JP2003166015A - Method for modifying surface of steel material - Google Patents

Method for modifying surface of steel material

Info

Publication number
JP2003166015A
JP2003166015A JP2001367160A JP2001367160A JP2003166015A JP 2003166015 A JP2003166015 A JP 2003166015A JP 2001367160 A JP2001367160 A JP 2001367160A JP 2001367160 A JP2001367160 A JP 2001367160A JP 2003166015 A JP2003166015 A JP 2003166015A
Authority
JP
Japan
Prior art keywords
steel material
steel
residual stress
gear
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001367160A
Other languages
Japanese (ja)
Inventor
Katsuyuki Matsui
勝幸 松井
Hirohito Etou
洋仁 衛藤
Hashira Andou
柱 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2001367160A priority Critical patent/JP2003166015A/en
Publication of JP2003166015A publication Critical patent/JP2003166015A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Gears, Cams (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for modifying the surface of a steel material, which can introduce the maximum compression residual-stress on the top surface of the steel material. <P>SOLUTION: The objective method for modifying the surface of the steel material comprises hardening the steel material 11, and then subjecting the steel material 11 to subzero treatment in a state of giving the tensile stress P, while giving the tensile stress P to the hardened steel material 11, to introduce the compression residual stress into the steel material 11. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼材の表面改質方
法に係り、特に、歯車の歯面改質方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for modifying the surface of a steel material, and more particularly to a method for modifying the tooth surface of a gear.

【0002】[0002]

【従来の技術】近年、地球環境及び経済面の観点から、
鋼材からなる自動車用機械部品、例えば歯車において
は、疲労強度(特に、曲げ疲労強度)の向上による小型
軽量化が求められている。
2. Description of the Related Art In recent years, from the viewpoint of global environment and economic aspects,
BACKGROUND ART Automotive mechanical parts made of steel, such as gears, are required to be smaller and lighter by improving fatigue strength (particularly bending fatigue strength).

【0003】鋼材の疲労強度を向上させる手段として、
先ず、表面部硬さの向上が挙げられる。表面部硬さの向
上は、表面改質処理(浸炭、窒化、軟窒化、浸炭窒化、
高周波焼入れ等)によりなされる。ところが、表面改質
処理により鋼材の表面部硬さが700HV以上になる
と、表面部硬さの向上が疲労強度の向上に寄与しなくな
る。よって、この場合、鋼材の疲労強度を向上させる別
の手段である圧縮残留応力の導入が必要となる。
As a means for improving the fatigue strength of steel materials,
First, improvement of surface hardness is mentioned. The surface hardness is improved by surface modification treatment (carburizing, nitriding, nitrocarburizing, carbonitriding,
Induction hardening, etc.). However, when the surface hardness of the steel material becomes 700 HV or more by the surface modification treatment, the improvement of the surface hardness does not contribute to the improvement of the fatigue strength. Therefore, in this case, it is necessary to introduce the compressive residual stress, which is another means for improving the fatigue strength of the steel material.

【0004】圧縮残留応力の導入手段としては、ショッ
トピーニング、レーザーピーニング、キャビテーション
ピーニング等が挙げられ、なかでもインペラ式ショット
ピーニングが一般的によく用いられている。ここで、硬
さが700HV以上の鋼材は、変形抵抗が高すぎるため
圧縮残留応力を導入することは困難であったが、引張応
力を付与した状態でショットピーニングを行うことで、
700HV以上の鋼材にも圧縮残留応力を導入すること
ができる。
Examples of means for introducing the compressive residual stress include shot peening, laser peening, and cavitation peening. Among them, impeller type shot peening is generally often used. Here, it is difficult to introduce a compressive residual stress in a steel material having a hardness of 700 HV or more because the deformation resistance is too high, but by performing shot peening in a state where tensile stress is applied,
Compressive residual stress can be introduced into steel materials of 700 HV or more.

【0005】[0005]

【発明が解決しようとする課題】ところで、鋼材の疲労
強度をより向上させるためには、鋼材の最表面で圧縮残
留応力が最大となるようにするのが有効である。
By the way, in order to further improve the fatigue strength of the steel material, it is effective to maximize the compressive residual stress on the outermost surface of the steel material.

【0006】しかし、ショットピーニングによる圧縮残
留応力の導入方法では、最大圧縮残留応力の位置が表面
から30〜60μmになってしまい、鋼材の最表面にお
いて最大圧縮残留応力を得ることができないという問題
があった。つまり、鋼材の最表面の圧縮残留応力が小さ
いため、疲労強度の大幅な向上を期待できないという問
題があった。
However, in the method of introducing the compressive residual stress by shot peening, the position of the maximum compressive residual stress is 30 to 60 μm from the surface, so that the maximum compressive residual stress cannot be obtained on the outermost surface of the steel material. there were. That is, since the compressive residual stress on the outermost surface of the steel material is small, there has been a problem that a large improvement in fatigue strength cannot be expected.

