JP2003166866A - Gas supply/interruption mechanism - Google Patents

Gas supply/interruption mechanism

Info

Publication number
JP2003166866A
JP2003166866A JP2001368993A JP2001368993A JP2003166866A JP 2003166866 A JP2003166866 A JP 2003166866A JP 2001368993 A JP2001368993 A JP 2001368993A JP 2001368993 A JP2001368993 A JP 2001368993A JP 2003166866 A JP2003166866 A JP 2003166866A
Authority
JP
Japan
Prior art keywords
gas
gas supply
flow path
pressure regulator
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001368993A
Other languages
Japanese (ja)
Inventor
Suefumi Nakahigashi
寿恵文 中東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Itoh Kouki Corp
Original Assignee
Itoh Kouki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itoh Kouki Corp filed Critical Itoh Kouki Corp
Priority to JP2001368993A priority Critical patent/JP2003166866A/en
Publication of JP2003166866A publication Critical patent/JP2003166866A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas leak detection device capable of detecting a gas leak in a great-flow gas supply line by a gas meter having a small-sized gas leak detection function. <P>SOLUTION: A small-sized cutoff valve 22 is installed on a detour passage 15 of this gas supply/interruption mechanism wherein an inflow route 12 of a supply gas and an outflow route 14 are linked by a main passage 11 and the detour passage 15, and a narrowed part 16 is provided in the detour passage 15, and a main valve mechanism 13 is closed when gas consumption is low and the main valve mechanism 13 is opened by utilizing a pressure loss of the narrowed part 16 when the gas consumption becomes high. By this constitution, the large-capacity gas supply line can be interrupted by the small-sized cutoff valve 22, and the line is not impacted because the main passage 11 is interrupted by the main valve mechanism 13 after interruption of the detour passage 15. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は大容量のガス供給
・遮断機構であって、簡単な機構で小流量から大流量に
亘って圧力調整が可能で、かつ、大容量にもかかわらず
小型の遮断弁でガス供給管路を遮断する機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas supply / cutoff mechanism having a large capacity, capable of adjusting pressure from a small flow rate to a large flow rate with a simple mechanism, and having a small capacity despite having a large capacity. The present invention relates to a mechanism that shuts off a gas supply line with a shutoff valve.

【0002】[0002]

【従来の技術】大容量のガス供給・遮断機構は図8に示
すように、ガス供給管路の主流路80に大型の遮断弁8
1を設置し、主流路80から途中、狭窄部82を形成し
た迂回流路83を設け、この迂回流路83にパイロット
調整器84を配置し、上記迂回流路83から主弁機構8
5を作動させる圧力調整器86のダイヤフラム室87に
向けて導管88を延ばして連通状態にしたものがこれま
で採用されてきた。
2. Description of the Related Art As shown in FIG. 8, a large-capacity gas supply / shutoff mechanism has a large shutoff valve 8 in a main passage 80 of a gas supply pipe.
1 is installed, a bypass flow path 83 having a narrowed portion 82 is provided midway from the main flow path 80, and a pilot adjuster 84 is disposed in the bypass flow path 83. From the bypass flow path 83 to the main valve mechanism 8
The one in which the conduit 88 is extended to the diaphragm chamber 87 of the pressure regulator 86 for activating the valve 5 and is in the communication state has been adopted so far.

【0003】上記従来のガス供給・遮断機構は、通常の
状態では遮断弁81が開いており、ガス消費量が少ない
ときは迂回流路83のみで消費側にガスが供給され、消
費量が多くなると迂回流路83の狭窄部82で圧力損失
が発生して、上流側の圧力が高く、下流側の圧力が低く
なってダイヤフラム室87の圧力も下がりスプリング8
9の付勢により主弁機構85が開くようになっている。
In the conventional gas supply / shut-off mechanism described above, the shut-off valve 81 is opened in a normal state, and when the gas consumption is low, the gas is supplied to the consumer side only through the bypass passage 83, and the gas consumption is high. Then, pressure loss occurs in the narrowed portion 82 of the bypass passage 83, the pressure on the upstream side is high, the pressure on the downstream side is low, and the pressure in the diaphragm chamber 87 is also lowered, so that the spring 8
The main valve mechanism 85 is opened by the bias of 9.

【0004】ここで、地震など異常事態が発生すると上
記遮断弁81が働いてガス供給管路が遮断される。
When an abnormal situation such as an earthquake occurs, the shutoff valve 81 works to shut off the gas supply line.

【0005】[0005]

【発明が解決しようとする課題】上記従来の大容量のガ
ス供給・遮断機構では、大径のガス供給管路に大型の遮
断弁を設置せねばならず経済的観点から問題があるとと
もに、大型の遮断弁が働くときにはガス供給管路に衝撃
が加わり管路の保全上からも好ましくない。
In the conventional large-capacity gas supply / shut-off mechanism described above, a large shut-off valve must be installed in a large-diameter gas supply pipe, which is problematic from an economical point of view. When the shutoff valve operates, the gas supply pipeline is impacted, which is not preferable from the viewpoint of maintenance of the pipeline.

