuel cell can be obtained. Also, the stack formed by stacking cells and separators is surrounded by a heat insulating material layer,
A heating gas supply member for supplying a heating gas may be provided in the heat insulating material layer. By supplying the heating gas into the heat insulating material layer, the temperature of the chamber holding the stack can be raised to the reaction temperature, and the heating gas can preheat the reaction gas preheating tube. Moreover, if the power generation proceeds, the reaction gas preheating pipe can be heated to the reaction temperature by the reaction heat of the reaction gas even if the supply of the heating gas is stopped.

【0007】また断熱材層の外部は外部材で囲われてお
り、該外部材と断熱材層との間の空間に冷却用ガスを供
給する冷却用ガス供給部材が設けられていてもよい。加
熱用ガスや反応ガスの反応熱によって断熱材層内部が加
熱されても、外部材と断熱材層との間の空間に冷却用ガ
スを供給して温度を低下させ、外部材外表面を常温程度
にまで低下させて外部材を介して固体電解質型燃料電池
の人手による接触を可能にできる。しかも冷却用ガスの
供給によって断熱材層の内部が反応温度よりも昇温して
過熱しないように温度制御できる。また冷却用ガスは加
圧されていて断熱材層を通してその内部に流動可能とし
てもよい。冷却用ガスが断熱材層外側の空間から断熱材
層内へと流れる流路を形成することで断熱材層内部の加
熱用ガスや反応ガスの反応熱等が断熱材層を通して外部
の空間へ流れるのを抑制して温度制御を行える。尚、断
熱材層内部に排出管を設けてもよく、断熱材層に流入す
る冷却用ガスや加熱用ガスまたは反応ガスの反応熱等を
排出管から外部に排出することができ、断熱材層内の部
屋のスタックの雰囲気温度が反応温度より上昇するのを
抑制できる。
The outside of the heat insulating material layer may be surrounded by an outer member, and a cooling gas supply member for supplying a cooling gas may be provided in a space between the outer member and the heat insulating material layer. Even if the inside of the heat insulating material layer is heated by the reaction heat of the heating gas or the reaction gas, the cooling gas is supplied to the space between the outer member and the heat insulating material layer to lower the temperature, and the outer surface of the outer member is kept at room temperature. The solid electrolyte fuel cell can be manually contacted through the external member after being lowered to a certain degree. Moreover, the temperature can be controlled so that the inside of the heat insulating material layer is heated to a temperature higher than the reaction temperature and does not overheat by supplying the cooling gas. Further, the cooling gas may be pressurized so as to be able to flow into the inside through the heat insulating material layer. By forming a flow path through which the cooling gas flows from the space outside the heat insulating material layer into the heat insulating material layer, the reaction gas of the heating gas inside the heat insulating material layer and the reaction gas flows to the outside space through the heat insulating material layer. The temperature can be controlled by suppressing An exhaust pipe may be provided inside the heat insulating material layer, and the reaction heat of the cooling gas, the heating gas, or the reaction gas flowing into the heat insulating material layer can be discharged to the outside from the discharge pipe. It is possible to prevent the ambient temperature of the stack in the inner room from rising above the reaction temperature.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態による
固体電解質型燃料電池を図1乃至図5により説明する。
図1は実施の形態による固体電解質型燃料電池の外観平
面図、図2は同じく固体電解質型燃料電池の側面図、図
3は固体電解質型燃料電池の水平断面図、図4は固体電
解質型燃料電池の縦断面図、図5は固体電解質型燃料電
池のスタックの1枚の単セルとこれに対応する部分のセ
パレータについて図3で反応ガス供給管の配設方向に沿
ったA−A線縦断面図である。実施の形態による固体電
解質型燃料電池1は、例えば図1乃至図2に示すように
外観略円柱状を呈していて、略有底円筒状のシール部材
2で覆われ、シール部材2の上部は蓋部3で被覆されて
気密にシールされている。蓋部3を備えたシール部材2
は外部材を構成する。図3及び図4に示す固体電解質型
燃料電池1は、シール部材2の内部に例えば略六角柱状
に積層されたスタック4が形成されている。スタック4
は、例えばセラミック等からなる略円板状の固体電解質
板を両側から挟み込む正極及び負極を備えてなる単セル
5(セル;発電セル)と、その両面の凹部に多孔質金属
板(集電材)6を介在させた例えば略円板状のセパレー
タ7とが交互に例えば10〜20層積層された基本構成
を有している。特に図3及び図5に示すように、例えば
ステンレス鋼等の金属からなるセパレータ7は略六角形
板状に形成され、中央貫通孔7aが穿孔された略リング
状を呈している。セパレータ7の厚み方向に対向する表
裏面7b、7cにはそれぞれ中央貫通孔7aの周囲に多
孔質金属板6を嵌合するための略円板状の凹部8が略等
間隔で複数個、例えば6個略リング状に形成されてい
る。そして表裏面7b、7cの各凹部8の表面には平面
視でその中心から外周に向かって略螺旋状の1または複
数の凹溝9が反応ガス流路としてそれぞれ形成されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION A solid oxide fuel cell according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 5.
FIG. 1 is an external plan view of a solid oxide fuel cell according to an embodiment, FIG. 2 is a side view of the same solid oxide fuel cell, FIG. 3 is a horizontal sectional view of the solid oxide fuel cell, and FIG. 4 is a solid oxide fuel. FIG. 5 is a vertical cross-sectional view of the cell, and FIG. 5 is a longitudinal sectional view taken along the line AA of FIG. 3 showing one unit cell of a stack of a solid oxide fuel cell and a separator corresponding to the single cell along the arrangement direction of the reaction gas supply pipe It is a side view. The solid oxide fuel cell 1 according to the embodiment has, for example, a substantially cylindrical appearance as shown in FIGS. 1 and 2, is covered with a substantially bottomed cylindrical seal member 2, and an upper portion of the seal member 2 is It is covered with the lid portion 3 and hermetically sealed. Seal member 2 having a lid 3
Constitutes an outer member. In the solid oxide fuel cell 1 shown in FIGS. 3 and 4, the stack 4 is formed inside the seal member 2, for example, in a substantially hexagonal column shape. Stack 4
Is a single cell 5 (cell; power generating cell) comprising a positive electrode and a negative electrode sandwiching a substantially disk-shaped solid electrolyte plate made of, for example, ceramics, and a porous metal plate (current collector) in the recesses on both sides. It has a basic structure in which, for example, 10 to 20 layers of, for example, substantially disk-shaped separators 7 with 6 interposed therebetween are alternately laminated. In particular, as shown in FIGS. 3 and 5, the separator 7 made of, for example, metal such as stainless steel is formed in a substantially hexagonal plate shape, and has a substantially ring shape in which a central through hole 7a is formed. A plurality of substantially disk-shaped recesses 8 for fitting the porous metal plate 6 around the central through hole 7a are formed on the front and back surfaces 7b and 7c facing each other in the thickness direction of the separator 7 at substantially equal intervals, for example, Six pieces are formed in a substantially ring shape. On the surface of each recess 8 on the front and back surfaces 7b and 7c, one or a plurality of substantially spiral recesses 9 are formed as reaction gas flow paths from the center to the outer periphery in plan view.

