JP2003165782A - Method for manufacturing ceramic porous body - Google Patents
Method for manufacturing ceramic porous bodyInfo
- Publication number
- JP2003165782A JP2003165782A JP2001384480A JP2001384480A JP2003165782A JP 2003165782 A JP2003165782 A JP 2003165782A JP 2001384480 A JP2001384480 A JP 2001384480A JP 2001384480 A JP2001384480 A JP 2001384480A JP 2003165782 A JP2003165782 A JP 2003165782A
- Authority
- JP
- Japan
- Prior art keywords
- pores
- synthetic resin
- resin foam
- foam
- porous body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Vapour Deposition (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、多孔体の一側か
ら他側にかけて気孔径が徐々に小さく又は大きくなる傾
斜配向気孔を有するセラミックス多孔体の製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic porous body having inclined oriented pores whose pore diameter gradually decreases or increases from one side to the other side of the porous body.
【0002】[0002]
【従来の技術】セラミックス多孔体は、消音材、断熱
材、排気ガスフィルター等の耐熱フィルター材等として
利用されている。前記セラミックス多孔体において、そ
の性能は内部に形成される気泡の気孔径により大きく依
存するため、該気孔径を制御することが重要である。そ
こで、以下の製造方法が検討されてきた。2. Description of the Related Art Porous ceramics are used as a sound deadening material, a heat insulating material, a heat resistant filter material such as an exhaust gas filter and the like. Since the performance of the ceramic porous body depends largely on the pore diameter of the bubbles formed inside, it is important to control the pore diameter. Therefore, the following manufacturing method has been studied.
【0003】特開平10−231184公報又は、特開
2000−264755公報等に記載のセラミックス多
孔体の製造方法によると、まず、公知の酸化物系又は非
酸化物系のセラミックス粉末、ポリビニルアルコール等
のバインダー、水、界面活性剤等を加えて混錬しゲル化
したセラミックススラリーを形成しあるいは、該スラリ
ーにさらに繊維を混入した繊維状セラミックススラリー
を形成し、それらスラリー内部での化学反応、あるいは
スラリー中へのガスの吹き込みにより径のサイズが異な
る気泡を発生させる。次いで、前記スラリー中の気泡を
重力あるいは遠心力により移動させて気泡をその径に従
う傾斜配向にした後、焼成、乾燥するものである。According to the method for producing a porous ceramic body described in JP-A-10-231184 or JP-A-2000-264755, first, a known oxide-based or non-oxide-based ceramic powder, polyvinyl alcohol, etc. are prepared. A binder, water, a surfactant, etc. are added and kneaded to form a gelled ceramics slurry, or a fibrous ceramics slurry in which fibers are further mixed into the slurry to form a chemical reaction inside the slurry, or a slurry. Bubbles with different diameters are generated by blowing gas into it. Next, the air bubbles in the slurry are moved by gravity or centrifugal force to make the air bubbles have an inclined orientation according to their diameter, followed by firing and drying.
【0004】しかし、上記の方法により、セラミックス
多孔体を得ようとする場合、ゲル化したセラミックスス
ラリー中の気泡を傾斜配向するように移動させ、その後
さらに乾燥、焼成させるために相当の時間を要し、生産
効率が悪い問題がある。また、図4の断面図に示すよう
に、上記従来の方法により製造されたセラミックス多孔
体50は、気孔51の傾斜配向が不完全になり、大径の
気孔52と小径の気孔53が混在する部分があるため、
濾過性能が充分とは言い難かった。加えて、従来法にお
いては、気孔径の制御が難しく、気孔径が1μm〜10
0μmの広範囲に及ぶため、それらの気孔径からなる気
孔を傾斜配向するにはセラミックス多孔体を相当の厚み
にしなければならず、セラミックス多孔体の厚みの減少
による軽量化が困難であった。However, in order to obtain a ceramics porous body by the above method, it takes a considerable time to move the bubbles in the gelled ceramics slurry so as to be inclined and then to further dry and fire them. However, there is a problem of poor production efficiency. Further, as shown in the sectional view of FIG. 4, in the ceramic porous body 50 manufactured by the above-mentioned conventional method, the inclined orientation of the pores 51 is incomplete, and large pores 52 and small pores 53 coexist. Because there are parts
It was hard to say that the filtration performance was sufficient. In addition, in the conventional method, it is difficult to control the pore diameter, and the pore diameter is 1 μm to 10 μm.
Since it extends over a wide range of 0 μm, it is necessary to make the ceramic porous body have a considerable thickness in order to orient the pores having the pore diameters, and it is difficult to reduce the weight by reducing the thickness of the ceramic porous body.
【0005】[0005]
【発明が解決しようとする課題】この発明は前記の点に
鑑みなされたものであり、傾斜配向気孔における気孔径
のばらつきを少なくし、フィルターとして使用した場合
に圧力損失の低く軽量なセラミックス多孔体を効率よく
製造する方法を提供する。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is possible to reduce the variation in the pore diameter in the obliquely oriented pores and to reduce the pressure loss when used as a filter. The present invention provides a method for efficiently producing
【0006】請求項1の発明は、連続気孔を有する合成
樹脂発泡体の両面を温度差を設けて加熱プレスし、低温
側から高温側にかけて気孔径が順次小さくなるようにし
た傾斜配向気孔の合成樹脂発泡体を形成する工程と、前
記傾斜配向気孔の合成樹脂発泡体に熱硬化性樹脂を含浸
させ、不活性ガス雰囲気下加熱することにより炭素化し
て傾斜配向気孔の炭素化フォームを形成する工程と、前
記傾斜配向気孔の炭素化フォームの骨格を化学蒸着法に
よりセラミックスで被覆して傾斜配向気孔のセラミック
ス多孔体を形成する工程とからなることを特徴とするセ
ラミックス多孔体の製造方法に係る。According to the first aspect of the present invention, both sides of a synthetic resin foam having continuous pores are hot-pressed with a temperature difference, and the pore size is gradually reduced from the low temperature side to the high temperature side. A step of forming a resin foam, and a step of impregnating a synthetic resin foam having the above-mentioned inclined orientation pores with a thermosetting resin and carbonizing by heating in an inert gas atmosphere to form a carbonized foam having an inclined orientation pores. And a step of coating the skeleton of the carbonized foam having the tilt-oriented pores with a ceramic by a chemical vapor deposition method to form a ceramic porous body having the tilt-oriented pores.
