JP2003164979A - Surface treatment method and surface treatment device - Google Patents

Surface treatment method and surface treatment device

Info

Publication number
JP2003164979A
JP2003164979A JP2001360283A JP2001360283A JP2003164979A JP 2003164979 A JP2003164979 A JP 2003164979A JP 2001360283 A JP2001360283 A JP 2001360283A JP 2001360283 A JP2001360283 A JP 2001360283A JP 2003164979 A JP2003164979 A JP 2003164979A
Authority
JP
Japan
Prior art keywords
depth
value
rotary tool
height
friction stir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001360283A
Other languages
Japanese (ja)
Other versions
JP4265130B2 (en
Inventor
Hiroaki Kusuki
弘明 楠木
Tsutomu Masuda
勉 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2001360283A priority Critical patent/JP4265130B2/en
Publication of JP2003164979A publication Critical patent/JP2003164979A/en
Application granted granted Critical
Publication of JP4265130B2 publication Critical patent/JP4265130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment method and a surface treatment device capable of preventing an occurrence of an unfilled defect (so-called thickness irregularity) caused by insufficient pressing of a shoulder part of a rotary tool and ensuring stable depth of a modified layer regardless of dimensional irregularity of a metallic material to be treated. <P>SOLUTION: The surface treatment method forms the modified layer by applying a friction stir treatment to a surface of the metallic material to be treated by pressing the surface part with the shoulder part while pressing a probe of the rotary tool mounted on a machining device. When the friction stir treatment is conducted by pressing the rotary tool on the surface part of the metallic material to be treated in a press-on direction at a constant feeding amount, the height of the surface part and the height of a machining standard face of the metallic material to be treated are measured Q2 and Q3, the pressing depth of the shoulder part is calculated Q7 by these measurement values and shape data of the rotary tool, and the value of the pressing depth is compared Q8 with the depth standard value capable of avoiding the generation of unfilled defect. Based on the comparison Q8, when the value of pressing depth is larger than the depth standard value capable of avoiding the occurrence of unfilled defect, the friction stir treatment by the rotary tool is applied Q9 to the surface part of the metallic material to be treated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ディーゼルエン
ジンのシリンダヘッドなどの金属製被処理物(いわゆる
ワーク)の表面部に、加工装置に装着した回転工具先端
のプローブを押込みつつ、ショルダ部で表面部を押圧す
ることにより摩擦撹拌処理を施し、改質層を形成して、
熱疲労強度を高めるような表面処理方法および表面処理
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface of a metal workpiece (so-called work) such as a cylinder head of a diesel engine, which is pushed by a probe at the tip of a rotary tool attached to a processing apparatus and is pressed by a shoulder portion. Friction stir processing is performed by pressing the part to form a modified layer,
The present invention relates to a surface treatment method and a surface treatment apparatus that enhance thermal fatigue strength.

【0002】[0002]

【従来の技術】従来、アルミニウム、アルミ合金、マグ
ネシウム、マグネシウム合金などの軽金属や軽合金から
なる金属製被処理物(いわゆるワーク)の表面処理方法と
しては、図12に示すように加工装置に装着されて高速
で回転する回転工具80のプローブ81を上記金属製被
処理物82の表面部82aに押込みつつ、ショルダ部8
3で表面部82aを押圧し、このような押圧状態を保ち
ながら回転工具80を表面に沿って移動させることで、
金属製被処理物82の表面およびその近傍領域を改質し
て、改質層84を形成し、機械的特性、特に熱疲労強度
の向上を図る、所謂、摩擦撹拌処理が知られている。
2. Description of the Related Art Conventionally, as a method for surface-treating light metals such as aluminum, aluminum alloys, magnesium and magnesium alloys, and metal-made objects (so-called workpieces) made of light alloys, as shown in FIG. While pushing the probe 81 of the rotating tool 80 that is rotated at a high speed into the surface portion 82a of the metal object 82 to be processed, the shoulder portion 8
By pressing the surface portion 82a with 3, and moving the rotary tool 80 along the surface while maintaining such a pressed state,
A so-called friction stir treatment is known in which the surface of the object to be treated 82 made of metal and the region in the vicinity thereof are modified to form a modified layer 84 to improve mechanical properties, particularly thermal fatigue strength.

【0003】例えば、特開2000−15426号公報
には、エンジンのアルミ合金製シリンダヘッドのシリン
ダブロックに対するシール面(合わせ面)の表面処理に、
上述のような摩擦撹拌処理を適用することが開示されて
いる。
For example, Japanese Patent Laid-Open No. 2000-15426 discloses a surface treatment of a sealing surface (a mating surface) of a cylinder block of an aluminum alloy cylinder head of an engine.
It is disclosed that the friction stir processing as described above is applied.

【0004】また、特開2001−32058号公報に
は、ディーゼルエンジンのアルミ合金製のシリンダヘッ
ドにおける燃焼室構成面に上述の如き摩擦撹拌処理を適
用することが開示されている。
Further, Japanese Unexamined Patent Publication No. 2001-32058 discloses that the friction stir processing as described above is applied to the surface of the combustion chamber in the aluminum alloy cylinder head of the diesel engine.

【0005】上述の摩擦撹拌処理法では、高速で回転す
る回転工具80を金属製被処理物82の表面に当接させ
押圧することで、その際に生じる摩擦熱とプローブ81
の撹拌作用により、部材表面の回転工具80当接部分お
よびその近傍領域を軟化させて塑性流動を生じさせる。
そして、この塑性状態の材料部分(塑性流動層)が非溶融
状態で撹拌されることにより、該部材の表面およびその
近傍領域が改質される。
In the friction stir processing method described above, the rotating tool 80 rotating at a high speed is brought into contact with and pressed against the surface of the object 82 to be processed, so that the friction heat generated at that time and the probe 81 are generated.
The stirring action of (1) softens the rotating tool 80 contacting portion on the surface of the member and the area in the vicinity thereof to generate plastic flow.
Then, the material portion in the plastic state (plastic fluidized bed) is agitated in the non-melted state, so that the surface of the member and the region in the vicinity thereof are modified.

【0006】アルミ合金などの軽合金製鋳造部材の表面
部に、この摩擦撹拌処理による表面改質処理を施すと、
表面部の金属組織が微細化され、また鋳巣などによる内
部未充填欠陥を大幅に低減することができ、伸び、靱性
などの機械的特性、並びに疲れ強さ(熱疲労強度)の向上
を図ることができる。
When the surface modification treatment by the friction stir treatment is applied to the surface portion of the cast member made of a light alloy such as aluminum alloy,
The metal structure of the surface is made finer and internal unfilled defects due to porosity can be greatly reduced, and mechanical properties such as elongation and toughness as well as fatigue strength (thermal fatigue strength) are improved. be able to.

【0007】特にディーゼルエンジンのシリンダヘッド
における吸排気ポート間のバルブブリッジ部は、エンジ
ン駆動時の気筒での燃焼による体積膨張と停止時の冷却
による体積収縮とを繰り返して、この繰り返し応力が付
勢されるので、熱疲労によるクラックが発生しやすい部
位であり、このような部位に上述の摩擦撹拌処理を施し
て、その熱疲労強度を高めることは極めて有効である。
In particular, the valve bridge portion between the intake and exhaust ports in the cylinder head of a diesel engine repeats volume expansion due to combustion in the cylinder when the engine is driven and volume contraction due to cooling when the engine is stopped. Therefore, it is a portion where cracks are likely to occur due to thermal fatigue, and it is extremely effective to increase the thermal fatigue strength by subjecting such a portion to the friction stir treatment described above.

【0008】そこで、従来においては、金属製被処理物
(いわゆるワーク)の表面に対して回転工具80のプロー
ブ81先端の押込み深さ(位置)を一定にして、ショルダ
部83の底面の押込み深さ(ショルダ底面押込み深さ)を
一定値以上にする処理方法が採用されているが、ワーク
の寸法ばらつきによって上述のプローブ先端押込み深
さ、ショルダ底面押込み深さが変動するので、押込み不
足による未充填欠陥(いわゆる欠肉)が発生し、また改質
層の深さが変動して不安定なものとなる問題点があっ
た。
Therefore, in the past, the object to be processed made of metal
The pushing depth (position) of the tip of the probe 81 of the rotary tool 80 is made constant with respect to the surface of (so-called work), and the pushing depth of the bottom surface of the shoulder portion 83 (shoulder bottom pushing depth) is set to a certain value or more. Although the treatment method is adopted, the above-mentioned probe tip pushing depth and shoulder bottom pushing depth vary depending on the work size variation, so unfilled defects (so-called wall thickness) occur due to insufficient pushing and reforming. There was a problem that the depth of the layer fluctuated and became unstable.

【0009】以下、この問題点について、直列4気筒デ
ィーゼルエンジンのシリンダヘッドの改質を例示して説
明する。図13はシリンダヘッド85を燃焼室側から見
た状態で示す平面図であって、86は吸気ポート、87
は排気ポート、89はウォータジャケットの開口部、9
0,91は摩擦撹拌処理後において仕上げ加工を施す際
の基準面となる基準穴、P11,P12,P13,P1
4は各気筒においてバルブブリッジ部を摩擦撹拌処理す
るための開始ポイント、X1,X2,X3は開始ポイン
トP11,P12,P13,P14における気筒列方向
の離間距離である。
Hereinafter, this problem will be described by exemplifying reforming of a cylinder head of an in-line four-cylinder diesel engine. FIG. 13 is a plan view showing the cylinder head 85 as viewed from the combustion chamber side, where 86 is an intake port and 87 is an intake port.
Is an exhaust port, 89 is an opening of a water jacket, 9
Reference numerals 0 and 91 are reference holes serving as reference surfaces when finishing processing is performed after the friction stir processing, P11, P12, P13, and P1.
Reference numeral 4 is a start point for performing friction stir processing on the valve bridge portion in each cylinder, and X1, X2, X3 are separation distances in the cylinder row direction at the start points P11, P12, P13, P14.

【0010】また図14、図15、図16は寸法に若干
の差異(つまり寸法ばらつき)があるシリンダヘッド85
としてのそれぞれのワークW1,W2,W3を示し、図
示の上側が摩擦撹拌処理される燃焼室側の面であり、図
示の下側がNC加工装置に上載固定されて加工基準面と
なるシリンダヘッドカバー側の面である。
Further, FIGS. 14, 15, and 16 show a cylinder head 85 having a slight difference in size (that is, dimensional variation).
Shows the respective works W1, W2, W3, the upper side in the figure is the surface on the combustion chamber side that is subjected to friction stir processing, and the lower side in the figure is the cylinder head cover side that is fixedly mounted on the NC processing device and becomes the processing reference surface. Is the aspect of.

【0011】そこで、プローグ先端押込み位置Lpが例
えば20.317mmの一定の値になるように回転工具8
0を各ワークW1,W2,W3に押込みつつ、ショルダ
部83で各ワークW1,W2,W3の表面部を押圧し
て、摩擦撹拌処理が施される。
Therefore, the rotary tool 8 is adjusted so that the pushing position Lp of the front end of the plug becomes a constant value of, for example, 20.317 mm.
While pushing 0 into each of the works W1, W2, W3, the shoulder portion 83 presses the surface of each of the works W1, W2, W3 to perform friction stir processing.

【0012】しかし、ワーク寸法にばらつきがあるた
め、上述のプローブ先端押込み位置Lpを一定に保って
も、ワーク表面とショルダ部83の底面との間の寸法に
相当するショルダ底面押込み深さDsは図中に数値を記
載した如く0.419〜1.3331mmの範囲で変動
し、摩擦撹拌処理後の表面凹凸を仕上げ加工で除去する
際の基準穴90,91の穴底面とプローブ81先端との
間の深さに相当する改質層深さの目安は2.241〜
3.609mmの範囲で変動し、これらの変動はそれぞれ
の開始ポイントP11,P12,P13,P14間のみ
ならず、各ワークW1,W2,W3間でも変動するの
で、ショルダ底面押込み深さDs(撹拌された材料を拘
束して表面に浮き出ないようにするための重要な深さ)
の不足によって未充填欠陥(いわゆる欠肉)が発生し、ま
た改質層の深さが変動して不安定なものとなる問題点が
あった。
However, since the work size varies, even if the probe tip pushing position Lp is kept constant, the shoulder bottom pushing depth Ds corresponding to the dimension between the work surface and the bottom of the shoulder portion 83 is As indicated by the numerical values in the figure, it fluctuates in the range of 0.419 to 1.3331 mm, and between the bottom surface of the reference holes 90 and 91 and the tip of the probe 81 when removing the surface irregularities after the friction stir processing by finishing. The standard of the depth of the modified layer corresponding to the depth of the gap is 2.241-
Since it fluctuates within the range of 3.609 mm, and these fluctuations fluctuate not only between the respective starting points P11, P12, P13 and P14 but also between the respective works W1, W2 and W3, the shoulder bottom pushing depth Ds (stirring). (A significant depth to restrain the material that has been struck and prevent it from protruding to the surface)
There is a problem that unfilled defects (so-called deficiency) are generated due to the lack of oxygen, and the depth of the modified layer fluctuates and becomes unstable.