【0009】そしてセパレータ7の表裏面の各凹部8に
おいて、厚み方向の中央にはセパレータ7の外周側面か
ら凹部8の中心に向けて二つの管状の挿通孔11,12
が穿孔されており、一方の挿通孔11には表面7b側の
凹溝9の中心側(内側)端縁に連通して水素ガス等の燃
料ガスを外部から供給する燃料ガス供給管13aが嵌挿
されている。この凹溝9は燃料ガス流路を構成する。他
方の挿通孔12には裏面7c側の凹溝9の中心側(内
側)端縁に連通して空気や酸素ガス等の酸化剤ガスを外
部から供給する酸化剤ガス供給管14aが嵌挿されてい
る。この凹溝9は酸化剤ガス流路を構成する。これらの
ガス供給管13a,14aは各凹部8毎にそれぞれ設け
られている。また1枚のセパレータ7の表裏面7b、7
cの各6個の凹部8…にはそれぞれ多孔質金属板6を挟
んで6個の単セル5がそれぞれ対向して位置した状態
で、セパレータ7と6枚の単セル5とが交互に積層され
ている。セパレータ7の表面7bの各凹部8に各単セル
5の負極5bが押圧され、裏面の凹部8に単セル5の正
極5aが押圧され、各セパレータ7と単セル5は同一方
向を向いて積層されている。そして、セパレータ7の表
面7b及び/または裏面7cに配列された6個の単セル
5は電気的に並列に接続され、これらを1つの単セル群
として積層方向に互いに直列に接続されている。また積
層されたセパレータ7の中央貫通孔7aには例えば断面
リング状の空間を有する円筒状の二つの管が同心円状に
互いに封止されて配設されており、内側の小径の管は燃
料ガス予熱管17、外側の大径の管は例えば空気や酸素
ガス等の酸化剤ガス予熱管16を構成している。各予熱
管16,17は固体電解質型燃料電池1の燃料ガス及び
酸化剤ガスの反応熱や外部から供給される加熱用ガスに
よって内部の燃料ガスと酸化剤ガスをそれぞれ反応温度
である600℃〜800℃程度に加熱するようになって
いる。スタック4の各セパレータ7の各辺にはそれぞれ
切り込みが設けられて燃料ガス供給マニホールド管18
と酸化剤ガス供給マニホールド管19とが3本づつ交互
に挟持されており、各3本のマニホールド管18,19
はセパレータ7の積層方向に延在している。
In each of the recesses 8 on the front and back surfaces of the separator 7, two tubular insertion holes 11 and 12 are provided at the center in the thickness direction from the outer peripheral side surface of the separator 7 toward the center of the recess 8.
And a fuel gas supply pipe 13a which communicates with the center side (inner side) edge of the concave groove 9 on the surface 7b side and which supplies a fuel gas such as hydrogen gas from the outside is fitted into one of the insertion holes 11. Has been inserted. The groove 9 constitutes a fuel gas flow path. An oxidant gas supply pipe 14a, which communicates with the center side (inner side) edge of the concave groove 9 on the rear surface 7c side and supplies an oxidant gas such as air or oxygen gas from the outside, is fitted into the other insertion hole 12. ing. The groove 9 constitutes an oxidant gas flow path. These gas supply pipes 13a and 14a are provided for each recess 8. The front and back surfaces 7b, 7 of one separator 7
In each of the six concave portions 8 of c, the separator 7 and the six single cells 5 are alternately laminated with the six single cells 5 facing each other with the porous metal plate 6 interposed therebetween. Has been done. The negative electrode 5b of each single cell 5 is pressed into each recess 8 of the front surface 7b of the separator 7, and the positive electrode 5a of the single cell 5 is pressed into each recess 8 of the back surface, so that each separator 7 and the single cell 5 are laminated in the same direction. Has been done. Then, the six unit cells 5 arranged on the front surface 7b and / or the back surface 7c of the separator 7 are electrically connected in parallel, and are connected in series in the stacking direction as one unit cell group. Further, in the central through hole 7a of the laminated separator 7, for example, two cylindrical pipes having a space with a ring-shaped cross section are concentrically sealed and arranged, and the inner small-diameter pipe is a fuel gas. The preheating pipe 17 and the outer large-diameter pipe constitute an oxidant gas preheating pipe 16 such as air or oxygen gas. Each of the preheating pipes 16 and 17 has a reaction temperature of 600 ° C. for the internal fuel gas and the oxidant gas due to the reaction heat of the fuel gas and the oxidant gas of the solid oxide fuel cell 1 and the heating gas supplied from the outside. It is designed to be heated to about 800 ° C. A notch is provided on each side of each separator 7 of the stack 4 to form a fuel gas supply manifold pipe 18
And three oxidant gas supply manifold pipes 3 are alternately sandwiched and three manifold pipes 18 and 19 are provided.
Extend in the stacking direction of the separator 7.

