JP2003164438A - Noninvasive living body measuring apparatus - Google Patents

Noninvasive living body measuring apparatus

Info

Publication number
JP2003164438A
JP2003164438A JP2001366028A JP2001366028A JP2003164438A JP 2003164438 A JP2003164438 A JP 2003164438A JP 2001366028 A JP2001366028 A JP 2001366028A JP 2001366028 A JP2001366028 A JP 2001366028A JP 2003164438 A JP2003164438 A JP 2003164438A
Authority
JP
Japan
Prior art keywords
living body
pressure
subject
axis direction
contact portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001366028A
Other languages
Japanese (ja)
Other versions
JP3767469B2 (en
Inventor
Hidemiki Hayashi
英幹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001366028A priority Critical patent/JP3767469B2/en
Publication of JP2003164438A publication Critical patent/JP2003164438A/en
Application granted granted Critical
Publication of JP3767469B2 publication Critical patent/JP3767469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To make accurate measurements even while a living body is moving. <P>SOLUTION: Three pressure sensors 17, 12 and 7 provided along the directions of mutually perpendicular three axes are used to detect pressures applied to a measurement sampler 18 with which a subject B makes contact, and a living body retaining arm 3 supporting the subject B can also be moved by a triaxial movement stage 2 in the directions of the three axes. During measurement, the triaxial movement stage 2 is controlled so that the pressures detected by the three pressure sensors 17, 12 and 7 become equal to a desired value, whereby the position of the subject B in space is adjusted to hold the pressure of contact constant in accordance with the movement of the subject B. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、生体に対して針等
を侵襲させることなく該生体内部に関する各種情報を計
測するための無侵襲生体計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-invasive living body measuring device for measuring various information regarding the inside of a living body without invading the living body with a needle or the like.

【0002】[0002]

【従来の技術】計測対象である生体に針などを刺すこと
なく、いわゆる無侵襲でその生体内部の各種情報を計測
する装置として、例えば特開平7−103888号公報
に記載の装置が知られている。この装置は、生体に近赤
外光を照射し、生体内部に入り込んで透過及び反射を繰
り返し再び生体表面に出てきた光(拡散反射光)を検出
し、その光強度から算出した吸光度を用いて生体血液中
の血糖、つまりグルコース濃度を測定するものである。
このような装置は、被検者に身体的苦痛を与えることが
少ないという大きな利点を有している。
2. Description of the Related Art As a device for measuring various kinds of information inside the living body non-invasively without puncturing a living body to be measured with a needle or the like, for example, a device disclosed in Japanese Patent Laid-Open No. 103883/1995 is known. There is. This device irradiates a living body with near-infrared light, detects light (diffuse reflected light) that enters the inside of the living body, repeats transmission and reflection, and again emerges on the surface of the living body, and uses the absorbance calculated from the light intensity. It measures blood glucose in living blood, that is, glucose concentration.
Such a device has the great advantage that it causes less physical pain to the subject.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな生体計測装置では一般に精度や再現性の高い測定を
行うことが難しい。何故なら、被検体(被検者の被検部
位)は生理現象によって或いは随意的に動いてしまうた
め、これによって生体表面に対する発光部や受光部の接
触圧が変動し、生体表面での正反射が増加したり、或い
は生体内部の散乱係数などの状態が変動したりするから
である。
However, it is generally difficult to perform measurement with high accuracy and reproducibility using such a biometric device. Because the subject (the subject's site to be examined) moves due to physiological phenomena or voluntarily, the contact pressure of the light emitting part and the light receiving part with respect to the biological surface fluctuates, and the specular reflection on the biological surface occurs. Is increased, or the state of the scattering coefficient inside the living body is changed.

【0004】また、被検体が鼠などの動物である場合に
は計測途中に動いてしまう可能性が非常に大きいため、
尚一層、精度や再現性の高い測定が困難である。これを
回避するために、被検体の動きを薬剤等によって一時的
に止めることも考えられるが、こうした薬剤の作用によ
って本来取得したい生体情報の正確性を損なうこともあ
り得る。
Further, when the subject is an animal such as a mouse, there is a great possibility that it will move during the measurement,
It is even more difficult to measure with high accuracy and reproducibility. In order to avoid this, it is considered that the movement of the subject is temporarily stopped by a drug or the like, but the action of such a drug may impair the accuracy of the biological information to be originally acquired.