【0006】この発明は上記従来技術の問題に鑑み、大
容量のガス供給・遮断機構でありながら、小型の遮断弁
で大容量のガス供給管路の遮断を可能にし、かつ、ガス
供給管路を遮断したときに管路に衝撃が発生しないよう
にしたガス供給・遮断機構を提供することを課題とす
る。
In view of the above-mentioned problems of the prior art, the present invention enables a large capacity gas supply / cutoff mechanism to be shut off with a small shutoff valve, and also enables a large capacity gas supply pipeline to be shut off. An object of the present invention is to provide a gas supply / interruption mechanism that prevents an impact from occurring in a pipeline when the gas is interrupted.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
にこの発明は、供給ガスの流入路と流出路とを主流路と
迂回流路で繋ぎ、上記主流路には圧力調整器により作動
する主弁機構を設け、上記迂回流路には狭窄部とパイロ
ット調整器によって作動する調整弁を設け、上記迂回流
路と上記圧力調整器のスプリング室またはダイヤフラム
室とを連通状態にしてなる圧力調整機構の、上記迂回流
路に小型の遮断弁を設けたものであり、上記小型の遮断
弁は、無線または電話回線による遠隔操作、または地震
感応センサにより作動するものであり、地震感応マイコ
ンガスメータである。
In order to solve the above problems, the present invention connects a supply gas inflow path and an outflow path with a main flow path and a bypass flow path, and the main flow path is operated by a pressure regulator. A main valve mechanism is provided, and a control valve that operates by a narrowed portion and a pilot regulator is provided in the bypass passage, and the bypass passage and the spring chamber or diaphragm chamber of the pressure regulator are in communication with each other. A small shutoff valve is provided in the bypass flow path of the mechanism, and the small shutoff valve is operated remotely by a wireless or telephone line or by an earthquake sensitive sensor. is there.

【0008】上記の如く構成するこの発明によれば、大
容量のガス供給管路を小型の遮断弁により遮断できるよ
うになり、かつ、遮断時に管路に衝撃を与えないように
することができる。
According to the present invention configured as described above, a large capacity gas supply pipeline can be blocked by a small shutoff valve, and the pipeline can be prevented from being impacted when shutting off. .

【0009】また、上記迂回流路は圧力調整器のスプリ
ング室を含み、上記流路は圧力調整器のダイヤフラム室
を含むようにする。このように構成することによりレス
ポンスを早くすることができ機構全体を小型にすること
ができる。
The bypass flow passage includes a spring chamber of the pressure regulator, and the flow passage includes a diaphragm chamber of the pressure regulator. With this configuration, the response can be made faster and the entire mechanism can be made smaller.

【0010】[0010]

【発明の実施の形態】次にこの発明の実施形態を図面を
参照しながら説明する。図1は第一実施形態に係り、主
流路11は、供給ガスの流入路12から主弁機構13を
経て流出路14に至り、迂回流路15は、流入路12か
ら導出され狭窄部16が形成され圧力調整器17のダイ
ヤフラム18のスプリング室19に臨み、スプリング室
19の他方からの流路とパイロット調整器20により作
動する調整弁21を経て、外付けされる小型遮断弁22
を経て供給ガスの流出路14に至る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 relates to the first embodiment, and a main flow path 11 extends from an inflow path 12 for supply gas to an outflow path 14 via a main valve mechanism 13, and a bypass flow path 15 is led out from the inflow path 12 and a narrowed portion 16 is formed. A small shut-off valve 22 that is externally attached through the formed flow path from the other side of the spring chamber 19 and the adjustment valve 21 that is operated by the pilot adjustment device 20 and faces the spring chamber 19 of the diaphragm 18 of the pressure regulator 17.
To the outflow passage 14 of the supply gas.

【0011】上記圧力調整器17のダイヤフラム18の
中心支持部分にはエラストマーを材料とする弁23が設
けられ、それに対向するように弁座24が本体10から
立ち上がっている。
A valve 23 made of an elastomer is provided at a central supporting portion of the diaphragm 18 of the pressure regulator 17, and a valve seat 24 is raised from the main body 10 so as to face the valve 23.

【0012】この実施形態では、供給ガスの流出路14
の流量が少ないときは迂回流路15の狭窄部16での圧
力損失が少ないので圧力調整器17のダイヤフラム18
は作動せず主弁機構13は閉じおり、流量が多くなると
圧力損失が大きくなり狭窄部16の下流側の圧力が低下
してダイヤフラム18が上昇し主弁機構13が開いて主
流路をガスが流れるとともに迂回流路15にも供給ガス
は流れている。
In this embodiment, the supply gas outlet 14
When the flow rate of the pressure regulator 17 is small, the pressure loss in the narrowed portion 16 of the bypass passage 15 is small, and therefore the diaphragm 18 of the pressure regulator 17 is
Does not operate, the main valve mechanism 13 is closed, and when the flow rate increases, the pressure loss increases, the pressure on the downstream side of the narrowed portion 16 decreases, the diaphragm 18 rises, the main valve mechanism 13 opens, and gas flows through the main flow path. While flowing, the supply gas also flows through the bypass passage 15.

【0013】ここでガス供給管路に異常が発生すると迂
回流路に外付けした小型遮断弁が働いて迂回流路を遮断
し、迂回流路が遮断されると主弁機構も閉じてガス供給
管路全体が遮断される。
When an abnormality occurs in the gas supply line, a small shut-off valve externally attached to the bypass flow passage works to shut off the bypass flow passage, and when the bypass flow passage is shut off, the main valve mechanism also closes to supply gas. The entire pipeline is shut off.