【0013】[0013]

【発明が解決しようとする課題】この発明は、金属製被
処理物の寸法ばらつきに関わらず、回転工具のショルダ
部の押込み不足による未充填欠陥(いわゆる欠肉)の発生
が防止できると共に、安定した改質層の深さを確保する
ことができる表面処理方法および表面処理装置の提供を
目的とする。
DISCLOSURE OF THE INVENTION The present invention can prevent the occurrence of unfilled defects (so-called wall thickness) due to insufficient pushing of the shoulder portion of a rotary tool, regardless of the dimensional variation of the object to be processed, and it is stable. An object of the present invention is to provide a surface treatment method and a surface treatment apparatus capable of ensuring the depth of the modified layer.

【0014】[0014]

【課題を解決するための手段】この発明による表面処理
方法は、金属製被処理物の表面部に、加工装置に装着し
た回転工具のプローブを押込みつつショルダ部で表面部
を押圧することにより摩擦撹拌処理を施し、改質層を形
成する表面処理方法であって、上記回転工具を押込み方
向に一定の送り量で金属製被処理物の表面部に押込み摩
擦撹拌処理するに際し、該金属製被処理物の表面部高さ
および加工基準面高さを計測し、これら計測値と回転工
具の形状データとによりショルダ部の押込み深さを算出
し、該押込み深さの値と未充填欠陥発生回避可能な深さ
基準値とを比較し、この比較により押込み深さの値が未
充填欠陥発生回避可能な深さ基準値より大きい時に、上
記金属製被処理物の表面部に回転工具の摩擦撹拌処理を
施すものである。
According to the surface treatment method of the present invention, friction is generated by pressing a surface portion of a metal workpiece to be processed by a shoulder portion while pushing a probe of a rotary tool attached to a processing apparatus. A surface treatment method of performing a stirring treatment to form a modified layer, wherein the rotary tool is pushed into a surface portion of a metal workpiece with a constant feed amount in a pushing direction, and friction stir treatment is performed on the metal workpiece. The height of the surface of the processed object and the height of the reference surface for processing are measured, and the indentation depth of the shoulder part is calculated from these measured values and the shape data of the rotary tool, and the value of the indentation depth and the occurrence of unfilled defects are avoided. When the indentation depth value is larger than the depth reference value at which the occurrence of unfilled defects can be avoided by comparing with the possible depth reference value, friction stirring of the rotating tool on the surface of the metal workpiece is performed. It is to be processed.

【0015】上記構成の金属製被処理物の表面部高さ
は、ワークの底面と上面との間の高さに設定することが
でき、加工基準面高さはワークの底面と基準穴の穴底面
との間の高さに設定することができ、回転工具の形状デ
ータはプローブ長に設定することができ、未充填欠陥発
生回避可能な深さ基準値はショルダ底面押込み深さの下
限値に設定することができる。
The height of the surface portion of the metal workpiece having the above construction can be set to a height between the bottom surface and the top surface of the work, and the machining reference surface height is the bottom surface of the work and the hole of the reference hole. It can be set to a height between the bottom surface, the shape data of the rotating tool can be set to the probe length, and the depth reference value that can avoid the occurrence of unfilled defects is the lower limit of the shoulder bottom indentation depth. Can be set.

【0016】上記構成によれば、まず金属製被処理物
(いわゆるワーク)の表面部高さ、加工基準面高さが計測
され、この計測値と回転工具の形状データとからショル
ダ部の押込み深さが求められ、次に押込み深さの値と未
充填欠陥(いわゆる欠肉)の発生を回避可能な深さ基準値
との比較によって、押込み深さの値が大きい時に摩擦撹
拌処理が実行される。
According to the above construction, first, the object to be treated made of metal is made.
The surface height of the (so-called work) and the machining reference surface height are measured, and the indentation depth of the shoulder part is obtained from this measurement value and the shape data of the rotary tool, and then the indentation depth value and unfilled The friction stir processing is executed when the indentation depth is large, by comparison with the depth reference value that can avoid the occurrence of defects (so-called flesh thickness).

【0017】この結果、金属製被処理物に仮に寸法ばら
つきがあっても、回転工具のショルダ部の押込み不足が
なく、該押込み不足に起因する未充填欠陥の発生が防止
できると共に、安定した改質層の深さを確保することが
できる。
As a result, even if the metal workpiece has dimensional variations, the shoulder portion of the rotary tool is not insufficiently pushed, the occurrence of unfilled defects due to the insufficient pushing can be prevented, and a stable modification is possible. The depth of the stratum can be secured.

【0018】この発明の一実施態様においては、上記比
較により押込み深さの値が未充填欠陥発生回避可能な深
さ基準値より小さい時には、回転工具の一定の送り量に
補正量を加算し、この加算した送り量より再度ショルダ
部の押込み深さを算出し、この押込み深さの値と表面部
高さおよび加工基準面高さにより算出される仕上げ加工
代の値により摩擦撹拌処理後の表面凹凸を仕上げ加工で
除去できるか否かを判定し、除去できる際には上記金属
製被処理物の表面部に回転工具の摩擦撹拌処理を施し、
除去できない際には摩擦撹拌処理を中止するものであ
る。
According to one embodiment of the present invention, when the value of the indentation depth is smaller than the depth reference value capable of avoiding the occurrence of unfilled defects by the above comparison, the correction amount is added to the constant feed amount of the rotary tool, The indentation depth of the shoulder part is calculated again from this added feed amount, and the surface after friction stir processing is calculated based on the value of this indentation depth and the surface machining allowance calculated from the surface height and the machining reference surface height. Determine whether the unevenness can be removed by finishing processing, and if it can be removed, perform friction stir processing of the rotary tool on the surface part of the metal workpiece,
When it cannot be removed, the friction stir processing is stopped.

【0019】上記構成の仕上げ加工代の値は、摩擦撹拌
処理後の表面凹凸(荒残り)を仕上げ加工によって除去す
る荒残り回避可能な仕上げ取り代の値に設定することが
できる。
The value of the finishing machining allowance of the above construction can be set to the value of the finishing machining allowance capable of avoiding the rough residue which removes the surface irregularities (roughness) after the friction stir processing by the finishing machining.

【0020】上記構成によれば、ショルダ部の押込み深
さの値が未充填欠陥発生回避可能な深さ基準値よりも小
さい場合に、まず回転工具の一定の送り量に対して補正
量を加算して、この加算した送り量により再びショルダ
部の押込み深さを求め、求められた押込み深さの値と仕
上げ加工代の値とから表面凹凸が仕上げ加工時に除去で
きるか否かを判定して、除去可能時には補正量加算条件
下で回転工具にて摩擦撹拌処理を実行し、除去不可能時
には摩擦撹拌処理を中止(または禁止)して、例えばワー
クの払出しを行なう。
According to the above construction, when the pushing depth value of the shoulder portion is smaller than the depth reference value at which the occurrence of unfilled defects can be avoided, the correction amount is first added to the constant feed amount of the rotary tool. Then, the indentation depth of the shoulder part is obtained again by this added feed amount, and it is judged whether the surface irregularities can be removed during the finishing process from the obtained indentation depth value and the finishing machining allowance value. When the removal is possible, the friction stir processing is executed by the rotary tool under the correction amount addition condition, and when the removal is not possible, the friction stirring processing is stopped (or prohibited) and, for example, the work is delivered.

【0021】この結果、補正量の加算により表面凹凸の
除去が可能な金属製被処理物についてのみ摩擦撹拌処理
を行ない、補正をかけても表面凹凸の除去ができない金
属製被処理物の寸法NG品については摩擦撹拌処理を行
なわないので、製造品質の安定化を図ることができる。
As a result, the friction stir processing is performed only on the object to be treated on the metal whose surface irregularities can be removed by adding the correction amount, and the size of the object to be treated NG on which the surface irregularities cannot be removed even if the correction is applied. Since the product is not subjected to friction stir processing, the production quality can be stabilized.

【0022】この発明の一実施態様においては、上記金
属製被処理物の表面部高さおよび加工基準面高さを複数
箇所で計測し、各測定箇所の測定値と回転工具の形状デ
ータによりショルダ部の押込み深さを各測定箇所毎に算
出するものである。
In one embodiment of the present invention, the height of the surface of the metal workpiece and the height of the machining reference surface are measured at a plurality of points, and the shoulder is determined by the measured values at the respective measurement points and the shape data of the rotary tool. The indentation depth of the part is calculated for each measurement point.

【0023】上記構成によれば、複数箇所を計測するこ
とにより、金属製被処理物の長さ方向の寸法ばらつきに
対応した適正な計測、並びに各測定箇所毎の適正な評価
と、評価に応じた処理を行なうことができる。
According to the above construction, by measuring a plurality of points, it is possible to perform appropriate measurement corresponding to the dimensional variation in the lengthwise direction of the object to be processed, an appropriate evaluation for each measurement point, and an appropriate evaluation. Can be processed.

【0024】つまり、1つの測定箇所のみでは正確な判
断、評価ができないので、複数箇所の計測および各測定
箇所毎の算出を実行するものである。
That is, since accurate determination and evaluation cannot be performed with only one measurement point, measurement at a plurality of points and calculation for each measurement point are executed.

【0025】この発明の一実施態様においては、上記金
属製被処理物をディーゼルエンジンのシリンダヘッドに
設定し、上記シリンダヘッドの吸排気口間に改質層を形
成するものである。
In one embodiment of the present invention, the metal object to be treated is set in a cylinder head of a diesel engine, and a reforming layer is formed between intake and exhaust ports of the cylinder head.

【0026】上記構成によれば、ディーゼルエンジンの
シリンダヘッドの寸法ばらつきに関わらず、回転工具の
ショルダ部の押込み不足による未充填欠陥の発生が防止
でき、安定した改質層の深さを確保することができる。
特に、繰り返し応力が付勢される吸排気口間いわゆるバ
ルブブリッジ部の熱疲労強度を高めることができる。
According to the above construction, regardless of the dimensional variation of the cylinder head of the diesel engine, it is possible to prevent an unfilled defect due to insufficient pushing of the shoulder portion of the rotary tool, and to secure a stable depth of the reformed layer. be able to.
In particular, it is possible to increase the thermal fatigue strength of the so-called valve bridge portion between the intake and exhaust ports where repeated stress is applied.

【0027】この発明による表面処理装置は、金属製被
処理物の表面部に、加工装置に装着した回転工具のプロ
ーブを押込みつつショルダ部で表面部を押圧することに
より摩擦撹拌処理を施し、改質層を形成する表面処理装
置であって、上記金属製被処理物の表面部高さおよび加
工基準面高さを計測する計測手段と、上記計測手段で計
測された計測値と回転工具の形状データとによりショル
ダ部の押込み深さを算出する算出手段と、上記押込み深
さの値と未充填欠陥発生回避可能な深さ基準値とを比較
する比較手段と、上記比較手段の比較結果に基づいて押
込み深さの値が未充填欠陥発生回避可能な深さ基準値よ
り大きい時に、上記金属製被処理物の表面部に回転工具
の摩擦撹拌処理を施すものである。
In the surface treatment apparatus according to the present invention, friction stir processing is performed by pressing the probe of the rotary tool attached to the processing apparatus onto the surface of the object to be treated and pressing the surface with the shoulder portion. A surface treatment device for forming a quality layer, the measuring means for measuring the height of the surface portion and the processing reference surface height of the metal workpiece, the measurement value measured by the measuring means, and the shape of the rotary tool. Calculation means for calculating the indentation depth of the shoulder portion with the data, comparison means for comparing the value of the indentation depth and the depth reference value for avoiding the occurrence of unfilled defects, and based on the comparison result of the comparison means When the value of the indentation depth is larger than the depth reference value at which the occurrence of unfilled defects can be avoided, the friction stir treatment of the rotary tool is performed on the surface portion of the metal workpiece.