【0005】本発明はこのような点に鑑みて成されたも
のであり、その目的とするところは、計測対象の生体に
動きがあるような場合でも、高い精度で且つ高い再現性
をもって測定を行うことができる無侵襲生体計測装置を
提供することにある。
The present invention has been made in view of the above points, and an object thereof is to perform measurement with high accuracy and high reproducibility even when the living body to be measured moves. It is intended to provide a non-invasive living body measuring device that can perform.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係る無侵襲生体計測装置は、 a)生体の表面に接触する接触部を含み、該接触部を介し
て該生体内部の情報を計測する生体情報取得手段と、 b)前記接触部に対する前記生体からの圧力を検出する圧
力検出手段と、 c)該圧力検出手段による検出圧に応じて、前記接触部及
び/又は前記生体を移動させる移動手段と、を備えたこ
とを特徴としている。
A non-invasive living body measuring apparatus according to the present invention made to solve the above-mentioned problems includes a) a contact portion that comes into contact with the surface of a living body, and Biometric information acquisition means for measuring information inside the living body, b) pressure detection means for detecting pressure from the living body against the contact portion, and c) depending on the pressure detected by the pressure detection means, the contact portion and / or Alternatively, a moving means for moving the living body is provided.

【0007】[0007]

【発明の実施の形態、及び効果】本発明に係る無侵襲生
体計測装置を用いて、目的とする生体内部の情報を計測
する際には、生体情報取得手段の接触部を生体表面に押
し付けるように接触させる。すると、圧力検出手段はそ
のときの接触部に対する生体の押圧力を検出する。圧力
検出手段は接触部を介した情報の取得が行われる前後を
含めて連続的に押圧力を検出してもよいし、或いは、少
なくとも生体情報取得手段が情報を取得するタイミング
でその時点の押圧力を検出するものであってもよい。い
ずれにしても、移動手段は、圧力検出手段による検出圧
が所定値になるように、生体と接触部の少なくともいず
れか一方を移動させる。これにより、生体に動きがあっ
ても、それに追随して生体に対する接触部の接触圧をほ
ぼ一定に維持することができる。
BEST MODE FOR CARRYING OUT THE INVENTION When measuring the information inside a target living body using the non-invasive living body measuring apparatus according to the present invention, the contact portion of the living body information acquiring means is pressed against the living body surface. Contact. Then, the pressure detection means detects the pressing force of the living body on the contact portion at that time. The pressure detection means may continuously detect the pressing force including before and after the acquisition of the information via the contact portion, or at least at the timing when the biological information acquisition means acquires the information. It may be one that detects pressure. In any case, the moving means moves at least one of the living body and the contact portion so that the pressure detected by the pressure detecting means becomes a predetermined value. Accordingly, even if the living body moves, the contact pressure of the contact portion with respect to the living body can be kept substantially constant following the movement.

【0008】したがって、本発明に係る無侵襲生体計測
装置によれば、計測対象の生体が随意又は不随意に動い
た場合であっても接触圧を一定に保つことによって、精
度の高い計測を行うことができる。また、同一生体に対
して複数回の計測を行う場合、或いは異なる複数の生体
に対してそれぞれ計測を行う場合に、重要な計測条件の
一つである接触圧を同一にすることができるので、高い
再現性を得ることができ、計測結果の比較などの信頼性
が大幅に向上する。
Therefore, according to the non-invasive living body measuring apparatus of the present invention, even if the living body to be measured moves voluntarily or involuntarily, the contact pressure is kept constant to perform highly accurate measurement. be able to. In addition, when the measurement is performed a plurality of times on the same living body, or when the measurement is performed on a plurality of different living bodies, the contact pressure, which is one of the important measurement conditions, can be made the same. High reproducibility can be obtained, and reliability such as comparison of measurement results is significantly improved.

【0009】本発明に係る無侵襲生体計測装置の一実施
形態としては、前記生体情報取得手段は光学的に生体内
部の情報を計測する手段であって、前記接触部は生体に
向けて光を出射するとともに該生体からの光を受光する
ための光ファイバの集合体を備える構成とすることがで
きる。
As an embodiment of the non-invasive living body measuring apparatus according to the present invention, the living body information acquiring means is means for optically measuring information inside the living body, and the contact portion emits light toward the living body. It may be configured to include an assembly of optical fibers for emitting and receiving light from the living body.