【0014】なお、上記実施形態の変形例として流入路
12から迂回流路15を設けるのを止めて図1(b)に
示すようにダイヤフラム18の中央支持部に小孔hを穿
設して狭窄部としスプリング室19に連通させることも
できる。
As a modification of the above embodiment, the provision of the bypass passage 15 from the inflow passage 12 is stopped and a small hole h is formed in the central support portion of the diaphragm 18 as shown in FIG. 1 (b). The narrowed portion may be communicated with the spring chamber 19.

【0015】図2は第二実施形態に係り、主流路11
は、供給ガスの流入路12からスライド形の主弁機構1
3を経て流出路14に至り、迂回流路15は、流入路1
2から導出され狭窄部16(オリフィス)を設けたスリ
ーブ25、パイロット調整器20の調整弁21および外
付けされる地震感応マイコンガスメータMを経て供給ガ
ス流出路14に至る。なお、上記狭窄部16(オリフィ
ス)を設けたスリーブ25と圧力調整器17のスプリン
グ室19とは孔Hにより連通状態になっている。
FIG. 2 relates to the second embodiment, and the main flow path 11
Is a slide-type main valve mechanism 1 from a supply gas inflow path 12
3 to reach the outflow passage 14, and the bypass passage 15 is connected to the inflow passage 1
2 through the sleeve 25 provided with the narrowed portion 16 (orifice) and provided with the narrowed portion 16 (orifice), the adjusting valve 21 of the pilot adjuster 20, and the seismic-sensitive microcomputer gas meter M externally attached to reach the supply gas outflow passage 14. The sleeve 25 provided with the narrowed portion 16 (orifice) and the spring chamber 19 of the pressure regulator 17 are in communication with each other through the hole H.

【0016】この実施形態では、供給ガスの流出路14
の流量が少ないときは迂回流路15の狭窄部16(オリ
フィス)での圧力損失が少ないので圧力調整器17のダ
イヤフラム18は作動せず主弁機構13は閉じており、
流量が多くなると圧力損失が大きくなり狭窄部16(オ
リフィス)の下流側の圧力が低下し、連通状態のスプリ
ング室19の圧力も低下してダイヤフラム18が上昇し
軸26がレバー27の力点Wを引き上げ、作用点Sが主
弁機構13を後退させて開き主流路をガスが流れるとと
もに迂回流路15にも供給ガスは流れている。
In this embodiment, the supply gas outlet 14
When the flow rate is small, the pressure loss at the narrowed portion 16 (orifice) of the bypass passage 15 is small, so the diaphragm 18 of the pressure regulator 17 does not operate and the main valve mechanism 13 is closed.
When the flow rate increases, the pressure loss increases, the pressure on the downstream side of the narrowed portion 16 (orifice) decreases, the pressure in the communicating spring chamber 19 also decreases, the diaphragm 18 rises, and the shaft 26 moves the force point W of the lever 27. When the valve is pulled up, the point of action S causes the main valve mechanism 13 to retreat and open, and the gas flows through the main flow path and the supply gas also flows through the bypass flow path 15.

【0017】ここでガス供給管路に異常が発生すると迂
回流路15に外付けしたが地震感応マイコンガスメータ
Mが働いて迂回流路を遮断し、迂回流路が遮断されると
主弁機構13も閉じてガス供給管路全体が遮断される。
Here, if an abnormality occurs in the gas supply pipe, it is externally attached to the bypass passage 15, but the earthquake-sensitive microcomputer gas meter M works to shut off the bypass passage, and when the bypass passage is shut off, the main valve mechanism 13 Is also closed and the entire gas supply line is shut off.

【0018】なお、上記実施形態の変形例として流入路
12から迂回流路15を設けるのを止めて図2(b)に
示すようにダイヤフラム18の中心支持部に小孔hを穿
設して狭窄部としスプリング室19に連通させることも
できる。
As a modification of the above embodiment, the provision of the bypass passage 15 from the inflow passage 12 is stopped and a small hole h is formed in the center support portion of the diaphragm 18 as shown in FIG. 2 (b). The narrowed portion may be communicated with the spring chamber 19.

【0019】図3は第三実施形態に係り、主流路11
は、供給ガスの流入路12から圧力調整器17の主弁機
構13を経て流出路14に至り、迂回流路15は、流入
路12から導出されて狭窄部16とパイロット調整器2
0の調整弁21および地震感応マイコンガスメータMを
経て供給ガス流出路14に至る。なお、上記狭窄部16
の下流側と圧力調整器17のダイヤフラム室28とを導
管29で繋ぎ連通状態にしている。なお、圧力調整器1
7のスプリング室19とパイロット調整器20のスプリ
ング室19’は大気と連通し平衡している。
FIG. 3 relates to the third embodiment and relates to the main flow path 11
Goes from the supply gas inflow path 12 to the outflow path 14 via the main valve mechanism 13 of the pressure regulator 17, and the bypass flow path 15 is led out from the inflow path 12 to constrict the narrowed portion 16 and the pilot regulator 2.
It reaches the supply gas outflow passage 14 through the adjusting valve 21 of 0 and the earthquake sensitive microcomputer gas meter M. The narrowed portion 16
The downstream side of the pressure regulator 17 and the diaphragm chamber 28 of the pressure regulator 17 are connected by a conduit 29 to establish a communication state. The pressure regulator 1
The spring chamber 19 of No. 7 and the spring chamber 19 'of the pilot regulator 20 communicate with the atmosphere and are in equilibrium.

