JP2003163075A - Organic el element and manufacturing method therefor - Google Patents

Organic el element and manufacturing method therefor

Info

Publication number
JP2003163075A
JP2003163075A JP2001362684A JP2001362684A JP2003163075A JP 2003163075 A JP2003163075 A JP 2003163075A JP 2001362684 A JP2001362684 A JP 2001362684A JP 2001362684 A JP2001362684 A JP 2001362684A JP 2003163075 A JP2003163075 A JP 2003163075A
Authority
JP
Japan
Prior art keywords
organic
interference exposure
diffraction grating
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001362684A
Other languages
Japanese (ja)
Inventor
Tomohisa Goto
智久 五藤
Atsushi Oda
小田  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001362684A priority Critical patent/JP2003163075A/en
Publication of JP2003163075A publication Critical patent/JP2003163075A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element structure together with its manufacturing method which is of high precision and brightness. <P>SOLUTION: An organic EL element comprises a diffraction lattice which sandwiching an organic thin-film layer of single ply or a plurality of plies between an anode 30 and a cathode 50. The area of diffraction lattice disposed to each light-emitting pixel is larger than the area of the light-emitting pixel. The manufacturing process of the EL element includes a process in which a photomask which decides position and size of the diffraction lattice in a substrate is installed at a position on the surface of photosensitive material where no laser non-interference exposure part is formed, a process where the photosensitive material is exposed by a two-beam laser interference exposure system, and a process where the substrate or the thin film formed on the substrate is etched to provide a diffraction lattice. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ディスプレイ等の
表示デバイスに利用され、電流駆動により特定波長領域
の光を発光する光学素子である有機EL素子およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic EL element which is an optical element which is used in a display device such as a display and which emits light in a specific wavelength region by current driving, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】有機エレクトロルミネッセンス(EL)
素子は、電界を印加することにより、陽極より注入され
た正孔と陰極より注入された電子の再結合エネルギーに
より蛍光性物質が発光する原理を利用した自発光素子で
ある。C.W.Tangらによる積層型素子による低電
圧駆動有機EL素子の報告(C.W.Tang、S.
A.VanSlyke、アプライドフィジックスレター
ズ(Applied Physics Letter
s)、51巻、913頁、1987年など)がなされて
以来、有機材料を構成材料とする有機EL素子に関する
研究が盛んに行われている。
2. Description of the Related Art Organic electroluminescence (EL)
The device is a self-luminous device utilizing the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode when an electric field is applied. C. W. Tang et al. Reported a low-voltage driven organic EL device using a stacked device (CW Tang, S. et al.
A. VanSlyke, Applied Physics Letters
s), vol. 51, p. 913, 1987), and so on, researches on organic EL devices using organic materials as constituent materials have been actively conducted.

【0003】Tangらは、トリス(8−キノリノー
ル)アルミニウムを発光層に、トリフェニルジアミン誘
導体を正孔輸送層に用いている。積層構造の利点として
は、発光層への正孔の注入効率を高めること、陰極より
注入された電子をブロックして再結合により生成する励
起子の生成効率を高めること、発光層内で生成した励起
子を閉じこめることなどが挙げられる。この例のように
有機EL素子の素子構造としては、正孔輸送(注入)
層、電子輸送性発光層の2層型、又は正孔輸送(注入)
層、発光層、電子輸送(注入)層の3層型等がよく知ら
れている。こうした積層型構造素子では注入された正孔
と電子の再結合効率を高めるため、素子構造や形成方法
の工夫がなされている。
Tang et al. Use tris (8-quinolinol) aluminum for the light emitting layer and a triphenyldiamine derivative for the hole transporting layer. The advantages of the laminated structure are that the injection efficiency of holes into the light emitting layer is increased, the generation efficiency of excitons generated by recombination by blocking electrons injected from the cathode is increased, and that generated inside the light emitting layer. Examples include confining excitons. As the element structure of the organic EL element as in this example, hole transport (injection) is performed.
Layer, two-layer type of electron-transporting light-emitting layer, or hole transport (injection)
A three-layer type including a layer, a light emitting layer, and an electron transporting (injecting) layer is well known. In such a laminated structure element, in order to enhance the recombination efficiency of injected holes and electrons, the element structure and the forming method have been devised.

【0004】しかしながら、有機EL素子においてはキ
ャリア再結合の際にスピン統計の依存性より一重項生成
の確率に制限があり、したがって発光確率に上限が生じ
る。この上限の値は凡そ25%と知られている。更に有
機EL素子のような面発光素子では、発光体屈折率の影
響のため、臨界角以上の出射角の光は全反射を起こし外
部に取り出すことができない。このため発光体の屈折率
が1.6とすると、発光量全体の20%程度しか有効に
利用できないものと見積もられている。このため、エネ
ルギーの変換効率の限界としては一重項生成確率を併せ
全体で5%程度と低効率とならざるをえない(筒井哲夫
「有機エレクトロルミネッセンスの現状と動向」、月刊
ディスプレイ、vol.1、 No.3、p11、19
95年9月)。発光確率に強い制限の生じる有機EL素
子においては、光の取り出し効率は致命的ともいえる効
率の低下を招くことになる。
However, in the organic EL element, the probability of singlet generation is limited due to the dependence of spin statistics upon carrier recombination, and therefore, the emission probability has an upper limit. It is known that the upper limit value is about 25%. Further, in a surface emitting element such as an organic EL element, light having an emission angle larger than the critical angle undergoes total reflection and cannot be extracted to the outside due to the influence of the refractive index of the light emitting body. Therefore, if the refractive index of the light emitter is 1.6, it is estimated that only about 20% of the total amount of emitted light can be effectively used. For this reason, as a limit of the energy conversion efficiency, the efficiency is inevitably about 5% as a whole, including the singlet generation probability (Tetsuo Tsutsui, "Current Status and Trends of Organic Electroluminescence", Monthly Display, vol.1). , No. 3, p11, 19
(September 1995). In the organic EL element in which the light emission probability is strongly limited, the light extraction efficiency causes a fatal decrease in efficiency.

【0005】この光の取り出し効率を向上させる手法と
しては、従来、無機エレクトロルミネッセンス素子など
の、同等な構造を持つ発光素子において検討されてき
た。例えば、基板に集光性を持たせることにより効率を
向上させる方法(特開昭63−314795)や、素子
の側面等に反射面を形成する方法(特開平1−2203
94)が提案されている。
As a method for improving the light extraction efficiency, a light emitting element having an equivalent structure such as an inorganic electroluminescence element has been conventionally studied. For example, a method of improving efficiency by providing a substrate with a light-converging property (Japanese Patent Laid-Open No. 63-314795) or a method of forming a reflecting surface on the side surface of an element (Japanese Patent Laid-Open No. 1-2203
94) has been proposed.

【0006】しかしながら、これらの方法は、発光面積
の大きな素子に対しては有効であるが、ドットマトリク
スディスプレイ等の画素面積の微小な素子においては、
集光性を持たせるレンズや側面の反射面等の形成加工が
困難である。更に有機EL素子においては発光層の膜厚
が数μm以下となるためテーパー状の加工を施し素子側
面に反射鏡を形成することは現在の微細加工の技術では
困難であり、大幅なコストアップをもたらす。
However, these methods are effective for devices having a large light emitting area, but for devices having a small pixel area such as a dot matrix display,
It is difficult to form a lens having a light-collecting property and a side reflection surface. Further, in the organic EL element, since the thickness of the light emitting layer is several μm or less, it is difficult to form a reflecting mirror on the side surface of the element by taper processing, and it is difficult with the current microfabrication technology, resulting in a significant cost increase. Bring

【0007】また基板ガラスと発光体の間に中間の屈折
率を持つ平坦層を導入し、反射防止膜を形成する方法
(特開昭62−172691)もあるが、この方法は前
方への光の取り出し効率の改善の効果はあるが全反射を
防ぐことはできない。したがって屈折率の大きな無機エ
レクトロルミネッセンスに対しては有効であっても、比
較的低屈折率の発光体である有機EL素子に対しては大
きな改善効果を上げることはできない。
There is also a method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate glass and the light emitter (Japanese Patent Laid-Open No. 62-172691). Although it has the effect of improving the extraction efficiency, it cannot prevent total internal reflection. Therefore, even if it is effective for inorganic electroluminescence having a large refractive index, it is not possible to obtain a great improvement effect for an organic EL element which is a light emitting body having a relatively low refractive index.