【0010】この構成では、生体の表面に接触した接触
部から生体に向けて光が照射され、照射された光の一部
はその生体内部に浸透して、生体内部組織を通過する間
に拡散や反射を繰り返し、やがて生体表面に出てくる。
このとき生体表面から出射される拡散反射光は生体内部
組織に関する情報を含んでいるから、接触部でこの光を
受光し、光ファイバを介して生体情報取得手段の本体へ
と送る。これにより、生体内部組織に関する情報を無侵
襲で取得することができる。
In this structure, light is irradiated toward the living body from the contact portion in contact with the surface of the living body, and a part of the irradiated light penetrates into the living body and diffuses while passing through the tissue inside the living body. Repeats and reflections, and eventually appears on the surface of the living body.
At this time, the diffuse reflection light emitted from the surface of the living body contains information on the internal tissue of the living body, so this light is received by the contact portion and sent to the main body of the living body information acquisition means via the optical fiber. As a result, it is possible to noninvasively acquire information on the internal tissue of the living body.

【0011】なお、好ましくは、本発明に係る無侵襲生
体計測装置において、前記圧力検出手段は互いに略直交
する3軸方向の圧力を検出するものであり、前記移動手
段は前記接触部及び/又は前記生体を前記3軸方向に移
動するものである構成とするとよい。
Preferably, in the non-invasive living body measuring apparatus according to the present invention, the pressure detecting means detects pressure in three axial directions substantially orthogonal to each other, and the moving means has the contact portion and / or the contact portion. The living body may be moved in the three axis directions.

【0012】この構成によれば、計測途中で生体がどの
ように動いた場合であっても、その動きに追随して接触
圧を一定に維持することができる。また、同一生体に対
して複数回の計測を行う場合、或いは異なる複数の生体
に対してそれぞれ計測を行う場合においては、接触部に
対する生体の初期的な押付け状態に拘わらず、接触圧が
一定になるように適宜に調節して測定を行うことができ
る。したがって、測定の精度や再現性が一層向上する。
According to this structure, no matter how the living body moves during the measurement, the contact pressure can be kept constant by following the movement. In addition, when the measurement is performed a plurality of times on the same living body or when the measurement is performed on a plurality of different living bodies, the contact pressure is constant regardless of the initial pressing state of the living body against the contact portion. The measurement can be performed by appropriately adjusting so that Therefore, measurement accuracy and reproducibility are further improved.

【0013】[0013]

【実施例】以下、本発明に係る無侵襲生体計測装置の一
実施例について、図1〜図4を参照して説明する。図1
は本実施例による生体計測装置における計測部の上面
図、図2は同じ計測部の側面一部破断面図、図3は同じ
計測部の動作説明図、図4は本実施例による生体計測装
置の電気系ブロック構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the non-invasive living body measuring apparatus according to the present invention will be described below with reference to FIGS. Figure 1
Is a top view of the measuring unit in the biometric device according to the present embodiment, FIG. 2 is a partial side cross-sectional view of the same measuring unit, FIG. 3 is an operation explanatory diagram of the same measuring unit, and FIG. 2 is a block diagram of an electric system of FIG.

【0014】図1及び図2に示すように、本実施例の生
体計測装置にあって、安定したベース1上には、生体保
持アーム3が固定された3軸移動ステージ2が設けられ
ており、生体保持アーム3はX、Y、Zの互いに直交す
る3軸方向に移動自在となっている。また、ベース1上
には一対の軸固定片4が立設され、その軸固定片4の間
に架設された軸体5には、Z軸方向移動台6が蝶動自在
(図3中の矢印Mz参照)に取り付けられている。軸体
5と反対側に位置するZ軸方向移動台6の端部の突片6
aの下には、該突片6aによる上からの押圧力を受ける
ように、Z軸方向圧力センサ7がベース1上に固定され
ている。これにより、Z軸方向移動台6に対してZ軸方
向の力が加わった場合、その力はZ軸方向圧力センサ7
によって検出される。
As shown in FIGS. 1 and 2, in the living body measuring apparatus of this embodiment, a stable base 1 is provided with a three-axis moving stage 2 to which a living body holding arm 3 is fixed. The living body holding arm 3 is movable in three axial directions of X, Y and Z which are orthogonal to each other. Further, a pair of shaft fixing pieces 4 are erected on the base 1, and a Z-axis direction moving table 6 is freely movable on a shaft body 5 installed between the shaft fixing pieces 4 (see FIG. 3). Attached (see arrow Mz). The projecting piece 6 at the end of the Z-axis direction moving table 6 located on the opposite side of the shaft body 5.
A Z-axis direction pressure sensor 7 is fixed on the base 1 under a so as to receive a pressing force from above by the protrusion 6a. Accordingly, when a force in the Z-axis direction is applied to the Z-axis direction moving table 6, the force is applied to the Z-axis direction pressure sensor 7.
Detected by.