【0020】また、上記地震感応マイコンガスメータM
には受信機を付設し、管理センターと電話回線あるいは
無線で遠隔操作することもでき、逆にガス供給管路が遮
断されているか否かを監視することもできる。
Further, the above earthquake-sensitive microcomputer gas meter M
A receiver can be attached to the remote control center, and it can be remotely controlled by a telephone line or wirelessly with the management center. Conversely, it can be monitored whether the gas supply line is blocked.

【0021】この実施形態では、供給ガスの流出路14
の流量が少ないときは迂回流路15の狭窄部16での圧
力損失が少ないので、圧力調整器17のダイヤフラム室
28の圧力は下がらず主弁機構13は閉じたままで、迂
回流路15だけにガスが流れている。
In this embodiment, the supply gas outlet 14
When the flow rate is small, the pressure loss in the narrowed portion 16 of the bypass passage 15 is small, so the pressure in the diaphragm chamber 28 of the pressure regulator 17 does not decrease and the main valve mechanism 13 remains closed, leaving only the bypass passage 15. Gas is flowing.

【0022】流出路14の流量が多くなると狭窄部16
での圧力損失が大きくなり下流側の圧力が低下し、迂回
流路15と連通状態のダイヤフラム室28の圧力は下が
ってダイヤフラム18が下降し、軸26と一体の主弁機
構13は開いて主流路をガスが流れるとともに迂回流路
15にも供給ガスは流れている。
When the flow rate in the outflow passage 14 increases, the narrowed portion 16
Pressure loss in the downstream side decreases, the pressure in the diaphragm chamber 28 communicating with the bypass flow path 15 decreases, the diaphragm 18 descends, and the main valve mechanism 13 integrated with the shaft 26 opens and the main flow occurs. As the gas flows through the passage, the supply gas also flows through the bypass passage 15.

【0023】ここでガス供給管路に異常が発生すると迂
回流路15に外付けしたが地震感応マイコンガスメータ
Mが働いて迂回流路を遮断し、迂回流路が遮断されると
主弁機構13も閉じてガス供給管路全体が遮断される。
Here, if an abnormality occurs in the gas supply pipe, it is externally attached to the bypass passage 15, but the seismic-sensitive microcomputer gas meter M works to shut off the bypass passage, and when the bypass passage is shut off, the main valve mechanism 13 Is also closed and the entire gas supply line is shut off.

【0024】図4は第四実施形態に係り、主流路11
は、供給ガスの流入路12から圧力調整器17の主弁機
構13を経て流出路14に至り、迂回流路15は、流入
路12から導出されパイロット調整器20の調整弁2
1、狭窄部16および地震感応マイコンガスメータMを
経て供給ガス流出路14に至る。なお、上記狭窄部16
の上流側と圧力調整器17のダイヤフラム室28とを導
管29で繋いで連通状態にし、狭窄部16の下流側とパ
イロット調整器20のダイヤフラム室28b とを導管2
9b で繋いで連通状態にしている。なお、圧力調整器1
7のスプリング室19とパイロット調整器20のスプリ
ング室19’は大気と連通し平衡している。
FIG. 4 relates to the fourth embodiment, and the main flow path 11
Goes from the supply gas inflow path 12 to the outflow path 14 via the main valve mechanism 13 of the pressure adjuster 17, and the bypass flow path 15 is led out from the inflow path 12 and the adjusting valve 2 of the pilot adjuster 20.
1, the narrowed portion 16 and the earthquake sensitive microcomputer gas meter M to reach the supply gas outflow passage 14. The narrowed portion 16
Of the pressure regulator 17 and the diaphragm chamber 28 of the pressure regulator 17 are connected by a conduit 29 to establish a communication state, and the downstream side of the narrowed portion 16 and the diaphragm chamber 28b of the pilot regulator 20 are connected to the conduit 2
They are connected by 9b to establish communication. The pressure regulator 1
The spring chamber 19 of No. 7 and the spring chamber 19 'of the pilot regulator 20 communicate with the atmosphere and are in equilibrium.

【0025】この実施形態では、供給ガスの流出路14
の流量が少ないときは迂回流路15の狭窄部16での圧
力損失が少ないので、圧力調整器17のダイヤフラム室
28の圧力は上がらず主弁機構13は閉じたままで、狭
窄部16の下流側も圧力が変わらないので迂回流路15
だけにガスがながれている。
In this embodiment, the supply gas outlet 14
When the flow rate is small, the pressure loss in the narrowed portion 16 of the bypass passage 15 is small, so the pressure in the diaphragm chamber 28 of the pressure regulator 17 does not rise, the main valve mechanism 13 remains closed, and the downstream side of the narrowed portion 16 is closed. Since the pressure does not change, the bypass flow path 15
Only the gas is flowing.

【0026】流出路14の流量が多くなると狭窄部16
での圧力損失が大きくなり下流側の圧力が低下し、導管
29b で連通状態のパイロット調整器20のダイヤフラ
ム室28b の圧力も低下して調整弁は大きく開き、狭窄
部16の上流側は圧力が高くなり、導管29で連通状態
の圧力調整器17のダイヤフラム室28の圧力も高くな
ってダイヤフラム18が軸26とともに上昇して主弁機
構13が開いて主流路にガスが流れるとともに迂回流路
15にも供給ガスは流れている。
When the flow rate in the outflow passage 14 increases, the narrowed portion 16
Pressure loss in the downstream side decreases, the pressure in the diaphragm chamber 28b of the pilot adjuster 20 in the communicating state through the conduit 29b also decreases, the adjusting valve opens wide, and the pressure on the upstream side of the narrowed portion 16 decreases. The pressure in the diaphragm chamber 28 of the pressure regulator 17 which is in communication with the conduit 29 also increases, the diaphragm 18 rises together with the shaft 26, the main valve mechanism 13 opens, and the gas flows into the main flow path and the bypass flow path 15 Also the supply gas is flowing.

