JP2003167097A - Planar radiation source and method of manufacturing the same - Google Patents

Planar radiation source and method of manufacturing the same

Info

Publication number
JP2003167097A
JP2003167097A JP2001364461A JP2001364461A JP2003167097A JP 2003167097 A JP2003167097 A JP 2003167097A JP 2001364461 A JP2001364461 A JP 2001364461A JP 2001364461 A JP2001364461 A JP 2001364461A JP 2003167097 A JP2003167097 A JP 2003167097A
Authority
JP
Japan
Prior art keywords
radiation source
plastic
ink
conductor
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001364461A
Other languages
Japanese (ja)
Inventor
Yoshiho Hino
良穂 檜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001364461A priority Critical patent/JP2003167097A/en
Publication of JP2003167097A publication Critical patent/JP2003167097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ink Jet (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that a conventional planar radiation source by drop drying has a severe problem in its uniformity, an organic film has uniformity but it is impossible to have arbitrary concentration gradient, and further as both are not suitable for mass production, but a single matter, they are expensive and have a problem in homogeneity in radiation sources. <P>SOLUTION: The homogeneous radiation sources can be easily manufactured by performing the printing with the printer ink including a radioactive isotope, whereby the radiation sources suitable for mass production, and capable of having arbitrary shape and concentration gradient can be provided in a state of breaking away from a conventional method. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本願発明は、原子力工学分
野における放射能標準線源作製技術に関するものであ
る。
TECHNICAL FIELD The present invention relates to a radioactivity standard radiation source manufacturing technique in the field of nuclear engineering.

【0002】[0002]

【従来の技術】 放射能面線源は、通常ハンドフットク
ロスモニタ(手足、衣服の放射能汚染検査装置)及びゲ
ートモニタ等の、大面積を測定する機器の動作確認及び
校正等に用いられており、その一例を図1に示す。これ
らの線源は、放射性溶液をろ紙及びエッチピット(微細
な孔)の作製されたアルミ板に滴下、乾燥させた後、表
面研磨して作製される。又は、エポキシ樹脂及びポリエ
チレン等のプラスチックに混ぜ込み、薄く引き延ばして
作製されてきた。図1の左下の小さな円盤は、参照用の
点線源である。
2. Description of the Related Art A radioactive surface radiation source is usually used for checking the operation and calibration of a large area measuring device such as a hand foot cross monitor (radiation contamination inspection device for limbs and clothes) and a gate monitor. An example thereof is shown in FIG. These radiation sources are prepared by dropping a radioactive solution onto a filter paper and an aluminum plate on which etch pits (fine holes) have been formed, drying and then surface polishing. Alternatively, it has been manufactured by mixing it with an epoxy resin and a plastic such as polyethylene and then stretching it thinly. The small disk in the lower left of FIG. 1 is a point source for reference.

【0003】図2は、上記図1に示された面状放射線源
の放射能分布をイメージプレートにより撮影したもので
ある。右上部の四角形の部分が線源を滴下して作製した
面状線源測定結果である。このように、滴下して作製し
た面状線源では、面状とはいえ濃度は均一ではない。
FIG. 2 is an image of the radioactivity distribution of the planar radiation source shown in FIG. 1 taken by an image plate. The square portion on the upper right is the result of the measurement of the planar radiation source prepared by dropping the radiation source. As described above, in the planar radiation source prepared by dropping, the density is not uniform although it is planar.

【0004】[0004]

【発明が解決しようとする課題】 このため、従来の滴
下乾燥の手法では、一様性に著しい問題があり、また、
有機膜においては、一様性は得られるものの、任意の濃
度勾配をもたせることは、不可能であった。また、いず
れも大量生産には適さず、一品物であるため、高価で、
線源相互の均質性にも問題があった。
Therefore, the conventional dripping and drying method has a significant problem in uniformity, and
In the organic film, uniformity was obtained, but it was impossible to give an arbitrary concentration gradient. In addition, neither is suitable for mass production, it is expensive because it is a single item.
There was also a problem with the homogeneity of the radiation sources.