【0015】Z軸方向移動台6上には、Y軸方向移動台
8が一対のリニアガイド9によりY軸方向にスライド移
動自在(図3中の矢印My参照)に設けられている。ま
た、Z軸方向移動台6上に立設されたバネ固定片10と
Y軸方向移動台8との間にはバネ11が介挿されるとと
もに、Y軸方向移動台8を挟んでバネ固定片10と反対
側には、バネ11の伸長による付勢力でY軸方向移動台
8が移動する押圧力を受けるように、Y軸方向圧力セン
サ12がZ軸方向移動台6上に固定されている。これに
より、Y軸方向移動台8に対してY軸方向の力が加わっ
た場合、その力はY軸方向圧力センサ12によって検出
される。
On the Z-axis direction moving table 6, a Y-axis direction moving table 8 is provided slidably in the Y-axis direction by a pair of linear guides 9 (see arrow My in FIG. 3). In addition, a spring 11 is interposed between the Y-axis moving base 8 and the spring-fixing piece 10 provided upright on the Z-axis moving base 6, and the Y-axis moving base 8 is sandwiched between the spring-fixing pieces. On the side opposite to 10, a Y-axis direction pressure sensor 12 is fixed on the Z-axis direction moving table 6 so as to receive a pressing force for moving the Y-axis direction moving table 8 by the urging force due to the extension of the spring 11. . Accordingly, when a force in the Y-axis direction is applied to the Y-axis direction moving base 8, the force is detected by the Y-axis direction pressure sensor 12.

【0016】Y軸方向移動台8上には、X軸方向移動台
13が一対のリニアガイド14によりX軸方向にスライ
ド移動自在(図3中の矢印Mx参照)に設けられてい
る。また、Y軸方向移動台8上に立設されたバネ固定片
15とX軸方向移動台13との間にはバネ16が介挿さ
れるとともに、X軸方向移動台13を挟んでバネ固定片
15と反対側には、バネ16の伸長による付勢力でX軸
方向移動台13が移動する押圧力を受けるように、X軸
方向圧力センサ17がY軸方向移動台8上に固定されて
いる。これにより、X軸方向移動台13に対しX軸方向
の力が加わった場合、その力はX軸方向圧力センサ17
によって検出される。
An X-axis direction moving base 13 is provided on the Y-axis direction moving base 8 so as to be slidable in the X-axis direction by a pair of linear guides 14 (see arrow Mx in FIG. 3). Further, a spring 16 is interposed between the spring fixing piece 15 and the X axis moving table 13 which are erected on the Y axis direction moving table 8, and the spring fixing piece is sandwiched with the X axis direction moving table 13 interposed therebetween. On the side opposite to 15, an X-axis direction pressure sensor 17 is fixed on the Y-axis direction moving table 8 so as to receive a pressing force for moving the X-axis direction moving table 13 by the urging force of the spring 16. . Accordingly, when a force in the X-axis direction is applied to the X-axis direction moving base 13, the force is applied to the X-axis direction pressure sensor 17.
Detected by.

【0017】X軸方向移動台13上には、本発明におけ
る接触部としての円柱状の測定サンプラ18が固定され
ている。測定サンプラ18はその上面が被検体Bに対す
る接触面であって、被検体Bに対して光を照射するとと
もに拡散反射光を受光するために、照射側光ファイバ2
1と受光側光ファイバ31の端面が接触面に略面一に揃
うように構成されている。具体的には、例えば、本出願
人が特願2000−328144号で提案しているよう
な装置を用いることができる。なお、照射側光ファイバ
21及び受光側光ファイバ31は、X軸方向移動台1
3、Y軸方向移動台8及びZ軸方向移動台6の移動動作
を妨げることがないようにベース1の下面から外部へ引
き出されている。
A cylindrical measuring sampler 18 as a contact portion in the present invention is fixed on the X-axis direction moving table 13. The upper surface of the measurement sampler 18 is a contact surface for the subject B, and in order to irradiate the subject B with light and receive diffused reflected light, the irradiation side optical fiber 2
1 and the end surface of the light-receiving side optical fiber 31 are configured to be substantially flush with the contact surface. Specifically, for example, an apparatus proposed by the applicant in Japanese Patent Application No. 2000-328144 can be used. The irradiation-side optical fiber 21 and the reception-side optical fiber 31 are arranged in the X-axis direction moving table 1
3, the Y-axis direction moving base 8 and the Z-axis direction moving base 6 are drawn out from the lower surface of the base 1 so as not to hinder the movement operation of the Y-axis direction moving base 6.