【0027】ここでガス供給管路に異常が発生すると迂
回流路15に外付けした地震感応マイコンガスメータM
が働いて迂回流路を遮断し、迂回流路が遮断されると主
弁機構13も閉じてガス供給管路全体が遮断される。
If an abnormality occurs in the gas supply line, an earthquake-sensitive microcomputer gas meter M externally attached to the bypass flow path 15
Acts to block the bypass flow path, and when the bypass flow path is blocked, the main valve mechanism 13 is also closed and the entire gas supply pipeline is blocked.

【0028】図5は第五実施形態に係り、主流路11
は、供給ガスの流入路12から圧力調整器17の主弁機
構13を経て流出路14に至り、迂回流路15は、流入
路12から導出され、狭窄部16、地震感応センサSに
より作動する遮断弁22およびパイロット調整器20の
調整弁21を経て供給ガス流出路14に至る。なお、上
記狭窄部16の下流側と圧力調整器17のスプリング室
19とを導管29で繋いで連通状態にしている。また、
ダイヤフラムの裏側にはエラストマーを材料とする弁2
3が貼り付けられ、これに対向するように弁座24が設
けられている。なお、圧力調整器17のスプリング室1
9とパイロット調整器20のスプリング室19’は大気
と連通し平衡している。
FIG. 5 relates to the fifth embodiment and relates to the main flow path 11
Goes from the inflow path 12 of the supply gas to the outflow path 14 via the main valve mechanism 13 of the pressure regulator 17, and the bypass flow path 15 is led out from the inflow path 12 and is operated by the narrowed portion 16 and the seismic sensor S. The cutoff valve 22 and the adjusting valve 21 of the pilot adjuster 20 reach the supply gas outflow passage 14. The downstream side of the narrowed portion 16 and the spring chamber 19 of the pressure regulator 17 are connected by a conduit 29 to establish a communication state. Also,
A valve 2 made of elastomer on the back side of the diaphragm
3 is attached, and the valve seat 24 is provided so as to face it. The spring chamber 1 of the pressure regulator 17
9 and the spring chamber 19 'of the pilot regulator 20 communicate with the atmosphere and are in equilibrium.

【0029】この実施形態では、供給ガスの流出路14
の流量が少ないときは迂回流路15の狭窄部16での圧
力損失が少ないので、圧力調整器17のスプリング室1
9の圧力は下がらず主弁機構13は閉じたままで迂回流
路15だけにガスが流れている。
In this embodiment, the supply gas outflow passage 14 is used.
When the flow rate is small, the pressure loss in the narrowed portion 16 of the bypass flow path 15 is small, so the spring chamber 1 of the pressure regulator 17 is
The pressure of 9 does not decrease and the main valve mechanism 13 remains closed, and the gas flows only in the bypass passage 15.

【0030】流出路14の流量が多くなると狭窄部16
での圧力損失が大きくなり下流側の圧力が低下し、導管
29で連通状態の圧力調整器17のスプリング室19の
圧力が低くなってダイヤフラム18が上昇して主弁機構
13が開いて主流路にガスが流れるとともに迂回流路1
5にも供給ガスは流れている。
When the flow rate in the outflow passage 14 increases, the narrowed portion 16
Pressure loss in the downstream side decreases, the pressure in the spring chamber 19 of the pressure regulator 17 communicating with the conduit 29 decreases, the diaphragm 18 rises, and the main valve mechanism 13 opens to open the main flow path. Gas flow to the detour flow path 1
The supply gas is flowing also in 5.

【0031】ここで地震が発生すると地震感応センサT
が作動し迂回流路15に取付けた遮断弁22が働いて迂
回流路が遮断され、迂回流路が遮断されると主弁機構1
3も閉じてガス供給管路全体が遮断される。
When an earthquake occurs here, an earthquake sensitive sensor T
Is activated and the shutoff valve 22 attached to the bypass flow passage 15 works to shut off the bypass flow passage, and when the bypass flow passage is shut off, the main valve mechanism 1
3 is also closed and the entire gas supply line is shut off.

【0032】図6は第六実施形態に係り、主流路11
は、供給ガスの流入路12から圧力調整器17の主弁機
構13を経て流出路14に至り、迂回流路15は、流入
路12から導出され、狭窄部16、遮断弁22およびパ
イロット調整器20の調整弁21を経て供給ガス流出路
14に至る。また、パイロット調整器20のスプリング
室19’は大気と連通し平衡している。
FIG. 6 relates to the sixth embodiment and relates to the main flow channel 11
Goes from the inflow passage 12 of the supply gas to the outflow passage 14 via the main valve mechanism 13 of the pressure regulator 17, and the bypass flow passage 15 is led out from the inflow passage 12, and the narrowed portion 16, the shutoff valve 22 and the pilot regulator. It reaches the supply gas outflow passage 14 through the adjusting valve 21 of 20. The spring chamber 19 'of the pilot adjuster 20 communicates with the atmosphere and is in equilibrium.

