JP2003161267A - Hydrogen-rich gas compressor - Google Patents

Hydrogen-rich gas compressor

Info

Publication number
JP2003161267A
JP2003161267A JP2001361941A JP2001361941A JP2003161267A JP 2003161267 A JP2003161267 A JP 2003161267A JP 2001361941 A JP2001361941 A JP 2001361941A JP 2001361941 A JP2001361941 A JP 2001361941A JP 2003161267 A JP2003161267 A JP 2003161267A
Authority
JP
Japan
Prior art keywords
plant
outlet
inlet
hydrogen
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001361941A
Other languages
Japanese (ja)
Inventor
Hiroshi Hashizume
啓 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001361941A priority Critical patent/JP2003161267A/en
Publication of JP2003161267A publication Critical patent/JP2003161267A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen-rich gas compressor capable of dispensing with replacement to an exclusive rotor or reduction in rotating speed by a special motor or fluid joint in catalyst regenerating operation to reduce cost, and carrying a large quantity of catalyst regenerating gas, compared with in general operation, to improve productivity with a shortened operation time of catalyst regeneration. <P>SOLUTION: This hydrogen-rich gas compressor 1 is set in a plant 2 having a catalyst to compressively supply a fluid with high hydrogen concentration to the plant 2 in general operation and compressively supply the catalyst regenerating gas in catalyst regeneration. This compressor 1 comprises a low pressure- side section 9 and a high pressure-side section 10 which are two compression parts connected through the same rotating shaft 3 and provided within one casing 6, and piping structures 16-21 for serially operating the low pressure-side section 9 and the high pressure-side section 10 in the general operation and parallel operating the both in the catalyst regenerating operation. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、触媒を有する石油
精製プラントや石油化学プラントなどに設置される水素
リッチガス圧縮機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen rich gas compressor installed in a petroleum refining plant or a petrochemical plant having a catalyst.

【0002】[0002]

【従来の技術】従来の多段遠心圧縮機として、例えば、
図2に示すような水素リッチガス圧縮機51がある。こ
の水素リッチガス圧縮機51は、触媒を有する石油精製
プラント(又は石油化学プラント)52などに適用さ
れ、主に水素ガスを扱う流体機械であり、触媒を再生す
べく窒素ガスを主成分とする運転も行われる。すなわ
ち、水素リッチガス圧縮機51は、通常運転時には水素
濃度の高い流体を圧縮して石油精製プラント52に供給
すると共に、触媒再生時には触媒再生用ガスを圧縮して
石油精製プラント52に供給するように構成されてい
る。このため、水素リッチガス圧縮機51のケーシング
53の入出口54,55は、図2に示す如く、入口側配
管56および出口側配管57を介して石油精製プラント
52に接続されている。また、ケーシング53内には、
主として回転軸58と、この回転軸58に軸方向へ間隔
を置いて同じ向きに取付けられた複数のインペラ(羽根
車)59とが設けられており、回転軸58は、駆動装置
に連結されている。駆動装置例としては、回転速度の増
速装置たるギヤ装置60と回転駆動源たる一定速のモー
タ61などがある。
As a conventional multistage centrifugal compressor, for example,
There is a hydrogen rich gas compressor 51 as shown in FIG. This hydrogen-rich gas compressor 51 is a fluid machine mainly applied to a petroleum refining plant (or a petrochemical plant) 52 having a catalyst and handling hydrogen gas, and an operation mainly containing nitrogen gas to regenerate the catalyst. Is also done. That is, the hydrogen-rich gas compressor 51 compresses the fluid having a high hydrogen concentration and supplies it to the oil refining plant 52 during the normal operation, and compresses the catalyst regeneration gas when supplying the catalyst regeneration gas to the oil refining plant 52. It is configured. Therefore, the inlets / outlets 54, 55 of the casing 53 of the hydrogen-rich gas compressor 51 are connected to the oil refining plant 52 via the inlet side pipe 56 and the outlet side pipe 57, as shown in FIG. In addition, in the casing 53,
A rotary shaft 58 and a plurality of impellers (impellers) 59 mounted on the rotary shaft 58 in the same direction at intervals in the axial direction are mainly provided. The rotary shaft 58 is connected to a drive device. There is. Examples of drive devices include a gear device 60 that is a speed increasing device and a constant speed motor 61 that is a rotary drive source.