【0007】請求項2の発明は、加熱プレス時における
合成樹脂発泡体両面の加熱温度差が25〜175℃であ
ることを特徴とする請求項1記載のセラミックス多孔体
の製造方法に係る。The invention of claim 2 relates to the method for producing a ceramic porous body according to claim 1, wherein the heating temperature difference between both surfaces of the synthetic resin foam during hot pressing is 25 to 175 ° C.
【0008】請求項3の発明は、加熱プレス時に合成樹
脂発泡体を1/2〜1/20に圧縮することを特徴とす
る請求項1又は2に記載のセラミックス多孔体の製造方
法に係る。The invention of claim 3 relates to the method for producing a ceramic porous body according to claim 1 or 2, characterized in that the synthetic resin foam is compressed to 1/2 to 1/20 during hot pressing.
【0009】[0009]
【発明の実施の形態】以下この発明の実施形態について
図面を用いて説明する。図1は合成樹脂発泡体の一例の
部分拡大図、図2は傾斜配向気孔とされた合成樹脂発泡
体の概略断面図、図3は化学蒸着装置の概略模式図であ
る。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a partially enlarged view of an example of a synthetic resin foam, FIG. 2 is a schematic cross-sectional view of a synthetic resin foam having inclined orientation pores, and FIG. 3 is a schematic diagram of a chemical vapor deposition apparatus.
【0010】この発明は、合成樹脂発泡体からセラミッ
クス多孔体を製造するものであり、加熱プレスにより傾
斜配向気孔の合成樹脂発泡体を形成する工程と、炭素化
工程と、化学蒸着工程とよりなる。この発明で使用され
る合成樹脂発泡体は、連続気孔を有するものとされ、メ
ラミン樹脂発泡体、フェノール樹脂発泡体及びウレタン
樹脂発泡体等、種々の樹脂製発泡体が用いられる。それ
らの中でも、連続気孔を有するウレタン発泡体が好まし
く、さらには、図1の部分拡大図に示すように、公知の
方法によりセル膜の除去された連続気孔11を有する三
次元網状骨格からなる合成樹脂発泡体10が好ましい。
特には、気孔径が227〜625μm、セル数(気孔
数)40〜110個/25mm(JIS K 640
2:1976準拠)、密度20〜140kg/m3(J
IS K 6400:1997準拠)のウレタン発泡体
が好ましい。なお、この合成樹脂発泡体は、目的とする
セラミックス多孔体の厚みを考慮した所定の厚みの板状
体又はブロック体に裁断等により加工される。The present invention is for producing a ceramics porous body from a synthetic resin foam, and comprises a step of forming a synthetic resin foam of inclined orientation pores by hot pressing, a carbonization step, and a chemical vapor deposition step. . The synthetic resin foam used in the present invention is assumed to have continuous pores, and various resin foams such as melamine resin foam, phenol resin foam and urethane resin foam are used. Among them, a urethane foam having continuous pores is preferable, and further, as shown in the partially enlarged view of FIG. 1, a synthetic foam composed of a three-dimensional reticulated skeleton having continuous pores 11 with the cell membrane removed by a known method. Resin foam 10 is preferred.
Particularly, the pore diameter is 227 to 625 μm, the number of cells (the number of pores) is 40 to 110 cells / 25 mm (JIS K 640
2: 1976), density 20-140 kg / m 3 (J
A urethane foam according to IS K 6400: 1997) is preferred. In addition, this synthetic resin foam is processed by cutting or the like into a plate-like body or a block body having a predetermined thickness in consideration of the thickness of the intended ceramic porous body.
【0011】加熱プレスにより傾斜配向気孔の合成樹脂
発泡体を形成する工程では、前記合成樹脂発泡体を、公
知の加熱プレス機の二枚の加圧盤の間に配置し、加熱プ
レスする。その際、一側の加圧盤と他側の加圧盤には温
度差を設け、それによって前記合成樹脂発泡体の両面を
温度差を設けて加熱プレスする。前記加熱プレス時にお
ける合成樹脂発泡体の両面の温度差は、25〜175
℃、特には50〜100℃が好ましい。前記加熱プレス
時における合成樹脂発泡体の加熱温度は、使用する合成
樹脂発泡体の材質及び加熱プレス時間によって異なる
が、ウレタン発泡体の場合であって、加熱プレス時間が
30〜300秒間の場合には、通常60〜90℃の範囲
で設定される。また、前記加熱プレス時における合成樹
脂発泡体の圧縮は、当初の1/2〜1/20、特には1
/3〜1/15の厚みとなるように圧縮するのが好まし
い。所定時間加熱プレス終了後、その状態で合成樹脂発
泡体は常温まで冷却される。In the step of forming a synthetic resin foam having inclined orientation pores by hot pressing, the synthetic resin foam is placed between two pressure plates of a known hot pressing machine and hot pressed. At this time, a temperature difference is provided between the pressure plate on one side and the pressure plate on the other side, whereby both surfaces of the synthetic resin foam are heat-pressed with a temperature difference. The temperature difference between the two surfaces of the synthetic resin foam during the hot pressing is 25 to 175.
C., especially 50 to 100.degree. C. are preferred. The heating temperature of the synthetic resin foam during the hot pressing varies depending on the material of the synthetic resin foam used and the heating and pressing time, but in the case of the urethane foam and when the heating and pressing time is 30 to 300 seconds. Is usually set in the range of 60 to 90 ° C. In addition, the compression of the synthetic resin foam during the hot pressing is 1/2 to 1/20 of the original, and particularly 1
It is preferable to compress it to a thickness of / 3 to 1/15. After completion of the hot pressing for a predetermined time, the synthetic resin foam is cooled to room temperature in that state.
【0012】前記合成樹脂発泡体の両面に温度差を設け
た加熱プレスによって、合成樹脂発泡体は、加熱温度の
低い側よりも加熱温度の高い側での圧縮変形が大きくな
って、図2に示すように、低温度側加熱面21から高温
度側加熱面22にかけて気孔23の気孔径を順次小さく
した傾斜配向の合成樹脂発泡体20が得られる。Due to the heating press in which a temperature difference is provided on both sides of the synthetic resin foam, the synthetic resin foam undergoes greater compression deformation on the high heating temperature side than on the low heating temperature side. As shown in the figure, a synthetic resin foam 20 having an inclined orientation in which the pore diameters of the pores 23 are successively reduced from the low temperature side heating surface 21 to the high temperature side heating surface 22 is obtained.