【0033】なお、上記狭窄部16の下流側と圧力調整
器17のスプリング室19とを導管29で繋いで連通状
態にしている。また、ダイヤフラム18に取り付けられ
た軸26にはレバー27の力点Wが接し、作用点Sで主
弁機構13を動かしている。
The downstream side of the narrowed portion 16 and the spring chamber 19 of the pressure regulator 17 are connected by a conduit 29 to establish a communication state. The force point W of the lever 27 is in contact with the shaft 26 attached to the diaphragm 18, and the main valve mechanism 13 is moved at the action point S.

【0034】この実施形態では、供給ガスの流出路14
の流量が少ないときは迂回流路15の狭窄部16での圧
力損失が少ないので、圧力調整器17のスプリング室1
9の圧力は下がらず主弁機構13は閉じたままで迂回流
路15だけにガスがながれている。
In this embodiment, the supply gas outlet 14
When the flow rate is small, the pressure loss in the narrowed portion 16 of the bypass flow path 15 is small, so the spring chamber 1 of the pressure regulator 17 is
The pressure of 9 does not decrease, and the main valve mechanism 13 remains closed, and the gas is flowing only to the bypass passage 15.

【0035】流出路14の流量が多くなると狭窄部16
での圧力損失が大きくなり下流側の圧力が低下し、導管
29で連通状態の圧力調整器17のスプリング室19の
圧力が低くなってダイヤフラム18が上昇して主弁機構
13が開いて主流路をガスが流れるとともに迂回流路1
5にも供給ガスは流れている。
When the flow rate in the outflow passage 14 increases, the narrowed portion 16
Pressure loss in the downstream side decreases, the pressure in the spring chamber 19 of the pressure regulator 17 communicating with the conduit 29 decreases, the diaphragm 18 rises, and the main valve mechanism 13 opens to open the main flow path. Gas flow through the detour flow path 1
The supply gas is flowing also in 5.

【0036】ここで地震が発生すると管理センターから
遮断弁22を閉じる指令が発信され受信機がこれを受け
て迂回流路15に取付けた遮断弁22が働いて迂回流路
15が遮断され、迂回流路15が遮断されると主弁機構
13も閉じてガス供給管路全体が遮断される。
When an earthquake occurs here, an instruction to close the shutoff valve 22 is issued from the management center, and the receiver receives the command to shut off the bypass passage 15 by operating the shutoff valve 22 attached to the bypass passage 15. When the flow path 15 is shut off, the main valve mechanism 13 is also closed and the entire gas supply pipeline is shut off.

【0037】図7は第七実施形態に係り、主流路11
は、供給ガスの流入路12から圧力調整器17の主弁機
構13を経て流出路14に至り、迂回流路15は、流入
路12から導出され、遮断弁22、パイロット調整器2
0の調整弁21および狭窄部16を経て供給ガス流出路
14に至る。なお、上記狭窄部16の上流側と圧力調整
器17のダイヤフラム室28とを導管29で繋いで連通
状態にし、下流側でパイロット調整器20のダイヤフラ
ム室28b とを導管29b で繋いで連通状態にしてい
る。また、ダイヤフラム18と主弁機構13とは弁棒で
繋がっている。なお、圧力調整器17のスプリング室1
9とパイロット調整器20のスプリング室19’は大気
と連通し平衡している。
FIG. 7 relates to the seventh embodiment and relates to the main flow path 11
Goes from the supply gas inflow path 12 to the outflow path 14 via the main valve mechanism 13 of the pressure regulator 17, and the bypass flow path 15 is led out from the inflow path 12 to shut off the shutoff valve 22 and the pilot regulator 2.
It reaches the supply gas outflow passage 14 through the adjustment valve 21 of 0 and the narrowed portion 16. The upstream side of the narrowed portion 16 and the diaphragm chamber 28 of the pressure regulator 17 are connected by a conduit 29 to establish a communication state, and the downstream side of the diaphragm chamber 28b of the pilot regulator 20 is connected by a conduit 29b to establish a communication state. ing. Further, the diaphragm 18 and the main valve mechanism 13 are connected by a valve rod. The spring chamber 1 of the pressure regulator 17
9 and the spring chamber 19 'of the pilot regulator 20 communicate with the atmosphere and are in equilibrium.

【0038】この実施形態では、供給ガスの流出路14
の流量が少ないときは迂回流路15の狭窄部16での圧
力損失が少ないので、圧力調整器17のダイヤフラム室
28の圧力は上がらず主弁機構13は閉じたままで、迂
回流路15だけにガスがながれている。
In this embodiment, the supply gas outflow passage 14 is used.
When the flow rate is small, the pressure loss in the narrowed portion 16 of the bypass passage 15 is small, so the pressure in the diaphragm chamber 28 of the pressure regulator 17 does not rise and the main valve mechanism 13 remains closed, leaving only the bypass passage 15. The gas is flowing.

【0039】流出路14の流量が多くなると狭窄部16
での圧力損失が大きくなり上流側の圧力が高くなり、導
管29で連通状態のダイヤフラム室28の圧力が高くな
ってダイヤフラム18が上昇して弁機構13が開いて主
流路をガスが流れ、狭窄部16の下流側の圧力は下がり
ダイヤフラム室28b の圧力も下がって調整弁21はさ
らに開いて迂回流路15にも供給ガスは流れている。
When the flow rate in the outflow passage 14 increases, the narrowed portion 16
The pressure loss in the pipe becomes large, the pressure in the upstream side becomes high, the pressure in the diaphragm chamber 28 communicating with the conduit 29 becomes high, the diaphragm 18 rises, the valve mechanism 13 opens, and the gas flows in the main flow path, resulting in constriction. The pressure on the downstream side of the portion 16 decreases and the pressure in the diaphragm chamber 28b also decreases, so that the regulating valve 21 further opens and the supply gas also flows into the bypass passage 15.