【0010】そして燃料ガス予熱管17から3本の燃料
ガス供給マニホールド管18に燃料ガス供給管13を介
して加熱された燃料ガスを供給し、更に各燃料ガス供給
マニホールド管18では、積層された各セパレータ7毎
に各二本に分岐された燃料ガス供給管13a、13aを
介して燃料ガスを各凹溝9に供給することになる。同様
に酸化剤ガス予熱管16から3本の酸化剤ガス供給マニ
ホールド管19に酸化剤ガス供給管14を介して加熱さ
れた酸化剤ガスを供給し、更に各酸化剤ガス供給マニホ
ールド管19では各セパレータ7毎に各二本に分岐され
た酸化剤ガス供給管14a、14aを介して酸化剤ガス
を各凹溝9に供給することになる。次にスタック4はそ
の周囲に有底有蓋で略円筒状をなす断熱材層20で形成
された部屋20A内に収容されている。この断熱材層2
0は通気性のある適宜の空気透過型断熱材を採用でき
る。また単セル5及びセパレータ7を交互に積層したス
タック4はその上下端に略円板状の基板22a、22b
を有しており、上下の基板22a、22bを貫通して固
定した複数の締結ボルト23…によって断熱材層20の
上蓋20aに保持スプリング24を介して固定されてい
る。尚、スタック4の下面には断熱材層20の下面及び
側面からスタック4が離間するように脚部からなる保持
台4aが取り付けられている。保持台4aは断熱材層2
0を貫通してシール部材2の底面に保持されている。断
熱材層20の更に外側にはシール部材2が設けられてお
り、断熱材層20はシール部材2の上下面及び側面から
離間して空間26を全周に形成するように支持する脚部
20bが設けられている。シール部材2と断熱材層20
を貫通して加熱用ガス供給部材25が配設され、その供
給口25aは断熱材層20でなる部屋20A内の底部近
傍に開口している。加熱用ガス供給部材25によって固
体電解質型燃料電池1の始動時にスタック4を反応温度
である600℃〜800℃程度に加熱するようになって
いる。
Then, the heated fuel gas is supplied from the fuel gas preheating pipe 17 to the three fuel gas supply manifold pipes 18 through the fuel gas supply pipes 13, and the fuel gas supply manifold pipes 18 are stacked. The fuel gas is supplied to each groove 9 via the fuel gas supply pipes 13a, 13a branched into two for each separator 7. Similarly, the heated oxidant gas is supplied from the oxidant gas preheating pipe 16 to the three oxidant gas supply manifold pipes 19 via the oxidant gas supply pipes 14, and further, in each oxidant gas supply manifold pipe 19. The oxidant gas is supplied to each groove 9 via the oxidant gas supply pipes 14a, 14a branched into two for each separator 7. Next, the stack 4 is housed in a chamber 20A formed by a heat insulating material layer 20 having a bottom and a lid and having a substantially cylindrical shape. This insulation layer 2
For 0, an appropriate air-permeable heat insulating material having air permeability can be adopted. Further, the stack 4 in which the unit cells 5 and the separators 7 are alternately laminated has upper and lower ends thereof having substantially disk-shaped substrates 22a and 22b.
And is fixed to the upper lid 20a of the heat insulating material layer 20 via a holding spring 24 by a plurality of fastening bolts 23 ... Which are fixed by penetrating the upper and lower substrates 22a and 22b. In addition, a holding base 4a composed of legs is attached to the lower surface of the stack 4 so that the stack 4 is separated from the lower surface and the side surface of the heat insulating material layer 20. The holding table 4a is the heat insulating material layer 2
It is held on the bottom surface of the seal member 2 by penetrating 0. A seal member 2 is provided further outside the heat insulating material layer 20, and the heat insulating material layer 20 is spaced apart from the upper and lower surfaces and side surfaces of the seal member 2 to support a leg portion 20b that forms a space 26 around the entire circumference. Is provided. Seal member 2 and heat insulating material layer 20
A heating gas supply member 25 is disposed so as to penetrate through the chamber, and its supply port 25a is opened in the vicinity of the bottom of the room 20A made of the heat insulating material layer 20. The heating gas supply member 25 heats the stack 4 to a reaction temperature of about 600 ° C. to 800 ° C. when the solid oxide fuel cell 1 is started.