【0013】炭素化工程では、前記傾斜配向気孔の合成
樹脂発泡体20に熱硬化性樹脂を含浸させ、当該熱硬化
性樹脂の含浸硬化した合成樹脂発泡体を不活性ガス雰囲
気下炭素化して傾斜配向気孔の炭素化フォームを形成す
る。In the carbonization step, the synthetic resin foam 20 having the inclined orientation pores is impregnated with a thermosetting resin, and the synthetic resin foam impregnated with the thermosetting resin is carbonized in an inert gas atmosphere to be inclined. Form a carbonized foam of oriented pores.
【0014】前記傾斜配向気孔の合成樹脂発泡体20に
含浸させる熱硬化性樹脂としては、フェノール系樹脂、
フラン系樹脂、メラミン系樹脂、ジアリルフタレート系
樹脂、ポリイミド系樹脂、ビニルエステル系樹脂、不飽
和ポリエステル系樹脂、エポキシ系樹脂、メタクリル系
樹脂等が挙げられる。それらの中でもフェノール系樹脂
が好ましい。The thermosetting resin to be impregnated in the synthetic resin foam 20 having the inclined orientation pores is a phenolic resin,
Furan resins, melamine resins, diallyl phthalate resins, polyimide resins, vinyl ester resins, unsaturated polyester resins, epoxy resins, methacrylic resins and the like. Among them, phenolic resins are preferable.
【0015】前記熱硬化性樹脂の含浸方法は、熱硬化性
樹脂をメタノール、エタノール、アセトン、メチルエチ
ルケトン、水等の溶媒を適宜用いて熱硬化性樹脂溶液と
し、その熱硬化性樹脂溶液を満たした容器に傾斜配向気
孔の合成樹脂発泡体20を浸す浸漬(ディッピング)法
等によって、簡単に行うことができる。含浸に使用され
る熱硬化性樹脂溶液は、前記傾斜配向気孔の合成樹脂発
泡体20への含浸を容易とするため、20℃の粘度が5
〜300mPa・sとなるように溶媒量を調節するのが
好ましい。また、前記熱硬化性樹脂溶液から取り出した
合成樹脂発泡体をロール等で圧縮して余分な熱硬化性樹
脂溶液を絞り出すことにより、合成樹脂発泡体中の熱硬
化性樹脂溶液の含浸量を調節することができ、所望の含
浸合成樹脂発泡体を得ることができる。この含浸によっ
て前記傾斜配向性合成樹脂発泡体20の骨格が熱硬化性
樹脂溶液で被覆される。なお、前記含浸合成樹脂発泡体
に対して乾燥を行ってもよい。その際の乾燥温度の例と
して70〜210℃、乾燥時間として0.1〜12時間
を挙げる。In the method of impregnating the thermosetting resin, the thermosetting resin is made into a thermosetting resin solution by appropriately using a solvent such as methanol, ethanol, acetone, methyl ethyl ketone, and water, and the thermosetting resin solution is filled. This can be easily carried out by a dipping method or the like in which the synthetic resin foam 20 having the inclined orientation pores is dipped in the container. The thermosetting resin solution used for impregnation has a viscosity of 5 ° C. at 20 ° C. in order to facilitate the impregnation of the synthetic resin foam 20 with the inclined orientation pores.
It is preferable to adjust the amount of the solvent so that the amount becomes 300 mPa · s. Further, the synthetic resin foam taken out from the thermosetting resin solution is compressed with a roll or the like to squeeze out the excess thermosetting resin solution, thereby adjusting the impregnated amount of the thermosetting resin solution in the synthetic resin foam. The desired impregnated synthetic resin foam can be obtained. By this impregnation, the skeleton of the inclined orientation synthetic resin foam 20 is coated with the thermosetting resin solution. The impregnated synthetic resin foam may be dried. An example of the drying temperature at that time is 70 to 210 ° C., and the drying time is 0.1 to 12 hours.
【0016】次いで、前記含浸合成樹脂発泡体を加熱
し、熱硬化性樹脂を硬化させると共に当該熱硬化性樹脂
及び傾斜配向気孔の合成樹脂発泡体20の両方を炭素化
する。この炭素化では、前記含浸合成樹脂発泡体を、窒
素、アルゴン、ヘリウム、キセノン等の不活性ガス雰囲
気下800〜2000℃の温度域で加熱処理して焼成炭
素化し、傾斜配向気孔の炭素化フォーム(炭化多孔質
体)にする。Next, the impregnated synthetic resin foam is heated to cure the thermosetting resin and carbonize both the thermosetting resin and the synthetic resin foam 20 having the graded pores. In this carbonization, the impregnated synthetic resin foam is heat-treated in a temperature range of 800 to 2000 ° C. in an atmosphere of an inert gas such as nitrogen, argon, helium, or xenon to be fired and carbonized, and a carbonized foam having a graded orientation of pores. (Carbonized porous body).
【0017】化学蒸着工程では、前記傾斜配向気孔の炭
素化フォームの骨格を化学蒸着法によりセラミックスで
被覆して傾斜配向気孔のセラミックス多孔体を形成す
る。前記化学蒸着法は、一般的に化学気相含浸法(CV
I:chemical vapor infiltra
tion)と呼ばれ、気相中において各気体間に起こる
化学反応を利用し、目的基材の表面に薄膜を析出被着さ
せ成長させる公知の方法である。In the chemical vapor deposition step, the skeleton of the carbonized foam having the tilt-oriented pores is coated with ceramics by a chemical vapor deposition method to form a ceramic porous body having the tilt-oriented pores. The chemical vapor deposition method is generally a chemical vapor impregnation method (CV).
I: Chemical vapor infiltra
It is a known method in which a thin film is deposited and deposited on the surface of a target substrate by utilizing a chemical reaction that occurs between each gas in a gas phase.