【0005】[0005]

【課題を解決するための手段】 本願発明は、このよう
な従来の作製法とは異なり、大量生産に適し、任意の形
状、任意の濃度勾配を持たせることを可能とするため、
プリンタのインクに放射性同位元素を混入して印刷する
ことにより、簡便であるにもかかわらず均質な放射線源
作製を可能としたものである。
Means for Solving the Problems The present invention is different from the conventional manufacturing method as described above, and is suitable for mass production, and has an arbitrary shape and an arbitrary concentration gradient.
By printing the ink of the printer mixed with the radioactive isotope, it is possible to prepare a uniform radiation source despite its simplicity.

【0006】[0006]

【実施例】 面状放射線源分布の一例を第3図に示す。
ここでは、黄色のインクに放射性物質を混入し、色調を
1から10%濃度まで1%刻み、さらに100%濃度が
印刷されている。1000,1E4、1E5は他の色で
印刷したイメージで、1桁づつ異なる濃度で他の赤、
青、黒の色素に放射性物質を混入することにより、対数
目盛にも簡単に対応可能である。第4図は、図3の放射
能分布をイメージングプレートで撮像した結果である。
この例では黄色以外の色素に放射性物質を混入していな
いため、対数目盛部分が完成されていないものの、任意
の形状と濃度勾配、さらには文字も放射線源の一部とし
て明確に撮像されている。
EXAMPLE An example of a planar radiation source distribution is shown in FIG.
Here, a radioactive substance is mixed in the yellow ink, and the color tone is divided by 1% from 1 to 10% density, and further 100% density is printed. 1000, 1E4, and 1E5 are images printed in other colors, and other reds with different densities by one digit
By mixing radioactive materials in blue and black dyes, it is possible to easily deal with logarithmic scales. FIG. 4 shows the result of imaging the radioactivity distribution of FIG. 3 with an imaging plate.
In this example, the radioactive substances are not mixed with the dyes other than yellow, so the logarithmic scale part is not completed, but any shape and concentration gradient, and even the letters are clearly imaged as part of the radiation source. .

【0007】面状放射線源は、その取り扱いを簡便にす
るため、表面をこすった程度の普通の使用においては、
密封性が保たれる必要がある。また、放射能線源は、α
線又はβ線といった荷電粒子を放出するため、導電性の
ない状態においてはチャージアップを生じ、放電や線源
表面からの荷電粒子放出率の変化を引き起こす。そこ
で、印刷した表面に、アルミコートした薄いプラスチッ
クのカバーを被せることにより、被覆とチャージアップ
防止を行うことができる。
In order to simplify the handling of the surface radiation source, the surface radiation source should be rubbed on its surface during normal use.
The hermeticity needs to be maintained. Also, the radiation source is α
Since charged particles such as rays or β rays are emitted, charge-up occurs in a non-conductive state, which causes discharge and changes in the charged particle emission rate from the surface of the radiation source. Therefore, by covering the printed surface with an aluminum-coated thin plastic cover, coating and charge-up prevention can be performed.

【0008】又は、予め片側にアルミコートを施したビ
ニールをラミネートした紙の裏側から水溶性インクで印
刷し、印刷面に背板をあてがう等により、密封性と導電
性をもたせることができる。このとき、線源表面を覆う
物質の質量は、特にβ線源の場合は、該β線のエネルギ
ーに対応した半価透過値以下(数十mg程度)の厚さとし
なければならない。
Alternatively, it is possible to provide sealing property and conductivity by printing with a water-soluble ink from the back side of a paper laminated with vinyl coated with aluminum on one side in advance and applying a back plate to the printed surface. At this time, the mass of the substance covering the surface of the radiation source must be a thickness equal to or less than the half-value transmission value (about several tens of mg) corresponding to the energy of the β-ray, especially in the case of the β-ray source.