【0011】またシール部材2と断熱材層20との間の
空間26には冷却用ガス供給部材27の供給口27aが
設けられ、この供給口27aから常温の圧縮空気を冷却
用ガスとして空間26内に供給することで空間26内の
温度を100℃以下に冷却し、シール部材2の外表面を
人が接触可能な温度に冷却するようにしている。しかも
圧縮空気は断熱材層20を通して部屋20A内に流れる
ようになっている。断熱材層20の部屋20A内の上蓋
20a近傍には加熱用ガスと圧縮空気等を排気するため
の排出管31(図1,2、3参照)が設けられて、シー
ル部材2を通して外部へ排出され、給湯システム等に利
用可能としている。シール部材2の外部から断熱材層2
0を通して燃料ガス予熱管17、酸化剤ガス予熱管16
にそれぞれ常温の燃料ガスと酸化剤ガスを供給する燃料
ガス配管28、酸化剤ガス配管29が配設されている。
またシール部材2の例えば蓋部3からは一対の電極取り
出しターミナル30a、30bが外部に突出して設けら
れている。電極取り出しターミナル30a、30bはス
タック4の上下両端のセパレータ7,7にそれぞれ接続
されている。
Further, a supply port 27a of a cooling gas supply member 27 is provided in the space 26 between the seal member 2 and the heat insulating material layer 20, and the compressed air at room temperature is used as a cooling gas from the supply port 27a. By supplying the gas to the inside, the temperature in the space 26 is cooled to 100 ° C. or less, and the outer surface of the seal member 2 is cooled to a temperature at which a person can contact. Moreover, the compressed air flows through the heat insulating material layer 20 into the room 20A. A discharge pipe 31 (see FIGS. 1, 2 and 3) for discharging the heating gas, compressed air and the like is provided near the upper lid 20a in the room 20A of the heat insulating material layer 20 and is discharged to the outside through the seal member 2. It can be used for hot water supply systems. From the outside of the seal member 2, the heat insulating material layer 2
0 through the fuel gas preheating pipe 17, the oxidant gas preheating pipe 16
A fuel gas pipe 28 and an oxidant gas pipe 29, which supply the fuel gas and the oxidant gas at room temperature, respectively, are provided therein.
Further, a pair of electrode lead-out terminals 30a and 30b are provided so as to project from the lid portion 3 of the seal member 2 to the outside. The electrode lead-out terminals 30a, 30b are connected to the separators 7, 7 at the upper and lower ends of the stack 4, respectively.

【0012】本実施の形態による固体電解質型燃料電池
1は上述の構成を備えており、次に作用を説明する。先
ず起動時において、固体電解質型燃料電池1は通常常温
に低下しており、そのため加熱用ガス供給部材25を通
して断熱材層20内のスタック4に加熱用ガスを供給
し、部屋20A内を600℃〜800℃程度に加熱す
る。そして燃料ガス配管28から常温の燃料ガスを、そ
して酸化剤ガス配管29から酸素または空気等の常温の
酸化剤ガスを供給して燃料ガス予熱管17及び酸化剤ガ
ス予熱管16にそれぞれ送り出す。加熱用ガスはスタッ
ク4の積層されたセパレータ7…の中央貫通孔7a…内
にも循環されるために、各予熱管16,17内の酸化剤
ガスと燃料ガスは600℃〜800℃程度の反応温度に
まで加熱される。そして燃料ガスは燃料ガス予熱管17
から燃料ガス供給管13を介して3本の燃料ガス供給マ
ニホールド18に分配され、更に積層方向に並ぶ各セパ
レータ7毎に接続された燃料ガス供給管13a、13a
を介して表面7b側に設けた各凹部8の凹溝9に分配導
入される。凹溝9内で内側端部に流入した燃料ガスは凹
溝9内を外周側に向かって流動する。同様に酸化剤ガス
も酸化剤ガス予熱管16から酸化剤ガス供給管14を介
して3本の酸化剤ガス供給マニホールド19に分配さ
れ、更に各セパレータ7毎に接続された酸化剤ガス供給
管14a、14aを介して裏面7c側に設けた各凹部8
の凹溝9に分配導入される。凹溝9の内側端部に導入さ
れた酸化剤ガスは凹溝9内を外周側に向かって流動す
る。
The solid oxide fuel cell 1 according to this embodiment has the above-mentioned structure, and its operation will be described below. First, at the time of startup, the solid oxide fuel cell 1 is normally cooled to room temperature. Therefore, the heating gas is supplied to the stack 4 in the heat insulating material layer 20 through the heating gas supply member 25, and the temperature in the room 20A is set to 600 ° C. Heat to about 800 ° C. Then, the normal temperature fuel gas is supplied from the fuel gas pipe 28, and the normal temperature oxidant gas such as oxygen or air is supplied from the oxidant gas pipe 29 and sent to the fuel gas preheating pipe 17 and the oxidant gas preheating pipe 16, respectively. Since the heating gas is also circulated in the central through holes 7a of the stacked separators 7 of the stack 4, the oxidant gas and the fuel gas in each of the preheating pipes 16 and 17 have a temperature of about 600 ° C to 800 ° C. Heat to reaction temperature. The fuel gas is the fuel gas preheating pipe 17
From the fuel gas supply pipes 13 to the three fuel gas supply manifolds 18 and further connected to each of the separators 7 arranged in the stacking direction.
Is distributed and introduced into the concave groove 9 of each concave portion 8 provided on the surface 7b side. The fuel gas flowing into the inner end portion of the groove 9 flows in the groove 9 toward the outer peripheral side. Similarly, the oxidant gas is also distributed from the oxidant gas preheating pipe 16 to the three oxidant gas supply manifolds 19 via the oxidant gas supply pipe 14, and further, the oxidant gas supply pipes 14 a connected to each separator 7 are connected. , 8a on each side of the back surface 7c through the recesses 8a, 14a
It is distributed and introduced into the concave groove 9 of. The oxidant gas introduced into the inner end of the groove 9 flows in the groove 9 toward the outer peripheral side.