【0018】前記化学蒸着法を利用する本工程では、図
3の化学蒸着装置30に示すように、公知の電気炉32
に設置される石英ガラス製反応容器33内に、まず前記
炭素化フォーム31を収容する。符号35は真空タン
ク、36は温度調節器、37はリザーバタンク、38は
塩化珪素ガス飽和器、39は流量計、41はバルブ、4
2はゲージである。次いで、公知の真空ポンプ34によ
って前記反応容器33から真空排気を行い、反応容器3
3内を666Pa以下にする。その後、混合原料ガスの
導入段階と、反応段階と、再真空化段階とよりなる一連
のプロセスを通常2000〜10000回繰り返す。In this step using the chemical vapor deposition method, as shown in the chemical vapor deposition apparatus 30 of FIG.
First, the carbonized foam 31 is housed in a reaction vessel 33 made of quartz glass installed in. Reference numeral 35 is a vacuum tank, 36 is a temperature controller, 37 is a reservoir tank, 38 is a silicon chloride gas saturator, 39 is a flow meter, 41 is a valve, 4
2 is a gauge. Next, the reaction container 33 is evacuated by a well-known vacuum pump 34, and the reaction container 3
The inside of 3 is set to 666 Pa or less. Then, a series of processes including a mixed raw material gas introduction step, a reaction step, and a re-vacuum step are usually repeated 2000 to 10000 times.
【0019】前記混合原料ガスの導入段階では、四塩化
珪素(SiCl4)、トリクロロシラン(SiHC
l3)、ジクロロシラン(SiCl2H2)、メチルトリ
クロロシラン(CH3SiCl3)等から選択された塩化
珪素ガスと水素及びメタンとを、その混合体積比が水
素:塩化珪素ガス:メタン=70〜96:2〜10:2
〜20となるように調整し混合原料ガスとした。また、
塩化珪素ガスとしてメチルトリクロロシランを用いる場
合、その混合体積比は水素:塩化珪素ガス=85〜9
8:2〜15となるように調整し混合原料ガスとした。
前記混合原料ガスを800〜1300℃にした前記反応
容器33内に導入する。その際、前記混合原料ガスは9
7.4〜111.4kPaの圧力で供給するのが好まし
い。なお、使用する塩化珪素ガスとしては、前記の中で
も、特に四塩化珪素、メチルトリクロロシランが好まし
い。In the step of introducing the mixed source gas, silicon tetrachloride (SiCl 4 ) and trichlorosilane (SiHC
l 3 ), dichlorosilane (SiCl 2 H 2 ), methyltrichlorosilane (CH 3 SiCl 3 ), and the like, and hydrogen and methane in a mixed volume ratio of hydrogen: silicon chloride gas: methane = 70-96: 2-10: 2
The mixed raw material gas was adjusted so as to be ˜20. Also,
When methyltrichlorosilane is used as the silicon chloride gas, the mixing volume ratio is hydrogen: silicon chloride gas = 85-9.
The mixed raw material gas was adjusted to 8: 2 to 15.
The mixed raw material gas is introduced into the reaction vessel 33 whose temperature is 800 to 1300 ° C. At that time, the mixed raw material gas is 9
It is preferable to supply at a pressure of 7.4 to 111.4 kPa. Among the above, the silicon chloride gas used is preferably silicon tetrachloride or methyltrichlorosilane.
【0020】前記反応段階では、前記反応容器33内に
供給された混合原料ガスを0.3〜3秒間そのままにし
て前述の温度下(800〜1300℃)にて反応させ
る。これによって、前記炭素化フォーム31の骨格(外
表面及び内部気孔骨格)表面にセラミックスとしての炭
化珪素(SiC)が析出形成される。In the reaction step, the mixed raw material gas supplied into the reaction vessel 33 is allowed to react for 0.3 to 3 seconds at the above temperature (800 to 1300 ° C.). As a result, silicon carbide (SiC) as ceramics is deposited and formed on the surface of the skeleton (outer surface and internal pore skeleton) of the carbonized foam 31.
【0021】前記再真空化段階では、前記反応容器33
より残留未反応混合原料ガス及び反応生成ガス(HCl
等)の排気を行い、該反応容器33内の再真空化(66
6Pa以下まで)を行う。その後、前記混合原料ガス導
入段階、反応段階、再真空化段階を、前記所要サイクル
数となるまで繰り返し、それによって、前記炭素化フォ
ーム31の骨格(外表面及び内部気孔骨格)表面に析出
形成される前記炭化珪素を厚み2〜20μmの薄層に
し、所望のセラミックス多孔体を得る。In the re-evacuating step, the reaction container 33
More residual unreacted mixed raw material gas and reaction product gas (HCl
Etc.), and the inside of the reaction vessel 33 is evacuated again (66
Up to 6 Pa). After that, the mixed raw material gas introduction step, the reaction step, and the re-vacuum step are repeated until the required number of cycles is reached, thereby depositing and forming on the skeleton (outer surface and internal pore skeleton) surface of the carbonized foam 31. The desired silicon carbide porous body is obtained by forming the above silicon carbide as a thin layer having a thickness of 2 to 20 μm.
【0022】[0022]
【実施例】以下具体的な実施例について説明する。
・実施例1
気孔径が200〜300μm、連続気孔率95%、セル
数が100個/25mm(JIS K 6402:19
76準拠)、密度が80.9kg/m3(JIS K
6400:1997準拠)の三次元網状骨格のウレタン
発泡体(商品名:MF−100、(株)イノアックコー
ポレーション製)を縦150mm、横150mm、厚さ
10mmに裁断し、使用する合成樹脂発泡体とした。EXAMPLES Specific examples will be described below. -Example 1 Pore diameter is 200-300 micrometers, continuous porosity is 95%, and the number of cells is 100 cells / 25 mm (JIS K 6402: 19).
76), density 80.9 kg / m 3 (JIS K
6400: 1997) urethane foam (trade name: MF-100, manufactured by Inoac Corporation) having a three-dimensional network skeleton is cut into a length of 150 mm, a width of 150 mm and a thickness of 10 mm, and a synthetic resin foam to be used. did.
【0023】前記合成樹脂発泡体を加熱プレス機(商品
名:SA−302−I−S、テスター産業(株)製)の
上下二枚の加圧盤の間に挟み込み、上部加圧盤を150
℃、下部加圧盤を200℃に設定し、当初の体積の1/
10に合成樹脂発泡体を加熱プレスし、180秒間保持
した後、プレスした状態で常温まで冷却した。これにに
より、上部加圧盤と接する低温加圧側から下部加圧盤と
接する高温加圧側へ気孔径を徐々に小さくした傾斜配向
気孔の合成樹脂発泡体を得た。The synthetic resin foam is sandwiched between two upper and lower press plates of a heat press (trade name: SA-302-IS, manufactured by Tester Sangyo Co., Ltd.), and an upper press plate is placed at 150.