【0003】一般に水素濃度の高い流体の分子量は,大
きい場合で10前後であり、触媒再生用ガスの主成分の
窒素ガスの分子量は28であることにより、これらの分
子量の比は2倍以上である。温度上昇ΔTは、ガス分子
量MWおよび圧縮機回転数Nと一般に次の相関がある。 ΔT =f1(MW,N^2) ここでf1は、MWが増大すれば、ΔTも増大し、Nが
増大すればN^2に相関してΔTも増大する相関関数で
ある。また、圧縮機の入口と出口の圧力比(P2/P
1)も同様に以下の相関がある。 P2/P1=f2(MW,N^2) ここでf2は、MWが増大すればP2/P1が増大し、
Nが増大すればN^2に相関してP2/P1も増大する
相関関数である。従来、上記水素リッチガス圧縮機の駆
動装置が低速タイプのモータとギヤ装置などの一定速度
タイプである場合、水素濃度の高い通常運転時の圧縮機
出口ガス温度よりも窒素ガスが主成分の触媒再生運転時
の出口ガス温度が高温となり、圧縮機本体およびその下
流の機器をこの高温条件で設計することが必要になる。
また、圧力比も大きくなるのでサージング防止のための
特殊設計が必要となる。
Generally, the fluid having a high hydrogen concentration has a molecular weight of about 10 when it is large, and the molecular weight of nitrogen gas, which is the main component of the catalyst regeneration gas, is 28. Therefore, the ratio of these molecular weights is more than double. is there. The temperature increase ΔT generally has the following correlation with the gas molecular weight MW and the compressor rotation speed N. ΔT = f1 (MW, N̂2) Here, f1 is a correlation function in which ΔT increases as MW increases, and ΔT increases in correlation with N̂2 as N increases. In addition, the pressure ratio between the inlet and outlet of the compressor (P2 / P
Similarly, 1) has the following correlation. P2 / P1 = f2 (MW, N ^ 2) where f2 / P1 increases as MW increases,
This is a correlation function in which P2 / P1 increases in correlation with N ^ 2 as N increases. Conventionally, when the drive device of the above-mentioned hydrogen rich gas compressor is a constant speed type such as a low speed type motor and gear device, the catalyst regeneration whose main component is nitrogen gas rather than the compressor outlet gas temperature during normal operation with high hydrogen concentration. The outlet gas temperature during operation becomes high, and it is necessary to design the compressor body and the equipment downstream thereof under this high temperature condition.
Further, since the pressure ratio also becomes large, a special design is necessary to prevent surging.

【0004】[0004]

【発明が解決しようとする課題】そこで、上述した従来
の水素リッチガス圧縮機51では、触媒再生運転時に高
温とならないよう、また高圧力比でサージングを起こさ
ないよう回転軸58およびインペラ59から成るロータ
(回転体)を交換したり、あるいはポールチェンジモー
タのような特殊な電動機や流体継手を使用してロータの
回転数を下げる等、特異な対応策を採る必要があった。
しかしながら、このような対応策はコストが高くなると
共に、回転数を下げる対応策は触媒再生運転時のガス風
量が少なくなってしまうので、触媒再生時の運転時間が
長くなり、生産性の向上を図ることができないという問
題を有していた。
Therefore, in the above-described conventional hydrogen-rich gas compressor 51, a rotor composed of a rotary shaft 58 and an impeller 59 is provided so as not to reach a high temperature during catalyst regeneration operation and to prevent surging at a high pressure ratio. It was necessary to take specific measures such as replacing the (rotating body) or using a special electric motor such as a pole change motor or a fluid coupling to lower the rotation speed of the rotor.
However, such a countermeasure would increase the cost, and a countermeasure for lowering the rotation speed would reduce the gas flow rate during the catalyst regeneration operation, so the operation time during the catalyst regeneration would be longer and the productivity would be improved. It had a problem that it could not be planned.

【0005】本発明はこのような実状に鑑みてなされた
ものであって、その目的は、触媒再生運転時に専用のロ
ータと交換せずに済み、特殊なモータや流体継手が不要
でコストが安くなり、かつ通常運転時に比べて多くの風
量の触媒再生用ガスを流すことが可能となり、触媒再生
の運転時間が短く、生産性の向上が図れる水素リッチガ
ス圧縮機を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to replace the rotor with a dedicated rotor during the catalyst regeneration operation, and to reduce the cost because no special motor or fluid coupling is required. In addition, it is possible to flow a larger amount of gas for catalyst regeneration than in normal operation, the operating time for catalyst regeneration is short, and it is possible to provide a hydrogen-rich gas compressor capable of improving productivity.

【0006】[0006]

【課題を解決するための手段】上記従来技術の有する課
題を解決するために、本発明は、触媒を有するプラント
に設置され、通常運転時には水素濃度の高い流体を圧縮
して前記プラントに供給すると共に、触媒再生時には触
媒再生用ガスを圧縮して前記プラントに供給する水素リ
ッチガス圧縮機において、1つのケーシング内に同一回
転軸にて連結された2つの圧縮部を設け、通常運転時に
は前記2つの圧縮部を直列運転とし、触媒再生運転時に
は前記2つの圧縮部を並列運転とする配管構造を設けて
いる。
In order to solve the above problems of the prior art, the present invention is installed in a plant having a catalyst, and during normal operation, a fluid having a high hydrogen concentration is compressed and supplied to the plant. In addition, at the time of catalyst regeneration, in the hydrogen-rich gas compressor that compresses the catalyst regeneration gas and supplies it to the plant, two compressors connected by the same rotary shaft are provided in one casing, and during normal operation, the two A piping structure is provided in which the compression units are operated in series and the two compression units are operated in parallel during the catalyst regeneration operation.

【0007】また、本発明において、前記配管構造は、
前記プラントの出口と前記低圧圧縮部の入口とを接続す
る入口側配管と、途中に第1開閉弁が設けられ,かつ前
記入口側配管と前記高圧圧縮部の入口とを接続する入口
分枝配管と、前記プラントの入口と前記高圧圧縮部の出
口とを接続する出口側配管と、途中に第2開閉弁が設け
られ、かつ前記出口側配管と前記低圧圧縮部の出口を接
続する出口分枝配管と、前記出口分枝配管の第2開閉弁
の上流から前記入口分枝配管の第1開閉弁の下流に接続
する低圧圧縮部出口側配管とを備えており、通常運転時
には、前記第1および第2開閉弁を閉じると共に前記第
3開閉弁を開き、前記プラントから吐出された水素濃度
の高い流体が入口側配管、低圧圧縮部、出口分岐配管、
低圧圧縮部出口側配管、入口分岐配管、高圧圧縮部およ
び出口側配管を経て前記プラントに供給され、触媒再生
運転時には、前記第1および第2開閉弁を開くと共に前
記第3開閉弁を閉じ、前記プラントから吐出された触媒
再生用ガスが入口側配管、入口分枝配管、2つの圧縮
部、出口分岐配管および出口側配管を経て前記プラント
に供給されるように構成されている。
In the present invention, the piping structure is
Inlet side pipe connecting the outlet of the plant and the inlet of the low pressure compression unit, and an inlet branch pipe provided with a first on-off valve in the middle and connecting the inlet side pipe and the inlet of the high pressure compression unit And an outlet side pipe connecting the inlet of the plant and the outlet of the high pressure compression unit, and an outlet branch provided with a second on-off valve in the middle and connecting the outlet side pipe and the outlet of the low pressure compression unit. A low pressure compression section outlet side pipe connected from upstream of the second on-off valve of the outlet branch pipe to downstream of the first on-off valve of the inlet branch pipe, and in the normal operation, the first line And the second on-off valve is closed and the third on-off valve is opened, and the fluid having a high hydrogen concentration discharged from the plant is connected to the inlet side pipe, the low pressure compression section, the outlet branch pipe,
It is supplied to the plant through the low pressure compression section outlet side piping, the inlet branch piping, the high pressure compression section and the outlet side piping, and during the catalyst regeneration operation, the first and second opening / closing valves are opened and the third opening / closing valve is closed. The catalyst regeneration gas discharged from the plant is configured to be supplied to the plant via an inlet side pipe, an inlet branch pipe, two compression sections, an outlet branch pipe and an outlet side pipe.

【0008】[0008]

【発明の実施の形態】以下、本発明を図示の実施の形態
に基づいて詳細に説明する。ここで、図1は本発明の実
施の形態に係る水素リッチガス圧縮機の概略図である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail based on the illustrated embodiments. Here, FIG. 1 is a schematic diagram of a hydrogen-rich gas compressor according to an embodiment of the present invention.

【0009】本発明の実施形態の水素リッチガス圧縮機
1は、図1に示す如く、バックツーバックタイプ(対抗
型)の多段遠心圧縮機であり、図2の従来例と同様、触
媒を有する石油精製プラント(又は石油化学プラント)
2などに適用され、主に水素濃度の高い流体を扱うもの
で、触媒を再生すべく窒素ガスを主成分とする運転も行
われる。すなわち、水素リッチガス圧縮機1は、通常運
転時には水素濃度の高い流体(例えば、分子量が約1
0)を圧縮して石油精製プラント2に供給すると共に、
触媒再生運転時には触媒再生用ガス(例えば、窒素:分
子量が約28)を圧縮して石油精製プラント2に供給す
るように構成されている。
As shown in FIG. 1, the hydrogen-rich gas compressor 1 of the embodiment of the present invention is a back-to-back type (opposed type) multistage centrifugal compressor, and like the conventional example of FIG. Refining plant (or petrochemical plant)
It is applied to No. 2 etc. and mainly deals with a fluid having a high hydrogen concentration, and an operation mainly composed of nitrogen gas is also performed to regenerate a catalyst. That is, the hydrogen-rich gas compressor 1 has a high hydrogen concentration (for example, a molecular weight of about 1
0) is compressed and supplied to the oil refining plant 2,
During the catalyst regeneration operation, the catalyst regeneration gas (for example, nitrogen: molecular weight of about 28) is compressed and supplied to the oil refining plant 2.

【0010】上記水素リッチガス圧縮機1は、図1に示
す如く、水平方向に沿って回転可能に配設される1つの
回転軸3と、この回転軸3に軸方向へ間隔を置いてそれ
ぞれ同軸状に取付けられる複数のインペラ(羽根車)
4,5と、回転軸3およびインペラ4,5から成るロー
タ(回転体)を収容する1つのケーシング6とをそれぞ
れ備えており、回転軸3は、ギヤ装置7などを介して回
転駆動源たる定速運転のモータ8に連結されている。
As shown in FIG. 1, the hydrogen-rich gas compressor 1 has one rotating shaft 3 rotatably arranged in the horizontal direction, and the rotating shaft 3 is coaxial with the rotating shaft 3 at an axial interval. Impellers (impellers) that are mounted in a circular shape
4 and 5 and one casing 6 for accommodating a rotor (rotating body) including the rotating shaft 3 and the impellers 4,5, respectively. The rotating shaft 3 serves as a rotary drive source via a gear device 7 and the like. It is connected to a motor 8 for constant speed operation.

【0011】上記ケーシング6内は、2つのセクション
(圧縮部)に仕切られ、低圧側セクション(低圧圧縮
部)9と、高圧側セクション(高圧圧縮部)10とが隣
接して配置されており、これら低圧側セクション9と高
圧側セクション10とは、同一ケーシング6内で同一の
回転軸3にて連結されている。各セクション9,10の
ケーシング6内にはインペラ4,5が複数設けられてお
り、同一のセクション9,10内では各インペラが同じ
方向に向けられた状態で配置され、セクション9のイン
ペラの向きとセクション10のインペラの向きは相反す
る状態でそれぞれ配置されている。しかも、各セクショ
ン9,10のケーシング6の上下流側位置には、ガスの
流通する入口11,12および出口13,14がそれぞ
れ設けられている。なお、低圧側セクション9と高圧側
セクション10との間には、圧力流体の通過を抑制する
シール部(図示せず)が設けられており、当該シール部
によって2つのセクション9,10に仕切られている。
The inside of the casing 6 is divided into two sections (compression sections), and a low-pressure side section (low-pressure compression section) 9 and a high-pressure side section (high-pressure compression section) 10 are arranged adjacent to each other. The low-pressure side section 9 and the high-pressure side section 10 are connected by the same rotating shaft 3 in the same casing 6. A plurality of impellers 4 and 5 are provided in the casing 6 of each section 9 and 10, and the impellers are arranged in the same section 9 and 10 with the impellers oriented in the same direction. And the impellers of the section 10 are arranged in opposite directions. Moreover, inlets 11 and 12 and outlets 13 and 14 through which gas flows are provided at the upstream and downstream sides of the casings 6 of the sections 9 and 10, respectively. A seal portion (not shown) for suppressing passage of pressure fluid is provided between the low-pressure side section 9 and the high-pressure side section 10, and is divided into two sections 9 and 10 by the seal portion. ing.

【0012】また、本実施形態の水素リッチガス圧縮機
1においては、水素濃度の高い流体が循環する通常運転
時には低圧側セクション9と高圧側セクション10とを
直列運転とし、触媒再生用ガスが循環する触媒再生運転
時には低圧側セクション9と高圧側セクション10とを
並列運転とする配管構造が設けられている。この配管構
造は、石油精製プラント2の出口2aと低圧側セクショ
ン9の入口11とを接続する入口側配管16,16a
と、途中に第1開閉弁15が設けられ、かつ入口側配管
16と高圧側セクション10の入口12とを接続する入
口分枝配管16bと、石油精製プラント2の入口2bと
高圧側セクション10の出口14とを接続する出口側配
管19,19bと、途中に第2開閉弁17が設けられ、
かつ出口側配管19と低圧側セクション9の出口13を
接続する出口分枝配管19aと、出口分枝配管19aの
第2開閉弁17の上流から入口分枝配管16bの第1開
閉弁15の下流(後流)に接続する低圧側セクション出
口側配管の分岐配管21とを備えている。
In addition, in the hydrogen-rich gas compressor 1 of the present embodiment, during normal operation in which a fluid having a high hydrogen concentration circulates, the low-pressure side section 9 and the high-pressure side section 10 are operated in series and the catalyst regeneration gas circulates. A piping structure is provided in which the low-pressure side section 9 and the high-pressure side section 10 are operated in parallel during the catalyst regeneration operation. This piping structure has inlet side pipes 16 and 16a for connecting the outlet 2a of the oil refining plant 2 and the inlet 11 of the low pressure side section 9.
And an inlet branch pipe 16b which is provided with a first opening / closing valve 15 and which connects the inlet side pipe 16 and the inlet 12 of the high pressure side section 10, the inlet 2b of the oil refining plant 2 and the high pressure side section 10. Outlet side pipes 19 and 19b connecting to the outlet 14 and a second opening / closing valve 17 are provided in the middle,
In addition, the outlet branch pipe 19a connecting the outlet side pipe 19 and the outlet 13 of the low-pressure side section 9, and the upstream side of the second opening / closing valve 17 of the outlet branch line 19a to the downstream side of the first opening / closing valve 15 of the inlet branch pipe 16b. It is provided with a branch pipe 21 of a low-pressure side section outlet side pipe which is connected to the (wake).

【0013】入口側配管16は、低圧側セクション9の
入口11の位置および高圧側セクション10の入口12
の位置と対応して、低圧セクション配管部16aと高圧
セクション配管部(入口分枝配管)16bの二股に分か
れている。そして、第1開閉弁15は、分かれたセクシ
ョン配管部16bに配設されている。また、出口側配管
19は、低圧側セクション9の出口13の位置および高
圧側セクション10の出口14の位置と対応して、低圧
セクション配管部(出口分枝配管)19aと高圧セクシ
ョン配管部19bの二股に分かれている。そして、第2
開閉弁17は、分かれたセクション配管部19aに配設
されている。さらに、分岐配管21の一端は、第2開閉
弁17よりも上流の位置で、出口側配管19の低圧セク
ション配管部19aに接続されている。そして、分岐配
管21の他端は、第1開閉弁15の下流側位置で、入口
側配管16の高圧セクション配管部16bに接続されて
いる。
The inlet side piping 16 is located at the position of the inlet 11 of the low pressure side section 9 and the inlet 12 of the high pressure side section 10.
Corresponding to the position, the low pressure section piping portion 16a and the high pressure section piping portion (inlet branch piping) 16b are divided into two branches. Then, the first opening / closing valve 15 is arranged in the divided section piping portion 16b. In addition, the outlet side pipe 19 corresponds to the position of the outlet 13 of the low pressure side section 9 and the position of the outlet 14 of the high pressure side section 10, and includes the low pressure section pipe portion (outlet branch pipe) 19a and the high pressure section pipe portion 19b. Divided into two. And the second
The on-off valve 17 is arranged in a separate section piping section 19a. Further, one end of the branch pipe 21 is connected to the low pressure section pipe portion 19 a of the outlet side pipe 19 at a position upstream of the second opening / closing valve 17. The other end of the branch pipe 21 is connected to the high pressure section pipe portion 16b of the inlet side pipe 16 at a position downstream of the first opening / closing valve 15.

【0014】次に、本発明の実施形態に係る水素リッチ
ガス圧縮機1の作用について説明する。まず、水素リッ
チガス圧縮機1を起動し、通常運転をする時には、第1
開閉弁15および第2開閉弁17を閉じると共に、第3
開閉弁20を開く。この状態で、水素濃度の高い流体
が、石油精製プラント2の出口2aから入口側配管16
に吐出されると、低圧セクション配管部16aを通って
低圧側セクション9の入口11からケーシング6内に吸
い込まれる。吸い込まれた水素濃度の高い流体は、回転
軸3にて回転駆動する複数のインペラ4によって順次圧
縮され、低圧側セクション9の出口13から出口側配管
19の低圧セクション配管部19aに吐出される。そし
て、吐出された水素濃度の高い流体は、分岐配管21に
導かれ、第3開閉弁20を通って入口側配管16に流
れ、高圧セクション配管部16bを通って高圧側セクシ
ョン10の入口12からケーシング6内に吸い込まれ
る。吸い込まれた水素濃度の高い流体は、回転軸3にて
回転駆動する複数のインペラ5によってさらに圧縮さ
れ、高圧側セクション10の出口14から出口側配管1
9の高圧セクション配管部19bに吐出される。吐出さ
れた水素濃度の高い流体は、出口側配管19を通り、入
口2bより石油精製プラント2に供給されることにな
る。
Next, the operation of the hydrogen-rich gas compressor 1 according to the embodiment of the present invention will be described. First, when the hydrogen-rich gas compressor 1 is started and the normal operation is performed, the first
While closing the on-off valve 15 and the second on-off valve 17,
The on-off valve 20 is opened. In this state, the fluid having a high hydrogen concentration flows from the outlet 2a of the oil refining plant 2 to the inlet side pipe 16
Is discharged into the casing 6 from the inlet 11 of the low pressure side section 9 through the low pressure section piping portion 16a. The sucked fluid having a high hydrogen concentration is sequentially compressed by the plurality of impellers 4 which are rotationally driven by the rotating shaft 3, and is discharged from the outlet 13 of the low pressure side section 9 to the low pressure section pipe portion 19a of the outlet side pipe 19. Then, the discharged fluid having a high hydrogen concentration is guided to the branch pipe 21, flows through the third opening / closing valve 20 to the inlet side pipe 16, and passes through the high pressure section pipe portion 16b from the inlet 12 of the high pressure side section 10. It is sucked into the casing 6. The sucked fluid having a high hydrogen concentration is further compressed by the plurality of impellers 5 which are rotationally driven by the rotary shaft 3, and is discharged from the outlet 14 of the high pressure side section 10 to the outlet side pipe 1.
9 is discharged to the high-pressure section piping portion 19b. The discharged fluid having a high hydrogen concentration passes through the outlet side pipe 19 and is supplied to the oil refining plant 2 through the inlet 2b.

【0015】また、水素リッチガス圧縮機1を起動し、
触媒再生運転をする時には、第1開閉弁15および第2
開閉弁17を開くと共に、第3開閉弁20を閉じる。こ
の状態で、触媒再生用ガスが、石油精製プラント2の出
口2aから入口側配管16に吐出されると、低圧セクシ
ョン配管部16aと第1開閉弁15および高圧セクショ
ン配管部16bとを通って低圧側セクション9の入口1
1および高圧側セクション10の入口12からケーシン
グ6内にそれぞれ吸い込まれる。吸い込まれた触媒再生
用ガスは、それぞれのセクション9,10で回転軸3に
て回転駆動する2段のインペラ4,5によって同時並行
で順次圧縮され、低圧側セクション9の出口13および
高圧側セクション10の出口14から出口側配管19の
低圧セクション配管部19aおよび高圧セクション配管
部19bにそれぞれ吐出される。吐出された触媒再生用
ガスは、出口側配管のセクション配管部19a,19b
や第2開閉弁17を経て出口側配管19を通り、入口2
bより石油精製プラント2に供給されることになる。
Further, the hydrogen rich gas compressor 1 is started,
When performing the catalyst regeneration operation, the first opening / closing valve 15 and the second opening / closing valve 15
The opening / closing valve 17 is opened and the third opening / closing valve 20 is closed. In this state, when the catalyst regeneration gas is discharged from the outlet 2a of the oil refining plant 2 to the inlet side pipe 16, the low pressure section pipe portion 16a, the first opening / closing valve 15 and the high pressure section pipe portion 16b are supplied to the low pressure section. Side section 9 entrance 1
1 and the inlet 12 of the high-pressure side section 10 are sucked into the casing 6, respectively. The sucked-in catalyst regeneration gas is simultaneously and sequentially compressed by the two-stage impellers 4 and 5 that are rotationally driven by the rotating shaft 3 in the respective sections 9 and 10, and the outlet 13 of the low pressure side section 9 and the high pressure side section 10 is discharged from the outlet 14 to the low-pressure section piping section 19a and the high-pressure section piping section 19b of the exit-side piping 19, respectively. The discharged catalyst regeneration gas is used in the section piping portions 19a and 19b of the outlet side piping.
Or the second opening / closing valve 17 and the outlet side pipe 19, and the inlet 2
It will be supplied to the oil refining plant 2 from b.

【0016】本発明の実施形態の水素リッチガス圧縮機
1では、1つのケーシング6内に低圧側セクション9お
よび高圧側セクション10から成る2つのセクションが
配置され、各セクション9,10と石油精製プラント2
とが開閉弁15,17,20を設けた入口側配管16、
出口側配管19および分岐配管21によって接続されて
いるため、圧縮するガスの分子量などに応じて、開閉弁
15,17,20の開閉操作を行い、低圧側セクション
9と高圧側セクション10とを直列運転としたり、並列
運転としたりすることができる。したがって、水素濃度
が高く、重さの軽い流体を圧縮する通常運転時は、低圧
側セクション9と高圧側セクション10とを直列して運
転し、重い窒素ガスなどの触媒再生用ガスを圧縮する触
媒再生運転時は、低圧側セクション9と高圧側セクショ
ン10との並列運転にて触媒再生運転時に出口温度が高
温になることの回避やサージングを回避した運転が可能
となるため、触媒再生専用のロータに交換する作業や、
特殊なモータや流体継手などによって回転数を下げる必
要が不要となり、かつ通常運転時の2倍近い風量を流す
ことができ、触媒再生の運転時間を短縮できる。
In the hydrogen-rich gas compressor 1 according to the embodiment of the present invention, two sections consisting of a low-pressure side section 9 and a high-pressure side section 10 are arranged in one casing 6, and each section 9 and 10 and a petroleum refining plant 2 are arranged.
And inlet side pipe 16 provided with on-off valves 15, 17, 20
Since the outlet side pipe 19 and the branch pipe 21 are connected, the opening / closing valves 15, 17, 20 are opened / closed according to the molecular weight of the gas to be compressed, and the low pressure side section 9 and the high pressure side section 10 are connected in series. It can be operated or operated in parallel. Therefore, during normal operation in which a fluid having a high hydrogen concentration and a light weight is compressed, the low pressure side section 9 and the high pressure side section 10 are operated in series to compress a catalyst regeneration gas such as heavy nitrogen gas. During the regeneration operation, the low-pressure side section 9 and the high-pressure side section 10 can be operated in parallel to avoid an increase in the outlet temperature during the catalyst regeneration operation and an operation that avoids surging. Work to replace
It is not necessary to lower the rotation speed by using a special motor or fluid coupling, and an air volume nearly twice that in normal operation can be flowed, and the operation time for catalyst regeneration can be shortened.

【0017】以上、本発明の実施の形態につき述べた
が、本発明は既述の実施の形態に限定されるものではな
く、本発明の技術的思想に基づいて各種の変形及び変更
が可能である。例えば、既述の実施の形態では、各セク
ション9,10間でインペラ4,5の背面が向き合った
状態で配置されるバックツーバックタイプを採用してい
るが、2つのセクションに分かれていれば、各セクショ
ン9,10間でインペラ4,5の背面が同じ方向に向け
られた状態で配置されるコンパウンドタイプを採用して
も良い。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention. is there. For example, in the above-described embodiment, the back-to-back type in which the rear surfaces of the impellers 4 and 5 face each other between the sections 9 and 10 is adopted, but if the sections are divided into two sections, A compound type in which the back surfaces of the impellers 4 and 5 are arranged in the same direction between the sections 9 and 10 may be adopted.

【0018】[0018]

【発明の効果】上述の如く、本発明に係る水素リッチガ
ス圧縮機は、触媒を有するプラントに設置され、通常運
転時には水素濃度の高い流体である水素リッチガスを圧
縮して前記プラントに供給すると共に、触媒再生時には
触媒再生用ガスを圧縮して前記プラントに供給するもの
であって、1つのケーシング内に同一回転軸にて連結さ
れた2つの圧縮部を設け、通常運転時には前記2つの圧
縮部を直列運転とし、触媒再生運転時には前記2つの圧
縮部を並列運転とする配管構造を設けているので、触媒
再生運転時に専用のロータと交換する必要もなく、また
特殊なモータや流体継手で回転数を下げる必要もなく、
コストを低減させることができ、しかも、通常運転時に
比べて多くの風量の触媒再生用ガスを流すことが可能と
なり、触媒再生の運転時間の短縮化および生産性の向上
を図ることができる。
As described above, the hydrogen-rich gas compressor according to the present invention is installed in a plant having a catalyst, and during normal operation, compresses hydrogen-rich gas, which is a fluid having a high hydrogen concentration, and supplies it to the plant. When the catalyst is regenerated, the catalyst regenerating gas is compressed and supplied to the plant. Two compressors connected by the same rotating shaft are provided in one casing, and the two compressors are connected during normal operation. It has a piping structure that operates in series and the two compression sections operate in parallel during catalyst regeneration operation, so there is no need to replace it with a dedicated rotor during catalyst regeneration operation, and there is a special motor or fluid coupling Without having to lower
The cost can be reduced, and moreover, a larger amount of gas for catalyst regeneration can be made to flow as compared with the time of normal operation, so that the operation time of catalyst regeneration can be shortened and the productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る水素リッチガス圧縮
機とプラントとの関係を示す概略図である。
FIG. 1 is a schematic diagram showing a relationship between a hydrogen-rich gas compressor and a plant according to an embodiment of the present invention.

【図2】従来の水素リッチガス圧縮機とプラントとの関
係を示す概略図である。
FIG. 2 is a schematic diagram showing a relationship between a conventional hydrogen-rich gas compressor and a plant.

【符号の説明】[Explanation of symbols]

1 水素リッチガス圧縮機 2 石油精製・石油化学プラント 3 回転軸 4,5 インペラ 6 ケーシング 7 ギヤ装置 8 モータ 9 低圧側セクション(圧縮部) 10 高圧側セクション(圧縮部) 11,12 入口 13,14 出口 15 第1開閉弁 16 入口側配管 17 第2開閉弁 19 出口側配管 20 第3開閉弁 21 分岐配管 1 Hydrogen rich gas compressor 2 Oil refining and petrochemical plants 3 rotation axes 4,5 impeller 6 casing 7 gear system 8 motor 9 Low pressure side section (compression section) 10 High pressure side section (compression section) 11,12 entrance 13,14 Exit 15 First on-off valve 16 Inlet piping 17 Second on-off valve 19 Exit side piping 20 3rd on-off valve 21 Branch piping

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 触媒を有するプラントに設置され、通常
運転時には水素濃度の高い流体である水素リッチガスを
圧縮して前記プラントに供給すると共に、触媒再生時に
は触媒再生用ガスを圧縮して前記プラントに供給する水
素リッチガス圧縮機において、1つのケーシング内に同
一回転軸にて連結された低圧圧縮部と高圧圧縮部の2つ
の圧縮部を設け、通常運転時には前記2つの圧縮部を直
列運転とし、触媒再生運転時には前記2つの圧縮部を並
列運転とする配管構造を設けたことを特徴とする水素リ
ッチガス圧縮機。
1. When installed in a plant having a catalyst, a hydrogen-rich gas, which is a fluid having a high hydrogen concentration, is compressed and supplied to the plant during normal operation, and a catalyst regeneration gas is compressed to the plant during catalyst regeneration. In the hydrogen-rich gas compressor to be supplied, two casings, a low-pressure compressor and a high-pressure compressor, which are connected to each other by the same rotary shaft, are provided in one casing, and during normal operation, the two compressors are operated in series and a catalyst is used. A hydrogen-rich gas compressor, which is provided with a piping structure for operating the two compression sections in parallel during regeneration operation.
【請求項2】 前記配管構造は、前記プラントの出口と
前記低圧圧縮部の入口とを接続する入口側配管と、途中
に第1開閉弁が設けられ,かつ前記入口側配管と前記高
圧圧縮部の入口とを接続する入口分枝配管と、前記プラ
ントの入口と前記高圧圧縮部の出口とを接続する出口側
配管と、途中に第2開閉弁が設けられ、かつ前記出口側
配管と前記低圧圧縮部の出口を接続する出口分枝配管
と、前記出口分枝配管の第2開閉弁の上流から前記入口
分枝配管の第1開閉弁の下流に接続する低圧圧縮部出口
側配管とを備えており、通常運転時には、前記第1およ
び第2開閉弁を閉じると共に前記第3開閉弁を開き、前
記プラントから吐出された水素濃度の高い流体が入口側
配管、低圧圧縮部、出口分岐配管、低圧圧縮部出口側配
管、入口分岐配管、高圧圧縮部および出口側配管を経て
前記プラントに供給され、触媒再生運転時には、前記第
1および第2開閉弁を開くと共に前記第3開閉弁を閉
じ、前記プラントから吐出された触媒再生用ガスが入口
側配管、入口分枝配管、2つの圧縮部、出口分岐配管お
よび出口側配管を経て前記プラントに供給されるように
構成されていることを特徴とする請求項1に記載の水素
リッチガス圧縮機。
2. The piping structure includes an inlet side pipe connecting an outlet of the plant and an inlet of the low pressure compression unit, a first opening / closing valve provided midway, and the inlet side pipe and the high pressure compression unit. An inlet branch pipe connecting the inlet of the plant, an outlet side pipe connecting the inlet of the plant and the outlet of the high-pressure compressor, a second on-off valve is provided in the middle, and the outlet side pipe and the low pressure An outlet branch pipe connecting the outlet of the compression section, and a low pressure compression section outlet side pipe connecting from the upstream of the second opening / closing valve of the outlet branch piping to the downstream of the first opening / closing valve of the inlet branch piping. During normal operation, the first and second on-off valves are closed and the third on-off valve is opened, and the fluid having a high hydrogen concentration discharged from the plant is connected to the inlet side pipe, the low pressure compression section, the outlet branch pipe, Low pressure compression section outlet side piping, inlet branch piping, high The catalyst regeneration gas is supplied to the plant through a pressure compression unit and an outlet side pipe, and during the catalyst regeneration operation, the first and second opening / closing valves are opened and the third opening / closing valve is closed, and the catalyst regeneration gas discharged from the plant is discharged. The hydrogen rich gas compressor according to claim 1, wherein the hydrogen rich gas compressor is configured to be supplied to the plant through an inlet side pipe, an inlet branch pipe, two compression sections, an outlet branch pipe and an outlet side pipe. .
JP2001361941A 2001-11-28 2001-11-28 Hydrogen-rich gas compressor Withdrawn JP2003161267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361941A JP2003161267A (en) 2001-11-28 2001-11-28 Hydrogen-rich gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361941A JP2003161267A (en) 2001-11-28 2001-11-28 Hydrogen-rich gas compressor

Publications (1)

Publication Number Publication Date
JP2003161267A true JP2003161267A (en) 2003-06-06

Family

ID=19172526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361941A Withdrawn JP2003161267A (en) 2001-11-28 2001-11-28 Hydrogen-rich gas compressor

Country Status (1)

Country Link
JP (1) JP2003161267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017507281A (en) * 2014-03-03 2017-03-16 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Method and system for operating a back-to-back compressor with sidestream

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017507281A (en) * 2014-03-03 2017-03-16 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Method and system for operating a back-to-back compressor with sidestream

Similar Documents

Publication Publication Date Title
KR101237972B1 (en) Compressor
CN100554700C (en) Turbocompressor
US6398853B1 (en) Gas separation with split stream centrifugal turbomachinery
US20190041124A1 (en) Integrated expander-motor compressor
WO2013021664A1 (en) Centrifugal compressor
CN101268281A (en) Multi-stage compression system including variable speed motors
US20120171052A1 (en) Motor compressor system and method
US6905535B2 (en) Gas separation with split stream centrifugal turbomachinery
WO2014027895A1 (en) Multiphase pressure boosting pump
JPS59115489A (en) Counter-flow cooling system multistage root type vacuum pump
JP2003161267A (en) Hydrogen-rich gas compressor
KR101802839B1 (en) Turbo compressor and driving method of thereof
CN106321468B (en) Multi-shaft centrifugal compressor
JPS5815677Y2 (en) turbo compressor
CN103732922A (en) Scroll pump
CN207673539U (en) A kind of two-stage series connection roots blower with auto-tensioning
JP2000104698A (en) Compressor
KR101578027B1 (en) Compressor and energy saving system using the same
US20160076545A1 (en) System and method for sidestream mixing
JP2000303990A (en) Shaft seal system for rotary compressor
JP2015518113A (en) Turbo compression system
EP2969157B1 (en) System and method for sidestream mixing
CN219672856U (en) Cooling system for dry vacuum pump unit
JP2002031094A (en) Turbocompressor
JP2004011440A (en) Centrifugal compressor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201