【0018】本実施例の生体計測装置では、上記構成に
よって、測定サンプラ18の上面つまり接触面を介して
X軸方向、Y軸方向及びZ軸方向に加わった力は、それ
ぞれX軸方向圧力センサ17、Y軸方向圧力センサ12
及びZ軸方向圧力センサ7により検出される。すなわ
ち、空間内でいずれの方向に作用する力も3個の圧力セ
ンサ17、12、7により検出される。
In the biometric apparatus of this embodiment, with the above configuration, the forces applied in the X-axis direction, the Y-axis direction, and the Z-axis direction via the upper surface of the measurement sampler 18, that is, the contact surface, are respectively applied to the X-axis direction pressure sensor. 17, Y-axis direction pressure sensor 12
And the Z-axis direction pressure sensor 7. That is, the force acting in any direction in the space is detected by the three pressure sensors 17, 12, 7.

【0019】図2及び図4に示すように、照射側光ファ
イバ21の入射端には発光側装置20が、受光側光ファ
イバ31の出射端には受光側装置30が接続されてい
る。発光側装置20は光源22と分光器23とを含み、
特定波長の単色光を照射側光ファイバ21へと送り込
む。一方、受光側装置30は光検出器32、吸光度算出
部33、生体情報算出部34を含む。なお、光源22、
分光器23、光検出器32、及び吸光度算出部33は実
質的に赤外分光光度計である。
As shown in FIGS. 2 and 4, the light emitting device 20 is connected to the incident end of the irradiation side optical fiber 21, and the light receiving device 30 is connected to the emission end of the light receiving side optical fiber 31. The light emitting side device 20 includes a light source 22 and a spectroscope 23,
The monochromatic light of a specific wavelength is sent to the irradiation side optical fiber 21. On the other hand, the light-receiving side device 30 includes a photodetector 32, an absorbance calculator 33, and a biological information calculator 34. The light source 22,
The spectroscope 23, the photodetector 32, and the absorbance calculator 33 are substantially infrared spectrophotometers.

【0020】図4において、光源22から発した光は分
光器23に導入され、そこで特定波長を有する単色光が
取り出され、照射側光ファイバ21を通して測定サンプ
ラ18から被検体Bに向けて照射される。分光器23は
例えば1.4〜1.8μmの範囲で波長走査を行うものとす
る。この程度の波長範囲では、光は0.4〜1.2mm位の深
さだけ被検体Bの内部に入り込み、その内部組織を通過
する途中で拡散反射した光が被検体Bから出射する。こ
の拡散反射光の一部は測定サンプラ18において受光側
光ファイバ31の入射端面に入射し、該光ファイバ31
を通って光検出器32に導入される。光検出器32は受
光強度に応じた電気信号を出力し、吸光度算出部33は
その信号に基づいて吸光度を求め、波長と吸光度との関
係を示す吸光スペクトルを作成する。生体情報算出部3
4はその吸光スペクトルに基づいて多変量解析演算処理
などを実行し、所望の生体情報を算出する。生体情報と
して例えば血液中のグルコース濃度などを得ることがで
きるが、そのほかの生体情報であってもよい。
In FIG. 4, the light emitted from the light source 22 is introduced into the spectroscope 23, where monochromatic light having a specific wavelength is extracted and irradiated from the measurement sampler 18 toward the subject B through the irradiation side optical fiber 21. It The spectroscope 23 performs wavelength scanning in the range of 1.4 to 1.8 μm, for example. In this wavelength range, the light enters the inside of the subject B by a depth of 0.4 to 1.2 mm, and the light diffusely reflected while passing through the internal tissue is emitted from the subject B. A part of this diffuse reflected light is incident on the incident end face of the light receiving side optical fiber 31 in the measurement sampler 18, and the optical fiber 31
To the photodetector 32. The photodetector 32 outputs an electric signal according to the intensity of the received light, and the absorbance calculator 33 determines the absorbance based on the signal and creates an absorption spectrum showing the relationship between the wavelength and the absorbance. Biometric information calculation unit 3
4 executes a multivariate analysis calculation process based on the absorption spectrum to calculate desired biometric information. For example, glucose concentration in blood can be obtained as the biometric information, but other biometric information may be used.

【0021】上記のような測定に際し、生体である被検
体Bは生体保持アーム3の上面に載置される。生体保持
アーム3と測定サンプラ18とが適当な位置(高さ)関
係にあると、図2に示すように、被検体Bの下表面が測
定サンプラ18の上端面に接触して適度な圧力で押し付
けられる。その状態で上述したように下から光が照射さ
れると、その光は被検体B内部に浸透し、その内部組織
で拡散反射した光が測定サンプラ18へと戻る。こうし
た1回の測定中或いは複数回の繰り返し測定の途中で被
検体Bが動いてしまうと、測定サンプラ18に対する被
検体Bの接触圧が変化し、それに伴って被検体Bの表面
での反射光量や被検体B内部での散乱係数などが変動す
る。このような変動は本来の生体情報の値とは無関係な
誤差である。そこで、本実施例の生体計測装置では、3
個の圧力センサ17、12、7と、これら圧力センサ1
7、12、7による検出圧を読み込む制御部40と、3
軸移動ステージ2とが次のように機能する。
At the time of the above measurement, the subject B, which is a living body, is placed on the upper surface of the living body holding arm 3. When the living body holding arm 3 and the measurement sampler 18 are in an appropriate position (height) relationship, as shown in FIG. 2, the lower surface of the subject B comes into contact with the upper end surface of the measurement sampler 18 with an appropriate pressure. It is pressed. In that state, when light is irradiated from below as described above, the light penetrates into the inside of the subject B, and the light diffusely reflected by the internal tissue returns to the measurement sampler 18. If the subject B moves during such one measurement or in the middle of repeated measurements, the contact pressure of the subject B to the measurement sampler 18 changes, and the amount of reflected light on the surface of the subject B changes accordingly. And the scattering coefficient and the like inside the subject B vary. Such a variation is an error irrelevant to the original value of biometric information. Therefore, in the biometric device of the present embodiment, 3
Pressure sensors 17, 12, 7 and these pressure sensors 1
The control unit 40 that reads the detected pressure by 7, 12, 7 and 3
The axis moving stage 2 functions as follows.

【0022】すなわち、少なくとも被検体Bに対して測
定を行っている期間中、X、Y、Zの3軸方向の押圧力
を検出するための3個の圧力センサ17、7による検出
圧は制御部40へと入力される。測定サンプラ18に対
する被検体Bの押圧力が全く変化しない場合には、これ
ら圧力センサ17、12、7による検出圧は一定である
が、被検体Bに動きがあると、その動きの大きさと方向
によって検出圧が変化する。そこで、制御部40は、読
み込んだ3個の検出圧をそれぞれ所定の目標値と比較
し、両者の差分がゼロになるような制御信号を算出す
る。
That is, the pressure detected by the three pressure sensors 17 and 7 for detecting the pressing force in the three axial directions of X, Y, and Z is controlled at least during the measurement of the subject B. It is input to the section 40. When the pressing force of the subject B against the measurement sampler 18 does not change at all, the pressures detected by these pressure sensors 17, 12, 7 are constant, but when the subject B moves, the magnitude and direction of the movement. Changes the detected pressure. Therefore, the control unit 40 compares each of the read three detected pressures with a predetermined target value, and calculates a control signal such that the difference between the two is zero.

【0023】具体的に言うと、例えば3軸移動ステージ
2は3軸方向にそれぞれ独立したパルスモータを内蔵し
ており、制御部40は制御信号として各パルスモータを
駆動するためのパルス数を算出する。そして、このパル
ス数に対応した数のパルス信号を各モータへと送出す
る。例えば、Z軸方向圧力センサ7による検出圧が目標
値より下がった場合には、被検体Bの押圧力を増加させ
るために、生体保持アーム3をZ軸上で所定距離だけ下
降させるべく3軸移動ステージ2を制御する。これによ
り、測定サンプラ18に対する被検体Bからの押圧力が
強まる。逆にZ軸方向圧力センサ7による検出圧が目標
値を越えた場合には、被検体Bの押圧力を減少させるた
めに、生体保持アーム3をZ軸上で所定距離だけ上昇さ
せるべく3軸移動ステージ2を制御する。これにより、
測定サンプラ18に対する被検体Bからの押圧力が弱ま
る。
Specifically, for example, the three-axis moving stage 2 has pulse motors independent in the three-axis directions, and the control unit 40 calculates the number of pulses for driving each pulse motor as a control signal. To do. Then, the number of pulse signals corresponding to the number of pulses is sent to each motor. For example, when the pressure detected by the Z-axis direction pressure sensor 7 falls below a target value, in order to increase the pressing force of the subject B, the living body holding arm 3 is lowered by a predetermined distance on the Z-axis by three axes. Control the moving stage 2. As a result, the pressing force from the subject B on the measurement sampler 18 is increased. On the contrary, when the pressure detected by the Z-axis direction pressure sensor 7 exceeds the target value, in order to decrease the pressing force of the subject B, the living body holding arm 3 is raised by a predetermined distance on the Z-axis by three axes. Control the moving stage 2. This allows
The pressing force from the subject B on the measurement sampler 18 is weakened.