【0013】酸化剤ガスに含まれる酸素は、酸素イオン
の形態で単セル5の固体電解質板の内部を正極5a側か
ら負極5b側へと移動して、負極5b側においてセパレ
ータ7の表面7b側で燃料ガスに含まれる水素ガスと化
学反応する。この化学反応に伴う発熱により固体電解質
型燃料電池1が内部から加温されると共に正極5aと負
極5b間に電位差が生じる。一方、セパレータ7の表面
7b側では、未反応の燃料ガスと化学反応により発生し
た水蒸気がセパレータ7の外周面に設けた燃料ガス排出
ノズル(図示せず)から排出され、セパレータ7の裏面
7c側では未反応の酸化剤ガスが同じくセパレータ7の
外周面に設けた酸化剤ガス排出ノズル(図示せず)から
排出される。両排出ノズルから排出された燃料ガスと酸
化剤ガスは例えばセパレータ7の外側で混合されて、化
学反応(燃焼)に伴う発熱により固体電解質型燃料電池
1が外側から加熱される。固体電解質型燃料電池1の内
外での反応熱によって断熱材層20内の温度は反応温度
と同等の600℃〜800℃程度に上昇する。これを受
けて加熱用ガス供給管25からの加熱用ガスの導入は停
止され、燃料ガス配管28及び酸化剤ガス配管29から
供給される燃料ガスと酸化剤ガスは燃料ガス予熱管17
及び酸化剤ガス予熱管16内で固体電解質型燃料電池1
の反応熱で反応温度まで加熱される。いずれの場合も燃
料ガスや酸化剤ガスが供給されるセパレータ7の凹溝9
の内側と外周面とで温度差は生じないので、単セル5の
割れを抑制できる。
Oxygen contained in the oxidant gas moves in the form of oxygen ions inside the solid electrolyte plate of the single cell 5 from the positive electrode 5a side to the negative electrode 5b side, and the surface 7b side of the separator 7 on the negative electrode 5b side. And chemically react with hydrogen gas contained in the fuel gas. Due to the heat generated by this chemical reaction, the solid oxide fuel cell 1 is heated from the inside and a potential difference is generated between the positive electrode 5a and the negative electrode 5b. On the other hand, on the front surface 7b side of the separator 7, water vapor generated by a chemical reaction with unreacted fuel gas is discharged from a fuel gas discharge nozzle (not shown) provided on the outer peripheral surface of the separator 7, and the rear surface 7c side of the separator 7 is provided. Then, the unreacted oxidant gas is discharged from an oxidant gas discharge nozzle (not shown) also provided on the outer peripheral surface of the separator 7. The fuel gas and the oxidant gas discharged from both discharge nozzles are mixed, for example, on the outside of the separator 7, and the solid oxide fuel cell 1 is heated from the outside by the heat generated by the chemical reaction (combustion). Due to the reaction heat inside and outside the solid oxide fuel cell 1, the temperature inside the heat insulating material layer 20 rises to about 600 ° C. to 800 ° C., which is equivalent to the reaction temperature. In response to this, the introduction of the heating gas from the heating gas supply pipe 25 is stopped, and the fuel gas and the oxidant gas supplied from the fuel gas pipe 28 and the oxidant gas pipe 29 are fed into the fuel gas preheating pipe 17
And the solid oxide fuel cell 1 in the oxidant gas preheating tube 16
It is heated to the reaction temperature by the heat of reaction. In any case, the concave groove 9 of the separator 7 to which the fuel gas and the oxidant gas are supplied
Since there is no temperature difference between the inner side and the outer peripheral surface, cracking of the unit cell 5 can be suppressed.

【0014】また断熱材層20とシール部材2との間の
空間26には冷却用ガス供給部材27を通して適宜温
度、例えば常温の圧縮空気を冷却用ガスとして供給して
空間26内の温度を100℃以下に低下させ、これによ
ってシール部材2の板厚を通した外表面の温度を常温程
度に抑えることができ、使用者が手で触っても火傷等の
おそれがない。しかも圧縮空気は断熱材層20を通って
部屋20A内の排出管31から加熱用ガスと共に排出さ
せる流路を形成する。そのため加熱用ガス供給部材27
から供給された加熱用ガスが、スタック4の雰囲気温度
を反応温度まで十分に昇温させる前に断熱材層20外部
の空間26内に逆流する不具合は生じない。始動時には
確実に部屋20A内のスタック4の周囲を反応温度にま
で昇温させることができる。
The space 26 between the heat insulating material layer 20 and the seal member 2 is supplied with a cooling gas supply member 27 at an appropriate temperature, for example, compressed air at room temperature is supplied as a cooling gas to bring the temperature in the space 26 to 100. The temperature of the outer surface through the plate thickness of the seal member 2 can be suppressed to about room temperature, and there is no risk of burns or the like even if the user touches it by hand. Moreover, the compressed air passes through the heat insulating material layer 20 and forms a flow path for discharging together with the heating gas from the discharge pipe 31 in the room 20A. Therefore, the heating gas supply member 27
There is no problem that the heating gas supplied from the backflows into the space 26 outside the heat insulating material layer 20 before the atmospheric temperature of the stack 4 is sufficiently raised to the reaction temperature. At the time of starting, the temperature around the stack 4 in the room 20A can be reliably raised to the reaction temperature.