【0040】ここでガス供給管路に異常が発生すると迂
回流路15に取付けた遮断弁22が閉じ迂回流路15が
遮断され、迂回流路15が遮断されると主弁機構13も
閉じてガス供給管路全体が遮断される。
When an abnormality occurs in the gas supply conduit, the shutoff valve 22 attached to the bypass passage 15 is closed to shut off the bypass passage 15, and when the bypass passage 15 is shut off, the main valve mechanism 13 is also closed. The entire gas supply line is shut off.

【0041】[0041]

【発明の効果】以上説明したようにこの発明によれば、
供給ガスの流入路と流出路との間を主流路と途中狭窄部
を形成した迂回流路とで繋ぎ、上記狭窄部の圧力損失を
利用して主流路の主弁機構を開閉するようにし、上記迂
回流路に遮断弁を設置することにより、小型の遮断弁で
大容量のガス供給管路を遮断できるようになり、しか
も、迂回流路の遮断に次いで主流路が遮断されるので管
路に衝撃を与えることがない。
As described above, according to the present invention,
By connecting the inflow path and the outflow path of the supply gas with the main flow path and the bypass flow path forming the narrowed portion on the way, the main valve mechanism of the main flow path is opened and closed by utilizing the pressure loss of the narrowed portion. By installing a shutoff valve in the bypass passage, it becomes possible to shut off a large-capacity gas supply pipeline with a small shutoff valve, and the main passage is shut off after the bypass passage is shut off. There is no shock to.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)第一実施形態と(b)その変形例の断面
FIG. 1 is a sectional view of (a) a first embodiment and (b) a modified example thereof.

【図2】(b)第二実施形態と(b)その変形例の断面
FIG. 2 is a sectional view of (b) a second embodiment and (b) a modified example thereof.

【図3】第三実施形態の断面図FIG. 3 is a sectional view of a third embodiment.

【図4】第四実施形態の断面図FIG. 4 is a sectional view of a fourth embodiment.

【図5】第五実施形態の断面図FIG. 5 is a sectional view of a fifth embodiment.

【図6】第六実施形態の断面図FIG. 6 is a sectional view of a sixth embodiment.

【図7】第七実施形態の断面図FIG. 7 is a sectional view of a seventh embodiment.

【図8】従来のガス供給・遮断機構の断面図FIG. 8 is a sectional view of a conventional gas supply / cutoff mechanism.

【符号の説明】[Explanation of symbols]

11 主流路 12 流入路 13 主弁機構 14 流出路 15 迂回流路 16 狭窄部 17 圧力調整器 18 ダイヤフラム 19,19’ スプリング室 20 パイロット調整器 21 調整弁 22 遮断弁 23 弁(エラストマー) 24 弁座 25 スリーブ 26 軸 27 レバー 28,28b ダイヤフラム室 29,29b 導管 H 孔 h 小孔 S 作用点 T 地震感応センサ W 力点 11 main flow path 12 Inflow path 13 Main valve mechanism 14 Outflow path 15 Detour flow path 16 Stenosis 17 Pressure regulator 18 diaphragm 19,19 'spring chamber 20 Pilot adjuster 21 Regulator valve 22 Shut-off valve 23 valves (elastomer) 24 valve seat 25 sleeves 26 axes 27 lever 28, 28b diaphragm chamber 29,29b conduit H hole h small hole S point of action T earthquake sensitive sensor W power point