【0007】また、鋼材にショットピーニングを施す
と、鋼材の表面粗さが粗くなることから、疲労強度の低
下を招いてしまうと共に、鋼材にショット粒子が衝突す
る時に生じる騒音や粉塵によって作業環境が悪化すると
いう問題があった。
Further, when shot peening is applied to a steel material, the surface roughness of the steel material becomes rough, which leads to a decrease in fatigue strength, and the work environment is affected by noise and dust generated when shot particles collide with the steel material. There was a problem of getting worse.

【0008】さらに、ショットピーニングによる圧縮残
留応力の導入方法は、設備・建設コストが高いことか
ら、結果的に、製品の製造コストが高くなるという問題
があった。
Further, the method of introducing the compressive residual stress by shot peening has a problem that the manufacturing cost of the product becomes high because the equipment and construction cost is high.

【0009】以上の事情を考慮して創案された本発明の
目的は、鋼材の最表面に最大圧縮残留応力を導入可能な
鋼材の表面改質方法を提供することにある。
An object of the present invention, which was conceived in consideration of the above circumstances, is to provide a method for modifying the surface of a steel material capable of introducing maximum compressive residual stress on the outermost surface of the steel material.

【0010】[0010]

【課題を解決するための手段】上記目的を達成すべく本
発明に係る鋼材の表面改質方法は、鋼材に焼入れ処理を
施した後、その焼入れ鋼材に引張応力を付与すると共
に、引張応力を付与した状態の鋼材にサブゼロ処理を施
し、鋼材に圧縮残留応力を導入するものである。また、
鋼材で形成した歯車に焼入れ処理を施した後、その歯車
のリング部にリング部の内径よりも大径のシャフトを挿
入して、歯車に引張応力を付与すると共に、引張応力を
付与した状態の歯車にサブゼロ処理を施し、歯車に圧縮
残留応力を導入するものである。
In order to achieve the above object, the surface modification method of a steel material according to the present invention is a method of applying a tensile stress to a hardened steel material after subjecting the steel material to a quenching treatment. The steel material in the applied state is subjected to sub-zero treatment to introduce compressive residual stress into the steel material. Also,
After quenching a gear made of steel, insert a shaft with a diameter larger than the inner diameter of the ring into the ring of the gear to apply tensile stress to the gear and to apply tensile stress to the gear. Sub-zero treatment is applied to the gear to introduce compressive residual stress to the gear.

【0011】また、焼入れ処理を施す前の鋼材に、浸炭
処理又は浸炭窒化処理を施してもよい。
Further, the steel material before the quenching treatment may be subjected to a carburizing treatment or a carbonitriding treatment.

【0012】以上の鋼材の表面改質方法によれば、鋼材
の表面に最大圧縮残留応力を導入することができる。
According to the above surface modification method for steel materials, the maximum compressive residual stress can be introduced to the surface of steel materials.

【0013】[0013]

【発明の実施の形態】以下、本発明の好適一実施の形態
を添付図面に基いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

【0014】前述したショットピーニングを焼入れ処理
された鋼材に施すと、鋼材に存在する残留オーステナイ
トがマルテンサイトに相変態するが、その際に体積膨張
を伴うので、この体積膨張によっても圧縮残留応力が導
入される。ここで、ショットピーニングによる運動エネ
ルギーに代えて熱エネルギーを与えても、残留オーステ
ナイトはマルテンサイトに相変態するので、本発明は熱
エネルギーを与えるためにサブゼロ処理を採用した点に
特長を有している。
When the above-mentioned shot peening is applied to the quenched steel material, the retained austenite present in the steel material undergoes a phase transformation to martensite, but at that time, since the volume expansion is accompanied, the compressive residual stress is also caused by this volume expansion. be introduced. Here, even if thermal energy is applied instead of kinetic energy by shot peening, the retained austenite undergoes a phase transformation into martensite, so the present invention has a feature in adopting a sub-zero treatment to provide thermal energy. There is.

【0015】第1の実施の形態に係る鋼材の表面改質方
法は、鋼材に焼入れ処理を施した後、その焼入れ鋼材に
引張応力を付与すると共に、引張応力を付与した状態
(予応力状態)の鋼材にサブゼロ処理を施した後、鋼材
への引張応力の付与を解除することで、鋼材に、特に鋼
材の表面に高い圧縮残留応力を導入するものである。こ
こで言う鋼材とは、素材のみを示すものではなく、鋼製
の部材も含んでいる。
In the method for modifying the surface of a steel material according to the first embodiment, after quenching the steel material, a tensile stress is applied to the quenched steel material, and a tensile stress is applied (prestress state). After subjecting the steel material to the sub-zero treatment, the application of the tensile stress to the steel material is released to introduce a high compressive residual stress into the steel material, especially on the surface of the steel material. The term "steel material" used here does not indicate only the material, but also includes steel members.