【0008】したがって有機EL素子に有用な光の取り
出し方法は未だ不十分であり、この光の取り出し方法の
開拓が有機EL素子の高効率化に不可欠である。そこ
で、光の取り出し効率を向上させるために回折格子を構
成要素とした有機EL素子が特開平11−283751
号公報に開示されている。この手法により有機EL素子
の光の取り出し効率が向上し、素子の発光効率が向上し
ている。この場合、回折格子は可視光と同程度の非常に
細かいピッチであることが望ましいが、回折格子を形成
するのにフォトリソグラフィー等の方法を用いると技術
的な困難が生じ、またこれらの方法は高価になってしま
うこと。したがってより簡便に細かいピッチの回折格子
を形成する方法が望まれる。二光束レーザー干渉露光
は、コヒーレントな二光束レーザー光を干渉させた時に
生ずる干渉縞を利用するものであり、光波長オーダの超
微細な周期パターンを形成する有効な方法である(西原
浩「光集積回路」オーム社、P224〜228)。
Therefore, the light extraction method useful for the organic EL element is still insufficient, and the development of this light extraction method is indispensable for improving the efficiency of the organic EL element. Therefore, in order to improve the light extraction efficiency, an organic EL element having a diffraction grating as a constituent element is disclosed in JP-A-11-283751.
It is disclosed in the publication. By this method, the light extraction efficiency of the organic EL element is improved, and the light emission efficiency of the element is improved. In this case, it is desirable that the diffraction grating has a pitch that is as fine as visible light, but using a method such as photolithography to form the diffraction grating causes technical difficulties, and these methods are Being expensive. Therefore, a method for forming a diffraction grating with a fine pitch more easily is desired. Two-beam laser interference exposure utilizes interference fringes generated when coherent two-beam laser beams are made to interfere with each other, and is an effective method for forming an ultrafine periodic pattern on the order of light wavelength (Hiro Nishihara Integrated circuit "Ohmsha, P224-228).

【0009】一方、RGBの各表示画素を有する有機E
L素子では、各画素に異なるピッチ(格子間隔)の回折
格子を配置する必要があるが、この画素パターンを製造
するために、従来、フォトマスクを密着させた基板に二
光束レーザー干渉露光を繰り返し行っていた。
On the other hand, an organic E having each display pixel of RGB
In the L element, it is necessary to dispose diffraction gratings with different pitches (grating intervals) in each pixel, but in order to manufacture this pixel pattern, conventionally, two-beam laser interference exposure is repeatedly performed on a substrate to which a photomask is adhered. I was going.

【0010】[0010]

【発明が解決しようとする課題】従来のフォトマスクを
基板に密着させた状態で二光束レーザー干渉露光を行う
方法では、フォトマスクの厚みに起因する非干渉露光部
分が感光性材料に形成されるため、微細パターンを形成
できないという課題あった。特に、その非干渉露光部分
の面積はRGBの各画素サイズが小さくなるに従い増加
し、その結果、回折格子の面積が減少するため、高解像
度の有機EL素子では光取り出し効率は著しく低下し
た。このように、光取り出し効率の向上と画素の高解像
度化を両立させることは困難であった。さらに、従来、
RGBに合わせたピッチの異なる三種類の回折格子を製
造するためには、フォトマスクを変更して二光束干渉露
光を繰り返し行う必要があり、製造効率が低いという課
題があった。
In the conventional method of performing two-beam laser interference exposure in the state where the photomask is in close contact with the substrate, the non-interference exposure portion due to the thickness of the photomask is formed on the photosensitive material. Therefore, there is a problem that a fine pattern cannot be formed. In particular, the area of the non-interference exposure area increases as the size of each pixel of RGB decreases, and as a result, the area of the diffraction grating decreases, so that the light extraction efficiency of the high-resolution organic EL element remarkably decreases. As described above, it has been difficult to achieve both improvement of light extraction efficiency and high resolution of pixels. Furthermore, conventionally,
In order to manufacture three types of diffraction gratings having different pitches according to RGB, it is necessary to change the photomask and repeatedly perform the two-beam interference exposure, which causes a problem of low manufacturing efficiency.

【0011】本発明の目的は、微細な画素パターンを有
する有機EL素子において高い光取り出し効率を得るこ
と、および、二光束レーザー干渉露光において非干渉露
光部分を低減させる製造方法を提供することにある。さ
らに、RGBに合わせたピッチの異なる三種類の回折格
子を同時に製造することにより、回折格子を含む有機E
L素子の製造効率を大幅に向上させるという製造方法を
提供することにある。
It is an object of the present invention to provide a high light extraction efficiency in an organic EL device having a fine pixel pattern, and to provide a manufacturing method for reducing the non-interference exposure portion in two-beam laser interference exposure. . Furthermore, by simultaneously producing three types of diffraction gratings having different pitches according to RGB, an organic E including a diffraction grating is produced.
An object of the present invention is to provide a manufacturing method for significantly improving the manufacturing efficiency of L elements.

【0012】[0012]

【課題を解決するための手段】本発明者は鋭意検討を行
った結果、有機EL素子の各発光画素に配置された回折
格子の面積を画素電極面積よりも大きくすることにより
光取り出し効率が増加し高輝度の有機EL素子を得られ
ること、特に、この効果は画素サイズが小さくなるほど
顕著に現れることを新たに発見した。また、そのような
回折格子の配置は、二光束レーザー干渉露光においてフ
ォトマスクを基板に密着させず、感光性材料の表面でレ
ーザー非干渉露光部分を形成しない位置に配置すること
により効率よく製造できることを見出した。この製造方
法によれば、マスクの厚みとレーザー光の入射角に起因
する非干渉露光部分を無くすことができ、回折格子の面
積の低下を抑制することができる。また、この方法によ
れば、RGBの各画素に合わせたピッチの異なる三種類
の回折格子を同時に製造することができ、回折格子を含
むフルカラーの有機EL素子の製造効率を大幅に向上さ
せることができる。
Means for Solving the Problems As a result of intensive studies by the present inventors, the light extraction efficiency is increased by increasing the area of the diffraction grating arranged in each light emitting pixel of the organic EL element to be larger than the pixel electrode area. It was newly discovered that an organic EL device with high brightness can be obtained, and in particular, this effect becomes more remarkable as the pixel size becomes smaller. Further, such a diffraction grating can be efficiently manufactured by arranging it in a position where the photomask is not brought into close contact with the substrate in the two-beam laser interference exposure and the laser non-interference exposure part is not formed on the surface of the photosensitive material. Found. According to this manufacturing method, it is possible to eliminate the non-interference exposure portion due to the thickness of the mask and the incident angle of the laser light, and it is possible to suppress the reduction in the area of the diffraction grating. Further, according to this method, it is possible to simultaneously manufacture three types of diffraction gratings having different pitches according to the respective RGB pixels, and it is possible to significantly improve the manufacturing efficiency of the full-color organic EL element including the diffraction grating. it can.

【0013】すなわち、本発明は、図1に示すように、
1層または複数層の有機薄膜層を陽極および陰極で挟持
してなり、かつ回折格子を含む有機EL素子において、
各発光画素に配置された該回折格子の面積が発光画素の
面積よりも大きいことを特徴とする有機EL素子に関
し、詳しくは、発光画素の面積が2mm2/画素以下で
あることを特徴とする。また、発光画素がRGBの三種
類あり、さらに詳しくは、前記RGBから成る発光画素
に隣接した回折格子の周期がそれぞれ異なることを特徴
とし、また、回折格子の周期が100nm〜600nm
であることを特徴とするものである。
That is, according to the present invention, as shown in FIG.
In an organic EL device including a diffraction grating, one or a plurality of organic thin film layers sandwiched between an anode and a cathode,
An organic EL element characterized in that the area of the diffraction grating arranged in each light emitting pixel is larger than the area of the light emitting pixel, and more specifically, the area of the light emitting pixel is 2 mm 2 / pixel or less. . Further, there are three types of light emitting pixels of RGB, and more specifically, it is characterized in that the periods of the diffraction gratings adjacent to the light emitting pixels of RGB are different from each other, and the period of the diffraction grating is 100 nm to 600 nm.
It is characterized by being.

【0014】より具体的には、請求項1に記載の発明
は、1層または複数層の有機薄膜層を陽極および陰極で
挟持してなり、かつ回折格子を含む有機EL素子におい
て、該回折格子の面積が発光画素の面積よりも大きいこ
とを特徴とする。
More specifically, the invention according to claim 1 is an organic EL element comprising a diffraction grating, which comprises one or a plurality of organic thin film layers sandwiched between an anode and a cathode, and the diffraction grating Is larger than the area of the light emitting pixel.

【0015】また、請求項2に記載の発明は、請求項1
記載の構成に加え、前記発光画素の面積が2mm2/画
素以下であることを特徴とする。
The invention described in claim 2 is the same as claim 1.
In addition to the described structure, the area of the light emitting pixel is 2 mm 2 / pixel or less.

【0016】さらに、請求項3に記載の発明は、請求項
1又は2記載の構成に加え、前記発光画素がR(赤)、
G(緑)、B(青)の三種類あることを特徴とする。
Further, in the invention described in claim 3, in addition to the configuration according to claim 1 or 2, the light emitting pixel is R (red),
It is characterized by three types of G (green) and B (blue).

【0017】また、請求項4に記載の発明は、請求項3
記載の構成に加え 前記RGBから成る発光画素に隣接
した回折格子の周期がそれぞれ異なることを特徴とす
る。
The invention according to claim 4 is the same as claim 3
In addition to the described configuration, the diffraction gratings adjacent to the light emitting pixels made of RGB have different periods.

【0018】さらに、請求項5に記載の発明は、請求項
1から請求項4のいずれかに記載の構成に加え、前記回
折格子の周期が100nm〜600nmであることを特
徴とする。
Further, the invention according to claim 5 is characterized in that, in addition to the structure according to any one of claims 1 to 4, the period of the diffraction grating is 100 nm to 600 nm.