【0015】上述したように本実施の形態による固体電
解質型燃料電池1によれば、1枚あたりのセパレータ7
の表裏面7b、7cに各6枚の単セル5を並列に配列し
て積層方向に直列に接続したから、発電面積を増大させ
て取り出し電流値を増大させることができて高出力発電
を達成できる。しかもスタック4ではセパレータ7の中
央貫通孔7a内に燃料ガス予熱管17と酸化剤ガス予熱
管16を配設してスタック4の外周側温度と同等の温度
にまで予熱した後で各セパレータ7の各凹部8内の凹溝
9内側端部に供給するようにしたから、構造がコンパク
トで、セパレータ7の内側と外周側とで温度差を生じて
セル割れの原因になることもなく単セル5の寿命を向上
できる。また発電開始時にあっては加熱用ガス供給部材
25を用いてスタック4の雰囲気温度を反応温度まで上
昇させることができ、迅速で効率的な発電を行える。更
に断熱材層20とその外部のシール部材2との空間26
に圧縮空気を供給することでシール部材2の外側を常温
程度に冷却できる上に、圧縮空気によって断熱材層20
内の部屋20Aを通して排出管31から排気する流路を
形成することでスタック4内の熱を放出して反応温度
(発電温度)が上昇しすぎることを防止できて反応温度
をコントロールできる。
As described above, according to the solid oxide fuel cell 1 of the present embodiment, one separator 7 is provided.
Since the six single cells 5 are arranged in parallel on the front and back surfaces 7b and 7c and connected in series in the stacking direction, the power generation area can be increased and the extraction current value can be increased to achieve high output power generation. it can. Moreover, in the stack 4, the fuel gas preheating pipe 17 and the oxidant gas preheating pipe 16 are arranged in the central through hole 7a of the separator 7 and preheated to a temperature equivalent to the outer peripheral side temperature of the stack 4 and then the separator 7 Since the gas is supplied to the inner end of the concave groove 9 in each concave portion 8, the structure is compact, and there is no difference in temperature between the inside and the outer peripheral side of the separator 7, which does not cause cell cracking. Can improve the service life of. At the start of power generation, the heating gas supply member 25 can be used to raise the ambient temperature of the stack 4 to the reaction temperature, and quick and efficient power generation can be performed. Further, a space 26 between the heat insulating material layer 20 and the seal member 2 outside the heat insulating material layer 20.
By supplying compressed air to the outside, the outside of the seal member 2 can be cooled to about room temperature, and the insulating layer 20 can be compressed by compressed air.
By forming a flow path for exhausting from the exhaust pipe 31 through the room 20A inside, it is possible to prevent the reaction temperature (power generation temperature) from rising too much by releasing heat in the stack 4 and control the reaction temperature.

【0016】尚、上述の実施の形態では、1枚のセパレ
ータ7の表裏面7b、7cに並列配列する単セル5を各
6枚に設定したが、これに限定されることなく適宜枚数
の単セルを配列できる。またセパレータ7の中央貫通孔
7a内に配設する燃料ガス予熱管17と酸化剤ガス予熱
管16とは同心円状に重ねて配設したが、これに限定さ
れることなく非同心で並列に配設してもよく、或いは中
央貫通孔7a内に代えてスタック4の外周側に配設して
もよい。いずれにしても各予熱管17,16で燃料ガス
と酸化剤ガスをスタック4外周側と同等の温度にして凹
部8内の内側中心付近に分配供給するようにすればよ
い。また凹溝9内への燃料ガスや酸化剤ガスの供給位置
は凹溝9の内側端部に限定されることなく適宜の位置か
ら供給できる。尚、燃料ガスと酸化剤ガスは反応ガスを
構成する。
In the above-described embodiment, the single cells 5 arranged in parallel on the front and back surfaces 7b and 7c of the single separator 7 are set to six pieces, but the number of single cells 5 is not limited to this. You can arrange cells. Further, the fuel gas preheating pipe 17 and the oxidant gas preheating pipe 16 arranged in the central through hole 7a of the separator 7 are concentrically overlapped with each other, but the present invention is not limited to this, and the concentric and parallel arrangements are made. It may be provided, or may be provided on the outer peripheral side of the stack 4 instead of in the central through hole 7a. In any case, the fuel gas and the oxidant gas may be supplied to the preheating pipes 17 and 16 at the same temperature as the outer peripheral side of the stack 4 and distributed near the inner center of the recess 8. Further, the supply position of the fuel gas or the oxidant gas into the groove 9 is not limited to the inner end portion of the groove 9 and can be supplied from an appropriate position. The fuel gas and the oxidant gas form a reaction gas.

【0017】[0017]

【発明の効果】上述のように本発明に係る固体電解質型
燃料電池は、セパレータに反応ガスを供給する前に反応
ガスを予熱する反応ガス予熱管を固体電解質型燃料電池
の内部に配設したから、反応ガスを反応温度にまで加熱
した状態でセパレータ内に供給することができ、セパレ
ータ内の反応ガスの供給部分と他の部分との温度差をな
くすことができてセルの割れ等を抑制できる。
As described above, in the solid oxide fuel cell according to the present invention, the reactive gas preheating tube for preheating the reactive gas before supplying the reactive gas to the separator is arranged inside the solid oxide fuel cell. Therefore, the reaction gas can be supplied to the separator while being heated to the reaction temperature, and the temperature difference between the reaction gas supply part in the separator and other parts can be eliminated to prevent cell cracking. it can.