℃, set the lower pressure plate to 200 ℃, 1 / of the original volume
The synthetic resin foam was hot-pressed to No. 10, held for 180 seconds, and then cooled to room temperature in the pressed state. As a result, a synthetic resin foam having tilted pores with a gradually decreasing pore size from the low-temperature press side in contact with the upper press plate to the high-temperature press side in contact with the lower press plate was obtained.
【0024】また、熱硬化性樹脂の一種類であるフェノ
ール樹脂原液(商品名:フェノライト5900、大日本
インキ化学工業製)をエタノールで50重量%に希釈し
て熱硬化性樹脂溶液を調整し、該熱硬化性樹脂溶液に前
記傾斜配向気孔の合成樹脂発泡体を浸漬させ、熱硬化性
樹脂溶液から取り出した含浸合成樹脂発泡体をローラで
絞って含浸量(目付量)を0.1g/cm3となるよう
にした。この含浸発泡体を150℃で1時間乾燥させた
後、アルゴン雰囲気中1000℃で2時間焼成(商品
名:MTK−11−1530、(株)モトヤマ製)し、
炭素化させて炭素化フォームを形成した。Further, a thermosetting resin solution is prepared by diluting a phenol resin stock solution (trade name: Phenolite 5900, manufactured by Dainippon Ink and Chemicals, Inc.), which is one type of thermosetting resin, with ethanol to 50% by weight. The synthetic resin foam having the inclined orientation pores is dipped in the thermosetting resin solution, and the impregnated synthetic resin foam taken out from the thermosetting resin solution is squeezed with a roller to give an impregnation amount (basis weight) of 0.1 g / It was set to be cm 3 . After the impregnated foam was dried at 150 ° C. for 1 hour, it was baked at 1000 ° C. for 2 hours in an argon atmosphere (trade name: MTK-11-1530, manufactured by Motoyama Co., Ltd.),
Carbonized to form a carbonized foam.
【0025】前記炭素化フォームを裁断して、縦20m
m、横50mmとし、これを石英ガラス製反応容器に固
定し、電気炉内に収容し、前記電気炉を加熱し反応容器
内を1100℃に昇温した。次いで、前記反応容器内を
666Pa以下となるまで真空ポンプにより真空排気し
た。その後、前記反応容器へ水素:四塩化珪素:メタン
(体積比)=23:1:1である混合原料ガスを110
kPaの圧力で50ml供給し、1秒間反応させ、その
後反応容器内の残留未反応混合原料ガス及び反応生成ガ
スの排気と真空化(666Pa以下)からなる一連のプ
ロセス(混合原料ガスの供給から残留未反応混合原料ガ
ス及び反応生成ガスの排気と真空化までのプロセス)を
4000回繰り返し、炭化珪素からなるセラミックスを
4μm厚みで前記炭素化フォームの外表面及び内部気孔
骨格表面に析出被着させ、この発明の実施例1としての
セラミックス多孔体を得た。The carbonized foam is cut into a length of 20 m.
m, width 50 mm, fixed to a quartz glass reaction vessel, housed in an electric furnace, the electric furnace was heated to raise the temperature of the reaction vessel to 1100 ° C. Then, the inside of the reaction vessel was evacuated by a vacuum pump until the pressure became 666 Pa or less. Then, to the reaction vessel, 110: mixed raw material gas of hydrogen: silicon tetrachloride: methane (volume ratio) = 23: 1: 1
Supply 50 ml at a pressure of kPa, react for 1 second, then exhaust the residual unreacted mixed raw material gas and reaction product gas in the reaction vessel and evacuate (666 Pa or less) a series of processes (remaining from the supply of mixed raw material gas) The process of exhausting the unreacted mixed raw material gas and the reaction product gas up to vacuuming) is repeated 4000 times to deposit and deposit ceramics made of silicon carbide on the outer surface and the inner pore skeleton surface of the carbonized foam in a thickness of 4 μm, A ceramic porous body as Example 1 of the present invention was obtained.
【0026】・実施例2
実施例1において、加熱プレス時の圧縮を当初の体積の
1/5に設定し、また、熱硬化性樹脂溶液の含浸量(目
付量)を0.15g/cm3とした以外は、実施例1と
同じ材料及び条件により、実施例2のセラミックス多孔
体を製造した。Example 2 In Example 1, the compression during hot pressing was set to ⅕ of the initial volume, and the impregnated amount (basis weight) of the thermosetting resin solution was 0.15 g / cm 3. A ceramic porous body of Example 2 was manufactured by using the same materials and conditions as in Example 1 except for the above.
【0027】・実施例3
実施例1において、加熱プレス機の上部加圧盤を175
℃、下部加圧盤を200℃とし、加熱プレス時の圧縮を
当初の体積の1/5に設定し、また、熱硬化性樹脂溶液
の含浸量(目付量)を実施例2と同様に0.15g/c
m3とした以外は、実施例1と同じ材料及び条件によ
り、実施例3のセラミックス多孔体を製造した。Example 3 In Example 1, the upper pressing plate of the heating press machine was replaced with 175.
C., the lower pressurizing plate was set to 200.degree. C., the compression at the time of hot pressing was set to 1/5 of the initial volume, and the impregnated amount (basis weight) of the thermosetting resin solution was set to 0. 15 g / c
A ceramic porous body of Example 3 was manufactured using the same materials and conditions as in Example 1 except that m 3 was used.
【0028】[0028]
【比較例】・比較例1
実施例1において、加熱プレス機の上部加圧盤及び下部
加圧盤を共に200℃にした以外は、実施例1と同じ材
料及び条件により、比較例1のセラミックス多孔体を製
造した。[Comparative Example] -Comparative Example 1 A ceramic porous body of Comparative Example 1 was prepared using the same materials and conditions as in Example 1 except that both the upper pressing platen and the lower pressing platen of the heating press machine were set to 200 ° C. Was manufactured.
【0029】・比較例2
実施例2において、加熱プレス機の上部加圧盤及び下部
加圧盤を共に200℃にし、また、混合原料ガスの供給
から残留未反応混合原料ガス及び反応生成ガスの排気と
反応管内の真空化までの一連のプロセスを8000回繰
り返した以外は、実施例2と同じ材料及び条件により、
比較例2のセラミックス多孔体を製造した。Comparative Example 2 In Example 2, the upper press plate and the lower press plate of the heating press were both set to 200 ° C., and the residual unreacted mixed raw material gas and the reaction product gas were discharged from the supply of the mixed raw material gas. With the same materials and conditions as in Example 2 except that a series of processes up to vacuumization in the reaction tube was repeated 8000 times,
A ceramic porous body of Comparative Example 2 was manufactured.
【0030】・比較例3
実施例2において、加熱プレス機の上部加圧盤及び下部
加圧盤を共に200℃にし、また、混合原料ガスの供給
から残留未反応混合原料ガス及び反応生成ガスの排気と
反応管内の真空化までの一連のプロセスを10000回
繰り返した以外は、実施例2と同じ材料及び条件によ
り、比較例3のセラミックス多孔体を製造した。Comparative Example 3 In Example 2, the upper press plate and the lower press plate of the heating press were both set to 200 ° C., and the residual unreacted mixed raw material gas and the reaction product gas were discharged from the supply of the mixed raw material gas. A ceramic porous body of Comparative Example 3 was manufactured by using the same materials and conditions as in Example 2 except that a series of processes up to vacuumization in the reaction tube was repeated 10,000 times.
【0031】・比較例4
蒸留水100gに、1官能基性モノマーであるメタクリ
ルアミド20gと、2官能基性モノマーであるN,N’
−メチレンビスアクリルアミド2gを溶解して、ポリカ
ルボン酸アンモニウム系分散剤であるセルナD305
((株)中京油脂製)を2.7g加え、さらに、セラミ
ックス粉粒体として、アルミナ粉末(平均粒径0.6μ
m)500gを加え、恒温水槽中で48時間、湿式ボー
ルミルで混合した。Comparative Example 4 In 100 g of distilled water, 20 g of methacrylamide which is a monofunctional monomer and N, N 'which is a bifunctional monomer.
-Dissolve 2 g of methylenebisacrylamide to give Serna D305, an ammonium polycarboxylate dispersant.
2.7 g (manufactured by Chukyo Yushi Co., Ltd.) was added, and further, alumina powder (average particle size 0.6 μm) was obtained as ceramic powder particles.
m) 500 g was added and mixed by a wet ball mill for 48 hours in a constant temperature water bath.
【0032】次いで、窒素雰囲気で以下の作業を行っ
た。まず室温下、前記混合物に、重合開始剤として過硫
酸アンモニウムを0.2g、触媒としてN,N,N’,
N’−テトラメチレンエチレンジアミン0.3g、界面
活性剤としてニューレックスR((株)日本油脂製)を
0.4g加えて、セラミックススラリーを調整した。Next, the following work was performed in a nitrogen atmosphere. First, at room temperature, 0.2 g of ammonium persulfate as a polymerization initiator and N, N, N'as a catalyst were added to the above mixture.
0.3 g of N'-tetramethylene ethylenediamine and 0.4 g of Newlex R (manufactured by NOF CORPORATION) as a surfactant were added to prepare a ceramic slurry.
【0033】続いて、下端に攪拌羽根を有する攪拌棒を
前記セラミックススラリー中に入れて3000rpmで
5分間回転させ、スラリー中に気泡を含有させた。この
気泡含有スラリーを、直径30mm、高さ60mmのポ
リフッ化エチレン製円筒容器に充填し、25℃、2時間
放置し、ゲル化させた。その後、成形型から、ゲル成形
体を脱型した。Then, a stirring rod having a stirring blade at the lower end was put into the ceramics slurry and rotated at 3000 rpm for 5 minutes so that bubbles were contained in the slurry. This bubble-containing slurry was filled in a polyfluoroethylene cylindrical container having a diameter of 30 mm and a height of 60 mm, and allowed to stand at 25 ° C. for 2 hours for gelation. Then, the gel molding was removed from the molding die.
【0034】前記ゲル成形体を、空気雰囲気下、25℃
で95%R.H.(相対湿度)から60%R.H.まで
1日5%R.H.ずつ低下させて、8日間かけて乾燥さ
せ、その後、700℃で2日間脱脂した後、1550℃
で2時間焼成し、比較例4のセラミックス多孔体を得
た。The gel molded body was placed in an air atmosphere at 25 ° C.
95% R.S. H. (Relative humidity) to 60% R. H. Up to 5% R. H. Each time, drying for 8 days, then degreasing at 700 ° C for 2 days, then 1550 ° C
And was fired for 2 hours to obtain a porous ceramic body of Comparative Example 4.
【0035】このようにして得られた実施例及び比較例
に対して、試料の厚み(mm)、圧力損失(kPa)、
最大孔径(μm)、平均孔径(μm)、曲げ強度(MP
a)、初期気孔率(%)、残存気孔率(%)を以下の方
法で測定した。測定結果は表1のとおりである。なお、
析出形成された炭化珪素層の厚み(μm)は走査電子顕
微鏡により測定した。
圧力損失(kPa):ASTM F 316に従い測
定。
最大孔径及び平均孔径(μm):最終製品に対してAS
TM F 316に従い測定。
曲げ強度(MPa):三点曲げ強度試験 JIS R
1609に従い測定。
初期気孔率及び残存気孔率(%)は、下記の計算式
(1)ないし(3)により求めた。The sample thickness (mm), pressure loss (kPa), and
Maximum pore size (μm), average pore size (μm), bending strength (MP
a), initial porosity (%) and residual porosity (%) were measured by the following methods. The measurement results are shown in Table 1. In addition,
The thickness (μm) of the deposited and formed silicon carbide layer was measured by a scanning electron microscope. Pressure loss (kPa): Measured according to ASTM F316. Maximum pore size and average pore size (μm): AS for final product
Measured according to TMF 316. Bending strength (MPa): Three-point bending strength test JIS R
Measured according to 1609. The initial porosity and the residual porosity (%) were determined by the following calculation formulas (1) to (3).
【0036】
PS=P0−F・P0/100……(1)
F=(WSic−Wc)/(ρsic・Vc・P0/100)・100……(2)
P0={1−(Wc/Vc/ρc)}・100……(3)
ただし
PS:残存気孔率(%)
P0:初期気孔率(%)
F:炭素化フォーム(基材)の骨格(外表面及び内部気
孔骨格)表面に析出形成される炭化珪素の割合を示す充
填率(%)
WSic:析出した炭化珪素と炭素化フォーム(基材)の
全重量(g)
Wc:炭素化フォーム(基材)重量(g)
ρsic:析出形成される炭化珪素の密度(3.1g/c
m3 岩波理化学辞典第3版より引用)
Vc:炭素化フォーム(基材)体積(cm3)
ρc:炭素化フォーム(基材)密度(1.8g/cm3
JIS R 1634より算出)[0036] P S = P 0 -F · P 0/100 ...... (1) F = (W Sic -W c) / (ρ sic · V c · P 0/100) · 100 ...... (2) P 0 = {1- (W c / V c / ρ c )} · 100 (3) However, P S : Residual porosity (%) P 0 : Initial porosity (%) F: Carbonized foam (base material) ) Skeleton (outer surface and inner pore skeleton skeleton) shows the proportion of silicon carbide deposited and formed on the surface (%) W Sic : total weight of deposited silicon carbide and carbonized foam (base material) (g) W c : Carbonized foam (base material) weight (g) ρ sic : Density of silicon carbide deposited and formed (3.1 g / c
m 3 Quoted from Iwanami Physics and Chemistry Dictionary 3rd Edition) V c : Carbonized foam (base material) volume (cm 3 ) ρ c : Carbonized foam (base material) density (1.8 g / cm 3
(Calculated from JIS R 1634)
【0037】[0037]
【表1】 [Table 1]
【0038】[0038]
【発明の効果】以上図示し説明したように、この発明の
製造方法によれば、合成樹脂発泡体の両面に温度差を設
けて加熱プレスする工程と、熱硬化製樹脂の含浸及び加
熱により炭素化フォームを形成する工程と、化学蒸着法
によって炭素化フォームの骨格をセラミックスで被覆す
る工程とによってセラミックス多孔体を得ることができ
るため、従来技術に例示されるようなセラミックススラ
リーを混練し、スラリー中に生じた気泡を移動させ、成
形、乾燥、焼成等する時間が削減可能であり、合理的に
セラミックス多孔体を製造することができる。As shown and described above, according to the manufacturing method of the present invention, a step of hot pressing by providing a temperature difference on both sides of a synthetic resin foam, and carbon impregnation and heating of thermosetting resin Since a ceramic porous body can be obtained by the step of forming a foamed foam and the step of coating the skeleton of the carbonized foam with a ceramic by a chemical vapor deposition method, a ceramics slurry as exemplified in the prior art is kneaded to form a slurry. It is possible to reduce the time for moving bubbles generated therein to perform molding, drying, firing, etc., and it is possible to rationally manufacture a porous ceramic body.
【0039】また、重力や遠心力によって気孔を気孔径
に従い傾斜配向させるのと異なるため、傾斜配向におけ
る気孔径のばらつき(大孔径と小孔径の気孔が混じり合
い)を少なくでき、セラミックス多孔体をフィルターと
して用いた場合には、そのフィルター性能を向上させる
ことができる。Further, unlike the case where the pores are inclined and oriented according to the pore diameter by gravity or centrifugal force, the variation of the pore diameter in the inclined orientation (mixing of large pores and small pores) can be reduced, and the porous ceramic body can be formed. When used as a filter, the filter performance can be improved.
【0040】さらに、表1から明らかなように従来技術
(比較例4)のセラミックス多孔体よりも最大孔径を小
とすることができ、しかも高い曲げ強度を有するため、
厚みみを減少させても、良好なフィルター性能と強度を
得ることができ、軽量化が可能となる。Further, as is clear from Table 1, the maximum pore diameter can be made smaller than that of the porous ceramic body of the prior art (Comparative Example 4), and the flexural strength is high.
Even if the thickness is reduced, good filter performance and strength can be obtained, and the weight can be reduced.
【図1】合成樹脂発泡体の一例の部分拡大図である。FIG. 1 is a partially enlarged view of an example of a synthetic resin foam.
【図2】傾斜配向気孔とされた合成樹脂発泡体の概略断
面図である。FIG. 2 is a schematic cross-sectional view of a synthetic resin foam having inclined orientation pores.
【図3】化学蒸着装置の概略模式図である。FIG. 3 is a schematic diagram of a chemical vapor deposition device.
【図4】従来のセラミックス多孔体の概略断面図であ
る。FIG. 4 is a schematic cross-sectional view of a conventional ceramic porous body.
10 合成樹脂発泡体 20 傾斜配向気孔の合成樹脂発泡体 21 低温度側加熱面 22 高温度側加熱面 23 気孔 10 synthetic resin foam 20 Synthetic resin foam with inclined orientation pores 21 Low temperature side heating surface 22 High temperature side heating surface 23 pores
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 16/30 C23C 16/30 (72)発明者 中根 和靖 愛知県名古屋市熱田区神野町二丁目70番地 株式会社イノアックコーポレーション神 野事業所内 (72)発明者 鈴木 英郎 神奈川県秦野市堀山下380番地5号 株式 会社イノアック技術研究所内 (72)発明者 中條 総子 神奈川県秦野市堀山下380番地5号 株式 会社イノアック技術研究所内 Fターム(参考) 4K030 AA03 AA06 AA10 AA17 BA37 CA01 CA07 CA11 DA02 FA10 HA01 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) C23C 16/30 C23C 16/30 (72) Inventor Kaneyasu Nakane 2-chome, Kamino-cho, Atsuta-ku, Nagoya, Aichi Prefecture 70 Address Inoac Corporation Kano Works (72) Inventor Hideo Suzuki 380-5 Horiyamashita, Hadano City, Kanagawa Prefecture Inoac Research Institute Ltd. (72) Inventor Souko Nakajo 380-5, Horiyamashita, Hadano City, Kanagawa F-term in the Inoac Research Institute Co., Ltd. (reference) 4K030 AA03 AA06 AA10 AA17 BA37 CA01 CA07 CA11 DA02 FA10 HA01
Claims (3)
を温度差を設けて加熱プレスし、低温側から高温側にか
けて気孔径が順次小さくなるようにした傾斜配向気孔の
合成樹脂発泡体を形成する工程と、 前記傾斜配向気孔の合成樹脂発泡体に熱硬化性樹脂を含
浸させ、不活性ガス雰囲気下加熱することにより炭素化
して傾斜配向気孔の炭素化フォームを形成する工程と、 前記傾斜配向気孔の炭素化フォームの骨格を化学蒸着法
によりセラミックスで被覆して傾斜配向気孔のセラミッ
クス多孔体を形成する工程とからなることを特徴とする
セラミックス多孔体の製造方法。1. A synthetic resin foam having inclined pores in which both sides of a synthetic resin foam having continuous pores are heat-pressed with a temperature difference and the pore diameter is gradually reduced from the low temperature side to the high temperature side. And a step of impregnating the synthetic resin foam of the inclined orientation pores with a thermosetting resin and carbonizing by heating in an inert gas atmosphere to form a carbonized foam of the inclined orientation pores, the inclined orientation A method for producing a ceramic porous body, comprising the step of coating a skeleton of a carbonized foam of pores with a ceramic by a chemical vapor deposition method to form a ceramic porous body having an obliquely oriented pore.
面の加熱温度差が25〜175℃であることを特徴とす
る請求項1記載のセラミックス多孔体の製造方法。2. The method for producing a ceramic porous body according to claim 1, wherein the heating temperature difference between the both surfaces of the synthetic resin foam during hot pressing is 25 to 175 ° C.
〜1/20に圧縮することを特徴とする請求項1又は2
に記載のセラミックス多孔体の製造方法。3. A synthetic resin foam is halved at the time of hot pressing.
It compresses to 1/20, The claim 1 or 2 characterized by the above-mentioned.
The method for producing a ceramic porous body according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001384480A JP2003165782A (en) | 2001-09-20 | 2001-12-18 | Method for manufacturing ceramic porous body |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001286558 | 2001-09-20 | ||
JP2001-286558 | 2001-09-20 | ||
JP2001384480A JP2003165782A (en) | 2001-09-20 | 2001-12-18 | Method for manufacturing ceramic porous body |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003165782A true JP2003165782A (en) | 2003-06-10 |
Family
ID=26622577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001384480A Pending JP2003165782A (en) | 2001-09-20 | 2001-12-18 | Method for manufacturing ceramic porous body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003165782A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2007139015A1 (en) * | 2006-05-31 | 2009-10-08 | コニカミノルタオプト株式会社 | Film forming method, mold and mold manufacturing method |
WO2016096377A1 (en) * | 2014-12-19 | 2016-06-23 | Tata Steel Nederland Technology B.V. | Filter device to remove particles from a vapour stream |
CN108083811A (en) * | 2017-12-14 | 2018-05-29 | 西安交通大学 | A kind of double gradient porous ceramics materials and preparation method thereof |
CN116514577A (en) * | 2023-05-05 | 2023-08-01 | 天津大学 | Super-elastic precursor ceramic spring for wide temperature range, pressure sensor of super-elastic precursor ceramic spring and preparation method of super-elastic precursor ceramic spring |
-
2001
- 2001-12-18 JP JP2001384480A patent/JP2003165782A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2007139015A1 (en) * | 2006-05-31 | 2009-10-08 | コニカミノルタオプト株式会社 | Film forming method, mold and mold manufacturing method |
WO2016096377A1 (en) * | 2014-12-19 | 2016-06-23 | Tata Steel Nederland Technology B.V. | Filter device to remove particles from a vapour stream |
US10941482B2 (en) | 2014-12-19 | 2021-03-09 | Tata Steel Nederland Technology B.V. | Filter device to remove particles from a vapour stream |
CN108083811A (en) * | 2017-12-14 | 2018-05-29 | 西安交通大学 | A kind of double gradient porous ceramics materials and preparation method thereof |
CN116514577A (en) * | 2023-05-05 | 2023-08-01 | 天津大学 | Super-elastic precursor ceramic spring for wide temperature range, pressure sensor of super-elastic precursor ceramic spring and preparation method of super-elastic precursor ceramic spring |
CN116514577B (en) * | 2023-05-05 | 2023-10-20 | 天津大学 | Super-elastic precursor ceramic spring for wide temperature range, pressure sensor of super-elastic precursor ceramic spring and preparation method of super-elastic precursor ceramic spring |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vogt et al. | Macroporous silicon carbide foams for porous burner applications and catalyst supports | |
GB2117746A (en) | Fuel cell electrode substrates | |
US5091164A (en) | Porous carbon-carbon composite and process for producing the same | |
CN109627011B (en) | Preparation method of porous ceramic with concentric holes and porous ceramic | |
JP2008505045A (en) | Method for manufacturing high-density silicon carbide | |
NO152001B (en) | PARTICLES OF A RIGID INORGANIC FOAM, PROCEDURE FOR THE MANUFACTURING OF THE PARTICLES, AND STRONG INORGANIC FOAM BODIES MADE BY THE PARTICLES | |
Wu et al. | Processing, microstructures and mechanical properties of aqueous gelcasted and solid-state-sintered porous SiC ceramics | |
CN109824381A (en) | A kind of silicon carbide ceramic membrane and its preparation method and application | |
JP2004018322A (en) | Silicon/silicon carbide composite material and method of producing the same | |
US5196235A (en) | Process for the production of a ceramic fiber/matrix composite material | |
KR20160049493A (en) | Composite refractory and method for manufacturing the same | |
JP2001261463A (en) | Ceramic porous body and its production process | |
CN114573358A (en) | Graphene heat-conducting film, graphene heat-conducting sheet, preparation method and mold | |
CN112552063A (en) | Preparation method of carbon fiber reinforced silicon carbide composite material | |
Mao | Processing of ceramic foams | |
JP2003165782A (en) | Method for manufacturing ceramic porous body | |
JP4603889B2 (en) | Method for manufacturing bulk-shaped foam article | |
JP2000264755A (en) | Production of ceramic porous body | |
JP2004509784A (en) | Cold isostatic pressing | |
JP3164291B2 (en) | Manufacturing method of core material for vacuum insulation structure | |
JP4024704B2 (en) | Manufacturing method of multilayer ceramic filter | |
KR20020074851A (en) | manufacture method of open-cell type matal preform | |
Ohzawa et al. | Preparation of gas-permeable SiC shape by pressure-pulsed chemical vapour infiltration into carbonized cotton-cloth preforms | |
JP2001089270A (en) | Method of producing silicon impregnated silicon carbide ceramic member | |
JP3661956B2 (en) | Method for producing porous superabrasive melamine bond wheel |