【0009】X線フィルム及びその代用として広く使用
されているイメージングプレートの位置分解能及び感度
校正を行うため、一定間隔の格子状パターン又は濃度勾
配を持たせた等高線指標型の面線源を印刷により作製
し、その一面に合成ゴム系接着剤を軽くスプレイして弱
粘着性を持たせることにより、X線フィルムあるいはイ
メージングプレート表面に直接張り付け、位置分解能試
験又は感度校正を簡便に実施可能とする。
In order to calibrate the position resolution and sensitivity of an X-ray film and an imaging plate which is widely used as a substitute for the X-ray film, a grid-like pattern at regular intervals or a contour index type surface radiation source having a density gradient is printed. It is prepared and lightly sprayed with a synthetic rubber adhesive on one surface thereof so as to have a weak tackiness, so that it can be directly attached to the surface of an X-ray film or an imaging plate to easily perform a position resolution test or sensitivity calibration.

【0010】[0010]

【発明の効果】 上記のように、従来の方法及び物に比
べて、極めて安価に、且つ均質な放射能面線源の供給を
可能とし、また、その活用法として、放射能濃度勾配又
は精密パターンを描かせることにより、位置分解能又は
感度を直接且つ簡便に行えるようにした。
As described above, compared to the conventional methods and products, it is possible to supply a radioactive surface radiation source that is extremely inexpensive and uniform, and the utilization method thereof is a radioactive concentration gradient or a precise pattern. By drawing, the position resolution or sensitivity can be directly and easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の面状放射線源。FIG. 1 is a conventional planar radiation source.

【図2】 図1の面状線源の放射能分布をイメージプレ
ートで撮像した結果。
FIG. 2 is a result of imaging the radioactivity distribution of the planar radiation source of FIG. 1 with an image plate.

【図3】 黄色の色素に放射能を入れたテストパターン
例。
FIG. 3 is an example of a test pattern in which radioactivity is added to a yellow dye.

【図4】 図3の面状線源の放射能分布をイメージプレ
ートで撮像した結果。
FIG. 4 is a result of imaging the radioactivity distribution of the planar radiation source of FIG. 3 with an image plate.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 面状放射線源の作製方法において、プリ
ンタのインクに放射性同位元素を混入させ、任意の濃度
で印刷することにより作製することを特徴とする面状放
射線源の作製方法。
1. A method for producing a planar radiation source, which comprises mixing a radioisotope in ink of a printer and printing the mixture at an arbitrary concentration.
【請求項2】 プリンタのインクに放射性同位元素を混
入させたことを特徴とする放射線源。
2. A radiation source characterized by mixing a radioisotope with ink of a printer.
【請求項3】 放射性同位元素を混入したプリンタのイ
ンクにより、任意の濃度で印刷されていることを特徴と
する面状放射線源。
3. A planar radiation source characterized by being printed at an arbitrary density with ink of a printer containing a radioactive isotope.
【請求項4】 印刷した表面を、導電体又は導電体を付
着したフィルム状プラスチックスで被覆することにより
密封性と表面の電気伝導性を持たせたことを特徴とする
請求項3記載の面状放射線源。
4. The surface according to claim 3, wherein the printed surface is covered with an electric conductor or a film-like plastic to which the electric conductor is adhered so as to have sealing property and surface electric conductivity. Radiation source.
【請求項5】 上記導電体は、アルミニウムであり、上
記プラスチックスは、ビニールであることを特徴とする
請求項4記載の面上放射線源。
5. The surface radiation source according to claim 4, wherein the conductor is aluminum, and the plastic is vinyl.
【請求項6】 片側にあらかじめ導電体を施したフィル
ム状プラスチックスをラミネートした紙の裏側から、水
溶性の上記インクで印刷し、印刷面は背板に張り付けて
固定することにより、密封性と表面の電気伝導性を持た
せたことを特徴とする請求項3記載の面状放射線源。
6. Sealing is achieved by printing with the water-soluble ink from the back side of a paper laminated with a film-like plastic which is previously coated with a conductor on one side, and by sticking the printed surface to a back plate and fixing it. The planar radiation source according to claim 3, wherein the surface has electrical conductivity.
【請求項7】 上記導電体は、アルミニウムであり、上
記プラスチックスは、ビニールであることを特徴とする
請求項6記載の面上放射線源。
7. The on-plane radiation source according to claim 6, wherein the conductor is aluminum and the plastic is vinyl.
【請求項8】 上記面状放射線源の表面に弱粘着性の性
質を持たせ、フィルム状プラスチックスに張り付けるこ
とにより、直接に荷電粒子放出率及びγ線放出率標準と
して使用可能とした請求項3記載の面状放射線源。
8. The surface radiation source is provided with a weak adhesive property and is attached to a film plastic so that it can be directly used as a charged particle emission rate and γ ray emission rate standard. Item 2. The planar radiation source according to Item 3.
【請求項9】 上記弱粘着性は、接着剤を付着させたも
のであることを特徴とする請求項8記載の面上放射線
源。
9. The on-plane radiation source according to claim 8, wherein the weak tackiness is obtained by adhering an adhesive.
JP2001364461A 2001-11-29 2001-11-29 Planar radiation source and method of manufacturing the same Pending JP2003167097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364461A JP2003167097A (en) 2001-11-29 2001-11-29 Planar radiation source and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364461A JP2003167097A (en) 2001-11-29 2001-11-29 Planar radiation source and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003167097A true JP2003167097A (en) 2003-06-13