【0016】焼入れ鋼材に引張応力を付与する方法とし
ては、例えば、図1に示すように、板材(鋼材)11の
上面に上部押さえピン13a,13bを、下面に下部ピ
ン14a,14bを配置すると共に、板材11及び上部
押さえピン13a,13bを貫通して締付けボルト15
a,15bを配置し、締付けボルト15a,15bによ
り板材11を台12に固定し4点曲げを行うことで、板
材11に引張応力Pが付与される。この時、板材11に
歪みゲージ16を貼り付けておくことで、付与される引
張応力Pの値を確認・調整することができる。サブゼロ
処理は、板材11を台12に固定したまま行う。
As a method of applying tensile stress to the hardened steel material, for example, as shown in FIG. 1, the upper pressing pins 13a and 13b are arranged on the upper surface of the plate material (steel material) 11 and the lower pins 14a and 14b are arranged on the lower surface thereof. At the same time, the tightening bolt 15 is passed through the plate member 11 and the upper pressing pins 13a and 13b.
By arranging a and 15b, fixing the plate material 11 to the base 12 with the tightening bolts 15a and 15b, and performing 4-point bending, a tensile stress P is applied to the plate material 11. At this time, by attaching the strain gauge 16 to the plate material 11, the value of the applied tensile stress P can be confirmed and adjusted. The sub-zero process is performed while the plate material 11 is fixed to the base 12.

【0017】ここで、鋼材としては、焼入れ処理が可能
な鋼材であれば特に限定するものではないが、残留オー
ステナイトの含有量が多い鋼材、即ちC含有量が多い鋼
材が好ましく、例えばJIS規格の炭素工具鋼鋼材(SK
材)、各種合金工具鋼鋼材(SKS材,SKD材,SKT材)、
高速度工具鋼鋼材(SKH材)、高炭素クロム軸受鋼鋼材
(SUJ材)が挙げられる。この他にも、炭素含有量の少
ない鋼材、例えばJIS規格の機械構造用炭素鋼鋼材
(SC材)又は各種構造用合金鋼鋼材(SCr材、SCM材、SN
CM材)に、浸炭処理(又は浸炭窒化処理)を施したもの
が挙げられる。
Here, the steel material is not particularly limited as long as it is a steel material that can be hardened, but a steel material having a large content of retained austenite, that is, a steel material having a large content of C is preferable, for example, JIS standard. Carbon tool steel Steel (SK
Material), various alloy tool steel materials (SKS material, SKD material, SKT material),
High speed tool steel (SKH) and high carbon chrome bearing steel (SUJ). In addition to these, steel materials with a low carbon content, for example, JIS standard carbon steel steel for machine structure (SC material) or various structural alloy steel steel (SCr material, SCM material, SN
The CM material may be carburized (or carbonitrided).

【0018】焼入れ鋼材に付与する引張応力の応力値
は、鋼材の種類及び鋼材に導入する圧縮残留応力の値に
応じて適宜選択されるものであり、特に限定するもので
はないが、700〜1400MPaが好ましい。
The stress value of the tensile stress applied to the hardened steel material is appropriately selected according to the type of the steel material and the value of the compressive residual stress introduced into the steel material, and is not particularly limited, but is 700 to 1400 MPa. Is preferred.

【0019】サブゼロ処理の処理温度は、所望とするマ
ルテンサイトの生成量(後述)に応じて、即ち圧縮残留
応力が導入された鋼材の硬度及び靭性のバランスに応じ
て適宜選択されるものであり、約203K(−70℃)
以下であればよい。
The treatment temperature of the sub-zero treatment is appropriately selected according to the desired production amount of martensite (described later), that is, according to the balance of hardness and toughness of the steel material to which compressive residual stress is introduced. , About 203K (-70 ℃)
The following is acceptable.

【0020】次に、本実施の形態の作用を説明する。Next, the operation of this embodiment will be described.

【0021】本実施の形態の表面改質方法においては、
焼入れ後の鋼材にサブゼロ処理を施すことで、焼入れ鋼
材に多く残存していた残留オーステナイトが変態してマ
ルテンサイトが生成すると共に、炭素原子が過飽和に固
溶されて体積膨張が起こり、圧縮残留応力が導入された
鋼材(表面改質鋼材)が得られる。また、このサブゼロ
処理の際、焼入れ後の鋼材に引張応力を付与した状態
(予応力状態)でサブゼロ処理を行うことで、更に大き
な圧縮残留応力が導入された鋼材が得られる。これは、
以下に示す現象によるものと推測される。
In the surface modification method of the present embodiment,
By subjecting the steel material after quenching to sub-zero treatment, residual austenite, which was largely left in the quenched steel material, transforms to form martensite, and carbon atoms are solid-soluted in supersaturation to cause volume expansion and compressive residual stress. A steel material (surface modified steel material) in which is introduced is obtained. Further, at the time of this sub-zero treatment, by performing the sub-zero treatment in a state in which tensile stress is applied to the steel material after quenching (prestress state), a steel material in which a larger compressive residual stress is introduced can be obtained. this is,
It is assumed that this is due to the phenomenon shown below.

【0022】焼入れ後の鋼材に引張応力を付与した状態
でサブゼロ処理を行うことで、生成するマルテンサイト
相を構成する体心正方晶のc軸が一方向に引揃えられ、
かつ、c軸方向に引張られた状態でマルテンサイト相の
結晶が形成される。サブゼロ処理後、引張応力の付与を
解除すると、c軸方向に引張られていたマルテンサイト
相の結晶に対して圧縮方向に大きな応力が生じる。これ
によって、大きな圧縮残留応力が鋼材に導入され、疲労
強度、特に曲げ疲労強度に優れた鋼材となる。ここで、
焼入れ後の鋼材として、浸炭処理(又は浸炭窒化処理)
後に焼入れ処理を施したものを用いることで、浸炭処理
(又は浸炭窒化処理)により鋼材表面のC含有量が多く
なり、その後の焼入れ処理により鋼材表面の残留オース
テナイト量が多くなる。その後、この浸炭焼入れ処理
(又は浸炭窒化焼入れ処理)後の鋼材に、引張応力を付
与した状態でサブゼロ処理を行うことで、鋼材の表面部
分に大きな圧縮残留応力を導入することができ、鋼材の
最表面で圧縮残留応力が最大となる。その結果、鋼材の
疲労強度を著しく向上させることができる。
By subjecting the steel material after quenching to the sub-zero treatment in a state where tensile stress is applied, the c-axes of the body-centered tetragonal crystals constituting the martensite phase to be formed are aligned in one direction,
In addition, a martensite phase crystal is formed in a state of being stretched in the c-axis direction. When the application of the tensile stress is released after the sub-zero treatment, a large stress is generated in the compression direction with respect to the martensite phase crystal that has been stretched in the c-axis direction. As a result, a large compressive residual stress is introduced into the steel material, and the steel material has excellent fatigue strength, particularly bending fatigue strength. here,
Carburizing (or carbonitriding) as steel material after quenching
By using a material that has been subjected to quenching treatment later, the carbon content on the surface of the steel material increases due to carburizing treatment (or carbonitriding treatment), and the amount of retained austenite on the surface of the steel material increases due to subsequent quenching treatment. After that, by performing sub-zero treatment on the steel material after this carburizing and quenching treatment (or carbonitriding and quenching treatment) while applying tensile stress, it is possible to introduce a large compressive residual stress to the surface portion of the steel material. The compressive residual stress is maximized on the outermost surface. As a result, the fatigue strength of the steel material can be significantly improved.

【0023】また、本実施の形態の表面改質方法におけ
る圧縮残留応力の導入は、引張応力を付与した状態での
サブゼロ処理によるものであり、従来のようにショット
ピーニングによるものではないため、鋼材の表面粗さが
粗くなるということ、即ち鋼材の疲労強度の低下を招く
ということはなく、また、鋼材にショット粒子が衝突す
る時に生じる騒音や粉塵によって作業環境が悪化すると
いうこともない。
Further, the introduction of the compressive residual stress in the surface modification method of the present embodiment is carried out by the sub-zero treatment in the state where the tensile stress is applied, and is not by the shot peening as in the conventional case. The surface roughness of the steel does not become rough, that is, the fatigue strength of the steel material is not reduced, and the work environment is not deteriorated by noise and dust generated when the shot particles collide with the steel material.

【0024】さらに、本実施の形態の表面改質方法にお
けるサブゼロ処理のための設備・建設コストは、従来の
表面改質方法におけるショットピーニングのそれと比較
して安価であることから、その結果、表面改質鋼材(製
品)の製造コストの低減を図ることができる。
Further, the equipment / construction cost for the sub-zero treatment in the surface modification method of the present embodiment is cheaper than that of the shot peening in the conventional surface modification method. It is possible to reduce the manufacturing cost of the modified steel material (product).

【0025】次に、本発明の他の実施の形態を添付図面
に基いて説明する。
Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

【0026】第2の実施の形態に係る鋼材の表面改質方
法を説明するための断面概略図を図4(a)〜図4
(c)に示す。
FIGS. 4A to 4 are schematic sectional views for explaining the method for modifying the surface of the steel material according to the second embodiment.
It shows in (c).

【0027】第2の実施の形態に係る鋼材の表面改質方
法は、先ず、図4(a)に示すように、鋼材で形成した
歯車41に浸炭焼入れ処理を施す。
In the method for modifying the surface of steel according to the second embodiment, first, as shown in FIG. 4 (a), a gear 41 made of steel is carburized and quenched.

【0028】次に、図4(b)に示すように、焼入れ歯
車41のリング部41aの内径よりも大径のシャフト4
2を、油圧プレスにより焼入れ歯車41のリング部41
aに挿入(圧入)し、歯車41の径方向(図4(b)中
では左右方向)に引張応力Pを付与する。このシャフト
42と一体になった歯車41を、約123Kの液体窒素
中に所定時間浸漬してサブゼロ処理を施す。
Next, as shown in FIG. 4B, the shaft 4 having a diameter larger than the inner diameter of the ring portion 41a of the quenching gear 41.
2 by a hydraulic press, the ring portion 41 of the quenching gear 41
It is inserted (press-fitted) into a and a tensile stress P is applied in the radial direction of the gear 41 (left-right direction in FIG. 4B). The gear 41 integrated with the shaft 42 is immersed in liquid nitrogen of about 123K for a predetermined time to perform a sub-zero treatment.

【0029】次に、歯車41及びシャフト42を液体窒
素中から引き上げた後、歯車41及びシャフト42が常
温に戻るまで放置する。その後、油圧プレスによりシャ
フト42を歯車41のリング部41aから圧力をかけて
取り外し(圧出し)、図4(c)に示すように、最表面
に最大圧縮残留応力が導入された表面改質歯車43が得
られる。
Next, after pulling up the gear 41 and the shaft 42 from the liquid nitrogen, the gear 41 and the shaft 42 are left to stand until they return to room temperature. After that, the shaft 42 is removed (pressed out) from the ring portion 41a of the gear 41 by a hydraulic press with pressure, and as shown in FIG. 4C, the surface-modified gear in which the maximum compressive residual stress is introduced. 43 is obtained.

【0030】本実施の形態の鋼材の表面改質方法におい
ても、前述した鋼材の表面改質方法と同様の作用効果が
得られることは言うまでもない。
It is needless to say that the method of modifying the surface of steel according to the present embodiment also has the same effects as those of the method of modifying the surface of steel described above.

【0031】また、シャフト42によって、歯車41全
体に均等に引張応力Pが付与されるので、表面改質歯車
43全体に大きな圧縮残留応力が導入される。
Further, since the shaft 42 uniformly applies the tensile stress P to the entire gear 41, a large compressive residual stress is introduced to the entire surface modified gear 43.

【0032】さらに、第2の実施の形態においては、圧
入により歯車41とシャフト42との一体化を行ってい
るが、圧入に代えて焼き嵌めにより歯車41とシャフト
42との一体化を行ってもよい。これによって、歯車4
1により大きな引張応力Pを付与することができ、表面
改質歯車43により大きな圧縮残留応力を導入すること
ができる。
Further, in the second embodiment, the gear 41 and the shaft 42 are integrated by press fitting, but the gear 41 and the shaft 42 are integrated by shrink fitting instead of press fitting. Good. As a result, the gear 4
1, a larger tensile stress P can be applied, and a larger compressive residual stress can be introduced into the surface modified gear 43.

【0033】以上、本発明の実施の形態は、上述した実
施の形態に限定されるものではなく、他にも種々のもの
が想定されることは言うまでもない。
It is needless to say that the embodiments of the present invention are not limited to the above-mentioned embodiments, and various other embodiments are possible.

【0034】[0034]

【実施例】Cr−Mo鋼(JIS規格の構造用合金鋼鋼
材SCM822H)からなる丸棒に熱間鍛造処理を施して幅4
0mm、長さ100mm、厚さ8mmの板材に形成した
後、その板材に焼きなまし処理を施す。その後、焼きな
まし板材に機械加工を施し、幅30mm、長さ90m
m、厚さ5mmの平滑材を形成する。
EXAMPLE A round bar made of Cr-Mo steel (JIS structural steel alloy steel SCM822H) was subjected to hot forging treatment to obtain a width of 4
After being formed into a plate material having a length of 0 mm, a length of 100 mm, and a thickness of 8 mm, the plate material is annealed. After that, the annealed plate is machined to a width of 30 mm and a length of 90 m.
A smooth material having a thickness of 5 mm and a thickness of 5 mm is formed.

【0035】この平滑材に対して、先ず、炭化水素ガス
雰囲気、温度1203K(930℃)、時間1.26k
s(21分)の条件で真空浸炭処理を施し、さらに、N
2+NH3ガス雰囲気、温度1143K(870℃)、時
間1.8ks(30分)の条件で真空窒化処理を施し、
その後、油冷を行った。
With respect to this smooth material, first, a hydrocarbon gas atmosphere, a temperature of 1203 K (930 ° C.), and a time of 1.26 k
Vacuum carburizing is applied under the condition of s (21 minutes), and N
2 + NH 3 gas atmosphere, temperature 1143K (870 ℃), vacuum nitriding treatment under the conditions of time 1.8ks (30 minutes),
After that, oil cooling was performed.