【0024】また、X軸方向、Y軸方向においても同様
に、それぞれの検出圧が目標値になるように生体保持ア
ーム3をX軸上、Y軸上で所定距離だけ移動させるべく
3軸移動ステージ2を制御する。3個の圧力センサ1
7、12、7により測定サンプラ18に掛かる3軸方向
の力をそれぞれ検出しているとともに、3軸移動ステー
ジにより生体保持アーム3は空間内のいずれの方向にも
移動が可能となっているから、被検体Bの如何なる動き
に対しても追従して接触圧をほぼ一定に維持することが
できる。また、同一の又は異なる被検体Bを測定する際
に常に同一の接触圧を再現して測定を行うことができ
る。
Also in the X-axis direction and the Y-axis direction, similarly, the living body holding arm 3 is moved in three axes so as to move the living body holding arm 3 on the X-axis and the Y-axis by a predetermined distance so that each detected pressure becomes a target value. Control stage 2. 3 pressure sensors 1
Since the forces applied to the measurement sampler 18 in the three-axis directions are detected by 7, 12, and 7, the living body holding arm 3 can be moved in any direction in the space by the three-axis moving stage. The contact pressure can be maintained substantially constant by following any movement of the subject B. Moreover, when measuring the same or different test object B, the same contact pressure can always be reproduced and measured.

【0025】なお、上記実施例は本発明の単に一例に過
ぎず、本願の特許請求の範囲に記載の趣旨の範囲で、様
々な形態や構成に変形・修正できることは明白である。
例えば、被検体Bを支持する生体保持アーム3を移動さ
せる代わりに、測定サンプラ18自体を移動させる構成
としてもよい。
It should be noted that the above embodiment is merely an example of the present invention, and it is obvious that various forms and configurations can be modified and modified within the scope of the claims of the present application.
For example, instead of moving the living body holding arm 3 that supports the subject B, the measurement sampler 18 itself may be moved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例による生体計測装置におけ
る計測部の上面図。
FIG. 1 is a top view of a measuring unit in a biometric device according to an embodiment of the present invention.

【図2】 図1の計測部の側面一部破断面図。FIG. 2 is a partial cross-sectional side view of the measuring section of FIG.

【図3】 図1の計測部の動作説明図。FIG. 3 is an explanatory diagram of the operation of the measuring unit in FIG.

【図4】 本実施例による生体計測装置の電気系ブロッ
ク構成図。
FIG. 4 is a block diagram of an electrical system of the biometric device according to the present embodiment.

【符号の説明】[Explanation of symbols]

1…ベース 2…3軸移動ステージ 3…生体保持アーム 4…軸固定片 5…軸体 6…Z軸方向移動台 6a…突片 7…Z軸方向圧力センサ 8…Y軸方向移動台 9、14…リニアガイド 10、15…バネ固定片 11、16…バネ 12…Y軸方向圧力センサ 13…X軸方向移動台 17…X軸方向圧力センサ 18…測定サンプラ 20…発光側装置 21…照射側光ファイバ 22…光源 23…分光器 30…受光側装置 31…受光側光ファイバ 32…光検出器 33…吸光度算出部 34…生体情報算出部 40…制御部 B…被検体 1 ... Base 2 ... 3-axis movement stage 3 ... Living body holding arm 4 ... Shaft fixing piece 5 ... Shaft 6 ... Z-axis movement base 6a ... Protrusion 7 ... Z-axis direction pressure sensor 8 ... Y-axis direction moving table 9, 14 ... Linear guide 10, 15 ... Spring fixing pieces 11, 16 ... Spring 12 ... Y-axis direction pressure sensor 13 ... X-axis direction moving table 17 ... X-axis direction pressure sensor 18 ... Measurement sampler 20 ... Light emitting side device 21 ... Irradiation side optical fiber 22 ... Light source 23 ... Spectrometer 30 ... Receiving side device 31 ... Receiving side optical fiber 32 ... Photodetector 33 ... Absorbance calculation unit 34 ... Biometric information calculation unit 40 ... Control unit B ... Subject

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 a)生体の表面に接触する接触部を含み、
該接触部を介して前記生体内部の情報を計測する生体情
報取得手段と、 b)前記接触部に対する前記生体からの圧力を検出する圧
力検出手段と、 c)該圧力検出手段による検出圧に応じて、前記接触部及
び/又は前記生体を移動させる移動手段と、 を備えたことを特徴とする無侵襲生体計測装置。
1. A) including a contact portion that contacts a surface of a living body,
Biometric information acquisition means for measuring information inside the living body via the contact portion, b) pressure detection means for detecting pressure from the living body on the contact portion, and c) depending on pressure detected by the pressure detection means. And a moving means for moving the contact portion and / or the living body, the non-invasive living body measuring apparatus.
【請求項2】 前記生体情報取得手段は光学的に生体内
部の情報を計測する手段であって、前記接触部は生体に
向けて光を出射するとともに該生体からの光を受光する
ための光ファイバの集合体を備えることを特徴とする請
求項1に記載の無侵襲生体計測装置。
2. The biological information acquisition means is means for optically measuring information inside the living body, and the contact portion emits light toward the living body and receives light from the living body. The non-invasive living body measuring apparatus according to claim 1, further comprising an assembly of fibers.
【請求項3】 前記圧力検出手段は互いに略直交する3
軸方向の圧力を検出するものであり、前記移動手段は前
記接触部及び/又は前記生体を前記3軸方向に移動する
ものであることを特徴とする請求項1又は2に記載の無
侵襲生体計測装置。
3. The pressure detecting means are substantially orthogonal to each other.
The non-invasive living body according to claim 1 or 2, wherein the moving means detects axial pressure and the moving means moves the contact portion and / or the living body in the three axial directions. Measuring device.
JP2001366028A 2001-11-30 2001-11-30 Non-invasive living body measurement device Expired - Fee Related JP3767469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366028A JP3767469B2 (en) 2001-11-30 2001-11-30 Non-invasive living body measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366028A JP3767469B2 (en) 2001-11-30 2001-11-30 Non-invasive living body measurement device

Publications (2)

Publication Number Publication Date
JP2003164438A true JP2003164438A (en) 2003-06-10
JP3767469B2 JP3767469B2 (en) 2006-04-19

Family

ID=19175985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366028A Expired - Fee Related JP3767469B2 (en) 2001-11-30 2001-11-30 Non-invasive living body measurement device

Country Status (1)

Country Link
JP (1) JP3767469B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180902A (en) * 2004-12-24 2006-07-13 Toshiba Corp Noninvasive biological information measuring apparatus
JP2011078819A (en) * 2010-12-15 2011-04-21 Toshiba Corp Non-invasive biological information measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180902A (en) * 2004-12-24 2006-07-13 Toshiba Corp Noninvasive biological information measuring apparatus
JP2011078819A (en) * 2010-12-15 2011-04-21 Toshiba Corp Non-invasive biological information measuring device

Also Published As

Publication number Publication date
JP3767469B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
US8868147B2 (en) Method and apparatus for controlling positioning of a noninvasive analyzer sample probe
US5710630A (en) Method and apparatus for determining glucose concentration in a biological sample
JP4936203B2 (en) Glucose concentration determination device
US5222496A (en) Infrared glucose sensor
US6197257B1 (en) Micro sensor device
US6157442A (en) Micro optical fiber sensor device
US20100063369A1 (en) Optical biological information measuring apparatus, optical biological information measuring method, biological information decision apparatus, program and recording medium
US20080033275A1 (en) Method and Apparatus for Sample Probe Movement Control
JP2008509728A (en) Method and apparatus for monitoring blood glucose level in living tissue
JPH0949794A (en) Method and device for reproducing measurement position and optical measuring device using the device
JPH07505215A (en) Method and device for measuring glucose concentration
JP2011519635A (en) Optical microneedle spectrometer
JP4214324B2 (en) Biological tissue measurement device
CA2331996A1 (en) Apparatus and method for noninvasive glucose measurement
JP3994588B2 (en) Noninvasive blood glucose meter
JP4472794B2 (en) Glucose concentration determination device
US7139076B1 (en) Stable optical diffuse reflection measurement
JP2001029333A (en) Probe for optical measurement
WO2010013184A1 (en) Analysis by photo acoustic displacement and interferometryl
US5246004A (en) Infrared cholesterol sensor
JP2010504795A (en) Equipment for optically analyzing the body
JP3767469B2 (en) Non-invasive living body measurement device
KR101391252B1 (en) An arrangement for providing a constant contact pressure for a probe
JP3767449B2 (en) Non-invasive living body measurement apparatus and blood glucose measurement apparatus using the apparatus
JP2004298408A (en) Glucose concentration measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees