JP2003161747A - Method and circuit for measurement of high-frequency electric power - Google Patents

Method and circuit for measurement of high-frequency electric power

Info

Publication number
JP2003161747A
JP2003161747A JP2001363279A JP2001363279A JP2003161747A JP 2003161747 A JP2003161747 A JP 2003161747A JP 2001363279 A JP2001363279 A JP 2001363279A JP 2001363279 A JP2001363279 A JP 2001363279A JP 2003161747 A JP2003161747 A JP 2003161747A
Authority
JP
Japan
Prior art keywords
indirectly heated
thermistor
voltage
heated thermistor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001363279A
Other languages
Japanese (ja)
Inventor
Kazuyuki Masuda
和幸 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001363279A priority Critical patent/JP2003161747A/en
Publication of JP2003161747A publication Critical patent/JP2003161747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency electric power measuring circuit whose measurement accuracy is high by constituting a bridge circuit by using an indirectly heated thermistor. <P>SOLUTION: The high-frequency electric power measuring circuit is constituted of an indirectly heated thermistor TH1 in which signal electric power to be measured from the outside is input to a heater resistance R1, an indirectly heated thermistor TH2 in which a substitutional voltage corresponding to the signal electric power to be measured is input to a heater resistance R4, a fixed resistance R5 and a fixed resistance R6 which constitute the bridge circuit 1 by including a heat detecting element R2 in the thermistor TH1 and a heat detecting element R3 in the thermistor TH2, a differential amplifier 2 which amplifies a differential voltage based on a change in resistance values of the elements R2, R3 in the thermistor TH1 and the thermistor TH2 and which outputs the substitutional voltage, and a voltmeter 3 which measures the substitutional voltage to be output from the differential amplifier 2. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高周波電力測定回路
に関し、特に傍熱型サーミスタを使用した精度の高い高
周波電力測定回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency power measuring circuit, and more particularly to a high precision high frequency power measuring circuit using an indirectly heated thermistor.

【0002】[0002]

【従来の技術】従来、この種の高周波電力測定回路は、
サーミスタを用いて実効電力を測定する回路が広く用い
られている。
2. Description of the Related Art Conventionally, this type of high frequency power measuring circuit has been
A circuit that measures effective power using a thermistor is widely used.

【0003】サーミスタには、温度上昇に応じて電気抵
抗が減少する負極性サーミスタ(NTC)と、電気抵抗
が上昇する正極性サーミスタ(PTC)とがあり、ま
た、直熱形と呼ばれるサーミスタと傍熱形と呼ばれるサ
ーミスタとがある。
There are two types of thermistors, a negative thermistor (NTC) whose electric resistance decreases as the temperature rises, and a positive thermistor (PTC) whose electric resistance increases, and a thermistor called a direct heating type. There is a thermistor called a heat type.

【0004】直熱形サーミスタは直接通電による自己発
熱で温度が上昇し、二次的に電気抵抗が変化することを
利用したサーミスタであり、傍熱形サーミスタは外部ヒ
ータで加熱されることにより、その電気抵抗が変化する
ことを利用したサーミスタである。
The direct-heat type thermistor is a thermistor which utilizes the fact that the temperature rises due to self-heating due to direct energization and the electrical resistance changes secondarily. The indirectly heated thermistor is heated by an external heater. It is a thermistor that utilizes the change in its electrical resistance.

【0005】この直熱形サーミスタを用いた従来の高周
波電力測定回路は、被測定信号電力を入力することによ
ってサーミスタの抵抗値が変化し、更に直流を遮断する
結合コンデンサの使用により低周波数域で入力インピー
ダンスにズレが生じるため、幅広い周波数帯域で正確に
電力を測定することができないという問題があった。
In the conventional high frequency power measuring circuit using the direct heating type thermistor, the resistance value of the thermistor is changed by inputting the signal power to be measured, and further, in the low frequency range by using a coupling capacitor for cutting off direct current. Since the input impedance is deviated, there is a problem that the power cannot be accurately measured in a wide frequency band.

【0006】また、直熱形サーミスタを用いた高周波電
力測定回路において、被測定信号電力の入力と置換交流
信号とをサーミスタブリッジ回路で平衡させて電力を測
定する自動平衡形の電力測定回路もあるが、置換交流信
号発生回路が複雑であるという問題があった。
Further, in a high frequency power measuring circuit using a direct heat type thermistor, there is also an automatic balancing type power measuring circuit which measures the power by balancing the input of the signal power to be measured and the replacement AC signal with a thermistor bridge circuit. However, there is a problem that the replacement AC signal generating circuit is complicated.

【0007】[0007]

【発明が解決しようとする課題】上述した従来の高周波
電力測定回路は、直熱形サーミスタを用いた場合にはサ
ーミスタの抵抗値が変化するとともに、結合コンデンサ
による入力インピーダンスにズレが生じるため、正確に
電力を測定することができないという欠点がある。
The conventional high-frequency power measuring circuit described above is accurate because the resistance value of the thermistor changes when a direct heating type thermistor is used and the input impedance due to the coupling capacitor is deviated. The disadvantage is that it cannot measure the power.

【0008】また、直熱形サーミスタを用いた自動平衡
形の電力測定回路では、置換交流信号発生回路が複雑で
あるという欠点がある。
Further, the automatic balance type power measuring circuit using the direct heating type thermistor has a drawback that the replacement AC signal generating circuit is complicated.

【0009】本発明の目的は、このような従来の欠点を
除去するため、傍熱形サーミスタを用いてブリッジ回路
を構成することにより、広い周波数帯域で精度の高い電
力測定ができる高周波電力測定回路を提供することにあ
る。
The object of the present invention is to eliminate such drawbacks of the prior art by constructing a bridge circuit using an indirectly heated thermistor, whereby a high frequency power measuring circuit capable of highly accurate power measurement in a wide frequency band. To provide.

【0010】[0010]

【課題を解決するための手段】本発明の高周波電力測定
方法は、第1および第2の傍熱型サーミスタと第1およ
び第2の固定抵抗とによりブリッジ回路を構成し、前記
第1の傍熱形サーミスタに外部からの被測定信号電力を
入力し、前記第2の傍熱形サーミスタに前記第1の傍熱
型サーミスタおよび前記第2の傍熱型サーミスタの抵抗
値変化に基づく差電圧を増幅した置換電圧を入力し、増
幅された前記置換電圧より前記被測定信号電力を算出し
て求めることを特徴としている。
The high frequency power measuring method of the present invention comprises a bridge circuit composed of first and second indirectly heated thermistors and first and second fixed resistors. An external signal power to be measured is input to the thermal thermistor, and a differential voltage based on a resistance value change of the first indirectly heated thermistor and the second indirectly heated thermistor is input to the second indirectly heated thermistor. It is characterized in that an amplified replacement voltage is inputted and the signal power under measurement is calculated and obtained from the amplified replacement voltage.

【0011】また、前記第1および第2の傍熱型サーミ
スタは、熱感知素子とこれを加熱するヒータ抵抗とを備
え、それぞれの熱感知素子が同じ抵抗温度特性を有し、
同じ抵抗温度特性を有する前記第1および第2の固定抵
抗とブリッジ回路を構成するとともに、近接して設けら
れたことを特徴としている。
The first and second indirectly heated thermistors each include a heat sensing element and a heater resistance for heating the heat sensing element, and each heat sensing element has the same resistance temperature characteristic.
A bridge circuit is formed with the first and second fixed resistors having the same resistance temperature characteristic, and the bridge circuit is provided close to each other.

【0012】また、前記第1の傍熱型サーミスタは、そ
のヒータ抵抗が特性インピーダンスに設定されて前記被
測定信号電力を入力され、前記第2の傍熱型サーミスタ
は、そのヒータ抵抗に増幅された前記置換電圧が印加さ
れることを特徴としている。
Further, the heater resistance of the first indirectly heated thermistor is set to a characteristic impedance and the signal power to be measured is input, and the second indirectly heated thermistor is amplified by the heater resistance. Further, the replacement voltage is applied.

【0013】また、本発明の高周波電力測定回路は、第
1および第2の傍熱型サーミスタと第1および第2の固
定抵抗とにより構成されたブリッジ回路を備える高周波
電力測定回路であって、前記第1の傍熱形サーミスタは
外部からの被測定信号電力が入力され、前記第2の傍熱
形サーミスタは前記第1の傍熱型サーミスタおよび前記
第2の傍熱型サーミスタの抵抗値変化に基づく差電圧を
増幅した置換電圧が印加されることを特徴としている。
The high frequency power measuring circuit of the present invention is a high frequency power measuring circuit comprising a bridge circuit composed of first and second indirectly heated thermistors and first and second fixed resistors. Externally measured signal power is input to the first indirectly heated thermistor, and the second indirectly heated thermistor changes resistance values of the first indirectly heated thermistor and the second indirectly heated thermistor. It is characterized in that a replacement voltage obtained by amplifying a difference voltage based on is applied.

【0014】また、前記第1および第2の傍熱型サーミ
スタは、熱感知素子とこれを加熱するヒータ抵抗とを備
え、それぞれの熱感知素子が同じ抵抗温度特性を有し、
同じ抵抗温度特性を有する前記第1および第2の固定抵
抗とブリッジ回路を構成するとともに、近接して設けら
れたことを特徴としている。
The first and second indirectly heated thermistors each have a heat sensing element and a heater resistance for heating the heat sensing element, and each heat sensing element has the same resistance temperature characteristic.
A bridge circuit is formed with the first and second fixed resistors having the same resistance temperature characteristic, and the bridge circuit is provided close to each other.

【0015】また、前記第1の傍熱型サーミスタは、そ
のヒータ抵抗が特性インピーダンスに設定されて前記被
測定信号電力を入力され、前記第2の傍熱型サーミスタ
は、そのヒータ抵抗に増幅された前記置換電圧が印加さ
れることを特徴としている。
Further, the heater resistance of the first indirectly heated thermistor is set to a characteristic impedance and the signal power to be measured is inputted, and the second indirectly heated thermistor is amplified by the heater resistance. Further, the replacement voltage is applied.

【0016】また、本発明の高周波電力測定回路は、外
部からの被測定信号電力をヒータ抵抗に入力する第1の
傍熱型サーミスタと、前記被測定信号電力に相当する置
換電圧をヒータ抵抗に入力する第2の傍熱型サーミスタ
と、前記第1の傍熱型サーミスタおよび前記第2の傍熱
型サーミスタのそれぞれの熱感知素子を含めてブリッジ
回路を構成する第1および第2の固定抵抗と、前記第1
の傍熱型サーミスタおよび前記第2の傍熱型サーミスタ
のそれぞれの前記熱感知素子の抵抗値変化に基づく差電
圧を増幅して前記置換電圧を出力する差動増幅器と、前
記置換電圧を計測する電圧計測手段と、より構成される
ことを特徴としている。
In the high frequency power measuring circuit of the present invention, the first indirectly heated thermistor for inputting the signal power to be measured from the outside to the heater resistance, and the replacement voltage corresponding to the signal power to be measured are supplied to the heater resistance. Inputting a second indirectly heated thermistor, and first and second fixed resistors that form a bridge circuit including the heat sensing elements of the first indirectly heated thermistor and the second indirectly heated thermistor. And the first
Of the indirectly heated thermistor and the second indirectly heated thermistor, a differential amplifier that amplifies a difference voltage based on a change in resistance value of the heat sensing element and outputs the replacement voltage, and the replacement voltage is measured. It is characterized by comprising a voltage measuring means.

【0017】[0017]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。図1は、本発明の高周波電
力測定回路の一つの実施の形態を示すブロック図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing one embodiment of the high frequency power measuring circuit of the present invention.

【0018】図1に示す本実施の形態は、外部からの被
測定信号電力をヒータ抵抗R1に入力する傍熱型サーミ
スタTH1と、被測定信号電力に相当する置換電圧をヒ
ータ抵抗R4に入力する傍熱型サーミスタTH2と、傍
熱型サーミスタTH1および傍熱型サーミスタTH2の
熱感知素子R2、R3を含めてブリッジ回路1を構成す
る固定抵抗R5、R6と、傍熱型サーミスタTH1およ
び傍熱型サーミスタTH2の熱感知素子R2、R3の抵
抗値変化に基づく差電圧を増幅して置換電圧を出力する
差動増幅器2と、差動増幅器2から出力される置換電圧
を計測する電圧計3とより構成されている。
In this embodiment shown in FIG. 1, an indirectly heated thermistor TH1 for inputting a signal power to be measured from the outside to a heater resistance R1 and a replacement voltage corresponding to the signal power to be measured are input to a heater resistance R4. Fixed resistors R5 and R6 that form the bridge circuit 1 including the indirectly heated thermistor TH2, the heat sensing elements R2 and R3 of the indirectly heated thermistor TH1 and the indirectly heated thermistor TH2, and the indirectly heated thermistor TH1 and the indirectly heated type. The differential amplifier 2 that amplifies the difference voltage based on the resistance change of the thermal sensing elements R2 and R3 of the thermistor TH2 and outputs the replacement voltage, and the voltmeter 3 that measures the replacement voltage output from the differential amplifier 2 It is configured.

【0019】次に、本実施の形態の高周波電力測定回路
の動作を図1を参照して詳細に説明する。
Next, the operation of the high frequency power measuring circuit of this embodiment will be described in detail with reference to FIG.

【0020】傍熱型サーミスタTH1、TH2は、それ
ぞれ熱感知素子R2、R3と熱感知素子R2、R3を加
熱するヒータ抵抗R1、R4とより構成されている。
The indirectly heated thermistors TH1 and TH2 are composed of heat sensing elements R2 and R3 and heater resistors R1 and R4 for heating the heat sensing elements R2 and R3, respectively.

【0021】ヒータ抵抗R1は、その抵抗値を特性イン
ピーダンス(例えば50Ω)とし、温度変化に対して特
性変化しないものとすれば、入力された高周波信号に対
して終端抵抗となり反射がなく、広帯域で使用されるこ
とができる。
If the resistance value of the heater resistor R1 is set to a characteristic impedance (for example, 50Ω) and does not change with temperature, the heater resistor R1 becomes a terminating resistor for an input high frequency signal without reflection and has a wide band. Can be used.

【0022】熱感知素子R2は、ヒータ抵抗R1の発熱
に応じて抵抗値が変化し、この抵抗値の変化に応じて、
端子P2の電位に変化を与える。
The resistance value of the heat sensing element R2 changes according to the heat generation of the heater resistance R1, and according to the change of the resistance value,
The potential of the terminal P2 is changed.

【0023】熱感知素子R3は、熱感知素子R2と抵抗
値および温度に対する電気的特性が同一のものが選定さ
れ、傍熱型サーミスタTH1、TH2の熱的環境条件が
均等になるよう配置されることにより、周囲温度が変化
した場合や被測定信号電力が変化した場合でも熱感知素
子R2、R3の抵抗値変化に基づく電位差の変動を最小
限とし、温度補償を行うことができる。
The heat sensing element R3 is selected to have the same electrical characteristics with respect to the resistance value and temperature as the heat sensing element R2, and is arranged so that the indirectly heated thermistors TH1 and TH2 have equal thermal environmental conditions. As a result, even if the ambient temperature changes or the signal power to be measured changes, fluctuations in the potential difference due to changes in the resistance values of the heat sensing elements R2 and R3 can be minimized and temperature compensation can be performed.

【0024】ヒータ抵抗R4は、熱感知素子R2、R3
の抵抗値変化による電圧降下の差に応じて、差動増幅器
2で増幅された電圧が入力され、熱感知素子R3を加熱
する。したがって、ヒータ抵抗R4は温度変化に対して
特性変化しないものであれば、ヒータ抵抗R1と同一の
抵抗値である必要はない。
The heater resistor R4 is a heat sensing element R2, R3.
The voltage amplified by the differential amplifier 2 is input according to the difference in the voltage drop due to the change in the resistance value, and heats the heat sensing element R3. Therefore, the heater resistance R4 does not have to have the same resistance value as the heater resistance R1 as long as the characteristics do not change with temperature change.

【0025】固定抵抗R5、R6は、同一の抵抗値およ
び温度に対する電気的特性を有するものが選定され、熱
感知素子R2、R3と合わせてブリッジ回路1を構成し
ている。
The fixed resistors R5 and R6 are selected to have the same resistance value and electrical characteristics with respect to temperature, and constitute the bridge circuit 1 together with the heat sensing elements R2 and R3.

【0026】抵抗7は、ブリッジ回路に加わる電圧を適
切に分圧するものであり、大地電位側に挿入されること
もできる。
The resistor 7 appropriately divides the voltage applied to the bridge circuit, and can be inserted on the ground potential side.

【0027】差動増幅器2は、熱感知素子R2、R3の
抵抗値変化に基づく電位差を増幅し、傍熱型サーミスタ
TH2のヒータ抵抗R4に増幅した電圧を供給する。
The differential amplifier 2 amplifies the potential difference based on the resistance change of the heat sensing elements R2 and R3, and supplies the amplified voltage to the heater resistor R4 of the indirectly heated thermistor TH2.

【0028】差動増幅器2の出力側に設けられた抵抗R
10およびコンデンサC1は、差動増幅器2出力を平滑
化し、また、ダイオードD1は、電圧計3に逆電圧が印
加されないよう負電圧を制限するためのものである。
A resistor R provided on the output side of the differential amplifier 2
The capacitor 10 and the capacitor C1 are for smoothing the output of the differential amplifier 2, and the diode D1 is for limiting the negative voltage so that the reverse voltage is not applied to the voltmeter 3.

【0029】次に、被測定信号電力が入力された場合の
動作について説明する。
Next, the operation when the signal power to be measured is input will be described.

【0030】まず、被測定信号電力が入力されていない
場合には、傍熱型サーミスタTH1のヒータ抵抗R1が
発熱しないため、熱感知素子R2の温度は定常状態にお
ける周囲温度とほぼ同じである。したがって、端子P2
の電圧値は正電源電圧から抵抗R7、R5およびR2に
よって分圧された定常時の値となる。また、抵抗R5、
R6の値が同一であり、熱感知素子R2、R3の抵抗値
も同一であるので、端子P4の電位が0Vの条件のもと
に、端子P2、P3は同電位となる。差動増幅器2は、
端子P2、P3が同電位であるため出力がない。したが
って、端子P4の電圧値は0Vが得られ、ヒータ抵抗R
4での発熱がない。
First, when the signal power to be measured is not input, the heater resistance R1 of the indirectly heated thermistor TH1 does not generate heat, so the temperature of the heat sensing element R2 is almost the same as the ambient temperature in a steady state. Therefore, the terminal P2
The voltage value of is a steady-state value divided by the resistors R7, R5, and R2 from the positive power supply voltage. Also, the resistor R5,
Since the value of R6 is the same and the resistance values of the heat sensing elements R2 and R3 are also the same, the terminals P2 and P3 have the same potential under the condition that the potential of the terminal P4 is 0V. The differential amplifier 2 is
There is no output because the terminals P2 and P3 have the same potential. Therefore, the voltage value of the terminal P4 is 0V, and the heater resistance R
No fever at 4.

【0031】いま、高周波信号入力端子P1から被測定
信号電力が入力された場合、被測定信号電力は傍熱型サ
ーミスタTH1のヒータ抵抗R1に消費されて熱源とな
り、熱感知素子R2を加熱する。熱感知素子R2は加熱
されて温度が上昇し、電気抵抗値が増加する。したがっ
て、端子P2の電位が上昇することにより、差動増幅器
2はその出力に正電圧を発生する。差動増幅器2の出力
に発生した正電圧は、抵抗R10およびコンデンサC1
によって平滑化され、傍熱型サーミスタTH2のヒータ
抵抗R4に印加される。この時、ダイオードD1は逆電
圧が印加されるためオフ状態である。
When the signal power to be measured is input from the high frequency signal input terminal P1, the signal power to be measured is consumed by the heater resistor R1 of the indirectly heated thermistor TH1 and becomes a heat source to heat the heat sensing element R2. The heat sensing element R2 is heated and its temperature rises, and its electric resistance value increases. Therefore, as the potential of the terminal P2 rises, the differential amplifier 2 generates a positive voltage at its output. The positive voltage generated at the output of the differential amplifier 2 is the resistance R10 and the capacitor C1.
And is applied to the heater resistance R4 of the indirectly heated thermistor TH2. At this time, the diode D1 is in the off state because the reverse voltage is applied.

【0032】傍熱型サーミスタTH2の熱感知素子R3
は、ヒータ抵抗R4が発熱すると電気抵抗値が増加し、
端子P3の電位は上昇する。端子P2、P3の電位差が
小さくなるにしたがって、差動増幅器2は出力電圧が低
下し、熱感知素子R2、R3の電気抵抗値が等しくなっ
た時点で平衡状態になる。この平衡状態において、傍熱
型サーミスタTH2のヒータ抵抗R4(R)に消費され
る電力は、傍熱型サーミスタTH1のヒータ抵抗R1で
消費される電力(Win)と同等であり、したがって、
傍熱型サーミスタTH1のヒータ抵抗R1で消費される
電力に相当する端子P4の電圧(V)、すなわち置換電
圧は、 V2 =Win×R (1) となり、端子P4の電圧(V)を測定すれば、 Win=V2 /R (2) の式より、入力端子P1から入力された被測定信号電力
の値を得ることができる。
Heat sensing element R3 of indirectly heated thermistor TH2
When the heater resistance R4 generates heat, the electric resistance value increases,
The potential of the terminal P3 rises. The output voltage of the differential amplifier 2 decreases as the potential difference between the terminals P2 and P3 decreases, and the differential amplifier 2 enters a balanced state when the electric resistance values of the heat sensing elements R2 and R3 become equal. In this equilibrium state, the power consumed by the heater resistance R4 (R) of the indirectly heated thermistor TH2 is equal to the power consumed by the heater resistance R1 of the indirectly heated thermistor TH1 (Win), and therefore,
The voltage (V) of the terminal P4 corresponding to the electric power consumed by the heater resistance R1 of the indirectly heated thermistor TH1, that is, the replacement voltage is V 2 = Win × R (1), and the voltage (V) of the terminal P4 is measured. Then, the value of the signal power under measurement input from the input terminal P1 can be obtained from the formula Win = V 2 / R (2).

【0033】次に、入力端子P1から入力される被測定
信号電力が減少した場合、傍熱型サーミスタTH1のヒ
ータ抵抗R1で発生する熱量が減少し、加熱されていた
熱感知素子R2は温度が低下して電気抵抗値も減少す
る。これにより、差動増幅器2は負の電位差が入力され
て負の電圧を出力するが、この負の電圧はダイオードD
1をオン状態とするので、抵抗R10を介してコンデン
サC1に蓄積された電荷を放出させるよう作用し、傍熱
型サーミスタTH2のヒータ抵抗R4には電圧が印加さ
れない。したがって、傍熱型サーミスタTH2の熱感知
素子R3は温度が低下して電気抵抗値も減少する。これ
により、端子P3の電位は端子P2に追随して低下し、
傍熱型サーミスタTH1の熱感知素子R2および傍熱型
サーミスタTH2の熱感知素子R3の電気抵抗値が等し
くなるにしたがって、端子P3との電位差が小さくなり
平衡状態に至る。この状態においても、TH2のヒータ
抵抗R4に消費される電力は傍熱形サーミスタTH1の
ヒータ抵抗R1で消費される電力(Win)と同等であ
るので、端子4の電圧(V)は、上述の(1)式をもと
に、(2)式から被測定信号電力の値を得ることができ
る。したがって、電圧計3の指示する端子P4の電圧
(V)より被測定信号電力(Win)の値を得ることが
できる。
Next, when the signal power to be measured input from the input terminal P1 is reduced, the amount of heat generated by the heater resistance R1 of the indirectly heated thermistor TH1 is reduced, and the temperature of the heated heat sensing element R2 is reduced. The electric resistance value decreases as well. As a result, the differential amplifier 2 receives a negative potential difference and outputs a negative voltage, and this negative voltage is applied to the diode D.
Since 1 is turned on, it acts to release the charge accumulated in the capacitor C1 via the resistor R10, and no voltage is applied to the heater resistor R4 of the indirectly heated thermistor TH2. Therefore, the temperature of the heat sensing element R3 of the indirectly heated thermistor TH2 decreases and the electric resistance value also decreases. As a result, the potential of the terminal P3 follows the terminal P2 and decreases,
As the electric resistance values of the heat sensing element R2 of the indirectly heated thermistor TH1 and the heat sensing element R3 of the indirectly heated thermistor TH2 become equal, the potential difference from the terminal P3 becomes smaller and the equilibrium state is reached. Even in this state, the electric power consumed by the heater resistance R4 of TH2 is equal to the electric power (Win) consumed by the heater resistance R1 of the indirectly heated thermistor TH1. The value of the measured signal power can be obtained from the equation (2) based on the equation (1). Therefore, the value of the signal power to be measured (Win) can be obtained from the voltage (V) of the terminal P4 indicated by the voltmeter 3.

【0034】次に、本発明の他の実施例について説明す
る。図2は、本発明の高周波電力測定回路の他の実施の
形態を示すブロック図である。
Next, another embodiment of the present invention will be described. FIG. 2 is a block diagram showing another embodiment of the high frequency power measuring circuit of the present invention.

【0035】図2を参照すると、ブリッジ回路1を構成
している固定抵抗R5、R6および熱感知素子R2、R
3の僅かな電気抵抗値の相違を補償するために、可変抵
抗RV1を追加している。また、熱感知素子R2、R3
は、図1では正の抵抗温度特性のサーミスタ(PTC)
を使用したが、図2では負の抵抗温度特性のサーミスタ
(NTC)を使用している。この場合、差動増幅器2の
入力端子は、図1とは逆の極性に接続される。
Referring to FIG. 2, fixed resistors R5 and R6 and heat sensing elements R2 and R that constitute the bridge circuit 1 are provided.
A variable resistor RV1 is added to compensate for the slight difference in the electrical resistance value of No. 3. Also, the heat sensing elements R2 and R3
Is a thermistor (PTC) with a positive resistance temperature characteristic in Fig. 1.
However, in FIG. 2, a thermistor (NTC) having a negative resistance temperature characteristic is used. In this case, the input terminal of the differential amplifier 2 is connected to the opposite polarity to that of FIG.

【0036】[0036]

【発明の効果】以上説明したように、本発明の高周波電
力測定方法及び高周波電力測定回路によれば、以下の効
果を有する。
As described above, the high frequency power measuring method and the high frequency power measuring circuit of the present invention have the following effects.

【0037】第1の効果は、同じ抵抗温度特性を有する
2つの傍熱型サーミスタと2つの固定抵抗とでブリッジ
回路を構成し、且つ近接して用いることにより、被測定
信号電力の変動および周囲温度の影響を取り除くことが
できることである。
The first effect is that by forming a bridge circuit with two indirectly heated thermistors having the same resistance temperature characteristic and two fixed resistors and using them in close proximity, fluctuations in the signal power under measurement and the surroundings. The effect of temperature can be removed.

【0038】第2の効果は、入力信号が特性インピーダ
ンス(例えば、50Ω)で終端されているため、反射が
なく広い周波数帯域で精度の高い電力測定が可能になる
ことである。
The second effect is that since the input signal is terminated by the characteristic impedance (for example, 50Ω), there is no reflection and accurate power measurement in a wide frequency band is possible.

【0039】第3の効果は、傍熱型サーミスタを用いる
ことにより、高周波信号入力側と計測回路側とが電気的
に絶縁されているため、グラウンド電位の影響などの回
り込み現象を取り除くことができることである。
The third effect is that by using the indirectly heated thermistor, since the high frequency signal input side and the measurement circuit side are electrically insulated, it is possible to eliminate the wraparound phenomenon such as the influence of the ground potential. Is.

【0040】第4の効果は、計測回路側が直流であるた
め、回路構成を簡略化することができるとともに、低価
格で実現することができることである。
The fourth effect is that since the measuring circuit side is DC, the circuit structure can be simplified and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高周波電力測定回路の一つの実施の形
態を示すブロック図である。
FIG. 1 is a block diagram showing one embodiment of a high frequency power measuring circuit of the present invention.

【図2】本発明の高周波電力測定回路の他の実施の形態
を示すブロック図である。
FIG. 2 is a block diagram showing another embodiment of the high-frequency power measuring circuit of the present invention.

【符号の説明】[Explanation of symbols]

1 ブリッジ回路 2 差動増幅器 3 電圧計 1 bridge circuit 2 differential amplifier 3 voltmeter

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 第1および第2の傍熱型サーミスタと第
1および第2の固定抵抗とによりブリッジ回路を構成
し、前記第1の傍熱形サーミスタに外部からの被測定信
号電力を入力し、前記第2の傍熱形サーミスタに前記第
1の傍熱型サーミスタおよび前記第2の傍熱型サーミス
タの抵抗値変化に基づく差電圧を増幅した置換電圧を入
力し、増幅された前記置換電圧より前記被測定信号電力
を算出して求めることを特徴とする高周波電力測定方
法。
1. A bridge circuit is composed of first and second indirectly heated thermistors and first and second fixed resistors, and a signal power to be measured from the outside is input to the first indirectly heated thermistor. Then, a replacement voltage obtained by amplifying a differential voltage based on a resistance value change of the first indirectly heated thermistor and the second indirectly heated thermistor is input to the second indirectly heated thermistor, and the amplified replaced A method for measuring high frequency power, characterized in that the measured signal power is calculated from voltage.
【請求項2】 前記第1および第2の傍熱型サーミスタ
は、熱感知素子とこれを加熱するヒータ抵抗とを備え、
それぞれの熱感知素子が同じ抵抗温度特性を有し、同じ
抵抗温度特性を有する前記第1および第2の固定抵抗と
ブリッジ回路を構成するとともに、近接して設けられた
ことを特徴とする請求項1記載の高周波電力測定方法。
2. The first and second indirectly heated thermistors each include a heat sensing element and a heater resistor for heating the heat sensing element.
Each of the heat sensing elements has the same resistance temperature characteristic, forms a bridge circuit with the first and second fixed resistors having the same resistance temperature characteristic, and is provided in proximity to each other. 1. The method for measuring high frequency power according to 1.
【請求項3】 前記第1の傍熱型サーミスタは、そのヒ
ータ抵抗が特性インピーダンスに設定されて前記被測定
信号電力を入力され、前記第2の傍熱型サーミスタは、
そのヒータ抵抗に増幅された前記置換電圧が印加される
ことを特徴とする請求項1又は2記載の高周波電力測定
方法。
3. A heater resistance of the first indirectly heated thermistor is set to a characteristic impedance, and the signal power to be measured is input to the first indirectly heated thermistor.
The high frequency power measuring method according to claim 1 or 2, wherein the amplified replacement voltage is applied to the heater resistance.
【請求項4】 第1および第2の傍熱型サーミスタと第
1および第2の固定抵抗とにより構成されたブリッジ回
路を備える高周波電力測定回路であって、前記第1の傍
熱形サーミスタは外部からの被測定信号電力が入力さ
れ、前記第2の傍熱形サーミスタは前記第1の傍熱型サ
ーミスタおよび前記第2の傍熱型サーミスタの抵抗値変
化に基づく差電圧を増幅した置換電圧が印加されること
を特徴とする高周波電力測定回路。
4. A high-frequency power measuring circuit comprising a bridge circuit composed of first and second indirectly heated thermistors and first and second fixed resistors, wherein the first indirectly heated thermistor. A replacement voltage obtained by inputting a signal power to be measured from the outside, and amplifying a differential voltage based on a change in resistance value of the first indirectly heated thermistor and the second indirectly heated thermistor by the second indirectly heated thermistor. A high-frequency power measurement circuit, characterized in that a voltage is applied.
【請求項5】 前記第1および第2の傍熱型サーミスタ
は、熱感知素子とこれを加熱するヒータ抵抗とを備え、
それぞれの熱感知素子が同じ抵抗温度特性を有し、同じ
抵抗温度特性を有する前記第1および第2の固定抵抗と
ブリッジ回路を構成するとともに、近接して設けられた
ことを特徴とする請求項4記載の高周波電力測定回路。
5. The first and second indirectly heated thermistors each include a heat sensing element and a heater resistor that heats the heat sensing element.
Each of the heat sensing elements has the same resistance temperature characteristic, forms a bridge circuit with the first and second fixed resistors having the same resistance temperature characteristic, and is provided in proximity to each other. 4. The high frequency power measuring circuit according to 4.
【請求項6】 前記第1の傍熱型サーミスタは、そのヒ
ータ抵抗が特性インピーダンスに設定されて前記被測定
信号電力を入力され、前記第2の傍熱型サーミスタは、
そのヒータ抵抗に増幅された前記置換電圧が印加される
ことを特徴とする請求項4又は5記載の高周波電力測定
回路。
6. The first indirectly heated thermistor has its heater resistance set to a characteristic impedance and receives the signal power to be measured, and the second indirectly heated thermistor is
The high frequency power measuring circuit according to claim 4 or 5, wherein the amplified replacement voltage is applied to the heater resistance.
【請求項7】 外部からの被測定信号電力をヒータ抵抗
に入力する第1の傍熱型サーミスタと、前記被測定信号
電力に相当する置換電圧をヒータ抵抗に入力する第2の
傍熱型サーミスタと、前記第1の傍熱型サーミスタおよ
び前記第2の傍熱型サーミスタのそれぞれの熱感知素子
を含めてブリッジ回路を構成する第1および第2の固定
抵抗と、前記第1の傍熱型サーミスタおよび前記第2の
傍熱型サーミスタのそれぞれの前記熱感知素子の抵抗値
変化に基づく差電圧を増幅して前記置換電圧を出力する
差動増幅器と、前記置換電圧を計測する電圧計測手段
と、より構成されることを特徴とする高周波電力測定回
路。
7. A first indirectly heated thermistor for inputting a measured signal power from the outside to a heater resistance, and a second indirectly heated thermistor for inputting a replacement voltage corresponding to the measured signal power to a heater resistance. And first and second fixed resistors that form a bridge circuit including the heat sensing elements of the first indirectly heated thermistor and the second indirectly heated thermistor, and the first indirectly heated type. A differential amplifier that amplifies a difference voltage based on a change in resistance value of the heat sensing elements of the thermistor and the second indirectly heated thermistor and outputs the replacement voltage; and a voltage measuring unit that measures the replacement voltage. And a high-frequency power measuring circuit comprising:
JP2001363279A 2001-11-28 2001-11-28 Method and circuit for measurement of high-frequency electric power Pending JP2003161747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363279A JP2003161747A (en) 2001-11-28 2001-11-28 Method and circuit for measurement of high-frequency electric power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363279A JP2003161747A (en) 2001-11-28 2001-11-28 Method and circuit for measurement of high-frequency electric power

Publications (1)

Publication Number Publication Date
JP2003161747A true JP2003161747A (en) 2003-06-06

Family

ID=19173652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363279A Pending JP2003161747A (en) 2001-11-28 2001-11-28 Method and circuit for measurement of high-frequency electric power

Country Status (1)

Country Link
JP (1) JP2003161747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145938B2 (en) 2014-04-26 2018-12-04 Infineon Technologies Ag Power sensor for integrated circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145938B2 (en) 2014-04-26 2018-12-04 Infineon Technologies Ag Power sensor for integrated circuits
US10466339B2 (en) 2014-04-26 2019-11-05 Infineon Technologies Ag Power sensor for integrated circuits

Similar Documents

Publication Publication Date Title
WO2016115891A1 (en) Temperature control system and control method therefor, and electronic cigarette containing temperature control system
JP5114122B2 (en) Control circuit of thermostat in crystal oscillator with thermostat
JP5809851B2 (en) Crystal oscillator with temperature chamber
JP2002500348A (en) Sensor with temperature-dependent measuring resistor and use of the sensor for measuring temperature
JP2003315131A (en) Fluid flow measuring instrument
JPH0432617Y2 (en)
JP2003161747A (en) Method and circuit for measurement of high-frequency electric power
JP4809837B2 (en) How to operate a heat loss pressure sensor with resistance
US6107861A (en) Circuit for self compensation of silicon strain gauge pressure transmitters
JP2004309202A (en) Wind speed, and air volume sensor
JP2953950B2 (en) Output signal generator
US20060021444A1 (en) Method of operating a resistive heat-loss pressure sensor
US3476914A (en) Temperature control arrangement
JP5640418B2 (en) Temperature control circuit and constant temperature type piezoelectric oscillator
KR100337622B1 (en) Heat sensitive flow meter
JPH065635Y2 (en) Flow velocity sensor
JPH0486524A (en) Liquid level detector
KR20070085218A (en) Method of operating a resistive heat-loss pressure sensor
JPS5816128B2 (en) netsushikiriyuryokei
JPS5920658Y2 (en) Detection circuit for thermal conduction type vacuum gauge
JP2001141538A (en) Measuring instrument
RU2104507C1 (en) Thermal conductivity vacuum gauge
JPH0229176B2 (en)
SU1673869A1 (en) Temperature difference measuring device
JP2005072134A (en) Method of measuring calorific value and capacitance of capacitor, and apparatus of measuring calorific value and capacitance of capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050104

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD01 Notification of change of attorney

Effective date: 20050322

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050927