Family

ID=19174651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364461A Pending JP2003167097A (en) 2001-11-29 2001-11-29 Planar radiation source and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003167097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048804A (en) * 2008-07-31 2010-03-04 Eckert & Ziegler Isotope Products Inc Method and plotting system for forming radiation flood source, and radiation flood source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048804A (en) * 2008-07-31 2010-03-04 Eckert & Ziegler Isotope Products Inc Method and plotting system for forming radiation flood source, and radiation flood source

Similar Documents

Publication Publication Date Title
CN104662443B (en) Effective ways for radiating color changing film dosimetry measure
EP1121567A1 (en) Luminescent brittle coating in strain analysis
CN107271415B (en) A kind of standard sample of photo and preparation method thereof for fluorescent instrument calibration measurement
Mai et al. Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters
JP2003167097A (en) Planar radiation source and method of manufacturing the same
US7405412B2 (en) Method for calibrating a radiation detection medium
CN109085637A (en) A method of beam position measurement is realized based on Radiochromic film
Wheatley et al. Physico-chemical properties and optimization of the deformable FlexyDos3D radiation dosimeter
EP3818396A1 (en) A new dosimetry device for quantification of radiation
TW479147B (en) A method for manufacturing a color filter, and a liquid-crystal device using a color filter manufactured by the method
US4346588A (en) Reproducing surface testing method and apparatus
US3753710A (en) Preparation of ceramics
Raylman et al. Evaluation of advanced methods and materials for construction of scintillation detector light guides
EP3037879B1 (en) An agglutinant for a pellicle, a pellicle using it and a method for evaluating a pellicle
US5672876A (en) Method and apparatus for measuring distribution of radioactive nuclide in subject
Saw et al. Correction of a nonuniform imaging plate response
Galli et al. Timing resolution measurements of a 3 in. lanthanum bromide detector
CN118376633A (en) Modulator for X-ray single-pixel imaging and preparation method and application thereof
Kuhne SENSITIVITY TESTS OF IMAGING PLATES WITH RESPECT TO KIND AND ENERGY OF THE APPLIED RADIATION
Shimada et al. Compact Draw-off Type Instrument for Measuring Toner Charge
CN115469348A (en) Ionizing radiation dosimeter based on polymer structure color material and dose reading method thereof
JP6187176B2 (en) Information processing system, information processing method, and information processing program
JP2003215601A (en) Method for inspecting and manufacturing liquid crystal display device
EP4066889A1 (en) 3d printing material for dose measurement phantoms
van Oosterhout et al. Spectral Color Prediction by Advanced Physical Modelling of Toner, Ink and Paper, with Application to Halftoned Prints

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20051115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060322

Free format text: JAPANESE INTERMEDIATE CODE: A02