【0036】(実施例1)油冷後の平滑材に対して、図
1に示した方法を用いて1000MPaの引張応力を付
与すると共に、引張応力を付与した状態(予応力状態)
のまま平滑材を123Kの液体窒素中に900s(15
分)浸漬し、サブゼロ処理を施す。
Example 1 A state in which a tensile stress of 1000 MPa was applied to the smooth material after oil cooling using the method shown in FIG. 1 and the tensile stress was applied (prestressed state)
Leave the smoothing material in liquid nitrogen at 123K for 900s (15
Min) Dip and sub-zero treatment.

【0037】サブゼロ処理後、平滑材を液体窒素中から
引き上げ、平滑材が常温に戻るまで放置する。その後、
締付けボルト15a,15bを取り外して平滑材を台1
2から取り外し、試料1(表面改質板材)を作製する。
After the sub-zero treatment, the smoothing material is pulled up from the liquid nitrogen and left to stand until the smoothing material returns to room temperature. afterwards,
Remove the tightening bolts 15a and 15b and attach the smooth material to the base 1.
Sample 1 (surface-modified plate material) is prepared by removing from 2.

【0038】(従来例1)油冷後の平滑材に対して、イ
ンペラ式ショットピーニングを施し、試料2(表面改質
板材)を作製する。ここで、インペラ式ショットピーニ
ングの各種条件は、ショット径がφ0.8mm、ショッ
ト硬さが約560HV、ショット速度が73m/s、シ
ョット距離が350mm、カバレージが約300%、ア
ークハイトが約0.5mmAである。
(Prior Art Example 1) Impeller-type shot peening is applied to a smooth material after oil cooling to prepare a sample 2 (surface-modified plate material). Here, various conditions of the impeller type shot peening are as follows: shot diameter φ0.8 mm, shot hardness about 560 HV, shot speed 73 m / s, shot distance 350 mm, coverage about 300%, arc height about 0. It is 5 mmA.

【0039】(比較例1)油冷後のままの平滑材を試料
3とする。
(Comparative Example 1) Sample 3 is a smooth material that has been cooled with oil.

【0040】試料1〜3について残留応力の測定を行っ
た。各試料の残留応力分布、即ち表面からの深さ(μ
m)と残留応力(MPa)との関係を図2に示す。
The residual stress of the samples 1 to 3 was measured. Residual stress distribution of each sample, that is, depth from the surface (μ
The relationship between m) and residual stress (MPa) is shown in FIG.

【0041】ここで、残留応力の測定は、微小部X線測
定機を用いて行った。内部の残留応力は、各試料をウイ
ンドウ法でマスキングした後、電解研磨で所定の深さま
で研磨して測定した。各試料における残留応力の測定位
置は、試料1において歪みゲージ16を取付けた位置と
し、また、X線応力測定の条件は、X線としてCr−K
α線を用い、入射X線ビームの径は2mm、応力の算定
は2θ−sin2ψ法(ψ=0°,10°,20°,3
0°,40°)を用いた。
Here, the measurement of the residual stress was carried out by using a fine part X-ray measuring machine. The internal residual stress was measured by masking each sample by the window method and then polishing by electrolytic polishing to a predetermined depth. The measurement position of the residual stress in each sample is the position where the strain gauge 16 is attached in the sample 1, and the condition of the X-ray stress measurement is Cr-K as X-ray.
Using α rays, the diameter of the incident X-ray beam is 2 mm, and the stress is calculated by the 2θ-sin 2 ψ method (ψ = 0 °, 10 °, 20 °, 3
0 °, 40 °) was used.

【0042】図2に示すように、浸炭窒化焼入れのまま
である試料3においては、板材表面の残留応力(σrs
は約50MPa、即ち引張残留応力であった。また、最
大圧縮残留応力(σrmax)は約−400MPaであり、
その発生位置は表面からの深さが約410μmの位置で
あった。
As shown in FIG. 2, the residual stress (σ rs ) on the surface of the plate material was measured in the sample 3 which had been carbonitrided and quenched.
Was about 50 MPa, that is, tensile residual stress. The maximum compressive residual stress (σ rmax ) is about −400 MPa,
The generation position was a position where the depth from the surface was about 410 μm.

【0043】試料3にインペラ式ショットピーニングに
より表面改質処理を施してなる試料2においては、σ
rmaxは−869MPaであり、その発生位置は表面から
の深さが約20μmの位置であった。また、板材表面の
σrsは−628MPaであった。
In sample 2 obtained by subjecting sample 3 to surface modification treatment by impeller type shot peening, σ
The rmax was −869 MPa, and the generation position was a position where the depth from the surface was about 20 μm. Further, σ rs on the surface of the plate material was −628 MPa.

【0044】これに対して、試料3に予応力+サブゼロ
処理により表面改質処理を施してなる試料1において
は、σrmaxの発生位置は板材表面であり、σrmaxは−1
179MPaであった。
On the other hand, in the sample 1 obtained by subjecting the sample 3 to the surface modification treatment by the prestress + subzero treatment, the position where σ rmax occurs is the plate surface, and σ rmax is −1.
It was 179 MPa.