【0018】また1枚のセパレータに複数のセルが配列
されて相互に並列に電気的に接続されていて、これら複
数のセルの間に反応ガス予熱管を配設したから、発電面
積を増大して取り出し電流値を上げることができ、しか
もスペースの無駄がなくコンパクトな固体電解質型燃料
電池を得ることができる。またセルとセパレータを積層
してなるスタックは断熱材層で囲われており、該断熱材
層内に加熱用ガスを供給する加熱用ガス供給部材を設け
たため、内部温度を反応温度にまで高めることができる
と共に反応ガス予熱管を予熱することができる。しかも
発電が進めば反応ガスの反応熱によって反応ガス予熱管
を加熱することができる。また断熱材層の外部は外部材
で囲われており、外部材と断熱材層との間の空間に冷却
用ガスを供給する冷却用ガス供給部材を設けたため、外
部材の外表面を常温程度にまで低下させることができ、
しかも断熱材層の内部が反応温度よりも昇温して過熱し
ないように温度制御できる。また冷却用ガスは加圧され
ていて断熱材層を通してその内部に流動可能としたた
め、断熱材層内部の加熱用ガスや反応ガスの反応熱等が
断熱材層を通して空間へ逆流するのを抑制して温度制御
を行える。
Further, since a plurality of cells are arranged in one separator and are electrically connected in parallel to each other, and the reaction gas preheating pipe is arranged between the plurality of cells, the power generation area is increased. Therefore, it is possible to increase the extraction current value and obtain a compact solid oxide fuel cell without wasting space. Further, since the stack formed by stacking the cells and the separator is surrounded by the heat insulating material layer, and the heating gas supply member for supplying the heating gas is provided in the heat insulating material layer, the internal temperature is raised to the reaction temperature. In addition, the reaction gas preheating tube can be preheated. Moreover, if the power generation proceeds, the reaction gas preheating pipe can be heated by the reaction heat of the reaction gas. Further, since the outside of the heat insulating material layer is surrounded by the outer member, and the cooling gas supply member for supplying the cooling gas is provided in the space between the outer member and the heat insulating material layer, the outer surface of the outer member is kept at about room temperature. Can be reduced to
Moreover, the temperature can be controlled so that the inside of the heat insulating material layer does not rise above the reaction temperature and do not overheat. In addition, the cooling gas is pressurized and allowed to flow through it through the heat insulating material layer, so that the reaction heat of the heating gas and reaction gas inside the heat insulating material layer is prevented from flowing back into the space through the heat insulating material layer. Temperature control.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態による固体電解質型燃料
電池の外観平面図である。
FIG. 1 is an external plan view of a solid oxide fuel cell according to an embodiment of the present invention.

【図2】 図1に示す固体電解質型燃料電池の外観側面
図である。
FIG. 2 is an external side view of the solid oxide fuel cell shown in FIG.

【図3】 固体電解質型燃料電池の内部構造を示す平面
図である。
FIG. 3 is a plan view showing an internal structure of a solid oxide fuel cell.

【図4】 固体電解質型燃料電池の内部構造を示す縦断
面図である。
FIG. 4 is a vertical cross-sectional view showing the internal structure of a solid oxide fuel cell.

【図5】 固体電解質型燃料電池のスタックの1枚のセ
ルとこれに対応するセパレータ部分について図3で燃料
ガス供給管と酸化剤ガス供給管の配設方向に沿ったA−
A線縦断面図である。
FIG. 5 shows one cell of a stack of a solid oxide fuel cell stack and a separator portion corresponding thereto in FIG. 3 along line A- along the direction of arrangement of a fuel gas supply pipe and an oxidant gas supply pipe.
It is a vertical sectional view taken along line A.

【符号の説明】[Explanation of symbols]

1 固体電解質型燃料電池 2 シール部材(外部材) 5 単セル(セル) 7 セパレータ 7a 貫通孔 8 凹部 9 凹溝 16 酸化剤ガス予熱管(反応ガス予熱管) 17 燃料ガス予熱管(反応ガス予熱管) 20 断熱材層 25 加熱用ガス供給部材 27 冷却用ガス供給部材 1 Solid oxide fuel cell 2 Seal member (outer member) 5 single cells 7 separator 7a through hole 8 recess 9 groove 16 Oxidizer gas preheating pipe (reaction gas preheating pipe) 17 Fuel gas preheating tube (reaction gas preheating tube) 20 Thermal insulation layer 25 Heating gas supply member 27 Cooling gas supply member

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 セルとセパレータとが交互に積層されて
いると共に該各セパレータに反応ガスを供給するように
した固体電解質型燃料電池であって、 前記セパレータに反応ガスを供給する前に反応ガスを予
熱する反応ガス予熱管を前記固体電解質型燃料電池の内
部に配設したことを特徴とする固体電解質型燃料電池。
1. A solid oxide fuel cell in which cells and separators are alternately stacked and a reaction gas is supplied to each separator, wherein the reaction gas is supplied before the reaction gas is supplied to the separators. A solid oxide fuel cell, characterized in that a reaction gas preheating tube for preheating is disposed inside the solid oxide fuel cell.
【請求項2】 1枚の前記セパレータに複数のセルが配
列されて相互に並列に電気的に接続されていて、これら
複数のセルの間に前記反応ガス予熱管を配設したことを
特徴とする請求項1記載の固体電解質型燃料電池。
2. A plurality of cells are arranged on one of the separators and electrically connected in parallel to each other, and the reaction gas preheating pipe is arranged between the plurality of cells. The solid oxide fuel cell according to claim 1.
【請求項3】 前記セルとセパレータを積層したスタッ
クは断熱材層で囲われており、該断熱材層内に加熱用ガ
スを供給する加熱用ガス供給部材が設けられていること
を特徴とする請求項1または2記載の固体電解質型燃料
電池。
3. A stack in which the cells and the separator are laminated is surrounded by a heat insulating material layer, and a heating gas supply member for supplying a heating gas is provided in the heat insulating material layer. The solid oxide fuel cell according to claim 1 or 2.
【請求項4】 前記断熱材層の外部は外部材で囲われて
おり、該外部材と断熱材層との間の空間に冷却用ガスを
供給する冷却用ガス供給部材が設けられていることを特
徴とする請求項3記載の固体電解質型燃料電池。
4. The outside of the heat insulating material layer is surrounded by an outer member, and a cooling gas supply member for supplying a cooling gas is provided in a space between the outer member and the heat insulating material layer. The solid oxide fuel cell according to claim 3.
【請求項5】 前記冷却用ガスは加圧されていて断熱材
層を通してその内部に流動可能としたことを特徴とする
請求項4記載の固体電解質型燃料電池。
5. The solid oxide fuel cell according to claim 4, wherein the cooling gas is pressurized and can flow through the heat insulating material layer.
JP2001367644A 2001-11-30 2001-11-30 Solid electrolyte type fuel cell Pending JP2003168469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001367644A JP2003168469A (en) 2001-11-30 2001-11-30 Solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001367644A JP2003168469A (en) 2001-11-30 2001-11-30 Solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JP2003168469A true JP2003168469A (en) 2003-06-13

Family

ID=19177360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001367644A Pending JP2003168469A (en) 2001-11-30 2001-11-30 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JP2003168469A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060029A2 (en) * 2003-12-17 2005-06-30 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
EP1791202A2 (en) * 2003-12-26 2007-05-30 HONDA MOTOR CO., Ltd. Fuel cell and fuel cell stack
JP2008251493A (en) * 2007-03-30 2008-10-16 Toho Gas Co Ltd Fuel cell module
JP2008251495A (en) * 2007-03-30 2008-10-16 Toho Gas Co Ltd Fuel cell module
JP2011518417A (en) * 2008-04-18 2011-06-23 ザ・ボーイング・カンパニー Alternative path cooling for high temperature fuel cells
JP2012014917A (en) * 2010-06-30 2012-01-19 Nippon Telegr & Teleph Corp <Ntt> Flat plate type solid oxide fuel cell multi-stack module
US8288051B2 (en) 2007-01-25 2012-10-16 Mitsubishi Materials Corporation Solid oxide fuel cell and fuel cell stack

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625657B2 (en) 2003-12-17 2009-12-01 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
WO2005060029A3 (en) * 2003-12-17 2006-04-13 Honda Motor Co Ltd Fuel cell and fuel cell stack
US7914937B2 (en) 2003-12-17 2011-03-29 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
WO2005060029A2 (en) * 2003-12-17 2005-06-30 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
EP1791202A3 (en) * 2003-12-26 2007-08-08 HONDA MOTOR CO., Ltd. Fuel cell and fuel cell stack
US7482087B2 (en) 2003-12-26 2009-01-27 Honda Motor Co., Ltd. Fuel cell
US7491460B2 (en) 2003-12-26 2009-02-17 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
EP1791202A2 (en) * 2003-12-26 2007-05-30 HONDA MOTOR CO., Ltd. Fuel cell and fuel cell stack
US8288051B2 (en) 2007-01-25 2012-10-16 Mitsubishi Materials Corporation Solid oxide fuel cell and fuel cell stack
JP2008251495A (en) * 2007-03-30 2008-10-16 Toho Gas Co Ltd Fuel cell module
JP2008251493A (en) * 2007-03-30 2008-10-16 Toho Gas Co Ltd Fuel cell module
JP2011518417A (en) * 2008-04-18 2011-06-23 ザ・ボーイング・カンパニー Alternative path cooling for high temperature fuel cells
JP2012014917A (en) * 2010-06-30 2012-01-19 Nippon Telegr & Teleph Corp <Ntt> Flat plate type solid oxide fuel cell multi-stack module

Similar Documents

Publication Publication Date Title
US20100015491A1 (en) Solid oxide fuel cell stack for portable power generation
JP4587659B2 (en) Manufacturing method of fuel cell stack
US8021794B2 (en) Fuel cell with cross-shaped reformer
JP5109253B2 (en) Fuel cell
JP5070885B2 (en) Fuel cell
JP5319460B2 (en) Cell stack device, fuel cell module and fuel cell device
JP4654567B2 (en) Solid oxide fuel cell and method of operating the same
JP2003168469A (en) Solid electrolyte type fuel cell
JP4736309B2 (en) Preheating method at the start of operation of solid oxide fuel cell
JPH03219563A (en) Solid electrolyte type fuel cell
JP5345380B2 (en) Bipolar plate for fuel cell using deformed metal distribution sheet
JP2002358996A (en) Manifold structure of flat laminate fuel cell
JP2006086019A (en) Solid oxide fuel cell and preheating method at the time of start up
JP2004281353A (en) Separator for fuel cell
JP4438315B2 (en) Preheating method at the start of operation of solid oxide fuel cell
JP2007018966A (en) Fuel cell
JP6749051B2 (en) Cell stack device, fuel cell module, and fuel cell device
KR20200022093A (en) Firing apparatus for solid oxide fuel cell and method for manufacturing the same
JP2003282128A (en) Fuel cell
JP4389492B2 (en) Fuel cell separator and solid oxide fuel cell
JP4244579B2 (en) Flat stacked solid oxide fuel cell
JP4124005B2 (en) Fuel cell
WO2009119106A1 (en) Solid oxide fuel cell
JP4090758B2 (en) Solid oxide fuel cell separator
JP2009245632A (en) Flat-plate solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017