【0019】また、請求項6に記載の発明は、1層また
は複数層の有機薄膜層を陽極および陰極で挟持してな
り、かつ回折格子を含む有機EL素子の製造方法におい
て、基板内での回折格子の位置や大きさを決めるフォト
マスクを感光性材料の表面でレーザー非干渉露光部分を
形成しない位置に設置する工程と、 二光束レーザー干
渉露光系により前記感光性材料を露光する工程と、前記
基板または前記基板上に形成された薄膜をエッチングす
ることにより回折格子とする工程と、を備えることを特
徴とする。
The invention according to claim 6 is a method for manufacturing an organic EL device comprising a single or a plurality of organic thin film layers sandwiched between an anode and a cathode, and including a diffraction grating. A step of placing a photomask that determines the position and size of the diffraction grating at a position on the surface of the photosensitive material that does not form a laser non-interference exposure portion, and a step of exposing the photosensitive material by a two-beam laser interference exposure system, A step of forming a diffraction grating by etching the substrate or a thin film formed on the substrate.

【0020】さらに、請求項7に記載の発明は、請求項
6記載の構成に加え、前記フォトマスクが、レーザー光
分岐前の一光束光路上に少なくとも一枚設置されている
ことを特徴とする。
Furthermore, the invention according to claim 7 is characterized in that, in addition to the structure according to claim 6, at least one photomask is installed on the one-beam optical path before the laser beam splitting. .

【0021】また、請求項8に記載の発明は、請求項6
記載の構成に加え、前記フォトマスクが、レーザー光分
岐後の二光束光路上の各光路にそれぞれ少なくとも一枚
設置されていることを特徴とする。
The invention described in claim 8 is the same as claim 6.
In addition to the described structure, at least one photomask is installed in each optical path on the two-beam optical path after the laser light is split.

【0022】さらに、請求項9に記載の発明は、請求項
6から請求項8のいずれかに記載の構成に加え、前記フ
ォトマスクを有する二光束レーザー干渉露光系を複数具
備することを特徴とする。
Further, the invention according to claim 9 is characterized in that, in addition to the structure according to any one of claims 6 to 8, a plurality of two-beam laser interference exposure systems having the photomask are provided. To do.

【0023】また、請求項10に記載の発明は、請求項
9記載の構成に加え、前記複数の二光束レーザー干渉露
光系が互いにインコヒーレントであることを特徴とす
る。
The invention described in claim 10 is characterized in that, in addition to the configuration described in claim 9, the plurality of two-beam laser interference exposure systems are incoherent to each other.

【0024】さらに、請求項11に記載の発明は、請求
項6から請求項10のいずれかに記載の構成に加え、前
記二光束レーザー干渉露光系の交差角が150度以下で
あり、かつ基板の同一平面方向から二光束レーザー干渉
露光を行うことを特徴とする。
Further, in the invention described in claim 11, in addition to the structure described in any one of claims 6 to 10, the cross angle of the two-beam laser interference exposure system is 150 degrees or less, and the substrate The two-beam laser interference exposure is performed from the same plane direction.

【0025】また、請求項12に記載の発明は、請求項
8から請求項11のいずれかに記載の構成に加え、前記
複数の二光束レーザー干渉露光系に使用されるレーザー
の波長あるいは交差角が異なることを特徴とする。
In addition to the structure according to any one of claims 8 to 11, the invention according to claim 12 is the wavelength or crossing angle of a laser used in the plurality of two-beam laser interference exposure systems. Are different.

【0026】さらに、請求項13に記載の発明は、請求
項9から請求項12のいずれかに記載の構成に加え、前
記二光束レーザー干渉露光系が三種類あり、各露光を順
次あるいは同時に行うことを特徴とする。
Further, in the invention described in claim 13, in addition to the structure described in any one of claims 9 to 12, there are three types of the two-beam laser interference exposure system, and each exposure is performed sequentially or simultaneously. It is characterized by

【0027】また、請求項14に記載の発明は、請求項
6から請求項13のいずれかに記載の構成に加え、前記
二光束レーザー干渉露光系により感光性樹脂を露光する
工程において、感光性樹脂を塗布した基板面側から露光
を行い、かつ、もう一方の基板面には光吸収板を具備す
ることを特徴とする。
Further, in the invention described in claim 14, in addition to the structure according to any one of claims 6 to 13, in the step of exposing the photosensitive resin by the two-beam laser interference exposure system, Exposure is performed from the side of the substrate coated with the resin, and a light absorbing plate is provided on the other substrate surface.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0029】図1には、本発明の回析格子を有する有機
EL素子の断面が示されている。有機EL素子では、回
析格子を含む基板10上に高屈折率層20、陽極30、
有機層40、陰極50の順で素子が設けられている。ま
た、基板10からの矢印が発光60を示している。
FIG. 1 shows a cross section of an organic EL device having a diffraction grating of the present invention. In the organic EL device, the high refractive index layer 20, the anode 30, the
Elements are provided in the order of the organic layer 40 and the cathode 50. Further, the arrow from the substrate 10 indicates the light emission 60.

【0030】本発明では、基板上に塗布した感光性材料
にレーザーを用いた干渉光を当てることによって該感光
性材料の露光を行うが、基板内での回折格子の位置や大
きさを決めるフォトマスクが感光性材料の表面でレーザ
ー非干渉露光部分を形成しない位置に設置されている。
In the present invention, the photosensitive material coated on the substrate is exposed to the interference light using a laser to expose the photosensitive material. However, a photo that determines the position and size of the diffraction grating in the substrate is used. The mask is placed on the surface of the photosensitive material at a position where it does not form a laser non-interference exposure portion.

【0031】図2はその一例であるが、レーザー光源7
0から出射したレーザー光の光路上に画素パターンを有
するフォトマスク90が、ビームエキスパンダ80を経
て、配置されている。フォトマスク90を通過したレー
ザー光束110はビームスプリッタ100により二光束
のレーザー光に分割される。これをミラー120、12
1により適当な角度を設定し基板上で交差させると、干
渉によって定在波が形成される。腹の部分で光強度は最
大になり、節の部分で光強度はゼロとなる。そこで、基
板11上に塗布した感光性材料130に、このような定
在波が形成される条件でレーザー光を入射させると、光
強度に応じて感光性材料が感光するために感光の強い部
分と弱い部分とが薄膜面に並行な方向に周期構造とな
る。
FIG. 2 shows an example of the laser light source 7
A photomask 90 having a pixel pattern is arranged on the optical path of the laser light emitted from the laser beam 0 through the beam expander 80. The laser light flux 110 that has passed through the photomask 90 is split into two laser light fluxes by the beam splitter 100. This is the mirror 120, 12
When an appropriate angle is set by 1 and they are crossed on the substrate, a standing wave is formed by interference. The light intensity is maximum at the belly and zero at the node. Therefore, when a laser beam is incident on the photosensitive material 130 applied on the substrate 11 under such a condition that a standing wave is formed, the photosensitive material is exposed in accordance with the light intensity, so that the highly sensitive portion is exposed. And the weak portion form a periodic structure in a direction parallel to the thin film surface.

【0032】ここで、レーザー光の条件を適切に設定す
ると感光性材料の光化学反応により感光の強い部分と弱
い部分とで現像液に対する溶解度差が発生するため、現
像液処理により基板11上に、周期構造を有する微細パ
ターンすなわち回折格子が形成される。フォトマスク9
0は、レーザー光路上の感光性材料130の表面でレー
ザー非干渉露光部分を形成しない位置に設置されている
ため、フォトマスク90の厚みとレーザーの入射角に起
因する非干渉露光部は感光性材料表面には存在しない。
なお、図2の構成の場合、定在波の周期、つまりこの方
法を用いて作成した回折格子のピッチdは、レーザーの
波長をλ、基板11上の感光性材料130へ照射する2
光束レーザーの交差角をθ(レーザー交差角140)と
すると、d = λ/2/sin(θ/2)となる。
Here, if the conditions of the laser light are set appropriately, a difference in solubility in the developing solution occurs between the strongly sensitive part and the weakly sensitive part due to the photochemical reaction of the photosensitive material. A fine pattern having a periodic structure, that is, a diffraction grating is formed. Photo mask 9
0 is set at a position on the surface of the photosensitive material 130 on the laser optical path where the laser non-interference exposure portion is not formed, so the non-interference exposure portion due to the thickness of the photomask 90 and the laser incident angle is photosensitive. Not present on material surface.
In the case of the configuration shown in FIG. 2, the period of the standing wave, that is, the pitch d of the diffraction grating formed by using this method, the wavelength of the laser is λ, and the photosensitive material 130 on the substrate 11 is irradiated with 2
If the crossing angle of the light beam laser is θ (laser crossing angle 140), then d 2 = λ / 2 / sin (θ / 2).