【0045】各試料について曲げ疲労強度を測定したと
ころ、板材表面にσrmaxが発生していた試料1の曲げ疲
労強度は、試料1,2の曲げ疲労強度と比較して著しく
向上していた。
When the bending fatigue strength of each sample was measured, the bending fatigue strength of sample 1 in which σ rmax was generated on the surface of the plate material was significantly improved as compared with the bending fatigue strength of samples 1 and 2.

【0046】次に、試料1〜3を微小部X線測定機を用
いて観察し、残留オーステナイト量の測定を行った。各
試料の残留オーステナイトの分布、即ち板材表面からの
深さ(μm)と残留オーステナイト量(容量%)との関
係を図3に示す。
Next, the samples 1 to 3 were observed using a microscopic X-ray measuring machine to measure the amount of retained austenite. FIG. 3 shows the distribution of the retained austenite of each sample, that is, the relationship between the depth (μm) from the plate material surface and the retained austenite amount (volume%).

【0047】図3に示すように、浸炭窒化焼入れのまま
である試料3においては、板材表面の残留オーステナイ
ト(γRs)量は27.6wt%、最大残留オーステナイ
ト(γRmax)量は47.4wt%であった。
As shown in FIG. 3, in the sample 3 that had been carbonitrided and quenched, the amount of retained austenite (γ Rs ) on the plate surface was 27.6 wt%, and the maximum amount of retained austenite (γ Rmax ) was 47.4 wt. %Met.

【0048】試料2においては、γRs量は22.2wt
%、γRmax量は39.6wt%であった。このことか
ら、インペラ式ショットピーニングによる表面改質処理
を施しても、γRs量はあまり減少しないことがわかる。
In sample 2, the amount of γ Rs is 22.2 wt.
%, Γ Rmax amount was 39.6 wt%. From this, it can be seen that the amount of γ Rs does not decrease much even if the surface modification treatment is performed by impeller shot peening.

【0049】これに対して、試料1においては、γRs
は14.4wt%、γRmax量は18.3wt%であっ
た。このことから、予応力+サブゼロ処理による表面改
質処理を施すことで、γRs量が大きく減少する、即ちマ
ルテンサイト相の生成量が多いことがわかる。その結
果、試料1においては、大きな圧縮残留応力が導入され
ることになる。
On the other hand, in sample 1, the γ Rs amount was 14.4 wt% and the γ Rmax amount was 18.3 wt%. From this, it can be seen that the amount of γ Rs is greatly reduced, that is, the amount of martensite phase generated is large, by performing the surface modification treatment by the prestress + subzero treatment. As a result, in Sample 1, a large compressive residual stress is introduced.

【0050】[0050]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。 (1) 焼入れ後の鋼材に引張応力を付与した状態でサ
ブゼロ処理を行うことで、鋼材の表面に最大圧縮残留応
力を導入することができる。 (2) (1)により、疲労強度に優れた鋼材を得るこ
とができる。
In summary, according to the present invention, the following excellent effects are exhibited. (1) By performing sub-zero treatment in a state where tensile stress is applied to the steel material after quenching, maximum compressive residual stress can be introduced to the surface of the steel material. (2) According to (1), a steel material having excellent fatigue strength can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施の形態に係る鋼材の表面改質方法
で、焼入れ鋼材に引張応力を付与する方法を示す断面概
略図である。
FIG. 1 is a schematic cross-sectional view showing a method for imparting tensile stress to a hardened steel material by a surface modification method for a steel material according to a first embodiment.

【図2】鋼材の表面からの深さと残留応力との関係を示
す図である。
FIG. 2 is a diagram showing the relationship between the depth from the surface of the steel material and the residual stress.

【図3】鋼材の表面からの深さと残留オーステナイト量
との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the depth from the surface of the steel material and the amount of retained austenite.

【図4】第2の実施の形態に係る鋼材の表面改質方法を
説明するための断面概略図である。
FIG. 4 is a schematic cross-sectional view for explaining the method for surface modifying a steel material according to the second embodiment.

【符号の説明】[Explanation of symbols]

11 板材(鋼材) P 引張応力 11 Plate material (steel material) P tensile stress

フロントページの続き (72)発明者 安藤 柱 神奈川県横浜市保土ヶ谷区常盤台79−5 横浜国立大学工学部内 Fターム(参考) 3J030 BC02 BC10 4K042 AA18 BA04 BA09 DA01 DA06Continued front page    (72) Inventor Pillar Ando             79-5 Tokiwadai, Hodogaya-ku, Yokohama-shi, Kanagawa             Yokohama National University Faculty of Engineering F-term (reference) 3J030 BC02 BC10                 4K042 AA18 BA04 BA09 DA01 DA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼材に焼入れ処理を施した後、その焼入
れ鋼材に引張応力を付与すると共に、引張応力を付与し
た状態の鋼材にサブゼロ処理を施し、鋼材に圧縮残留応
力を導入することを特徴とする鋼材の表面改質方法。
Claims: 1. After quenching a steel material, a tensile stress is applied to the quenched steel material, and a sub-zero treatment is applied to the steel material to which the tensile stress is applied to introduce a compressive residual stress into the steel material. Method for surface modification of steel material.
【請求項2】 鋼材で形成した歯車に焼入れ処理を施し
た後、その歯車のリング部にリング部の内径よりも大径
のシャフトを挿入して、歯車に引張応力を付与すると共
に、引張応力を付与した状態の歯車にサブゼロ処理を施
し、歯車に圧縮残留応力を導入することを特徴とする鋼
材の表面改質方法。
2. After quenching a gear made of steel, a shaft having a diameter larger than the inner diameter of the ring is inserted into the ring of the gear to give tensile stress to the gear and A surface reforming method for a steel material, which comprises subjecting a gear in a state of being subjected to a subzero treatment to introducing compressive residual stress to the gear.
【請求項3】 焼入れ処理を施す前の鋼材に、浸炭処理
又は浸炭窒化処理を施す請求項1または2記載の鋼材の
表面改質方法。
3. The method for surface modification of a steel material according to claim 1, wherein the steel material before quenching is subjected to carburizing treatment or carbonitriding treatment.
JP2001367160A 2001-11-30 2001-11-30 Method for modifying surface of steel material Pending JP2003166015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001367160A JP2003166015A (en) 2001-11-30 2001-11-30 Method for modifying surface of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001367160A JP2003166015A (en) 2001-11-30 2001-11-30 Method for modifying surface of steel material

Publications (1)

Publication Number Publication Date
JP2003166015A true JP2003166015A (en) 2003-06-13

Family

ID=19176948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001367160A Pending JP2003166015A (en) 2001-11-30 2001-11-30 Method for modifying surface of steel material

Country Status (1)

Country Link
JP (1) JP2003166015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124386A (en) * 2003-09-22 2005-05-12 Nissan Motor Co Ltd Rotor of magnetic steel sheet having low iron loss, rotor manufacturing method, and laser-peening method and laser-peening device
WO2006090893A1 (en) * 2005-02-25 2006-08-31 Toyota Jidosha Kabushiki Kaisha Power transmission device and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124386A (en) * 2003-09-22 2005-05-12 Nissan Motor Co Ltd Rotor of magnetic steel sheet having low iron loss, rotor manufacturing method, and laser-peening method and laser-peening device
WO2006090893A1 (en) * 2005-02-25 2006-08-31 Toyota Jidosha Kabushiki Kaisha Power transmission device and method of producing the same
US7743679B2 (en) 2005-02-25 2010-06-29 Toyota Jidosha Kabushiki Kaisha Power transmission device and method of producing the same

Similar Documents

Publication Publication Date Title
Sirin et al. Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel
Farrahi et al. An investigation into the effect of various surface treatments on fatigue life of a tool steel
JP5992508B2 (en) Solution hardening method for cold-deformed workpiece of passive alloy and member solution-hardened by this method
JP6241896B2 (en) Method for solution hardening of cold-deformed workpieces of passive alloys, and members solution-hardened by this method
KR20030023637A (en) Method of production of surface densified powder metal components
WO2015136917A1 (en) Nitriding method, and nitrided component manufacturing method
JP2008280583A (en) Case-hardening steel excellent in surface fatigue strength due to hydrogen embrittlement
JP2015514874A5 (en)
Cavallaro et al. Bending fatigue and contact fatigue characteristics of carburized gears
JP6314648B2 (en) Surface hardened component and method for manufacturing surface hardened component
Hiraoka et al. Effect of Compound Layer Thickness Composed of γ'-Fe4N on Rotated-Bending Fatigue Strength in Gas-Nitrided JIS-SCM435 Steel
JP2003166015A (en) Method for modifying surface of steel material
Kadhim et al. Mechanical properties of burnished steel AISI 1008
JP7180300B2 (en) Steel parts and manufacturing method thereof
Hwang et al. Effects of surface hardening and residual stress on the fatigue characteristics of nitrided SACM 645 steel
Alaskari et al. Novel Permanent Magnetic Surface Work Hardening Process for 60/40 Brass. Materials 2021, 14, 6312
Grum Residual stress and fatigue strength after transformation hardening and various strain hardening
JP2023037445A (en) Steel for nitriding and induction hardening and nitrided and induction-hardened part
Costa et al. Low Pressure Carbonitriding of Steel Alloys with Boron and Niobium Additions
Leiro Wear and fatigue properties of isothermally treated high-Si steels
Milella et al. Factors That Affect SN Fatigue Curves
Santos et al. Influence of repeated quenching on the rolling contact fatigue of bearing steel
JPH02156020A (en) Production of carburization-hardened steel member
Veteleanu RESEARCH ON NITROGEN DIFFUSION IN COLD DEFORMED PLASTIC LAYERS
Gela Properties of Engineering Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523