フロントページの続き Fターム(参考) 2F030 CB01 CC13 CE09 CF05 CF11 3J071 AA02 BB11 BB14 CC13 CC14 DD14 EE02 EE24 FF03 5H316 AA11 BB05 DD03 DD06 DD07 DD11 EE02 EE10 EE12 HH04 HH15 HH16 JJ01 JJ13 KK02 KK04 KK05 LL05 Continued front page    F term (reference) 2F030 CB01 CC13 CE09 CF05 CF11                 3J071 AA02 BB11 BB14 CC13 CC14                       DD14 EE02 EE24 FF03                 5H316 AA11 BB05 DD03 DD06 DD07                       DD11 EE02 EE10 EE12 HH04                       HH15 HH16 JJ01 JJ13 KK02                       KK04 KK05 LL05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 供給ガスの流入路と流出路とを主流路と
迂回流路で繋ぎ、上記主流路には圧力調整器により作動
する主弁機構を設け、上記迂回流路には狭窄部とパイロ
ット調整器によって作動する調整弁を設け、上記迂回流
路と上記圧力調整器のスプリング室またはダイヤフラム
室とを連通状態にしてなる圧力調整機構の、上記迂回流
路に小型の遮断弁を配設したことを特徴とするガス供給
・遮断機構。
1. A main flow path and a bypass flow path connecting a supply gas inflow path and an outflow path, a main valve mechanism operated by a pressure regulator is provided in the main flow path, and a narrowed portion is provided in the bypass flow path. A small shut-off valve is provided in the bypass passage of the pressure adjusting mechanism that provides a regulating valve that operates by a pilot adjuster, and makes the bypass passage and the spring chamber or diaphragm chamber of the pressure adjuster communicate with each other. A gas supply / cutoff mechanism characterized by the above.
【請求項2】 上記遮断弁は、地震感応センサにより作
動することを特徴とする請求項1に記載のガス供給・遮
断機構。
2. The gas supply / cutoff mechanism according to claim 1, wherein the cutoff valve is operated by an earthquake sensitive sensor.
【請求項3】 上記遮断弁として、地震感応マイコンガ
スメータを採用したことを特徴とする請求項1に記載の
ガス供給・遮断機構。
3. The gas supply / cutoff mechanism according to claim 1, wherein an earthquake-sensitive microcomputer gas meter is adopted as the shutoff valve.
【請求項4】 上記迂回流路に、圧力調整器のスプリン
グ室が含まれていることを特徴とする請求項1乃至3の
いずれかに記載のガス供給・遮断機構。
4. The gas supply / interruption mechanism according to claim 1, wherein the bypass passage includes a spring chamber of a pressure regulator.
【請求項5】 上記圧力調整器のダイヤフラム室が主流
路の一部を構成することを特徴とする請求項1乃至4の
いずれかに記載のガス供給・遮断機構。
5. The gas supply / interruption mechanism according to claim 1, wherein the diaphragm chamber of the pressure regulator constitutes a part of the main flow path.
【請求項6】 上記圧力調整器のダイヤフラムの裏側に
主弁機構を構成させたことを特徴とする請求項1乃至5
のいずれかに記載のガス供給・遮断機構。
6. The main valve mechanism is formed on the back side of the diaphragm of the pressure regulator.
The gas supply / interruption mechanism according to any one of 1.
【請求項7】 上記圧力調整器のダイヤフラムの中央支
持部に小孔を穿設し、この小孔を通じて圧力調整器のス
プリング室と連通させたことを特徴とする請求項1乃至
6のいずれかに記載のガス供給・遮断機構。
7. A small hole is formed in a central support portion of a diaphragm of the pressure regulator, and the small hole is communicated with a spring chamber of the pressure regulator through the small hole. The gas supply / cutoff mechanism described in.
JP2001368993A 2001-12-03 2001-12-03 Gas supply/interruption mechanism Pending JP2003166866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001368993A JP2003166866A (en) 2001-12-03 2001-12-03 Gas supply/interruption mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001368993A JP2003166866A (en) 2001-12-03 2001-12-03 Gas supply/interruption mechanism

Publications (1)

Publication Number Publication Date
JP2003166866A true JP2003166866A (en) 2003-06-13

Family

ID=19178473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001368993A Pending JP2003166866A (en) 2001-12-03 2001-12-03 Gas supply/interruption mechanism

Country Status (1)

Country Link
JP (1) JP2003166866A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232993A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Device for monitoring gas appliance
JP2008232992A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Device for monitoring gas appliance
JP2008232996A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Device for monitoring gas appliance
JP2008256391A (en) * 2007-04-02 2008-10-23 Matsushita Electric Ind Co Ltd Gas shut-off device
CN106322117A (en) * 2016-11-18 2017-01-11 乐山倍创机械制造有限公司 Wall-mounted regulator box with functions pressure regulating, filtering, safe cutting and safe release
JP2021182377A (en) * 2021-04-27 2021-11-25 東京瓦斯株式会社 Pressure governor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232993A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Device for monitoring gas appliance
JP2008232992A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Device for monitoring gas appliance
JP2008232996A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Device for monitoring gas appliance
JP2008256391A (en) * 2007-04-02 2008-10-23 Matsushita Electric Ind Co Ltd Gas shut-off device
CN106322117A (en) * 2016-11-18 2017-01-11 乐山倍创机械制造有限公司 Wall-mounted regulator box with functions pressure regulating, filtering, safe cutting and safe release
JP2021182377A (en) * 2021-04-27 2021-11-25 東京瓦斯株式会社 Pressure governor
JP7046253B2 (en) 2021-04-27 2022-04-01 東京瓦斯株式会社 Pressure regulator

Similar Documents

Publication Publication Date Title
JP4554933B2 (en) Water supply system
JP5246736B2 (en) Temperature expansion valve
JP6290923B2 (en) Back pressure control device with simple pump start-up
JP2005514544A5 (en)
CN113574348A (en) Fluid usage monitoring system
EP3067772B1 (en) Automatic balancing valve
RU2011133959A (en) VALVE WITH FUNCTION P (PRESSURE DIFFERENCE) AND FLOW LIMIT FUNCTION
WO2006022096A1 (en) Liquid regulator
JP2018072291A (en) Water leakage detection system
JP2003166866A (en) Gas supply/interruption mechanism
JP2001235046A (en) Emergency shutoff valve
JP3602822B2 (en) Pressure regulator
JP4017280B2 (en) Fluid supply cutoff equipment
JP4330686B2 (en) Pressure regulator
JP3914038B2 (en) Pressure regulator
JP2003166897A (en) Gas leakage detection device
JP2713018B2 (en) Gas switching device
JP2002139401A (en) Leak monitoring apparatus for pipeline
JP3894646B2 (en) Pressure regulating mechanism
EP0919897A2 (en) A pilot-operated gas pressure regulator with counterbalanced sleeve
JPH11212656A (en) Pressure governing mechanism
US20240068589A1 (en) Flow Control Valve with Rolling Diaphragm
KR200424132Y1 (en) remote control pressure control valve
JP2005141560A (en) Operation test method and apparatus and standby pressure setting method for governor
JP3872464B2 (en) Pressure reducing valve device