【0033】θを大きくするほどdは小さくなり、交差
角を180°のときにdは最小値のλ/2となる。例え
ば、アルゴンイオンレーザーでλ=488nmのレーザ
ー光を照射した場合、d>244nmとなる。つまり、
交差角を調整するだけでピッチを244nmより大きい
任意の値に簡単に設定することができる。フォトマスク
90は、レーザー光路上の感光性材料130の表面でレ
ーザー非干渉露光部分を形成しない位置に設置されてい
れば良く、レーザー光分岐前の一光束光路上に設置され
ていても構わないし、レーザー光分岐後の二光束光路上
の各光路にそれぞれ設置されていても構わない。このと
き、フォトマスク90は各光束上に一枚だけである必要
はなく、2枚以上であっても構わない。
As θ increases, d decreases, and when the crossing angle is 180 °, d becomes λ / 2, which is the minimum value. For example, when irradiating a laser beam of λ = 488 nm with an argon ion laser, d> 244 nm. That is,
The pitch can be easily set to any value larger than 244 nm simply by adjusting the crossing angle. The photomask 90 has only to be installed at a position on the surface of the photosensitive material 130 on the laser beam path where the laser non-interference exposure portion is not formed, and may be installed on the one-beam optical path before the laser beam splitting. Alternatively, they may be installed in respective optical paths on the two-beam optical path after the laser light branch. At this time, the number of photomasks 90 need not be one on each light flux, and may be two or more.

【0034】図3は、従来のフォトマスク91を感光性
材料に密着させて、レーザー光束111、112を用
い、干渉露光を行った場合の基板12の断面図である
が、フォトマスク91の厚みとレーザー入射角に起因し
た非干渉露光部150、151が干渉露光部160両端
に生成していることが分かる。RGBの画素間が離れて
いる場合、この非干渉露光に起因する感光体材料131
の感光は問題とならないが、画素間が近い場合、この非
干渉露光部150、151が隣接する画素に重なるため
に、隣接画素の回折格子が破壊される。
FIG. 3 is a sectional view of the substrate 12 when the conventional photomask 91 is brought into close contact with the photosensitive material and interference exposure is performed using the laser beams 111 and 112. The thickness of the photomask 91 is shown in FIG. It can be seen that the non-interference exposure parts 150 and 151 caused by the laser incident angle are generated at both ends of the interference exposure part 160. When the RGB pixels are separated from each other, the photosensitive material 131 due to the non-interference exposure is generated.
However, if the pixels are close to each other, the non-interference exposure units 150 and 151 overlap the adjacent pixels, and the diffraction grating of the adjacent pixels is destroyed.

【0035】本発明におけるフォトマスクを有する二光
束レーザー干渉露光系は必ずしも一つである必要はな
く、複数の二光束レーザー干渉露光系を使用することが
できる。
The number of the two-beam laser interference exposure system having the photomask in the present invention is not necessarily one, and a plurality of two-beam laser interference exposure systems can be used.

【0036】図4では、三種類の二光束レーザー干渉露
光系を用い、RGBに対応した三種類の回折格子を同一
平面に配置してある。基板13上には高屈折率層21、
22、23が設けられており、それぞれ高屈折率層2
1、22、23上には陽極31、32、33、有機層4
1、42、43、陰極51、52、53の順にそれぞれ
の素子が設けられている。同一平面に配置された三種類
の回折格子からは矢印方向へ発光61、62、63され
ることになる。図4のようにRGBに対応した三種類の
回折格子を同一平面に配置するために、図5に示す三種
類の二光束レーザー干渉露光系を設置することも可能で
ある。
In FIG. 4, three kinds of two-beam laser interference exposure systems are used, and three kinds of diffraction gratings corresponding to RGB are arranged on the same plane. On the substrate 13, a high refractive index layer 21,
22 and 23 are provided, each of which has a high refractive index layer 2
Anodes 31, 32, 33, organic layer 4 on 1, 22, 23
1, 42, 43, and cathodes 51, 52, 53 are provided in this order. Light emission 61, 62, 63 is emitted in the arrow direction from the three types of diffraction gratings arranged on the same plane. In order to arrange the three types of diffraction gratings corresponding to RGB on the same plane as shown in FIG. 4, it is possible to install the three types of two-beam laser interference exposure system shown in FIG.

【0037】図5では、三種類の二光束レーザー干渉露
光系を配置した場合の概略図が示されている。図5で
は、レーザー光源71、72、73が1つで光路を分岐
している。このように複数の二光束レーザー干渉露光系
を使用して露光を行う場合、順次に露光を行っても構わ
ないし、同時に行うことも可能である。
FIG. 5 is a schematic view showing a case where three types of two-beam laser interference exposure systems are arranged. In FIG. 5, one laser light source 71, 72, 73 divides the optical path. When exposure is performed using a plurality of two-beam laser interference exposure systems in this way, exposure may be performed sequentially or simultaneously.

【0038】3つの二光束レーザー干渉露光系で感光性
材料132に露光を行うために、3つの二光束レーザー
干渉露光系は以下の構成を採っている。3つのレーザー
光源71、72、73は、互いにインコヒーレントであ
る。レーザー光源71、72、73の隣にはビームエキ
スパンダ81、82、83が配置されている。さらに、
ビームエキスパンダ81、82、83の隣には画素を形
成するためのフォトマスク92、93、94が設けられ
ている。そして、3つの二光束レーザー干渉露光系は、
レーザー光をビームスプリッタ101、102、103
で2本に分割してミラー122、123、124、12
5、126、127により適当な角度を設定し基板14
上でそれぞれ所定の交差角θで交差させることになる。
In order to expose the photosensitive material 132 with the three two-beam laser interference exposure system, the three two-beam laser interference exposure system has the following configuration. The three laser light sources 71, 72, 73 are incoherent to each other. Beam expanders 81, 82, and 83 are arranged next to the laser light sources 71, 72, and 73. further,
Photomasks 92, 93 and 94 for forming pixels are provided next to the beam expanders 81, 82 and 83. And three two-beam laser interference exposure system,
Beam splitter 101, 102, 103 for laser light
And divide it into two mirrors 122, 123, 124, 12
Substrate 14 with an appropriate angle set by 5, 126, 127
Each of the above intersects at a predetermined intersection angle θ.

【0039】本発明の有機EL素子の製造方法では、二
光束レーザー干渉露光系の交差角が150度以下であ
り、かつ基板の同一平面方向から二光束レーザー干渉露
光が行われることが望ましい。なお、本発明の回折格子
のピッチとしては、有機EL素子の発光スペクトルによ
り任意に設定できるが、100nm〜600nm程度が
望ましい。また、回折格子のラインとスペースの比は必
ずしも1:1である必要な無い。また、回折格子は必ず
しも1次元には限定されず、2次元化しても構わない。
In the method of manufacturing an organic EL device of the present invention, it is desirable that the crossing angle of the two-beam laser interference exposure system is 150 degrees or less and that the two-beam laser interference exposure is performed from the same plane direction of the substrate. The pitch of the diffraction grating of the present invention can be arbitrarily set according to the emission spectrum of the organic EL element, but is preferably about 100 nm to 600 nm. Further, the line to space ratio of the diffraction grating does not necessarily have to be 1: 1. Further, the diffraction grating is not necessarily limited to one dimension, and may be two dimension.

【0040】本発明で用いるレーザーとしては、必要と
する波長のレーザー光が得られるものであれば、公知の
ものが適宜使用可能である。例えば、固体レーザー、気
体レーザー、半導体レーザー、色素レーザー、等であ
る。有機EL素子に含まれる回折格子の作成に使用する
場合、可視光と同程度の波長のものが好ましい。例え
ば、YAGレーザー、YAGレーザー倍波、YAGレー
ザー3倍波、色素レーザー、He−Neレーザー、Ar
イオンレーザー、Krイオンレーザー、Cu蒸気レーザ
ー、He−Cdレーザー、N2レーザー等が挙げられ
る。
As the laser used in the present invention, known lasers can be appropriately used as long as laser light of a required wavelength can be obtained. For example, solid-state lasers, gas lasers, semiconductor lasers, dye lasers, and the like. When used for forming a diffraction grating included in an organic EL device, it is preferable that the wavelength is about the same as visible light. For example, YAG laser, YAG laser overtone, YAG laser overtone, dye laser, He-Ne laser, Ar
Ion lasers, Kr ion lasers, Cu vapor lasers, He-Cd lasers, N 2 lasers and the like can be mentioned.

【0041】本発明で用いる感光性材料としては、ポジ
型レジスト材料、ネガ型レジスト材料等から適宜選択す
ることができる。本発明において、感光性材料によって
回折格子を形成し、この回折格子を用いて基板または基
板上に形成された薄膜をエッチングする場合、エッチン
グは公知の方法から適宜選択することができる。例え
ば、ウェットエッチング、反応性ガスエッチング、イオ
ンミリング、等が挙げられる。なお、エッチング後、リ
ムーバにより感光性材料を除去した回折格子を含む基板
上に、そのまま、有機EL層を形成することもできる
し、他の薄膜を形成した後に有機EL層を形成しても構
わない。その薄膜としては、TiO2やSiNXのような
透明でかつ高屈折率材料がある。この高屈折率層の厚み
としては、100Å〜20000Åが望ましい。
The photosensitive material used in the present invention can be appropriately selected from a positive type resist material, a negative type resist material and the like. In the present invention, when a diffraction grating is formed of a photosensitive material and a substrate or a thin film formed on the substrate is etched using this diffraction grating, the etching can be appropriately selected from known methods. For example, wet etching, reactive gas etching, ion milling, etc. may be mentioned. After the etching, the organic EL layer can be directly formed on the substrate including the diffraction grating from which the photosensitive material has been removed by the remover, or the organic EL layer can be formed after forming another thin film. Absent. The thin film may be a transparent and high refractive index material such as TiO 2 or SiN x . The thickness of this high refractive index layer is preferably 100Å to 20000Å.

【0042】本発明の有機EL素子におけるRGBの各
発光画素サイズやその形状、画素間隔は任意に選択する
ことができるが、回折格子の面積増加により光取り出し
効率を向上させるためには、各発光画素の面積が2mm
2/画素以下であることが望ましい。この時、回折格子
の面積は、少なくとも発光画素の面積の101%以上で
あることが望ましい。また、回折格子の形状は必ずしも
発光画素の形状と相似の関係である必要はないが、基板
法線方向から見て発光画素が回折格子の領域内にあるこ
とが望ましい。なお、RGBの各発光画素は同じ面積や
形状等を有している必要は無い。
Each of the R, G, and B light emitting pixel sizes, their shapes, and pixel intervals in the organic EL device of the present invention can be arbitrarily selected. However, in order to improve the light extraction efficiency by increasing the area of the diffraction grating, each light emitting device can be used. Pixel area is 2mm
It is desirable that the number is 2 / pixel or less. At this time, the area of the diffraction grating is preferably at least 101% or more of the area of the light emitting pixel. The shape of the diffraction grating does not necessarily have to be similar to the shape of the light emitting pixel, but it is desirable that the light emitting pixel is within the area of the diffraction grating when viewed from the substrate normal direction. It should be noted that each of the RGB light emitting pixels need not have the same area, shape, or the like.

【0043】本発明に係る有機EL素子の素子構造は、
電極間に有機層を1層あるいは2層以上積層した構造で
あり、その例として、陽極/発光層/陰極からなる構
造、陽極/正孔輸送層/発光層/電子輸送層/陰極から
なる構造、陽極/正孔輸送層/発光層/陰極からなる構
造、陽極/発光層/電子輸送層/陰極からなる構造等の
構造が挙げられる。
The element structure of the organic EL element according to the present invention is
It has a structure in which one or more organic layers are laminated between electrodes, and examples thereof include a structure composed of an anode / a light emitting layer / a cathode and a structure composed of an anode / a hole transporting layer / a light emitting layer / an electron transporting layer / a cathode. , A structure composed of anode / hole transport layer / light emitting layer / cathode, a structure composed of anode / light emitting layer / electron transport layer / cathode, and the like.

【0044】本発明に用いられる正孔輸送材料は特に限
定されず、正孔輸送材として通常使用されている化合物
であれば何を使用してもよい。正孔輸送材料の具体例と
しては、例えば、下記のビス(ジ(p−トリル)アミノ
フェニル)−1,1−シクロヘキサン、N,N’―ジフ
ェニルーN,N’―ビス(3−メチルフェニル)−1,
1’―ビフェニル−4,4’―ジアミン、N,N’−ジ
フェニル−N,N’−ビス(1−ナフチル)−1,1’
−ビフェニル−4,4’−ジアミン等のトリフェニルジ
アミン類や、スターバースト型分子等が挙げられる。
The hole-transporting material used in the present invention is not particularly limited, and any compound commonly used as a hole-transporting material may be used. Specific examples of the hole transport material include, for example, the following bis (di (p-tolyl) aminophenyl) -1,1-cyclohexane, N, N′-diphenyl-N, N′-bis (3-methylphenyl). -1,
1'-biphenyl-4,4'-diamine, N, N'-diphenyl-N, N'-bis (1-naphthyl) -1,1 '
Examples include triphenyldiamines such as -biphenyl-4,4'-diamine and starburst type molecules.

【0045】本発明に用いられる電子輸送材料は特に限
定されず、電子輸送材として通常使用されている化合物
であれば何を使用してもよい。電子輸送材料の具体例と
しては、例えば、2−(4−ビフェニリル)−5−(4
−t−ブチルフェニル)−1,3,4−オキサジアゾー
ル、ビス{2−(4−t−ブチルフェニル)−1,3,
4−オキサジアゾール}−m−フェニレン等のオキサジ
アゾール誘導体、トリアゾール誘導体、キノリノール系
の金属錯体が挙げられる。
The electron-transporting material used in the present invention is not particularly limited, and any compound commonly used as an electron-transporting material may be used. Specific examples of the electron transport material include, for example, 2- (4-biphenylyl) -5- (4
-T-butylphenyl) -1,3,4-oxadiazole, bis {2- (4-t-butylphenyl) -1,3,
Examples thereof include oxadiazole derivatives such as 4-oxadiazole} -m-phenylene, triazole derivatives, and quinolinol-based metal complexes.

【0046】本発明に用いられる発光材料は特に限定さ
れず、発光材料として通常使用されている化合物であれ
ば何を使用してもよい。例えば、ジスチリルアリーレン
誘導体(特開平2−247278号公報、特開平5−1
7765号公報)、クマリン誘導体、ジシアノメチレン
ピラン誘導体、ペリレン誘導体(特開昭63−2646
92号公報)、また、芳香環系材料(特開平8−298
186、特開平9−268284号公報)やアントラセ
ン系化合物(特開平9−157643号公報、特開平9
−268283号公報、特開平10−72581号公
報)、キナクリドン誘導体(特開平5−70773号公
報)等が挙げられる。
The light-emitting material used in the present invention is not particularly limited, and any compound commonly used as a light-emitting material may be used. For example, distyrylarylene derivatives (JP-A-2-247278, JP-A5-1)
7765), coumarin derivatives, dicyanomethylenepyran derivatives, perylene derivatives (JP-A-63-2646).
92), and aromatic ring materials (Japanese Patent Laid-Open No. 8-298).
186, JP-A-9-268284) and anthracene compounds (JP-A-9-157643, JP-A-9-156843).
-268283, JP-A-10-72581), quinacridone derivative (JP-A-5-70773) and the like.

【0047】有機EL素子の陽極は、正孔を正孔輸送層
に注入する役割を担うものであり、4.5eV以上の仕
事関数を有することが効果的である。本発明に用いられ
る陽極材料の具体例としては、酸化インジウム錫合金
(ITO)、酸化錫(NESA)、金、銀、白金、銅等
が挙げられる。また、陰極としては、電子輸送帯又は発
光層に電子を注入する目的で、仕事関数の小さい材料が
好ましい。陰極材料は特に限定されないが、具体的には
インジウム、アルミニウム、マグネシウム、マグネシウ
ム−インジウム合金、マグネシウム−アルミニウム合
金、アルミニウム−リチウム合金、アルミニウム−スカ
ンジウム−リチウム合金、マグネシウム−銀合金等を使
用できる。
The anode of the organic EL element plays a role of injecting holes into the hole transport layer, and it is effective that it has a work function of 4.5 eV or more. Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), tin oxide (NESA), gold, silver, platinum and copper. As the cathode, a material having a small work function is preferable for the purpose of injecting electrons into the electron transport band or the light emitting layer. The cathode material is not particularly limited, but specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.

【0048】本発明における有機EL素子の各層の形成
方法は特に限定されず、公知の方法から適宜選択でき
る。例えば、真空蒸着法、分子線蒸着法(MBE法)あ
るいは溶媒に溶かした溶液のディッピング法、スピンコ
ーティング法、キャスティング法、バーコート法、ロー
ルコート法等の塗布法等が挙げられる。
The method of forming each layer of the organic EL element in the present invention is not particularly limited and can be appropriately selected from known methods. Examples thereof include a vacuum vapor deposition method, a molecular beam vapor deposition method (MBE method), a dipping method of a solution dissolved in a solvent, a spin coating method, a casting method, a bar coating method, a roll coating method, and the like.

【0049】[0049]

【実施例】以下、本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0050】(実施例1)石英基板上に感光性材料とし
てポジ型レジスト材料AZP−FP650F5(クラリ
アントジャパン社製)を4000Åの厚さに成膜した。
二光束レーザー干渉露光系で感光性材料に露光を行っ
た。レーザー光源は、Arイオンレーザーで波長は48
8nmを使用した。ビームエキスパンダ通過後の一光束
(強度は100mW/cm2)光路上に画素形成用のフ
ォトマスクを設置した。その後、ビームスプリッタでレ
ーザー光を二光束に分岐し、さらにミラーを使用して基
板上で交差角90°となるように露光(露光時間15
秒)を行った。干渉露光部の露光面積は0.30mm2
とした。
(Example 1) A positive resist material AZP-FP650F5 (manufactured by Clariant Japan Co., Ltd.) was formed as a photosensitive material on a quartz substrate to a thickness of 4000 liters.
The photosensitive material was exposed with a two-beam laser interference exposure system. The laser light source is an Ar ion laser with a wavelength of 48.
8 nm was used. A photomask for pixel formation was set on the optical path of one light flux (intensity 100 mW / cm 2 ) after passing through the beam expander. After that, the beam splitter splits the laser beam into two light beams, and the mirror is used to expose the substrate so that the crossing angle becomes 90 ° (exposure time: 15
Second). The exposure area of the interference exposure unit is 0.30 mm 2.
And

【0051】露光後、有機アルカリ現像液AZ300M
IF(クラリアントジャパン社製)で処理すると感光し
た部分が溶解した。SEM観察の結果、約345nmピ
ッチの回折格子が得られた。なお、回折格子周辺の感光
材料の膜厚変化はなく、非干渉光の露光が無いことが確
認された。
After exposure, organic alkali developer AZ300M
When exposed to IF (manufactured by Clariant Japan), the exposed portion was dissolved. As a result of SEM observation, a diffraction grating with a pitch of about 345 nm was obtained. It was confirmed that there was no change in the film thickness of the photosensitive material around the diffraction grating and there was no exposure to non-interfering light.

【0052】作製したレジストパターン付き石英基板を
反応性ガスエッチングによりエッチングした。エッチン
グは反応性ガスとしてCF4を使用し、進行波100
W、陽極電流120mA、反射波0W、陽極電圧1.4
5KW、電圧−250Vの条件で行った。20分間のエ
ッチングにより約1500Åほど石英基板を掘ることが
できた。エッチング後、リムーバでレジスト材料を除去
し基板を乾燥させた。その基板上にケミカルベイパーデ
ポジション(CVD)法を使用し、1.2μmの厚みの
SiNX膜を作製した。その後、ITOをスパッタリン
グ法によってシート抵抗が20Ω/□になるように成膜
した。
The produced quartz substrate with a resist pattern was etched by reactive gas etching. CF 4 is used as a reactive gas for etching, and traveling wave 100
W, anode current 120 mA, reflected wave 0 W, anode voltage 1.4
It was performed under the conditions of 5 kW and a voltage of -250V. It was possible to dig about 1500 Å quartz substrate by etching for 20 minutes. After etching, the resist material was removed with a remover and the substrate was dried. A chemical vapor deposition (CVD) method was used to form a 1.2 μm thick SiN x film on the substrate. After that, ITO was deposited by a sputtering method so that the sheet resistance was 20Ω / □.

【0053】次に、ITO上に有機層として以下の2層
を形成した。まず正孔輸送層として、N,N’−ジフェ
ニル−N,N’−ビス−(1−ナフチル)−1,1’−ビ
フェニル−4,4’−ジアミン(α−NPD)を真空蒸
着法にて50nm形成し、次に、発光層としてトリス
(8−キノリノール)アルミニウム(Alq)を真空蒸
着法にて70nm形成した。次に、陰極としてマグネシ
ウム−銀合金を蒸着速度比10:1で真空蒸着法にて共
蒸着した膜を150nm形成して有機EL素子を作成し
た。発光部面積は0.25mm2とした。
Next, the following two layers were formed as organic layers on the ITO. First, as a hole transport layer, N, N'-diphenyl-N, N'-bis- (1-naphthyl) -1,1'-biphenyl-4,4'-diamine (α-NPD) was deposited by vacuum deposition. To a thickness of 50 nm, and then tris (8-quinolinol) aluminum (Alq) was formed to a thickness of 70 nm as a light emitting layer by a vacuum evaporation method. Next, a magnesium-silver alloy was co-deposited by a vacuum vapor deposition method at a vapor deposition rate ratio of 10: 1 as a cathode to form a film having a thickness of 150 nm, thereby forming an organic EL device. The area of the light emitting portion was 0.25 mm 2 .

【0054】この素子に5mA/cm2の直流電圧を印
加したところ、275cd/m2の発光が得られた。比
較例1と比べて、発光効率が向上していることが確認さ
れた。
When a DC voltage of 5 mA / cm 2 was applied to this device, light emission of 275 cd / m 2 was obtained. It was confirmed that the luminous efficiency was improved as compared with Comparative Example 1.

【0055】(実施例2)石英基板上に感光性材料とし
てG線用ポジ型レジスト材料AZP−FP650F5
(クラリアントジャパン社製)を4000Åの厚さに成
膜した。次に、3つの二光束レーザー干渉露光系で感光
性材料に露光を行った。3つのレーザー光源は、互いに
インコヒーレントである。第一の二光束レーザー干渉露
光系は、波長488nm(Arイオンレーザー)のレー
ザー光(強度100mW/cm2)をビームスプリッタ
で2本に分割してこの基板上で交差角θ=120°で交
差させたものであり、第二の二光束レーザー干渉露光系
は、波長488nm(Arイオンレーザー)のレーザー
光(強度100mW/cm2)をビームスプリッタで2
本に分割してこの基板上で交差角θ=90°で交差させ
たものであり、第三の二光束レーザー干渉露光系は、波
長488nm(Arイオンレーザー)のレーザー光(強
度100mW/cm2)をビームスプリッタで2本に分
割してこの基板上で交差角θ=70°で交差させたもの
である。
Example 2 A G-line positive resist material AZP-FP650F5 as a photosensitive material on a quartz substrate.
(Manufactured by Clariant Japan Co., Ltd.) was formed into a film having a thickness of 4000Å. Next, the photosensitive material was exposed with three dual-beam laser interference exposure systems. The three laser light sources are incoherent to each other. The first two-beam laser interference exposure system splits a laser beam (intensity 100 mW / cm 2 ) having a wavelength of 488 nm (Ar ion laser) into two beams with a beam splitter, and intersects this substrate at a crossing angle θ = 120 °. The second two-beam laser interference exposure system uses a beam splitter to generate a laser beam (intensity 100 mW / cm 2 ) having a wavelength of 488 nm (Ar ion laser).
It is divided into books and crossed on this substrate at a crossing angle θ = 90 °. The third two-beam laser interference exposure system is a laser beam (intensity 100 mW / cm 2 ) having a wavelength of 488 nm (Ar ion laser). 2) is divided into two by a beam splitter and crossed at a crossing angle θ = 70 ° on this substrate.

【0056】3つの二光束レーザー干渉露光系には、1
光束部すなわちビームスプリッタで光束を2本に分割す
る前の光路上に、2つの画素を形成するためのマスクを
配置した。第一の二光束レーザー干渉露光系上のマクス
と第一の二光束レーザー干渉露光系上のマスクと第三の
二光束レーザー干渉露光系上のマクスにより、感光性材
料に三種類の回折格子を縦300μm、横100μmの
サイズで交互に配置できるようにした。なお、フォトマ
スクの厚みは100μmであった。
For three three-beam laser interference exposure systems, one
A mask for forming two pixels is arranged on the light path before the light beam is divided into two by the light beam section, that is, the beam splitter. With the mask on the first two-beam laser interference exposure system, the mask on the first two-beam laser interference exposure system, and the mask on the third two-beam laser interference exposure system, three types of diffraction gratings are formed on the photosensitive material. The size of 300 μm in length and 100 μm in width can be arranged alternately. The thickness of the photomask was 100 μm.

【0057】干渉露光は3つの二光束レーザー干渉露光
系で同時に行い。露光時間は15秒とした。露光後、有
機アルカリ現像液AZ300MIF(クラリアントジャ
パン社製)で処理すると感光した部分が溶解した。この
結果、第一の二光束レーザー干渉露光系で露光した部分
には約280nmピッチの回折格子が得られ、第二の二
光束レーザー干渉露光系で露光した部分には約345n
mピッチの回折格子が得られ、第三の二光束レーザー干
渉露光系で露光した部分には約425nmピッチの回折
格子が得られた。三種類の回折格子の境界は20μmで
あったが、非干渉露光が起因する各画素周辺のレジスト
膜厚の減少は観察されなかった。
Interference exposure is performed simultaneously by three two-beam laser interference exposure systems. The exposure time was 15 seconds. After the exposure, it was treated with an organic alkali developer AZ300MIF (manufactured by Clariant Japan Co., Ltd.) to dissolve the exposed portion. As a result, a diffraction grating having a pitch of about 280 nm is obtained in the portion exposed by the first two-beam laser interference exposure system, and about 345 n in the portion exposed by the second two-beam laser interference exposure system.
A diffraction grating with an m pitch was obtained, and a diffraction grating with a pitch of about 425 nm was obtained in the portion exposed by the third two-beam laser interference exposure system. The boundary between the three types of diffraction gratings was 20 μm, but no decrease in the resist film thickness around each pixel due to non-interference exposure was observed.

【0058】作製したレジストパターン付き石英基板を
反応性ガスエッチングによりエッチングした。この時、
反応性ガスとしてCF4を使用し、進行波100W、陽
極電流120mA、反射波0W、陽極電圧1.45K
W、電圧−250Vの条件を使用した。20分間のエッ
チングにより約1500Åほど石英基板を掘ることがで
きた。エッチング後、リムーバでレジスト材料を除去し
基板を乾燥させた。結果として、各回折格子は縦300
μm、横100μmのサイズで、20μmの間隔で配置
することができた。
The produced quartz substrate with a resist pattern was etched by reactive gas etching. At this time,
CF4 is used as a reactive gas, traveling wave 100W, anode current 120mA, reflected wave 0W, anode voltage 1.45K.
The conditions of W and voltage -250V were used. It was possible to dig about 1500 Å quartz substrate by etching for 20 minutes. After etching, the resist material was removed with a remover and the substrate was dried. As a result, each diffraction grating is 300 vertical.
The size was 100 μm and the width was 100 μm, and they could be arranged at intervals of 20 μm.

【0059】(比較例1)実施例1で作製した有機EL
素子において、回折格子の面積0.25mm2と発光画
素電極面積と一致させる以外はすべて同一とした。この
素子に5mA/cm2の直流電圧を印加したところ、2
50cd/m2の発光が得られた。
(Comparative Example 1) Organic EL prepared in Example 1
In the device, all were the same except that the area of the diffraction grating was 0.25 mm 2 and the area of the light emitting pixel electrode. When a direct current voltage of 5 mA / cm 2 was applied to this element, 2
Light emission of 50 cd / m 2 was obtained.

【0060】(比較例2)厚さ100μmのフォトマス
クを感光性材料に密着させること、フォトマスクの位置
をずらして干渉露光を順次行うこと以外は実施例2と同
一とした。その結果、第一、第二、第三の二光束レーザ
ー干渉露光系で、画素の両辺近傍に、それぞれ、約17
0μm、100μm、46μmの非干渉露光部が観察さ
れた。この部分は現像により、レジスト膜厚は約160
0Åまで減少した。
Comparative Example 2 The same as Example 2 except that a photomask having a thickness of 100 μm was brought into close contact with a photosensitive material and the photomask was moved to perform interference exposure sequentially. As a result, in the first, second, and third two-beam laser interference exposure systems, about 17 pixels are provided near both sides of the pixel, respectively.
Non-interference exposure areas of 0 μm, 100 μm, and 46 μm were observed. This part is developed and the resist film thickness is about 160.
It decreased to 0Å.

【0061】[0061]

【発明の効果】以上説明したとおり、本発明によれば、
高輝度かつ高精細の有機EL素子が実現できる。さら
に、本発明の製造方法によれば、基板内に三種類の回折
格子を同時に製造することができ、生産効率が著しく向
上する。
As described above, according to the present invention,
A high-luminance and high-definition organic EL element can be realized. Furthermore, according to the manufacturing method of the present invention, three types of diffraction gratings can be manufactured simultaneously in the substrate, and the production efficiency is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の回折格子を有する有機EL素子の断面
模式図である。
FIG. 1 is a schematic sectional view of an organic EL device having a diffraction grating of the present invention.

【図2】本発明の二光束レーザー干渉露光系の概略図で
ある。
FIG. 2 is a schematic diagram of a two-beam laser interference exposure system of the present invention.

【図3】従来の二光束レーザー干渉露光に関わる回折格
子形成の概略図である。
FIG. 3 is a schematic view of forming a diffraction grating related to conventional two-beam laser interference exposure.

【図4】本発明のRGBの画素を有する有機EL素子の
断面模式図である。
FIG. 4 is a schematic cross-sectional view of an organic EL element having RGB pixels of the present invention.

【図5】本発明の複数の二光束レーザー干渉露光系の概
略図である。
FIG. 5 is a schematic diagram of a multiple two-beam laser interference exposure system of the present invention.

【符号の説明】[Explanation of symbols]

10、13 回折格子を含む基板 11、12、14 基板 20、21、22、23 高屈折率層 30、31、32、33 陽極(ITO) 40、41、42、43 有機層 50、51、52、53 陰極 60、61、62、63 発光 70、71、72、73 レーザー光源 80、81、82、83 ビームエキスパンダ 90、91、92、93、94 フォトマスク 100、101、102、103 ビームスプリッタ 110、111、112 レーザー光束 120、121、122、123、124、125、1
26、127 ミラー 130、131、132 感光性材料 140 レーザー交差角 150、151 非干渉露光部 160 干渉露光部
10, 13 Substrates including diffraction gratings 11, 12, 14 Substrates 20, 21, 22, 23 High refractive index layers 30, 31, 32, 33 Anodes (ITO) 40, 41, 42, 43 Organic layers 50, 51, 52 , 53 cathode 60, 61, 62, 63 light emission 70, 71, 72, 73 laser light source 80, 81, 82, 83 beam expander 90, 91, 92, 93, 94 photomask 100, 101, 102, 103 beam splitter 110, 111, 112 Laser light flux 120, 121, 122, 123, 124, 125, 1
26, 127 Mirrors 130, 131, 132 Photosensitive material 140 Laser crossing angles 150, 151 Non-interference exposure part 160 Interference exposure part

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 1層または複数層の有機薄膜層を陽極お
よび陰極で挟持してなり、かつ回折格子を含む有機EL
素子において、各発光画素に配置された該回折格子の面
積が発光画素の面積よりも大きいことを特徴とする有機
EL素子。
1. An organic EL device comprising a single or a plurality of organic thin film layers sandwiched between an anode and a cathode and including a diffraction grating.
In the element, the organic EL element is characterized in that the area of the diffraction grating arranged in each light emitting pixel is larger than the area of the light emitting pixel.
【請求項2】 前記発光画素の面積が2mm2/画素以
下であることを特徴とする請求項1記載の有機EL素
子。
2. The organic EL element according to claim 1, wherein the area of the light emitting pixel is 2 mm 2 / pixel or less.
【請求項3】 前記発光画素がR(赤)、G(緑)、B
(青)の三種類あることを特徴とする請求項1又は2記
載の有機EL素子。
3. The light emitting pixels are R (red), G (green), and B.
3. The organic EL device according to claim 1, wherein there are three types (blue).
【請求項4】 前記RGBから成る発光画素に隣接した
回折格子の周期がそれぞれ異なることを特徴とする請求
項3記載の有機EL素子。
4. The organic EL device according to claim 3, wherein the diffraction gratings adjacent to the light emitting pixels made of RGB have different periods.
【請求項5】 前記回折格子の周期が100nm〜60
0nmであることを特徴とする請求項1から請求項4の
いずれかに記載の有機EL素子。
5. The period of the diffraction grating is 100 nm to 60 nm.
It is 0 nm, The organic EL element in any one of Claim 1 to 4 characterized by the above-mentioned.
【請求項6】 1層または複数層の有機薄膜層を陽極お
よび陰極で挟持してなり、かつ回折格子を含む有機EL
素子の製造方法において、 基板内での回折格子の位置や大きさを決めるフォトマス
クを感光性材料の表面でレーザー非干渉露光部分を形成
しない位置に設置する工程と、 二光束レーザー干渉露光系により前記感光性材料を露光
する工程と、 前記基板または前記基板上に形成された薄膜をエッチン
グすることにより回折格子とする工程と、を備えること
を特徴とする有機EL素子の製造方法。
6. An organic EL device comprising one or a plurality of organic thin film layers sandwiched between an anode and a cathode and including a diffraction grating.
In the device manufacturing method, the step of setting a photomask that determines the position and size of the diffraction grating in the substrate at the position where the laser non-interference exposure part is not formed on the surface of the photosensitive material, and the two-beam laser interference exposure system A method of manufacturing an organic EL device, comprising: exposing the photosensitive material; and forming a diffraction grating by etching the substrate or a thin film formed on the substrate.
【請求項7】 前記フォトマスクが、レーザー光分岐前
の一光束光路上に少なくとも一枚設置されていることを
特徴とする請求項6記載の有機EL素子の製造方法。
7. The method for manufacturing an organic EL element according to claim 6, wherein at least one photomask is installed on the one-beam optical path before the laser beam splitting.
【請求項8】 前記フォトマスクが、レーザー光分岐後
の二光束光路上の各光路にそれぞれ少なくとも一枚設置
されていることを特徴とする請求項6記載の有機EL素
子の製造方法。
8. The method of manufacturing an organic EL device according to claim 6, wherein at least one photomask is provided in each optical path on the two-beam optical path after the laser light is split.
【請求項9】 前記フォトマスクを有する二光束レーザ
ー干渉露光系を複数具備することを特徴とする請求項6
から請求項8のいずれかに記載の有機EL素子の製造方
法。
9. A plurality of two-beam laser interference exposure systems having the photomask are provided.
9. The method for manufacturing an organic EL element according to claim 8.
【請求項10】 前記複数の二光束レーザー干渉露光系
が互いにインコヒーレントであることを特徴とする請求
項9記載の有機EL素子の製造方法。
10. The method for manufacturing an organic EL device according to claim 9, wherein the plurality of two-beam laser interference exposure systems are incoherent to each other.
【請求項11】 前記二光束レーザー干渉露光系の交差
角が150度以下であり、かつ基板の同一平面方向から
二光束レーザー干渉露光を行うことを特徴とする請求項
6から請求項10のいずれかに記載の有機EL素子の製
造方法。
11. The cross beam angle of the two-beam laser interference exposure system is 150 degrees or less, and the two-beam laser interference exposure is performed from the same plane direction of the substrate. A method for producing an organic EL device according to item 1.
【請求項12】 前記複数の二光束レーザー干渉露光系
に使用されるレーザーの波長あるいは交差角が異なるこ
とを特徴とする請求項請求項8から請求項11のいずれ
かに記載の有機EL素子の製造方法。
12. The organic EL device according to claim 8, wherein wavelengths or crossing angles of lasers used for the plurality of two-beam laser interference exposure systems are different. Production method.
【請求項13】 前記二光束レーザー干渉露光系が三種
類あり、各露光を順次あるいは同時に行うことを特徴と
する請求項9から請求項12のいずれかに記載の有機E
L素子の製造方法。
13. The organic E according to claim 9, wherein there are three types of the two-beam laser interference exposure system, and each exposure is performed sequentially or simultaneously.
Manufacturing method of L element.
【請求項14】 前記二光束レーザー干渉露光系により
感光性樹脂を露光する工程において、感光性樹脂を塗布
した基板面側から露光を行い、かつ、もう一方の基板面
には光吸収板を具備することを特徴とする請求項6から
請求項13のいずれかに記載の有機EL素子の製造方
法。
14. In the step of exposing the photosensitive resin by the two-beam laser interference exposure system, the exposure is performed from the substrate surface side coated with the photosensitive resin, and the other substrate surface is provided with a light absorbing plate. 14. The method for manufacturing an organic EL device according to claim 6, wherein
JP2001362684A 2001-11-28 2001-11-28 Organic el element and manufacturing method therefor Pending JP2003163075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001362684A JP2003163075A (en) 2001-11-28 2001-11-28 Organic el element and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001362684A JP2003163075A (en) 2001-11-28 2001-11-28 Organic el element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003163075A true JP2003163075A (en) 2003-06-06

Family

ID=19173144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001362684A Pending JP2003163075A (en) 2001-11-28 2001-11-28 Organic el element and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003163075A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086821A1 (en) * 2003-03-25 2004-10-07 Kyoto University Light-emitting device and organic electroluminescence light-emitting device
EP1494297A2 (en) * 2003-06-30 2005-01-05 Lg Electronics Inc. Organic electroluminescent display
WO2005017860A1 (en) * 2003-08-13 2005-02-24 Toshiba Matsushita Display Technology Co., Ltd. Optical device and organic el display
WO2005017862A1 (en) * 2003-08-13 2005-02-24 Toshiba Matsushita Display Technology Co., Ltd. Display
JP2005268046A (en) * 2004-03-18 2005-09-29 Nec Corp Organic el device and organic el display device
JP2005284276A (en) * 2004-03-05 2005-10-13 Toshiba Matsushita Display Technology Co Ltd Method of manufacturing display device
JP2006108093A (en) * 2004-10-05 2006-04-20 Samsung Sdi Co Ltd Organic light-emitting element and method for manufacturing the same
CN100429802C (en) * 2004-03-05 2008-10-29 东芝松下显示技术有限公司 Method of manufacturing display device
WO2009064019A1 (en) * 2007-11-14 2009-05-22 Canon Kabushiki Kaisha Light-emitting apparatus
US7589461B2 (en) * 2003-11-28 2009-09-15 Samsung Mobile Display Co., Ltd. Organic electroluminescent display device having a photonic crystal layer provided over electroluminescent stack
JP2010097953A (en) * 2010-02-01 2010-04-30 Nec Corp Method for manufacturing organic el display, and organic el display
US7759861B2 (en) 2005-02-10 2010-07-20 Kabushiki Kaisha Toshiba Organic EL display
US7872414B2 (en) 2004-03-03 2011-01-18 Hitachi Displays, Ltd. Light emitting element and display device with improved external coupling efficiency
US8304796B2 (en) 2007-11-14 2012-11-06 Canon Kabushiki Kaisha Light-emitting apparatus
KR20140054317A (en) * 2011-08-26 2014-05-08 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Oled light extraction film with multi-periodic zones of nanostructures
CN104752618B (en) * 2013-12-25 2017-01-18 昆山国显光电有限公司 Light-emitting display device and preparation method thereof

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8704253B2 (en) 2003-03-25 2014-04-22 Rohm Co., Ltd. Light-emitting device and organic electroluminescence light-emitting device
WO2004086821A1 (en) * 2003-03-25 2004-10-07 Kyoto University Light-emitting device and organic electroluminescence light-emitting device
EP1494297A2 (en) * 2003-06-30 2005-01-05 Lg Electronics Inc. Organic electroluminescent display
EP1494297A3 (en) * 2003-06-30 2006-04-26 Lg Electronics Inc. Organic electroluminescent display
CN100452117C (en) * 2003-08-13 2009-01-14 东芝松下显示技术有限公司 Display
WO2005017860A1 (en) * 2003-08-13 2005-02-24 Toshiba Matsushita Display Technology Co., Ltd. Optical device and organic el display
WO2005017862A1 (en) * 2003-08-13 2005-02-24 Toshiba Matsushita Display Technology Co., Ltd. Display
JP2005063838A (en) * 2003-08-13 2005-03-10 Toshiba Matsushita Display Technology Co Ltd Optical device and organic el display device
US7573193B2 (en) 2003-08-13 2009-08-11 Toshiba Matsushita Display Technology Co., Ltd. Optical device and organic EL display
KR100753256B1 (en) * 2003-08-13 2007-08-29 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 Optical device and organic el display
US8013514B2 (en) 2003-11-28 2011-09-06 Samsung Mobile Display Co., Ltd. Electroluminescent display device provided with a photonic crystal layer incorporating voids in a vacuum state
US7589461B2 (en) * 2003-11-28 2009-09-15 Samsung Mobile Display Co., Ltd. Organic electroluminescent display device having a photonic crystal layer provided over electroluminescent stack
US7872414B2 (en) 2004-03-03 2011-01-18 Hitachi Displays, Ltd. Light emitting element and display device with improved external coupling efficiency
CN100429802C (en) * 2004-03-05 2008-10-29 东芝松下显示技术有限公司 Method of manufacturing display device
US7449215B2 (en) 2004-03-05 2008-11-11 Toshiba Matsushita Display Technology Co., Ltd. Method of manufacturing display device
JP2005284276A (en) * 2004-03-05 2005-10-13 Toshiba Matsushita Display Technology Co Ltd Method of manufacturing display device
JP2005268046A (en) * 2004-03-18 2005-09-29 Nec Corp Organic el device and organic el display device
JP4511440B2 (en) * 2004-10-05 2010-07-28 三星モバイルディスプレイ株式會社 ORGANIC LIGHT EMITTING ELEMENT AND METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT
JP2006108093A (en) * 2004-10-05 2006-04-20 Samsung Sdi Co Ltd Organic light-emitting element and method for manufacturing the same
US7759861B2 (en) 2005-02-10 2010-07-20 Kabushiki Kaisha Toshiba Organic EL display
US8304796B2 (en) 2007-11-14 2012-11-06 Canon Kabushiki Kaisha Light-emitting apparatus
WO2009064019A1 (en) * 2007-11-14 2009-05-22 Canon Kabushiki Kaisha Light-emitting apparatus
JP4561935B2 (en) * 2010-02-01 2010-10-13 日本電気株式会社 Manufacturing method of organic EL display device
JP2010097953A (en) * 2010-02-01 2010-04-30 Nec Corp Method for manufacturing organic el display, and organic el display
KR20140054317A (en) * 2011-08-26 2014-05-08 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Oled light extraction film with multi-periodic zones of nanostructures
JP2014529169A (en) * 2011-08-26 2014-10-30 スリーエム イノベイティブ プロパティズ カンパニー OLED light extraction film having multi-period region of nanostructure
KR102046367B1 (en) 2011-08-26 2019-11-19 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Oled light extraction film with multi-periodic zones of nanostructures
CN104752618B (en) * 2013-12-25 2017-01-18 昆山国显光电有限公司 Light-emitting display device and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2003163075A (en) Organic el element and manufacturing method therefor
US6396208B1 (en) Organic electroluminescent device and its manufacturing process
JPH11283751A (en) Organic electroluminescent element
JP3852509B2 (en) Electroluminescent device and manufacturing method thereof
JP2005050708A (en) Substrate for optical elements and organic electroluminescence element as well as organic electroluminescence display device
US20120061696A1 (en) Method for manufacturing display and display
JP4717200B2 (en) Organic light emitting device
KR20040070102A (en) Color oled display with improved emission
JP2692671B2 (en) Resonator type organic thin film EL device
JP2006286493A (en) Display element, display device, and manufacturing method of display element
US20090061724A1 (en) Method of making a top-emitting oled device having improved power distribution
JPH0950888A (en) Organic electroluminescense element
JP2947250B2 (en) Organic electroluminescence device and method of manufacturing the same
KR20030068452A (en) Organic semiconductor device and method for manufacturing the same
JP2001217078A (en) Organic light emitting element and manufacturing method
WO2002011209A2 (en) Method of patterning color changing media for organic light emitting diode display devices
US20200243791A1 (en) Capping layer process with low temperature photoresist patterning
US6639358B2 (en) Organic electroluminescent device with buried lower elecrodes and method for manufacturing the same
JP2003243182A (en) Organic el element
JP2848386B1 (en) Organic electroluminescence device and method of manufacturing the same
TW200901531A (en) Process for making contained layers
WO2012102218A1 (en) Organic light-emitting device and method for manufacturing same
JP4139085B2 (en) Organic EL device and manufacturing method thereof
JP3536766B2 (en) Organic EL device including diffraction grating
JP2006269235A (en) Manufacturing method of organic electroluminescent element and organic electroluminescent element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108