【0028】上記構成によれば、上記計測手段で、まず
金属製被処理物(いわゆるワーク)の表面部高さ、加工基
準面高さが計測され、上述の算出手段で、計測値と回転
工具の形状データとからショルダ部の押込み深さが求め
られ、次に比較手段で、押込み深さの値と未充填欠陥
(いわゆる欠肉)の発生を回避可能な深さ基準値とが比較
され、この比較結果により押込み深さの値が大きい時に
摩擦撹拌処理が実行される。
According to the above construction, first, the measuring means measures the height of the surface portion of the object to be processed (so-called work) made of metal and the height of the reference surface for machining, and the calculating means calculates the measured value and the rotary tool. The indentation depth of the shoulder part is obtained from the shape data of the
The depth reference value capable of avoiding the occurrence of (so-called wall deficiency) is compared, and the friction stir processing is executed when the indentation depth is large according to the comparison result.

【0029】この結果、金属製被処理物の寸法ばらつき
に関わらず、回転工具のショルダ部の押込み不足がな
く、該押込み不足に起因する未充填欠陥の発生が防止で
きると共に、安定した改質層の不可を確保することがで
きる。
As a result, regardless of the dimensional variation of the metal workpiece, the shoulder portion of the rotary tool does not have insufficient indentation, it is possible to prevent the occurrence of unfilled defects due to insufficient indentation, and a stable modified layer. It is possible to secure the impossibility.

【0030】この発明の一実施態様においては、回転工
具の一定の送り量に補正量を加算し、この加算した送り
量より再度ショルダ部の押込み深さを算出する演算手段
を設け、上記比較手段の比較結果に基づいて押込み深さ
の値が未充填欠陥発生回避可能な深さ基準値より小さい
時には、上記演算手段で再度ショルダ部の押込み深さを
算出し、この押込み深さの値と表面部高さおよび加工基
準面高さにより算出される仕上げ加工代の値により摩擦
撹拌処理後の表面凹凸を仕上げ加工で除去できるか否か
を判定する判定手段を設け、上記判定手段の判定結果に
基づいて除去できる時には、上記金属製被処理物の表面
部に回転工具の摩擦撹拌処理を施し、除去できない時に
は、摩擦撹拌処理を中止するものである。
In one embodiment of the present invention, a correction means is added to a constant feed amount of the rotary tool, and arithmetic means for calculating the pushing depth of the shoulder portion again from the added feed amount is provided, and the comparison means is provided. When the value of the indentation depth is smaller than the depth reference value at which the occurrence of unfilled defects can be avoided based on the comparison result of, the indentation depth of the shoulder portion is calculated again by the above calculating means, and the indentation depth value and the surface are calculated. A determination means for determining whether or not the surface unevenness after the friction stir processing can be removed by the finishing processing based on the value of the finishing processing cost calculated by the section height and the processing reference surface height is provided. When it can be removed based on the above, the friction stir processing of the rotary tool is performed on the surface portion of the metal workpiece, and when it cannot be removed, the friction stirring processing is stopped.

【0031】上記構成によれば、ショルダ部の押込み深
さの値が未充填欠陥発生回避可能な深さ基準値よりも小
さい時には、上述の演算手段で、回転工具の一定の送り
量に補正量を加算し、この加算した送り量により再びシ
ョルダ部の押込み深さを求め、次に判定手段で、押込み
深さの値と仕上げ加工代の値とから表面凹凸が仕上げ加
工時に除去できるか否かを判定し、判定結果に基づいて
表面凹凸の除去可能時には補正量加算条件下で回転工具
にて摩擦撹拌処理を実行し、表面凹凸の除去不可能時に
は摩擦撹拌処理を中止(または禁止)して、例えばワーク
の払出しを行なう。
According to the above construction, when the value of the indentation depth of the shoulder portion is smaller than the reference value of the depth at which the occurrence of unfilled defects can be avoided, the calculation means described above corrects the feed amount of the rotary tool to a constant feed amount. Then, the indentation depth of the shoulder portion is calculated again based on this added feed amount, and then the judgment means determines whether the surface unevenness can be removed during the finishing process from the value of the indentation depth and the value of the finishing allowance. Based on the judgment result, when the surface irregularities can be removed, the friction stir processing is executed with the rotating tool under the correction amount addition condition, and when the surface irregularities cannot be removed, the friction stir processing is stopped (or prohibited). , For example, paying out the work.

【0032】この結果、補正量の加算により表面凹凸の
除去が可能な金属製被処理物についてのみ摩擦撹拌処理
を行ない、補正をかけても表面凹凸の除去ができない金
属製被処理物の寸法NG品については摩擦撹拌処理を行
なわないので、製造品質の安定化を図ることができる。
As a result, the size NG of the metal object to be treated in which the surface irregularities cannot be removed by performing friction stir processing only on the object to be treated in which the surface irregularities can be removed by adding the correction amount Since the product is not subjected to friction stir processing, the production quality can be stabilized.

【0033】この発明の一実施態様においては、上記金
属製被処理部をディーゼルエンジンのシリンダヘッドに
設定し、上記表面部高さおよび加工基準面高さを気筒列
方向に離間する複数箇所で計測すべく構成したものであ
る。
In one embodiment of the present invention, the metal treated portion is set in a cylinder head of a diesel engine, and the surface height and the machining reference surface height are measured at a plurality of positions spaced in the cylinder row direction. It is configured to do so.

【0034】上記構成によれば、表面部高さ、加工基準
面高さは気筒列方向に離間する複数の箇所が計測される
ので、シリンダヘッドの寸法正常品(但し、補正をかけ
て表面凹凸が除去できるワークを含む)について摩擦撹
拌処理を実行した時、各気筒において良好な改質層が得
られる。
According to the above construction, since the surface height and the processing reference surface height are measured at a plurality of locations separated in the cylinder row direction, the cylinder head has a normal dimension (however, the surface roughness is corrected to correct the surface roughness). (Including a work that can be removed), a good modified layer can be obtained in each cylinder.

【0035】[0035]

【実施例】この発明の一実施例を以下図面に基づいて詳
述する。図面は表面処理方法および表面処理装置を示す
が、まず図1を参照して表面処理が施される金属製被処
理物としてのアルミ合金製のシリンダヘッド(鋳造品ワ
ーク)の構成について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. The drawings show a surface treatment method and a surface treatment apparatus. First, the configuration of a cylinder head (cast work) made of an aluminum alloy as a metal object to be surface-treated will be described with reference to FIG.

【0036】図1はシリンダヘッド1を燃焼室側から見
た状態で示す平面図であって、この直列4気筒タイプの
ディーゼルエンジンのシリンダヘッド1は各気筒毎に2
つの吸気ポート2,2と、2つの排気ポート3,3とが
形成されている。
FIG. 1 is a plan view showing the cylinder head 1 as viewed from the combustion chamber side. The cylinder head 1 of this in-line four-cylinder type diesel engine has two cylinder heads.
Two intake ports 2 and 2 and two exhaust ports 3 and 3 are formed.

【0037】また燃焼室側の表面部1aには、内部のウ
ォータジャケットと連通する開口部4が開口されると共
に、摩擦撹拌処理後において仕上げ加工を施す際の基準
面となる基準穴5A,5Bがシリンダヘッド1の鋳造時
に同時形成されている。
Further, an opening 4 communicating with the inner water jacket is opened in the surface portion 1a on the combustion chamber side, and reference holes 5A and 5B are used as reference surfaces when finishing is performed after the friction stir processing. Are simultaneously formed when the cylinder head 1 is cast.

【0038】さらに、図1においてP1,P2,P3,
P4は各気筒において吸排気ポート2,3間のバルブブ
リッジ部を摩擦撹拌処理するための開始ポイント、X
1,X2,X3は開始ポイントP1,P2,P3,P4
における気筒列方向の離間距離である。
Further, in FIG. 1, P1, P2, P3
P4 is a starting point for performing friction stir processing on the valve bridge portion between the intake and exhaust ports 2 and 3 in each cylinder, X
1, X2, X3 are start points P1, P2, P3, P4
Is the separation distance in the cylinder column direction.

【0039】上述のシリンダヘッド1には摩擦撹拌処理
の後に形成されるテンションボルト孔6…が設けられ、
このテンションボルト孔6に挿通されるテンションボル
ト(図示せず)により、シリンダヘッド1とシリンダブロ
ックとが締結される。
The cylinder head 1 is provided with tension bolt holes 6 ... Formed after the friction stir processing,
The cylinder head 1 and the cylinder block are fastened by a tension bolt (not shown) inserted through the tension bolt hole 6.

【0040】そこで、この実施例では上述の開始ポイン
トP1,P2,P3,P4から図1に矢印で示す処理経
路に沿ってバルブブリッジ部を摩擦撹拌処理した後に、
テンションボルト孔6の位置で該処理を終了するように
設定している。
Therefore, in this embodiment, after friction stir processing of the valve bridge portion from the above-mentioned starting points P1, P2, P3 and P4 along the processing path shown by the arrow in FIG.
The processing is set to end at the position of the tension bolt hole 6.

【0041】次に図2を参照して回転工具の具体的構成
について説明する。この回転工具7はNC加工装置8
(図4参照)の主軸9に取付けられて、高速で回転するも
のであり、シャンク10の先端には表面部1aを押圧す
るショルダ部11と、このショルダ部11に一体形成さ
れてシリンダヘッド1の表面部1aに押込まれてその表
層部(表面乃至その近傍領域)を摩擦撹拌するプローブ1
2とが設けられている。
Next, a specific structure of the rotary tool will be described with reference to FIG. This rotary tool 7 is an NC processing device 8
It is attached to a main shaft 9 (see FIG. 4) and rotates at a high speed, and a shank 10 has a shoulder portion 11 for pressing the surface portion 1a, and a cylinder head 1 integrally formed with the shoulder portion 11. Probe 1 that is pressed into the surface portion 1a of the surface and frictionally stirs the surface layer portion (surface or its vicinity)
2 and are provided.

【0042】上述のプローブ12には左ネジ部が形成さ
れる一方、ショルダ底面11aとプローブ12先端との
間は所定のプローブ長Lに設定されている。次に図3を
参照して、シリンダヘッド1と回転工具7との相対関
係、並びに、以下の説明に用いる各種符号の内容につい
て説明する。
The above-mentioned probe 12 is formed with a left-hand thread, while a predetermined probe length L is set between the shoulder bottom surface 11a and the tip of the probe 12. Next, the relative relationship between the cylinder head 1 and the rotary tool 7 and the contents of various reference symbols used in the following description will be described with reference to FIG.

【0043】図3においてFはシリンダヘッド1のヘッ
ドカバー側の下面1bと燃焼室側の表面との間のワーク
高さ(表面部高さ)、Sは基準穴5A,5Bの底面とシリ
ンダヘッド1の下面1bとの間の加工基準面高さ、Ds
はショルダ部11の底面11aがシリンダヘッド1の表
面からその内部に押込まれるショルダ底面押込み深さ
(ショルダ部の押込み深さ)、Lpはプローグ12の先端
とシリンダブロック1の下面1bとの間の高さに相当す
るプローブ先端押込み位置、δはシリンダブロック1の
表面とプローブ12の先端との間の深さに相当するプロ
ーブ先端押込み深さ基準位置である。
In FIG. 3, F is the work height (surface height) between the lower surface 1b on the head cover side of the cylinder head 1 and the surface on the combustion chamber side, and S is the bottom surface of the reference holes 5A and 5B and the cylinder head 1. Processing reference surface height between the lower surface 1b of the
Is the depth at which the bottom surface 11a of the shoulder portion 11 is pushed into the inside of the cylinder head 1 from the surface of the cylinder head 1.
(Pushing depth of shoulder part), Lp is the probe tip pushing position corresponding to the height between the tip of the plug 12 and the lower surface 1b of the cylinder block 1, and δ is the surface of the cylinder block 1 and the tip of the probe 12. It is a probe tip pushing depth reference position corresponding to the depth between.

【0044】次に図4を参照して、表面処理装置の構成
について説明する。この表面処理装置は、シリンダヘッ
ド1の表面部1aに、NC加工装置8の主軸9に装着し
た回転工具7のプローブ12を図3に示すように押込み
つつ、ショルダ部11で表面部1aを押圧することによ
り摩擦撹拌処理を施して、改質層を形成する装置であ
る。
Next, the structure of the surface treatment apparatus will be described with reference to FIG. This surface treatment device pushes the surface portion 1a with the shoulder portion 11 while pushing the probe 12 of the rotary tool 7 mounted on the spindle 9 of the NC processing device 8 into the surface portion 1a of the cylinder head 1 as shown in FIG. This is an apparatus for forming a modified layer by performing friction stir processing by performing.

【0045】この表面処理装置は、図4に示すように制
御手段としてのCPU20を備え、このCPU20には
ワーク高さ検知センサ13、基準面高さ検知センサ1
4、入力部15、識別情報マーキング装置16を接続し
ている。上述のワーク高さ検知センサ13は接触タイプ
のダイヤルゲージまたは非接触タイプのレーザ変位計で
構成され、図1に示す開始ポイントP1,P4部分のワ
ーク高さF(図3参照)を実測する。
As shown in FIG. 4, this surface treatment apparatus has a CPU 20 as a control means, and the CPU 20 has a work height detection sensor 13 and a reference surface height detection sensor 1.
4, the input unit 15, and the identification information marking device 16 are connected. The work height detection sensor 13 described above is composed of a contact type dial gauge or a non-contact type laser displacement meter, and measures the work height F (see FIG. 3) at the start points P1 and P4 shown in FIG.

【0046】上述の基準面高さ検知センサ14は接触タ
イプのダイヤルゲージまたは非接触タイプのレーザ変位
計で構成され、図1に示す基準穴5A,5B部分におい
て加工基準面高さS(図3参照)を実測する。上述の入力
部15はキーボード等により構成され、事前入力情報の
入力処理に用いられる。
The above-mentioned reference surface height detecting sensor 14 is composed of a contact type dial gauge or a non-contact type laser displacement meter, and the processing reference surface height S (FIG. 3) is formed in the reference holes 5A and 5B shown in FIG. See). The above-mentioned input unit 15 is composed of a keyboard or the like and is used for input processing of pre-input information.

【0047】ここで、上述の事前入力情報は高さF,S
の測定位置、摩擦撹拌処理の開始ポイントP1〜P4の
位置、回転工具7の形状データとしてのプローブ長L、
プローブ先端押込み深さ基準位置δ(図3参照)、未充填
欠陥発生回避可能なショルダ底面押込み深さStd(ショ
ルダ底面押込み深さDsの下限値であるから、以下単に
下限値と略記する)、摩擦撹拌処理後の表面凹凸を仕上
げ加工時に除去する際の仕上げ加工代とての荒残り回避
可能な仕上げ取り代αなどである。
Here, the above-mentioned pre-input information is the heights F and S.
Measurement position, the positions of start points P1 to P4 of the friction stir processing, the probe length L as the shape data of the rotary tool 7,
Probe tip indentation depth reference position δ (see FIG. 3), shoulder bottom indentation depth Std (which is the lower limit of the shoulder bottom indentation depth Ds, and henceforth abbreviated as the lower limit). It is a finishing removal allowance α, etc., which can avoid rough residue as a finishing processing allowance when removing the surface irregularities after the friction stir processing during the finishing processing.

【0048】上述のCPU20は、ワーク高さ検知セン
サ13、基準面高さ検知センサ14、入力部15からの
必要な入力情報に基づいて、ROM17に格納されたプ
ログラムに従って、NC加工装置8のシーケンサ18、
識別情報マーキング装置16を駆動制御し、またRAM
19は必要なデータ等を記憶する。ここで、識別情報マ
ーキング装置16は後述する補正量を加算した値でシリ
ンダヘッド1に摩擦撹拌処理を施す際に、この旨を認識
できるようにシリンダヘッド1の所定部にマークを施す
ためのものである。
The CPU 20 described above, based on the necessary input information from the work height detection sensor 13, the reference surface height detection sensor 14, and the input unit 15, according to the program stored in the ROM 17, the sequencer of the NC processing device 8. 18,
Driving control of the identification information marking device 16 and RAM
Reference numeral 19 stores necessary data and the like. Here, the identification information marking device 16 is for marking a predetermined portion of the cylinder head 1 when the friction stir processing is performed on the cylinder head 1 with a value obtained by adding a correction amount described later so that the fact can be recognized. Is.

【0049】上述のNC加工装置8は、シーケンサ1
8、NCコントローラ21、Z軸サーボモータ22、Y
軸サーボモータ23、X軸サーボモータ24、主軸モー
タ25、主軸9、回転工具7を有し、主軸モータ25は
主軸9を介して回転工具7を駆動し、Z軸サーボモータ
22は回転工具7の上下方向(高さ方向)の位置制御を行
ない、Y軸サーボモータ23およびX軸サーボモータ2
4は摩擦撹拌処理の図1に示すような処理経路を得るた
めに回転工具7の前後左右方向の位置制御を行なう。
The NC processing device 8 described above includes the sequencer 1
8, NC controller 21, Z-axis servomotor 22, Y
It has an axis servo motor 23, an X axis servo motor 24, a spindle motor 25, a spindle 9, and a rotary tool 7. The spindle motor 25 drives the rotary tool 7 via the spindle 9, and the Z axis servo motor 22 drives the rotary tool 7. Position control in the vertical direction (height direction) of the Y-axis servomotor 23 and the X-axis servomotor 2
Reference numeral 4 controls the position of the rotary tool 7 in the front-rear direction and the left-right direction in order to obtain the processing path of the friction stir processing as shown in FIG.

【0050】また上述のCPU20は計測手段としての
ワーク高さ検知センサ13、基準面高さ検知センサ14
で計測された計測値(ワーク高さF、加工基準面高さS
参照)と、回転工具7の形状データ(プローブ長L参照)
とにより、ショルダ底面押込み深さDsを算出する算出
手段(図5に示すフローチャートのステップQ7参照)
と、上述のショルダ底面押込み深さDsと下限値Stdと
を比較する比較手段(図5に示すフローチャートのステ
ップS8参照)と、を兼ね、上記比較手段(ステップQ8
参照)の比較結果に基づいて、ショルダ底面押込み深さ
Dsが下限値Stdより大きい時(ステップQ8のYES
判定参照)に、シリンダヘッド1の表面部1aに回転工
具の摩擦撹拌処理を施すように構成している。
Further, the CPU 20 described above has the work height detecting sensor 13 and the reference surface height detecting sensor 14 as measuring means.
Measured values (work height F, machining reference surface height S
Reference) and the shape data of the rotary tool 7 (see probe length L)
By means of calculating the shoulder bottom indentation depth Ds (see step Q7 of the flowchart shown in FIG. 5)
And the comparing means (see step S8 in the flowchart shown in FIG. 5) for comparing the shoulder bottom indentation depth Ds and the lower limit value Std, and the comparing means (step Q8).
When the shoulder bottom indentation depth Ds is larger than the lower limit value Std (see YES in step Q8).
(See the determination), the surface 1a of the cylinder head 1 is configured to be subjected to friction stir processing of the rotary tool.

【0051】さらに、上述のCPU20は、回転工具7
の一定の送り量に補正量を加算し、この加算した送り量
より再度ショルダ底面押込み深さDsを算出する演算手
段(図5に示すフローチャートのステップQ12参照)
と、このショルダ底面押込み深さDsとワーク高さFお
よび加工基準面高さSにより算出される仕上げ加工代の
値つまり仕上げ取り代αにより摩擦撹拌処理後の表面凹
凸を仕上げ加工で除去できるか否かを判定する判定手段
(図5に示すフローチャートのステップQ10参照)とを
兼ね、上述の比較手段(ステップQ8参照)の比較結果に
基づいて、ショルダ底面押込み深さDsが下限値Stdよ
り小さい時には、上記演算手段(ステップQ12参照)で
再びショルダ底面押込み深さDsを算出し、この補正量
を加味したショルダ底面押込み深さDsと高さF,Sに
より算出される仕上げ取り代αから表面凹凸を仕上げ加
工で除去できるか否かを上述の判定手段(ステップQ1
0参照)で判定し、この判定結果に基づいて表面凹凸が
除去できる時(ステップQ10のNO判定参照)には、シ
リンダヘッド1の表面部1aに回転工具7の摩擦撹拌処
理を施し、表面凹凸が除去できない時(ステップQ10
のYES判定参照)には、摩擦撹拌処理を中止するよう
に構成している。なお、上述のステップQ10は判定手
段と演算手段とを兼ねるように構成してもよい。
Further, the above-mentioned CPU 20 uses the rotary tool 7
A calculation means for adding a correction amount to the constant feed amount of and calculating again the shoulder bottom indentation depth Ds from the added feed amount (see step Q12 of the flowchart shown in FIG. 5).
And the value of the finishing machining allowance, that is, the finishing machining allowance α calculated by the shoulder bottom indentation depth Ds, the work height F, and the machining reference surface height S, can the surface unevenness after the friction stir processing be removed by the finishing machining? Judgment means for judging whether or not
(See step Q10 of the flowchart shown in FIG. 5), and when the shoulder bottom indentation depth Ds is smaller than the lower limit value Std based on the comparison result of the above-mentioned comparison means (see step Q8), the above calculation means (step (See Q12), the shoulder bottom indentation depth Ds is calculated again, and the surface irregularities can be removed by the finishing process from the finish bottom allowance α calculated by the shoulder bottom indentation depth Ds and the heights F and S in consideration of this correction amount. Whether or not the above-mentioned determination means (step Q1
0)), and when surface irregularities can be removed based on this determination result (see NO determination in step Q10), the friction stir processing of the rotary tool 7 is applied to the surface 1a of the cylinder head 1 to obtain the surface irregularities. When can not be removed (Step Q10
In the case of YES determination), the friction stir processing is stopped. The above-mentioned step Q10 may be configured so as to serve as both the determination means and the calculation means.

【0052】しかも、この実施例では、シリンダヘッド
1のワーク高さFを図1に示す開始ポイントP1,P2
の複数箇所で計測すると共に、シリンダヘッド1の加工
基準面高さSを図1に示す基準穴5A,5Bの複数箇所
で計測し、これら複数の測定箇所の測定値と回転工具7
の形状データによりショルダ底面押込み深さDsを各気
筒毎に算出すべく構成している。ここで、上述のCPU
20、ROM17、RAM19および入力部15に代え
て、パーソナルコンピュータ等の他の手段を用いてもよ
いことは勿論である。
Moreover, in this embodiment, the work height F of the cylinder head 1 is set to the starting points P1 and P2 shown in FIG.
And the machining reference surface height S of the cylinder head 1 is measured at a plurality of reference holes 5A and 5B shown in FIG. 1, and the measured values at the plurality of measurement points and the rotary tool 7 are measured.
The bottom surface indentation depth Ds of the shoulder is calculated for each cylinder based on the shape data. Here, the above CPU
It goes without saying that other means such as a personal computer may be used instead of the 20, ROM 17, RAM 19, and input section 15.

【0053】次に、図5に示すフローチャートを参照し
て、表面処理方法について説明する。まず、ステップQ
1(事前情報入力手段)で、入力部15の操作により各種
の事前入力情報をCPU20にインプットする。
Next, the surface treatment method will be described with reference to the flow chart shown in FIG. First, step Q
1 (advance information input means) inputs various kinds of advance input information to the CPU 20 by operating the input unit 15.

【0054】つまり、高さF,Sの測定位置、摩擦撹拌
処理の開始位置(図1に示す開始ポイントP1〜P4参
照)、プローブ長L、プローブ先端押込み深さ基準位置
δ、下限値Std、仕上げ取り代αの各情報を入力部15
からCPU20に入力する。
That is, the measuring positions of the heights F and S, the starting position of the friction stir processing (see starting points P1 to P4 shown in FIG. 1), the probe length L, the probe tip pushing depth reference position δ, the lower limit value Std, Inputting information for finishing allowance α
Input to the CPU 20.

【0055】次に、ステップQ2で、ワーク高さ検知セ
ンサ13により開始ポイントP1,P4のワーク高さF
を実測し、実測値をCPU20に入力する。次に、ステ
ップQ3で、基準面高さ検知センサ14により基準穴5
A,5Bの部位における加工基準面高さSを実測し、実
測値をCPU20に入力する。
Next, at step Q2, the work height F at the starting points P1 and P4 is detected by the work height detection sensor 13.
Is measured and the measured value is input to the CPU 20. Next, in step Q3, the reference surface height detection sensor 14 causes the reference hole 5
The processing reference surface height S at the portions A and 5B is measured, and the measured value is input to the CPU 20.

【0056】次に、ステップQ4で、CPU20は各開
始ポイントP1〜P4におけるワーク高さFを演算す
る。この場合、開始ポイントP1,P4のワーク高さF
については実測値をそのまま用いてもよい。
Next, in step Q4, the CPU 20 calculates the work height F at each of the starting points P1 to P4. In this case, the work height F at the starting points P1 and P4
For, the measured value may be used as it is.

【0057】次に、ステップQ5で、CPU20は各開
始ポイントP1〜P4における加工基準面高さSを推定
演算する。次にステップQ6で、CPU20は気筒毎の
プローブ先端押込み位置Lpを求める。
Next, in step Q5, the CPU 20 estimates and calculates the machining reference surface height S at each of the starting points P1 to P4. Next, in step Q6, the CPU 20 obtains the probe tip pushing position Lp for each cylinder.

【0058】プローブ先端押込み位置の計算値Lpiは加
工基準面高さの計算値Siにプローブ先端押込み深さ基
準位置δを加算して求めることができる。ここで、上記
計算値Lpiのiは第1気筒の場合には第1気筒の位置L
pを意味し、第2気筒の場合には第2気筒の位置Lpを
意味し、以下の説明に用いるiについても同様である。
次に、ステップQ7で、CPU20は気筒毎のショルダ
底面押込み深さDsを求める。ショルダ底面押込み深さ
の計算値Dsiは次の[数1]により求める。
The calculated value Lpi of the probe tip pushing position can be obtained by adding the probe tip pushing depth reference position δ to the calculated reference surface height Si. Here, i of the calculated value Lpi is the position L of the first cylinder in the case of the first cylinder.
p means the position Lp of the second cylinder in the case of the second cylinder, and the same applies to i used in the following description.
Next, in step Q7, the CPU 20 obtains the shoulder bottom indentation depth Ds for each cylinder. The calculated value Dsi of the shoulder bottom indentation depth is obtained by the following [Equation 1].

【0059】[数1] Dsi=Fi−Lpi−L 但し、Fiはワーク高さの計算値 Lpiはプローブ先端押込み位置の計算値 Lはプローブ長[Equation 1] Dsi = Fi-Lpi-L However, Fi is the calculated value of the work height Lpi is the calculated value of the probe tip pushing position L is the probe length

【0060】次に、ステップQ8で、CPU20は上記
演算により求められたショルダ底面押込み深さDsiが未
充填欠陥発生回避可能な深さの下限値Stdよりも大きい
か否かを判定し、YES判定時(ワーク寸法正常時)には
次のステップQ9に移行する一方、NO判定時(ワーク
寸法NG時、但し、補正をかけることで荒残りが解消さ
れるものを含む)には別のステップQ10に移行する。
Next, in step Q8, the CPU 20 determines whether or not the shoulder bottom indentation depth Dsi obtained by the above calculation is larger than the lower limit value Std of the depth at which the occurrence of unfilled defects can be avoided, and a YES determination is made. When the workpiece size is normal, the process proceeds to the next step Q9, while when the NO determination is made (when the workpiece size is NG, however, it includes the one in which the rough portion is eliminated by applying the correction), another step Q10 is performed. Move to.

【0061】上述のステップQ9で、CPU20はステ
ップQ6で求められたプローブ先端押込み量Lpiを演算
値として摩擦撹拌処理を施すようNC加工装置8に指令
を出力する。一方、上述のステップQ10で、CPU2
0は荒残りするか否かを判定する。つまり、次に[数2]
で示す値が零以上か否かで荒残りするか否かを判定す
る。
At the above-mentioned step Q9, the CPU 20 outputs a command to the NC processing device 8 to perform the friction stir processing with the probe tip pushing amount Lpi obtained at step Q6 as a calculated value. On the other hand, in step Q10 described above, the CPU 2
A value of 0 determines whether or not there will be rough spots. That is, next, [Equation 2]
It is determined whether or not there is a rough residue depending on whether or not the value indicated by is zero or more.

【0062】[数2] (Std−Dsi+α)−(Fi−Si) 但し、Stdは下限値 Dsiはショルダ底面押込み深さの計算値 αは荒残り回避可能な仕上げ取り代 Fiはワーク高さの計算値 Siは加工基準面高さの計算値 ここで、(Std−Dsi+α)−(Fi−Si)<0の時
は荒残りし、(Std−Dsi+α)−(Fi−Si)≧0
の時には荒残りしない。
[Equation 2] (Std-Dsi + α)-(Fi-Si) where Std is the lower limit value Dsi is the calculated value of the shoulder bottom indentation depth α is the roughing avoidable finishing allowance Fi is the work height. The calculated value Si is the calculated value of the machining reference surface height. Here, when (Std-Dsi + α)-(Fi-Si) <0, it remains rough and (Std-Dsi + α)-(Fi-Si) ≧ 0.
At the time of, it does not remain rough.

【0063】そして、上述のステップQ10で、荒残り
すると判定された時(YES判定時)には次のステップQ
11に移行し、荒残りしないと判定された時(NO判定
時)には別のステップQ12に移行する。
Then, if it is determined in the above-mentioned step Q10 that there will be rough residue (YES determination), the next step Q10
When it is determined that no rough residue occurs (NO determination), the process proceeds to another step Q12.

【0064】上述のステップQ11で、CPU20はワ
ーク寸法NG品に対応して、摩擦撹拌処理を中止とし、
これに対応してワーク(シリンダヘッド1参照)の払出し
を行なうようNC加工装置8に指令を出力する。
At the above-mentioned step Q11, the CPU 20 stops the friction stir processing corresponding to the work size NG product,
In response to this, a command is output to the NC processing device 8 so that the work (see the cylinder head 1) is discharged.

【0065】一方、ステップQ12で、CPU20はシ
ョルダ底面の押込み深さDsが下限値Stdによるよう
に、プローブ先端の押込み位置Lpを補正する。この補
正は次の[数3]に基づいて実行する。
On the other hand, in step Q12, the CPU 20 corrects the pushing position Lp of the probe tip so that the pushing depth Ds of the shoulder bottom surface becomes the lower limit value Std. This correction is executed based on the following [Equation 3].

【0066】[数3] 補正後のプローブ先端押込み位置=Lpi+(Std−Ds
i) 但し、Lpiはプローブ先端押込み位置の計算値 Stdは下限値 Dsiはショルダ底面押込み深さの計算値
[Equation 3] Corrected probe tip pushing position = Lpi + (Std-Ds
i) where Lpi is the calculated value of the probe tip indentation position Std is the lower limit value Dsi is the calculated value of the shoulder bottom indentation depth

【0067】次に、ステップQ13で、CPU20は補
正量(Std−Dsi)を加算したことが認識されるように
識別情報マーキング装置16にてシリンダヘッド1に識
別情報をマーキングするようNC加工装置8に指令を出
力する。
Next, at step Q13, the CPU 20 makes the identification information marking device 16 mark the identification information on the cylinder head 1 so that the CPU 20 recognizes that the correction amount (Std-Dsi) has been added. Command is output to.

【0068】NC加工装置8では図5のフローチャート
による判定結果を受けて各気筒毎のワーク寸法OK品、
補正により荒残りが回避できるワーク、ワーク寸法NG
品にそれぞれ対応した処理を実行する。
The NC processing device 8 receives the determination result according to the flowchart of FIG.
Work, work size that can avoid rough residue by correction NG
The processing corresponding to each product is executed.

【0069】例えば合計4気筒のうちの何れかの1つの
気筒が寸法NGである場合には、残りの3気筒の寸法が
適正であっても、ワークは払い出し処理され、全気筒が
寸法OKである場合には、ステップQ6でのプローブ先
端押込み位置Lpの演算データに基づいて摩擦撹拌処理
が実行され、4気筒のうちの何れかの気筒が補正を要
し、残りの気筒が補正を要さない場合には、補正を要す
る気筒についてはステップQ12で補正されたプローブ
先端押込み位置Lpの演算データに基づいて、また、補
正を要さない気筒についてはステップQ6でのプローブ
先端押込み位置Lpの演算データに基づいて、それぞれ
摩擦撹拌処理が実行される。
For example, if any one of the four cylinders has the size NG, the work is paid out even if the size of the remaining three cylinders is proper, and all the cylinders have the size OK. In some cases, the friction stir processing is executed based on the calculation data of the probe tip pushing-in position Lp in step Q6, one of the four cylinders requires correction, and the remaining cylinders require correction. If not, based on the calculation data of the probe tip pushing position Lp corrected in step Q12 for the cylinders requiring correction, and for the cylinders not requiring correction, the probe tip pushing position Lp is calculated in step Q6. Friction stir processing is executed based on the data.

【0070】図6は図14と同一寸法のワークW1を上
記実施例の方法により表面処理(但し、ステップQ9の
指令に基づく処理)したものであり、図7は図15と同
一寸法のワークW2を上記実施例の方法により表面処理
(但し、ステップQ9の指令に基づく処理)したものであ
り、図8は図16と同一寸法のワークW3を示すが、ス
テップQ8のNO判定、ステップQ10のNO判定を経
て、ステップQ12で補正をかけて図9に示すように表
面処理したものである。
FIG. 6 shows a work W1 having the same size as that of FIG. 14, which is surface-treated by the method of the above-described embodiment (however, a process based on the command of step Q9), and FIG. 7 shows a work W2 having the same size as that of FIG. Surface treatment by the method of the above embodiment
(However, the processing based on the command in step Q9) is performed, and FIG. 8 shows the workpiece W3 having the same dimensions as in FIG. 16, but after the NO determination in step Q8 and the NO determination in step Q10, the correction is performed in step Q12. Then, the surface treatment is performed as shown in FIG.

【0071】図6、図7、図9の図中に数値を記載して
示すようにショルダ底面押込み深さDsは0.5〜0.
973mmの範囲となり、不足のない押込み量が確保で
き、改質層深さの目安は2.676〜2.88mmの範囲
となり、安定した改善層深さを確保することができた。
As shown by the numerical values shown in FIGS. 6, 7, and 9, the shoulder bottom indentation depth Ds is 0.5 to 0.
It was in the range of 973 mm, and a sufficient amount of indentation could be secured, and the target of the modified layer depth was in the range of 2.676 to 2.88 mm, and a stable improved layer depth could be secured.

【0072】このように上記実施例の表面処理方法は、
金属製被処理物(シリンダヘッド1参照)の表面部1a
に、NC加工装置8に装着した回転工具7のプローブ1
2を押込みつつショルダ部11で表面部1aを押圧する
ことにより摩擦撹拌処理を施し、改質層を形成する表面
処理方法であって、上記回転工具7を押込み方向に一定
の送り量で金属製被処理物(シリンダヘッド1参照)の表
面部1aに押込み摩擦撹拌処理するに際し、該金属製被
処理物(シリンダヘッド1参照)の表面部高さ(ワーク高
さF参照)および加工基準面高さSを計測し(ステップQ
2,Q3参照)、これら計測値と回転工具7の形状デー
タとによりショルダ部11の押込み深さ(ショルダ底面
押込み深さDs参照)を算出し(ステップQ7参照)、該
押込み深さDsの値と未充填欠陥発生回避可能な深さ基
準値(下限値Std参照)とを比較し(ステップQ8参照)、
この比較により押込み深さDsの値が未充填欠陥発生回
避可能な深さ基準値(下限値Std参照)より大きい時(ス
テップQ8のYES判定参照)に、上記金属製被処理物
(シリンダヘッド1参照)の表面部1aに回転工具7の摩
擦撹拌処理を施すものである。
Thus, the surface treatment method of the above embodiment is
Surface part 1a of metal object (see cylinder head 1)
The probe 1 of the rotary tool 7 mounted on the NC processing device 8
A surface treatment method in which a friction stir treatment is performed by pressing the surface portion 1a with the shoulder portion 11 while pushing in 2 to form a modified layer, and the rotary tool 7 is made of metal at a constant feed amount in the pushing direction. The surface height (see the work height F) and the machining reference surface height of the metal workpiece (see the cylinder head 1) when the friction stir processing is performed by pushing the surface 1a of the workpiece (see the cylinder head 1) Measure S (Step Q
2 and Q3), the indentation depth of the shoulder portion 11 (see shoulder bottom indentation depth Ds) is calculated from these measured values and the shape data of the rotary tool 7 (see step Q7), and the value of the indentation depth Ds is calculated. And a depth reference value (see lower limit value Std) at which the occurrence of unfilled defects can be avoided (see step Q8),
By this comparison, when the value of the indentation depth Ds is larger than the depth reference value (see lower limit value Std) at which the occurrence of unfilled defects can be avoided (see YES determination in step Q8), the metal workpiece
The surface portion 1a of the cylinder head 1 is subjected to friction stir processing of the rotary tool 7.

【0073】この構成によれば、まず金属製被処理物
(シリンダヘッド1参照)の表面部高さ(ワーク高さF参
照)、加工基準面高さSが計測され、この計測値と回転
工具7の形状データとからショルダ部11の押込み深さ
Dsが求められ、次に押込み深さDsの値と未充填欠陥
(いわゆる欠肉)の発生を回避可能な深さ基準値(下限値
Std参照)との比較によって、押込み深さDsの値が大
きい時に摩擦撹拌処理が実行される。
According to this structure, first, the object to be processed made of metal
The surface height of the cylinder head 1 (see the work height F) and the machining reference surface height S are measured, and the pushing depth Ds of the shoulder portion 11 is determined from the measured value and the shape data of the rotary tool 7. Then, the value of indentation depth Ds and unfilled defect
The friction stir processing is executed when the indentation depth Ds is large by comparison with a depth reference value (see lower limit value Std) capable of avoiding the occurrence of (so-called wall deficiency).

【0074】この結果、金属製被処理物(シリンダヘッ
ド1参照)に仮に寸法ばらつきがあっても、回転工具7
のショルダ部11の押込み不足がなく、該押込み不足に
起因する未充填欠陥(いわゆる欠肉)の発生が防止できる
と共に、安定した改質層の深さを確保することができ
る。
As a result, even if the metal workpiece (see cylinder head 1) has dimensional variations, the rotary tool 7
Insufficient indentation of the shoulder portion 11 can prevent the occurrence of unfilled defects (so-called flesh thickness) due to the insufficient indentation, and can secure a stable depth of the modified layer.

【0075】また、上記比較(ステップQ8参照)により
押込み深さDsの値が未充填欠陥発生回避可能な深さ基
準値(下限値Std参照)より小さい時には、回転工具7の
一定の送り量に補正量(Std−Dsi参照)を加算し、この
加算した送り量より再度ショルダ部の押込み深さDsを
算出し、この押込み深さDsの値と表面部高さ(ワーク
高さF参照)および加工基準面高さSにより算出される
仕上げ加工代(仕上げ取り代α参照)の値により摩擦撹拌
処理後の表面凹凸を仕上げ加工で除去できるか否かを判
定し、除去できる際には上記金属製被処理物(シリンダ
ヘッド1参照)の表面部1aに回転工具7の摩擦撹拌処
理を施し、除去できない際には摩擦撹拌処理を中止する
ものである。
Further, when the value of the indentation depth Ds is smaller than the depth reference value (see the lower limit value Std) at which the occurrence of unfilled defects can be avoided by the above comparison (see step Q8), a constant feed amount of the rotary tool 7 is obtained. The correction amount (see Std-Dsi) is added, the pushing depth Ds of the shoulder portion is calculated again from the added feed amount, and the value of the pushing depth Ds and the surface height (see the work height F) and Based on the value of the finishing machining allowance (refer to finishing machining allowance α) calculated by the machining reference surface height S, it is determined whether or not the surface irregularities after the friction stir processing can be removed by the finishing machining. The surface 1a of the object to be processed (see the cylinder head 1) is subjected to friction stir processing of the rotary tool 7, and when it cannot be removed, the friction stir processing is stopped.

【0076】この構成によれば、ショルダ部11の押込
み深さDsの値が未充填欠陥発生回避可能な深さ基準値
(下限値Std参照)よりも小さい場合に、まず回転工具7
の一定の送り量に対して補正量(Std−Dsi参照)を加算
して、この加算した送り量により再びショルダ部11の
押込み深さDsを求め、求められた押込み深さDsの値
と仕上げ加工代(仕上げ取り代α参照)の値とから表面凹
凸が仕上げ加工時に除去できるか否かを判定して、除去
可能時には補正量加算条件下で回転工具7にて摩擦撹拌
処理を実行し、除去不可能時には摩擦撹拌処理を中止
(または禁止)して、例えばワークの払出しを行なう。
According to this configuration, the value of the indentation depth Ds of the shoulder portion 11 is the depth reference value that can avoid the occurrence of unfilled defects.
If it is smaller than (lower limit value Std), first turn tool 7
The correction amount (see Std-Dsi) is added to the constant feed amount of, and the pushing depth Ds of the shoulder portion 11 is obtained again by the added feed amount, and the obtained pushing depth Ds value and finish It is determined from the value of the machining allowance (refer to the finishing allowance α) whether or not the surface irregularities can be removed during the finish machining, and when the removal is possible, the friction stir processing is executed by the rotary tool 7 under the correction amount addition condition, When it cannot be removed, the friction stir processing is stopped.
(Or prohibited), and the work is paid out, for example.

【0077】この結果、補正量(Std−Dsi参照)の加算
により表面凹凸の除去が可能な金属製被処理物(シリン
ダヘッド1参照)についてのみ摩擦撹拌処理を行ない、
補正をかけても表面凹凸の除去ができない金属製被処理
物の寸法NG品については摩擦撹拌処理を行なわないの
で、製造品質の安定化を図ることができる。
As a result, the friction stir processing is performed only on the object to be processed (refer to the cylinder head 1) made of metal which can remove the surface irregularities by adding the correction amount (refer to Std-Dsi).
Since the friction stir processing is not performed for the size NG product of the metal processing object that cannot remove the surface unevenness even after the correction, the manufacturing quality can be stabilized.

【0078】しかも、上記金属製被処理物(シリンダヘ
ッド1参照)の表面部高さ(ワーク高さF参照)および加
工基準面高さSを複数箇所で計測し、各測定箇所の測定
値と回転工具7の形状データ(プローブ長L参照)により
ショルダ部11の押込み深さDsを各測定箇所毎に算出
するものである。
Moreover, the surface height (see the work height F) and the machining reference surface height S of the metal workpiece (see the cylinder head 1) are measured at a plurality of points, and the measured values at the respective measurement points are shown. The indentation depth Ds of the shoulder portion 11 is calculated for each measurement location based on the shape data of the rotary tool 7 (see the probe length L).

【0079】この構成によれば、複数箇所を計測するこ
とにより、金属製被処理物(シリンダヘッド1参照)の長
さ方向(気筒列方向参照)の寸法ばらつきに対応した適正
な計測、並びに各測定箇所毎の適正な評価と、評価に応
じた処理を行なうことができる。つまり、1つの測定箇
所のみでは正確な判断、評価ができないので、複数箇所
の計測および各測定箇所毎の算出を実行するものであ
る。
According to this structure, by measuring a plurality of points, it is possible to perform appropriate measurement corresponding to the dimensional variation in the length direction (see the cylinder row direction) of the object to be processed (see the cylinder head 1), and Appropriate evaluation for each measurement location and processing according to the evaluation can be performed. That is, since accurate determination and evaluation cannot be performed with only one measurement point, measurement at a plurality of points and calculation for each measurement point are executed.

【0080】さらに、上記金属製被処理物をディーゼル
エンジンのシリンダヘッド1に設定し、上記シリンダヘ
ッド1の吸排気口間(吸排気ポート2,3間のバルブブ
リッジ部参照)に改質層を形成するものである。
Further, the above-mentioned object to be treated made of metal is set in the cylinder head 1 of the diesel engine, and a reforming layer is provided between the intake and exhaust ports of the cylinder head 1 (see the valve bridge portion between the intake and exhaust ports 2 and 3). To form.

【0081】この構成によれば、ディーゼルエンジンの
シリンダヘッド1の寸法ばらつきに関わらず、回転工具
7のショルダ部11の押込み不足による未充填欠陥の発
生が防止でき、安定した改質層の深さを確保することが
できる。特に、繰り返し応力が付勢される吸排気口間
(吸排気ポート2,3間参照)いわゆるバルブブリッジ部
の熱疲労強度を高めることができる。
According to this structure, regardless of the dimensional variation of the cylinder head 1 of the diesel engine, it is possible to prevent an unfilled defect due to insufficient pushing of the shoulder portion 11 of the rotary tool 7, and to ensure a stable depth of the reformed layer. Can be secured. Especially between the intake and exhaust ports where stress is repeatedly applied.
(Refer between the intake and exhaust ports 2 and 3) The thermal fatigue strength of the so-called valve bridge can be increased.

【0082】上記実施例の表面処理装置は、金属製被処
理物(シリンダヘッド1参照)の表面部1aに、NC加工
装置8に装着した回転工具7のプローブ12を押込みつ
つショルダ部11で表面部1aを押圧することにより摩
擦撹拌処理を施し、改質層を形成する表面処理装置であ
って、上記金属製被処理物(シリンダヘッド1参照)の表
面部高さ(ワーク高さF参照)および加工基準面高さSを
計測する計測手段(センサ13,14参照)と、上記計測
手段(センサ13,14参照)で計測された計測値と回転
工具7の形状データ(プローブ長L参照)とによりショル
ダ部11の押込み深さ(ショルダ底面押込み深さDs参
照)を算出する算出手段(ステップQ7参照)と、上記押
込み深さDsの値と未充填欠陥発生回避可能な深さ基準
値(下限値Std参照)とを比較する比較手段(ステップQ
8参照)と、上記比較手段(ステップQ8参照)の比較結
果に基づいて押込み深さDsの値が未充填欠陥発生回避
可能な深さ基準値(下限値Std参照)より大きい時(ステ
ップQ8のYES判定時参照)に、上記金属製被処理物
(シリンダヘッド1参照)の表面部1aに回転工具7の摩
擦撹拌処理を施すものである。
In the surface treatment apparatus of the above-mentioned embodiment, the surface 12a of the object to be treated (see the cylinder head 1) is pushed by the probe 12 of the rotary tool 7 mounted on the NC processing apparatus 8 while the surface of the shoulder 1 is pushed by the shoulder portion 11. A surface treatment apparatus for performing a friction stir processing by pressing the portion 1a to form a modified layer, the height of the surface portion of the above-mentioned metal object (see cylinder head 1) (see work height F). And measuring means (see sensors 13 and 14) for measuring the machining reference surface height S, and measurement values measured by the measuring means (see sensors 13 and 14) and shape data of the rotary tool 7 (see probe length L). The calculation means (see step Q7) for calculating the indentation depth of the shoulder portion 11 (see the shoulder bottom indentation depth Ds), the value of the indentation depth Ds, and the depth reference value for avoiding the occurrence of unfilled defects ( Lower limit value Std) Comparison means for (step Q
8) and the value of the indentation depth Ds is larger than the depth reference value (see lower limit value Std) at which the occurrence of unfilled defects can be avoided based on the comparison result of the comparison means (see step Q8) (step Q8). (Refer to YES judgment)
The surface portion 1a of the cylinder head 1 is subjected to friction stir processing of the rotary tool 7.

【0083】この構成によれば、上記計測手段(センサ
13,14参照)で、まず金属製被処理物(シリンダヘッ
ド1参照)の表面部高さ(ワーク高さF参照)、加工基準
面高さSが計測され、上述の算出手段(ステップQ7参
照)で、計測値と回転工具7の形状データとからショル
ダ部11の押込み深さDsが求められ、次に比較手段
(ステップQ8参照)で、押込み深さDsの値と未充填欠
陥(いわゆる欠肉)の発生を回避可能な深さ基準値(下限
値Std参照)とが比較され、この比較結果により押込み
深さDsの値が大きい時に摩擦撹拌処理が実行される。
According to this structure, the height of the surface portion (see the work height F) of the object to be processed (see the cylinder head 1) and the height of the reference work surface are measured by the measuring means (see the sensors 13 and 14). The depth S is measured, the indentation depth Ds of the shoulder portion 11 is obtained from the measured value and the shape data of the rotary tool 7 by the above-mentioned calculation means (see step Q7), and then the comparison means.
In step Q8, the value of the indentation depth Ds is compared with the depth reference value (see lower limit value Std) that can avoid the occurrence of unfilled defects (so-called fillet), and the indentation depth is determined by this comparison result. When the value of Ds is large, the friction stir processing is executed.

【0084】この結果、金属製被処理物(シリンダヘッ
ド1参照)の寸法ばらつきに関わらず、回転工具7のシ
ョルダ部11の押込み不足がなく、該押込み不足に起因
する未充填欠陥(いわゆる欠肉)の発生が防止できると共
に、安定した改質層の不可を確保することができる。
As a result, there is no insufficient pushing of the shoulder portion 11 of the rotary tool 7 regardless of the dimensional variations of the metal workpiece (see the cylinder head 1), and there is no filling defect (so-called lack of wall thickness) due to the insufficient pushing. It is possible to prevent the occurrence of) and to ensure the stability of the modified layer.

【0085】また、回転工具7の一定の送り量に補正量
(Std−Dsi参照)を加算し、この加算した送り量より再
度ショルダ部11の押込み深さDsを算出する演算手段
(ステップQ12参照)を設け、上記比較手段(ステップ
Q8参照)の比較結果に基づいて押込み深さDsの値が
未充填欠陥発生回避可能な深さ基準値(下限値Std参照)
より小さい時(ステップQ8のNO判定参照)には、上記
演算手段(ステップQ12参照)で再度ショルダ部11の
押込み深さDsを算出し、この押込み深さDsの値と表
面部高さ(ワーク高さF参照)および加工基準面高さSに
より算出される仕上げ加工代(仕上げ取り代α参照)の値
により摩擦撹拌処理後の表面凹凸を仕上げ加工で除去で
きるか否かを判定する判定手段(ステップQ10参照)を
設け、上記判定手段(ステップQ10参照)の判定結果に
基づいて除去できる時には、上記金属製被処理物(シリ
ンダヘッド1参照)の表面部1aに回転工具7の摩擦撹
拌処理を施し、除去できない時には、摩擦撹拌処理を中
止するものである。
Further, the correction amount is set to the constant feed amount of the rotary tool 7.
(See Std-Dsi), and the calculating means for calculating the pushing depth Ds of the shoulder portion 11 again from the added feed amount.
(See step Q12) is provided, and based on the comparison result of the comparing means (see step Q8), the value of the indentation depth Ds is the depth reference value (see lower limit value Std) at which the occurrence of unfilled defects can be avoided.
When it is smaller (see NO determination in step Q8), the indentation depth Ds of the shoulder portion 11 is calculated again by the calculation means (see step Q12), and the value of this indentation depth Ds and the surface portion height (workpiece height) are calculated. Judgment means for judging whether or not the surface unevenness after the friction stir processing can be removed by the finishing process based on the value of the finishing process allowance (refer to the finishing allowance α) calculated from the height F) and the machining reference surface height S. (Refer to step Q10), and when it can be removed based on the determination result of the determination means (see step Q10), the friction stir processing of the rotary tool 7 is performed on the surface portion 1a of the metal workpiece (see cylinder head 1). When it is not possible to remove it, the friction stir processing is stopped.

【0086】この構成によれば、ショルダ部11の押込
み深さDsの値が未充填欠陥発生回避可能な深さ基準値
(下限値Std参照)よりも小さい時には、上述の演算手段
(ステップQ12参照)で、回転工具7の一定の送り量に
補正量(Std−Dsi参照)を加算し、この加算した送り量
により再びショルダ部11の押込み深さDsを求め、次
に判定手段(ステップQ10参照)で、押込み深さDsの
値と仕上げ加工代(仕上げ取り代α参照)の値とから表面
凹凸が仕上げ加工時に除去できるか否かを判定し、判定
結果に基づいて表面凹凸の除去可能時には補正量加算条
件下で回転工具7にて摩擦撹拌処理を実行し、表面凹凸
の除去不可能時には摩擦撹拌処理を中止(または禁止)し
て、例えばワークの払出しを行なう。
According to this structure, the value of the indentation depth Ds of the shoulder portion 11 is the reference value of the depth at which the occurrence of unfilled defects can be avoided.
When it is smaller than (lower limit value Std), the above calculation means
In step Q12, the correction amount (see Std-Dsi) is added to the constant feed amount of the rotary tool 7, and the pushing depth Ds of the shoulder portion 11 is obtained again by the added feed amount. In step Q10, it is determined from the value of the indentation depth Ds and the value of the finishing allowance (see the finishing allowance α) whether the surface irregularities can be removed during the finishing, and the surface irregularities are determined based on the determination result. When the removal is possible, the friction stir processing is executed by the rotary tool 7 under the correction amount addition condition, and when the surface irregularities cannot be removed, the friction stirring processing is stopped (or prohibited), and, for example, the work is discharged.

【0087】この結果、補正量の加算により表面凹凸の
除去が可能な金属製被処理物(シリンダヘッド1参照)に
ついてのみ摩擦撹拌処理を行ない、補正をかけても表面
凹凸の除去ができない金属製被処理物(シリンダヘッド
1参照)の寸法NG品については摩擦撹拌処理を行なわ
ないので、製造品質の安定化を図ることができる。
As a result, the friction stir processing is performed only on the object to be processed (see the cylinder head 1) made of metal whose surface unevenness can be removed by adding the correction amount, and the surface unevenness cannot be removed even if correction is applied. Since the friction stir processing is not performed for the NG product of the object to be processed (see the cylinder head 1), the manufacturing quality can be stabilized.

【0088】しかも、上記金属製被処理部をディーゼル
エンジンのシリンダヘッド1に設定し、上記表面部高さ
(ワーク高さF参照)および加工基準面高さSを気筒列方
向に離間する複数箇所で計測すべく構成したものであ
る。
In addition, the above-mentioned metal treated portion is set in the cylinder head 1 of the diesel engine, and the height of the surface portion is set.
(Refer to the work height F) and the machining reference surface height S are configured to be measured at a plurality of locations separated in the cylinder row direction.

【0089】この構成によれば、表面部高さ(ワーク高
さF参照)、加工基準面高さSは気筒列方向に離間する
複数の箇所が計測されるので、シリンダヘッド1の寸法
正常品(但し、補正をかけて表面凹凸が除去できるワー
クを含む)について摩擦撹拌処理を実行した時、各気筒
において良好な改質層が得られる。
According to this structure, since the surface height (see work height F) and the machining reference surface height S are measured at a plurality of locations separated in the cylinder row direction, the cylinder head 1 having a normal size is measured. (However, when the friction stir processing is performed on the work in which the surface irregularities can be removed by performing the correction), a good modified layer can be obtained in each cylinder.

【0090】なお、図5に示すフローチャートにおい
て、ステップQ10で上述の判定手段と演算手段とを兼
ねるように構成してもよい。
In the flowchart shown in FIG. 5, step Q10 may be configured so that it serves as both the determining means and the calculating means.

【0091】図10は回転工具の他の実施例を示し、図
2で示した先の実施例においてはプローブ12の外周部
に左ネジ部を形成したが、図10に示すこの実施例では
円柱形状のプローブ12と成したものである。
FIG. 10 shows another embodiment of the rotary tool. In the previous embodiment shown in FIG. 2, the left screw portion is formed on the outer peripheral portion of the probe 12, but in this embodiment shown in FIG. The probe 12 has a shape.

【0092】図11は回転工具のさらに他の実施例を示
し、この実施例では先端部が半球状の曲面形状に形成さ
れたプローグ12と成したものである。このように構成
しても、上述の表面処理方法およびその装置により、先
の実施例とほぼ同様の作用、効果を奏するので、図1
0、図11において前図と同一の部分には同一符号を付
して、その詳しい説明を省略する。
FIG. 11 shows still another embodiment of the rotary tool, and in this embodiment, the tip portion is formed as a prog 12 having a hemispherical curved surface shape. Even if configured in this manner, the above-described surface treatment method and apparatus provide substantially the same actions and effects as those of the previous embodiment.
0 and FIG. 11, the same parts as those in the previous figure are designated by the same reference numerals, and detailed description thereof will be omitted.

【0093】この発明の構成と、上述の実施例との対応
において、この発明の金属製被処理物は、実施例のアル
ミ合金製のシリンダヘッド1に対応し、以下同様に、加
工装置は、NC加工装置8に対応し、表面部高さは、ワ
ーク高さFに対応し、ショルダ部の押込み深さは、ショ
ルダ底面押込み深さDsに対応し、未充填欠陥発生回避
可能な深さ基準値は、下限値Stdに対応し、補正量は、
Std−Dsiに対応し、仕上げ加工代は、仕上げ取り代α
に対応し、回転工具の形状データは、プローグ長Lなど
に対応し、吸排気口間は、吸排気ポート2,3間のバル
ブブリッジ部に対応し、計測手段は、センサ13,14
に対応し、算出手段は、CPU20制御によるステップ
Q7に対応し、比較手段は、ステップQ8に対応し、演
算手段は、ステップQ12に対応し、判定手段は、ステ
ップQ10に対応するも、この発明は、上述の実施例の
構成のみに限定されるものではない。
In the correspondence between the structure of the present invention and the above-described embodiment, the metal workpiece of the present invention corresponds to the aluminum alloy cylinder head 1 of the embodiment. Corresponding to the NC processing device 8, the surface height corresponds to the work height F, the indentation depth of the shoulder portion corresponds to the shoulder bottom indentation depth Ds, and the depth standard with which the occurrence of unfilled defects can be avoided The value corresponds to the lower limit value Std, and the correction amount is
Corresponding to Std-Dsi, the finishing machining allowance is α
The shape data of the rotary tool corresponds to the plow length L and the like, the space between the intake and exhaust ports corresponds to the valve bridge portion between the intake and exhaust ports 2 and 3, and the measuring means is the sensors 13 and 14.
The calculation means corresponds to step Q7 controlled by the CPU 20, the comparison means corresponds to step Q8, the calculation means corresponds to step Q12, and the determination means corresponds to step Q10. Is not limited to the configuration of the above-described embodiment.

【0094】[0094]

【発明の効果】この発明によれば、金属製被処理物の寸
法ばらつきに関わらず、回転工具のショルダ部の押込み
不足による未充填欠陥(いわゆる欠肉)の発生が防止でき
ると共に、安定した改質層の深さを確保することができ
る効果がある。
According to the present invention, it is possible to prevent the occurrence of an unfilled defect (so-called wall thickness) due to insufficient pushing of the shoulder portion of the rotary tool regardless of the dimensional variation of the metal workpiece, and to perform stable modification. This has the effect of ensuring the depth of the stratum corneum.

【図面の簡単な説明】[Brief description of drawings]

【図1】 金属製被処理物の一例を示すシリンダヘッド
の平面図。
FIG. 1 is a plan view of a cylinder head showing an example of a metal workpiece.

【図2】 回転工具の側面図。FIG. 2 is a side view of the rotary tool.

【図3】 ワークと回転工具との関係を示す説明図。FIG. 3 is an explanatory diagram showing a relationship between a work and a rotary tool.

【図4】 本発明の表面処理装置を示すブロック図。FIG. 4 is a block diagram showing a surface treatment apparatus of the present invention.

【図5】 本発明の表面処理方法を示すフローチャー
ト。
FIG. 5 is a flowchart showing a surface treatment method of the present invention.

【図6】 上記方法により処理された仕上げ加工前のワ
ーク寸法を示す説明図。
FIG. 6 is an explanatory view showing a dimension of a work processed by the above method before finishing.

【図7】 上記方法により処理された仕上げ加工前のワ
ーク寸法を示す説明図。
FIG. 7 is an explanatory diagram showing the dimensions of a work piece processed by the above method before finishing.

【図8】 補正量加算前のワーク寸法を示す説明図。FIG. 8 is an explanatory diagram showing a work size before a correction amount is added.

【図9】 補正量加算後のワーク寸法を示す説明図。FIG. 9 is an explanatory diagram showing a work size after the correction amount is added.

【図10】 回転工具の他の実施例を示す側面図。FIG. 10 is a side view showing another embodiment of the rotary tool.

【図11】 回転工具のさらに他の実施例を示す側面
図。
FIG. 11 is a side view showing still another embodiment of the rotary tool.

【図12】 摩擦撹拌処理法の説明図。FIG. 12 is an explanatory diagram of a friction stir processing method.

【図13】 シリンダヘッドを燃焼室側から見た状態を
示す平面図。
FIG. 13 is a plan view showing a state in which the cylinder head is viewed from the combustion chamber side.

【図14】 従来方法によるショルダ底面押込み深さと
改質層深さ目安のばらつきを示す説明図。
FIG. 14 is an explanatory diagram showing variations in the shoulder bottom indentation depth and the modified layer depth standard according to the conventional method.

【図15】 従来方法によるショルダ底面押込み深さと
改質層深さ目安のばらつきを示す説明図。
FIG. 15 is an explanatory diagram showing variations in the shoulder bottom indentation depth and the modified layer depth standard according to the conventional method.

【図16】 従来方法によるショルダ底面押込み深さと
改質層深さ目安のばらつきを示す説明図。
FIG. 16 is an explanatory diagram showing variations in the shoulder bottom indentation depth and the modified layer depth standard according to the conventional method.

【符号の説明】 1…シリンダヘッド(金属製被処理物) 1a…表面部 2…吸気ポート 3…排気ポート 7…回転工具 8…NC加工装置(加工装置) 11…ショルダ部 11a…ショルダ底面 12…プローブ 13…ワーク高さ検知センサ(計測手段) 14…基準面高さ検知センサ(計測手段) Q7…算出手段 Q8…比較手段 Q10…判定手段 Q12…演算手段 F…ワーク高さ(表面部高さ) S…加工基準面高さ L…プローブ長(回転工具の形状データ) Ds…ショルダ底面押込み深さ(ショルダ部の押込み深
さ)
[Description of Reference Signs] 1 ... Cylinder head (metal object to be processed) 1a ... Surface part 2 ... Intake port 3 ... Exhaust port 7 ... Rotating tool 8 ... NC processing device (processing device) 11 ... Shoulder part 11a ... Shoulder bottom surface 12 ... probe 13 ... work height detection sensor (measurement means) 14 ... reference surface height detection sensor (measurement means) Q7 ... calculation means Q8 ... comparison means Q10 ... determination means Q12 ... calculation means F ... work height (surface height) S) S ... Machining reference surface height L ... Probe length (rotary tool shape data) Ds ... Shoulder bottom indentation depth (shoulder indentation depth)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G024 AA01 FA00 GA16 HA07 4E067 AA05 AA06 BG00 DA13 DC07 DD02 EA07 EB00    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3G024 AA01 FA00 GA16 HA07                 4E067 AA05 AA06 BG00 DA13 DC07                       DD02 EA07 EB00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】金属製被処理物の表面部に、加工装置に装
着した回転工具のプローブを押込みつつショルダ部で表
面部を押圧することにより摩擦撹拌処理を施し、改質層
を形成する表面処理方法であって、上記回転工具を押込
み方向に一定の送り量で金属製被処理物の表面部に押込
み摩擦撹拌処理するに際し、該金属製被処理物の表面部
高さおよび加工基準面高さを計測し、これら計測値と回
転工具の形状データとによりショルダ部の押込み深さを
算出し、該押込み深さの値と未充填欠陥発生回避可能な
深さ基準値とを比較し、この比較により押込み深さの値
が未充填欠陥発生回避可能な深さ基準値より大きい時
に、上記金属製被処理物の表面部に回転工具の摩擦撹拌
処理を施す表面処理方法。
1. A surface on which a modified layer is formed by performing friction stir processing by pressing a probe of a rotary tool attached to a processing device onto the surface of a metal object to be processed and pressing the surface with a shoulder part. A processing method, wherein the rotary tool is pushed into a surface portion of a metal workpiece by a constant feed amount in a pushing direction to perform friction stir processing, the surface height of the metal workpiece and a processing reference surface height. The depth of the shoulder portion is calculated from these measured values and the shape data of the rotary tool, and the value of the depth of depression is compared with the depth reference value for avoiding the occurrence of unfilled defects. By comparison, when the indentation depth is larger than the depth reference value at which the occurrence of unfilled defects can be avoided, the surface treatment method of performing friction stir processing of the rotary tool on the surface portion of the metal workpiece.
【請求項2】上記比較により押込み深さの値が未充填欠
陥発生回避可能な深さ基準値より小さい時には、回転工
具の一定の送り量に補正量を加算し、この加算した送り
量より再度ショルダ部の押込み深さを算出し、この押込
み深さの値と表面部高さおよび加工基準面高さにより算
出される仕上げ加工代の値により摩擦撹拌処理後の表面
凹凸を仕上げ加工で除去できるか否かを判定し、除去で
きる際には上記金属製被処理物の表面部に回転工具の摩
擦撹拌処理を施し、除去できない際には摩擦撹拌処理を
中止する請求項1記載の表面処理方法。
2. When the value of the indentation depth is smaller than the reference depth value for avoiding the occurrence of unfilled defects as a result of the above comparison, a correction amount is added to the constant feed amount of the rotary tool, and the added feed amount is again used. The indentation depth of the shoulder part is calculated, and the surface unevenness after friction stir processing can be removed by finishing by the value of this indentation depth and the value of the finishing machining allowance calculated by the surface height and the machining reference surface height. The surface treatment method according to claim 1, wherein it is determined whether or not it is possible to remove, and when it can be removed, the friction stir processing of the rotary tool is applied to the surface of the object to be treated, and when it cannot be removed, the friction stirring processing is stopped. .
【請求項3】上記金属製被処理物の表面部高さおよび加
工基準面高さを複数箇所で計測し、各測定箇所の測定値
と回転工具の形状データによりショルダ部の押込み深さ
を各測定箇所毎に算出する請求項1または2記載の表面
処理方法。
3. The height of the surface portion of the metal workpiece and the height of the machining reference surface are measured at a plurality of points, and the indentation depth of the shoulder portion is determined based on the measured values at the respective measurement points and the shape data of the rotary tool. The surface treatment method according to claim 1, wherein the surface treatment method is calculated for each measurement location.
【請求項4】上記金属製被処理物をディーゼルエンジン
のシリンダヘッドに設定し、上記シリンダヘッドの吸排
気口間に改質層を形成する請求項1,2または3記載の
表面処理方法。
4. The surface treatment method according to claim 1, wherein the metal object to be treated is set in a cylinder head of a diesel engine, and a reforming layer is formed between intake and exhaust ports of the cylinder head.
【請求項5】金属製被処理物の表面部に、加工装置に装
着した回転工具のプローブを押込みつつショルダ部で表
面部を押圧することにより摩擦撹拌処理を施し、改質層
を形成する表面処理装置であって、上記金属製被処理物
の表面部高さおよび加工基準面高さを計測する計測手段
と、上記計測手段で計測された計測値と回転工具の形状
データとによりショルダ部の押込み深さを算出する算出
手段と、上記押込み深さの値と未充填欠陥発生回避可能
な深さ基準値とを比較する比較手段と、上記比較手段の
比較結果に基づいて押込み深さの値が未充填欠陥発生回
避可能な深さ基準値より大きい時に、上記金属製被処理
物の表面部に回転工具の摩擦撹拌処理を施す表面処理装
置。
5. A surface on which a modified layer is formed by applying friction stir processing by pressing the surface of a metal tool to be processed with a shoulder of a rotary tool attached to a processing device and pressing the surface with a shoulder part. A processing device, measuring means for measuring the surface height and processing reference surface height of the metal object to be treated, and the measurement value measured by the measuring means and the shape data of the rotary tool Calculating means for calculating the indentation depth, comparing means for comparing the indentation depth value and the depth reference value for avoiding the occurrence of unfilled defects, and the indentation depth value based on the comparison result of the comparing means A surface treatment device for performing friction stir processing of a rotary tool on the surface portion of the metal object to be treated when is larger than the reference depth value for avoiding the occurrence of unfilled defects.
【請求項6】回転工具の一定の送り量に補正量を加算
し、この加算した送り量より再度ショルダ部の押込み深
さを算出する演算手段を設け、上記比較手段の比較結果
に基づいて押込み深さの値が未充填欠陥発生回避可能な
深さ基準値より小さい時には、上記演算手段で再度ショ
ルダ部の押込み深さを算出し、この押込み深さの値と表
面部高さおよび加工基準面高さにより算出される仕上げ
加工代の値により摩擦撹拌処理後の表面凹凸を仕上げ加
工で除去できるか否かを判定する判定手段を設け、上記
判定手段の判定結果に基づいて除去できる時には、上記
金属製被処理物の表面部に回転工具の摩擦撹拌処理を施
し、除去できない時には、摩擦撹拌処理を中止する請求
項5記載の表面処理装置。
6. A calculation means for adding a correction amount to a constant feed amount of the rotary tool, and again calculating the pushing depth of the shoulder portion from the added feed amount, and pushing based on the comparison result of the comparing means. When the depth value is smaller than the depth reference value at which the occurrence of unfilled defects can be avoided, the indentation depth of the shoulder portion is calculated again by the above calculating means, and the indentation value, the surface portion height and the machining reference surface are calculated. A determining means for determining whether or not the surface unevenness after the friction stir processing can be removed by the finishing processing based on the value of the finishing machining allowance calculated by the height is provided, and when it can be removed based on the determination result of the determining means, The surface treatment apparatus according to claim 5, wherein the surface of the object to be treated is subjected to friction stir processing of the rotary tool, and when it cannot be removed, the friction stir processing is stopped.
【請求項7】上記金属製被処理部をディーゼルエンジン
のシリンダヘッドに設定し、上記表面部高さおよび加工
基準面高さを気筒列方向に離間する複数箇所で計測すべ
く構成した請求項5または6記載の表面処理装置。
7. A metal head to be treated is set on a cylinder head of a diesel engine, and the height of the surface portion and the processing reference surface height are measured at a plurality of positions spaced in the cylinder row direction. Or the surface treatment apparatus according to 6.
JP2001360283A 2001-11-27 2001-11-27 Surface treatment method and surface treatment apparatus Expired - Fee Related JP4265130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360283A JP4265130B2 (en) 2001-11-27 2001-11-27 Surface treatment method and surface treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360283A JP4265130B2 (en) 2001-11-27 2001-11-27 Surface treatment method and surface treatment apparatus

Publications (2)

Publication Number Publication Date
JP2003164979A true JP2003164979A (en) 2003-06-10
JP4265130B2 JP4265130B2 (en) 2009-05-20

Family

ID=19171131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360283A Expired - Fee Related JP4265130B2 (en) 2001-11-27 2001-11-27 Surface treatment method and surface treatment apparatus

Country Status (1)

Country Link
JP (1) JP4265130B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239734A (en) * 2005-03-03 2006-09-14 Showa Denko Kk Weld joint and method for forming the same
CN106735848A (en) * 2016-12-22 2017-05-31 中车唐山机车车辆有限公司 The control method and equipment of agitating friction weldering
CN110385519A (en) * 2018-04-23 2019-10-29 中车唐山机车车辆有限公司 Double-shaft shoulder agitating friction bonding control method and control system
CN114258335A (en) * 2019-08-22 2022-03-29 株式会社古屋金属 Method for manufacturing metal series tubular material and back pad fixture used for same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239734A (en) * 2005-03-03 2006-09-14 Showa Denko Kk Weld joint and method for forming the same
CN106735848A (en) * 2016-12-22 2017-05-31 中车唐山机车车辆有限公司 The control method and equipment of agitating friction weldering
CN106735848B (en) * 2016-12-22 2019-10-11 中车唐山机车车辆有限公司 The control method and equipment of agitating friction weldering
CN110385519A (en) * 2018-04-23 2019-10-29 中车唐山机车车辆有限公司 Double-shaft shoulder agitating friction bonding control method and control system
CN110385519B (en) * 2018-04-23 2021-09-03 中车唐山机车车辆有限公司 Double-shaft-shoulder friction stir welding control method and control system
CN114258335A (en) * 2019-08-22 2022-03-29 株式会社古屋金属 Method for manufacturing metal series tubular material and back pad fixture used for same
CN114258335B (en) * 2019-08-22 2024-02-20 株式会社古屋金属 Method for manufacturing metal tube material

Also Published As

Publication number Publication date
JP4265130B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP6312725B2 (en) Numerical control device with taper angle correction function in taper machining in skiving
Čerče et al. A new approach to spatial tool wear analysis and monitoring
Nguyen et al. Modeling cutter tilt and cutter-spindle stiffness for machine condition monitoring in face milling using high-definition surface metrology
CN112154040A (en) Method for automatically determining optimal welding parameters for performing a weld on a workpiece
JP2003164979A (en) Surface treatment method and surface treatment device
Odendahl et al. Higher efficiency modeling of surface location errors by using a multi-scale milling simulation
JP4942764B2 (en) System and method for detecting workpiece geometry
Agarwal et al. Analyzing the evolution of tool wear area in trochoidal milling of Inconel 718 using image processing methodology
Abhilash et al. An image-processing approach for polishing metal additive manufactured components to improve the dimensional accuracy and surface integrity
JP2001124533A (en) Valve seat surface inspection instrument method
Vanhulst et al. Analysis of Thickness Distributions Calculated from Surface Strains Obtained through Digital Image Correlation for Incremental Sheet Forming
CN113385984B (en) Cutter radial run-out identification method, device, terminal and storage medium
Mook et al. Measurement of nose radius wear in turning tools from a single 2D image using machine vision
JP2003048064A (en) Surface treatment method, surface treatment apparatus and member applied with the surface treatment
Biondani et al. Surface topography analysis of ball end milled tool steel surfaces
JPH09155543A (en) Automatic welding equipment
JP2002045976A (en) Spot welding equipment
WO2021193768A1 (en) Determining system
JP2939286B2 (en) Grinding equipment
JP2001038529A (en) Electric discharge machining method and device
US20240068959A1 (en) Method for assessing the result of a surface treatment performed on a workpiece by particle blasting
KR102036980B1 (en) A Method for Predicting Tool Wear Overlap Geometry
Lechniak et al. The postprocessor mapping for making WEDM operations transferable between different CAD/CAM systems
JP2711926B2 (en) Abrasive data generator
Zapf et al. Influence of arc oscillation frequencies on the surface of DED-Arc manufactured Ti-6Al-4V structures regarding the specific energy consumption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees