JP2003159321A - Organic-inorganic compound porous body and manufacturing method thereof - Google Patents

Organic-inorganic compound porous body and manufacturing method thereof

Info

Publication number
JP2003159321A
JP2003159321A JP2001360766A JP2001360766A JP2003159321A JP 2003159321 A JP2003159321 A JP 2003159321A JP 2001360766 A JP2001360766 A JP 2001360766A JP 2001360766 A JP2001360766 A JP 2001360766A JP 2003159321 A JP2003159321 A JP 2003159321A
Authority
JP
Japan
Prior art keywords
organic
powder particles
porous body
composite porous
inorganic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001360766A
Other languages
Japanese (ja)
Other versions
JP4184652B2 (en
Inventor
Yasuo Shikinami
保夫 敷波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001360766A priority Critical patent/JP4184652B2/en
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to PCT/JP2002/012130 priority patent/WO2003045460A1/en
Priority to KR1020047008071A priority patent/KR100903761B1/en
Priority to CNB028276000A priority patent/CN1301757C/en
Priority to CN 200710003839 priority patent/CN1981879A/en
Priority to AU2002355020A priority patent/AU2002355020B2/en
Priority to EP02788632A priority patent/EP1457214A4/en
Priority to US10/496,076 priority patent/US8119152B2/en
Priority to CA2467260A priority patent/CA2467260C/en
Priority to KR1020097006199A priority patent/KR100955410B1/en
Priority to TW91134292A priority patent/TWI252112B/en
Publication of JP2003159321A publication Critical patent/JP2003159321A/en
Priority to NO20042189A priority patent/NO331588B1/en
Application granted granted Critical
Publication of JP4184652B2 publication Critical patent/JP4184652B2/en
Priority to US13/349,737 priority patent/US20120114733A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide the organic-inorganic compound multiple porous bodies that make it possible to facilitate an immersion of a humor or the like, bonding with the bones of a living body and reconstruction of biological osteous tissues in an early stage and are practically used as a footing of tissue reconstructions, prosthetic material, bone filler, intervening substance between an implant and biological osteous tissues, substitute for cancellous bone, a carrier for sustained release of drugs or the like as well as the manufacturing method thereof. <P>SOLUTION: The organic-inorganic compound multiple porous bodies are composed of a structure in which inorganic particles such as the particles of biologically active bioceramics or the like are substantially and uniformly dispersed in organic polymers such as in vivo resolving absorptive polymers and have consecutive stomata of roughly 100-400 μm in inner diameter and the content of inorganic particles as much as 60-90 weight/%, leaving partially exposed inorganic particles on the surface and the inner surface of stomata. This multiple porous body can be obtained by manufacturing a fiber aggregate from a suspension of inorganic particles dissolved in a volatile solvent and dispersed thereon, which was heated and pressurized to be formed into a multiple porous fiber aggregate and immersed in a volatile solvent before the solvent was removed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機−無機複合多孔
体に関し、殊に、生体骨組織再生用の足場(Scaffold)、
補綴材、ボーンフィラー、インプラントと生体骨組織と
の間の介在物、海綿骨の代替物、DDS(Drug Deliverl
y System) の薬物徐放用キャリアなどの用途に適した有
機−無機複合多孔体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic-inorganic composite porous body, and more particularly to a scaffold for regenerating a living bone tissue,
Prosthesis, bone filler, inclusion between implant and living bone tissue, cancellous bone substitute, DDS (Drug Deliverl)
y System), an organic-inorganic composite porous material suitable for applications such as a drug sustained release carrier.

【0002】[0002]

【従来の技術】医療用途を目的とする無機の多孔体とし
て、例えば、セラミックスを仮焼または焼結(Calcine
d,Sintered)して得られる多孔性セラミックスが知られ
ている。しかしながら、かかる多孔性セラミックスは、
生体骨組織再建用の足場や補綴材などの用途に使用する
には硬いが、脆いという欠点があるので、術後のわずか
な衝撃による破損が常に危惧される。また、手術現場で
多孔性セラミックスの形状を生体骨組織の欠損部の形状
に合うように加工、変形することも難しい。
2. Description of the Related Art As an inorganic porous material for medical purposes, for example, ceramics are calcined or sintered (Calcine
Porous ceramics obtained by d, Sintered) are known. However, such porous ceramics
Although it is hard to be used for applications such as scaffolds for reconstructing living bone tissue and prostheses, it has the drawback of being brittle, so damage due to slight post-surgery is always a concern. Further, it is also difficult to process and deform the shape of the porous ceramic so as to match the shape of the defect portion of the living bone tissue at the operation site.

【0003】一方、医療用途を目的とする有機の多孔体
として、例えば、特公昭63−64988号に開示され
たスポンジ等が知られている。このスポンジは、普通に
は手術時の止血や生体の軟組織(例えば臓器など)の縫
合時の補綴材料として使用されるもので、生体内分解吸
収性のポリ乳酸からなる連続気孔を有するスポンジであ
る。かかるスポンジは、ポリ乳酸をベンゼン又はジオキ
サンに溶解し、そのポリマー溶液を凍結乾燥して溶剤を
昇華させる方法によって製造される。
On the other hand, as an organic porous material for medical purposes, for example, a sponge disclosed in Japanese Patent Publication No. 63-64988 is known. This sponge is usually used as a prosthetic material for hemostasis during surgery and for suturing soft tissues (eg, organs) of the living body, and is a sponge having continuous pores made of biodegradable and absorbable polylactic acid. . Such a sponge is produced by a method in which polylactic acid is dissolved in benzene or dioxane and the polymer solution is freeze-dried to sublimate the solvent.

【0004】しかしながら、上記のスポンジのように凍
結乾燥法によって製造される多孔体は、昇華に長時間を
要して、完全には溶剤を除くことが困難であり、その厚
さが1mm以下(通常、数百μm程度)と薄く、数mm
以上の厚い多孔体を製造することは現実的に困難であ
る。連続気孔を有する多孔体を造る他の方法としては、
上記の凍結乾燥法の他にも種々の方法が検討されている
が、いずれも数mmの厚い多孔体を得ることは困難であ
る。このような薄い多孔体を例えば生体組織損傷部位の
複雑で比較的大きい三次元空間に形状的にあてはめて、
一次的な補綴材としての機能を発揮させながら立体的な
損傷部位の組織再建を図る材料とするには困難がある。
そこで、厚みが大きく、自由な形状の三次元立方体に術
前あるいは術後に細工できるものが求められる。
However, the porous body produced by the freeze-drying method like the above sponge requires a long time for sublimation, and it is difficult to completely remove the solvent, and the thickness thereof is 1 mm or less ( Normally, it is as thin as a few hundred μm) and a few mm
It is practically difficult to manufacture the above thick porous body. As another method for producing a porous body having continuous pores,
Various methods other than the above freeze-drying method have been investigated, but it is difficult to obtain a thick porous body having a thickness of several mm. By applying such a thin porous body to a complicated and relatively large three-dimensional space of a tissue damage site, for example,
It is difficult to use it as a material for reconstructing the tissue of a three-dimensionally damaged site while exhibiting the function as a primary prosthetic material.
Therefore, a three-dimensional cube having a large thickness and having a free shape that can be worked before or after surgery is required.

【0005】また、連続多孔体をつくるもう一つの有力
な方法として、ポリマーに水溶性である所定の大きさの
NaClなどの可溶性の粉粒を多量に混合し、シート状
などの肉薄の成形物をつくった後、水(溶剤)に浸漬し
て該粉粒を溶出することにより、該粉粒と同じ径の連続
孔を形成する溶出法が知られているが、該粉粒を完全に
溶出するのは困難であるため、肉薄の連続多孔体に限定
される。また、水溶性の粉粒の比率が高くなれば、連続
気泡とはなり難い。しかも、この多孔体を生体内埋入材
料とするときは、残留する該粉粒の毒性に煩わされると
いう問題がある。
As another effective method for producing a continuous porous body, a thin molded product such as a sheet is prepared by mixing a large amount of water-soluble soluble powder particles such as NaCl having a predetermined size with a polymer. An elution method of forming continuous pores having the same diameter as the powder particles by immersing the powder particles in water (solvent) and then eluting the powder particles is known. Since it is difficult to do so, it is limited to a thin continuous porous body. Further, if the ratio of water-soluble powder particles is high, it is difficult to form open cells. Moreover, when the porous body is used as an implantable material in a living body, there is a problem that the residual powder particles are toxic.

【0006】上記のスポンジのように、生体活性なバイ
オセラミックス等の無機粉粒を含まない多孔体は、硬骨
や軟骨などの生体骨組織との直接の結合性(direct bon
dingability to bone)、伝導性(osteoconductivit
y)、置換性(bone replacement)等が欠乏しているた
めに骨芽細胞ではない軟組織が侵入、介在するので、生
体の骨組織が完全に置換して再生されるまでにかなりの
長期間を要するか、置換されないままに終わる。
[0006] Like the above sponge, a porous body containing no inorganic powder particles such as bioactive bioceramics directly binds to a living bone tissue such as hard bone or cartilage.
dingability to bone), conductivity (osteoconductivit)
y), since bone tissue, which is not osteoblast, invades and intervenes due to lack of bone replacement, it takes a long time to completely replace and regenerate bone tissue in the living body. It takes or ends without being replaced.

【0007】そこで、本出願人は、骨芽細胞を播種され
て三次元立方体の足場となり、大きな骨の欠損部に橋わ
たしのために植付けることのできるところの、内部にバ
イオセラミックス粉粒が含有された生体内分解吸収性ポ
リマーからなる連続気孔を有する厚みの大きい多孔体を
既に出願した(特願平8−229280号)。
[0007] Therefore, the Applicant of the present invention has a bioceramic powder grain inside which can be planted as a scaffold of a three-dimensional cube by being seeded with osteoblasts and can be planted for a bridge me in a large bone defect. We have already filed an application for a porous body having a large thickness and containing continuous biodegradable and absorbable polymer (Japanese Patent Application No. 8-229280).

【0008】この多孔体は、溶液沈殿法と称される多孔
体の製造方法によるものである。即ち、生体内分解吸収
性ポリマーをその溶剤とその溶剤より高沸点の非溶剤と
の混合溶媒に溶解させると共に、バイオセラミックス粉
粒を分散させて懸濁液を調製し、この懸濁液から混合溶
媒を溶剤の沸点より低温で気散させて、バイオセラミッ
クス粉粒を内包する生体内分解吸収性ポリマーを沈殿さ
せる方法によるものである。
This porous body is based on a method for producing a porous body called a solution precipitation method. That is, the biodegradable and absorbable polymer is dissolved in a mixed solvent of the solvent and a non-solvent having a higher boiling point than the solvent, and the bioceramic powder particles are dispersed to prepare a suspension, which is mixed from the suspension. This is a method in which the solvent is vaporized at a temperature lower than the boiling point of the solvent to precipitate the biodegradable and absorbable polymer containing the bioceramic powder particles.

【0009】この溶液沈殿法による多孔体の形成原理
は、次の通りである。即ち、上記の懸濁液から混合溶媒
を溶剤の沸点より低温で気散させると、沸点の低い溶剤
が優先的に気散して沸点の高い非溶剤の比率が次第に上
昇し、溶剤と非溶剤がある比率に達すると溶剤はポリマ
ーを溶解できなくなる。そのため、ポリマーが析出・沈
殿を開始し、当初から沈降を開始しているバイオセラミ
ックス粉粒を内包し、析出・沈殿したポリマーが高比率
の非溶剤により収縮、固化してバイオセラミックス粉粒
を含有したまま固定化され、連結したポリマーの薄いセ
ル壁に混合溶媒が内包された状態のセル構造が形成され
る。そして、残りの溶剤がセル壁の一部を破壊しながら
細孔をつくって気散・消失し、沸点の高い非溶剤も該細
孔を通じて徐々に気散して、遂には完全に気散・消失す
る。その結果、ポリマーのセル壁に包まれていた混合溶
媒の溜め跡が連続気孔として繋がったバイオセラミック
ス粉粒含有多孔体が形成されるのである。
The principle of forming a porous body by this solution precipitation method is as follows. That is, when the mixed solvent is vaporized at a temperature lower than the boiling point of the solvent from the suspension described above, the solvent having a low boiling point is vaporized preferentially and the ratio of the non-solvent having a high boiling point is gradually increased. When a certain ratio is reached, the solvent cannot dissolve the polymer. Therefore, the polymer begins to precipitate / precipitate, encloses the bioceramic powder particles that have started to settle from the beginning, and the precipitated / precipitated polymer shrinks and solidifies due to the high proportion of the non-solvent and contains the bioceramic powder particles. A cell structure is formed in which the mixed solvent is encapsulated in the thin cell wall of the polymer which is immobilized as it is. Then, the remaining solvent destroys a part of the cell wall to form pores and diffuses / disappears, and the non-solvent with a high boiling point gradually diffuses through the pores, and finally diffuses completely. Disappear. As a result, a bioceramic powder particle-containing porous body is formed in which the traces of the mixed solvent that are wrapped in the polymer cell wall are connected as continuous pores.

【0010】[0010]

【発明が解決しようとする課題】上記の溶液沈殿法は、
低発泡倍率から高発泡倍率の厚みの大きい多孔体を形成
する画期的な方法であり、数mmないし数十mmの厚さ
を有するブロック状の三次元多孔体を得ることが可能で
ある。それゆえ、立体形状(三次元立体構造)の骨再生
の足場などには頗る有用である。
The above solution precipitation method is
This is an epoch-making method of forming a porous body having a large expansion ratio from a low expansion ratio to a high expansion ratio, and it is possible to obtain a block-shaped three-dimensional porous body having a thickness of several mm to several tens of mm. Therefore, it is very useful as a scaffold for bone regeneration of a three-dimensional shape (three-dimensional structure).

【0011】しかしながら、この方法の欠点は、大量に
バイオセラミックス粉粒を含んだ懸濁液では、平均粒径
のうちで比較的大きな粒径分布に属するバイオセラミッ
クス粉粒が、溶剤揮散をはじめる当初から沈降を開始
し、ポリマーが析出・沈殿を開始したときには、既にか
なりのバイオセラミックス粉粒が底部に向けて濃度勾配
をもって沈降しているため、得られる多孔体はバイオセ
ラミックス粉粒の含有量が部分的に均一でなく、多孔体
の上面側から底面側に近づくにつれて含有量が多くな
る。このように含有量が濃度勾配をもっている不均一な
多孔体は、骨組織再建用の足場、補綴材あるいはボーン
フィラー等の用途には有効に使用し難い。かかる問題
は、バイオセラミックス粉粒の沈降速度等をコントロー
ルすることにより、ある程度改善することは可能である
が、完全に解決することはできない。特に、30重量%
以上ものバイオセラミックス粉粒を含有する均質、かつ
均等な濃度をもつ三次元の骨再建用の多孔体とするのは
困難である。
However, the disadvantage of this method is that in a suspension containing a large amount of bioceramic powder particles, the bioceramic powder particles that belong to a relatively large particle size distribution among the average particle diameters initially start to volatilize the solvent. When the polymer starts to settle from the start of precipitation from the bottom, a considerable amount of bioceramic powder particles have already settled with a concentration gradient toward the bottom, so the resulting porous body has a content of bioceramic powder particles. The content is not partially uniform, and the content increases from the upper surface side to the bottom surface side of the porous body. Such a non-uniform porous material having a concentration gradient is difficult to be effectively used for scaffolds for bone tissue reconstruction, prostheses, bone fillers and the like. This problem can be improved to some extent by controlling the sedimentation rate of the bioceramic powder particles, but it cannot be completely solved. Especially 30% by weight
It is difficult to obtain a porous body for three-dimensional bone reconstruction containing the above-mentioned bioceramic powder particles and having a uniform and uniform concentration.

【0012】上記の方法で製造されるバイオセラミック
ス粉粒の含有量が少ない多孔体は、バイオセラミックス
粉粒の大半がポリマーのセル壁に内包されて連続気孔の
内面に露出しにくいため、生体内に埋め込んだとき、埋
め込み当初からバイオセラミックス粉粒による生体骨組
織の伝導作用が発揮され難く、連続気孔内面のスキン層
を形成するポリマーの分解に併行して露出したバイオセ
ラミックス粉粒と共に生体活性が発現されるという問題
がある。
The porous body containing a small amount of bioceramic powder particles produced by the above-mentioned method has the majority of bioceramic powder particles enclosed in the polymer cell wall and is difficult to be exposed on the inner surface of the continuous pores. When embedded in a bioceramics powder, it is difficult for the bioceramics powder particles to exert the conductive action of the living bone tissue from the beginning of the implantation, and bioactivity along with the bioceramics powder particles exposed along with the decomposition of the polymer that forms the skin layer on the inner surface of the continuous pores causes bioactivity. There is a problem of being expressed.

【0013】更に、上記の方法で製造される多孔体は、
極細粒を選んだとしてもバイオセラミックス粉粒の含有
率をせいぜい30重量%程度までとする必要があり、こ
れより多量に含有させると、バイオセラミックス粉粒が
一層沈降しやすくなるため、得られる多孔体の底面側が
多量のバイオセラミックス粉粒を含んで極めて脆くなる
という限界がある。
Further, the porous body produced by the above method is
Even if ultrafine particles are selected, the content rate of bioceramics powder particles must be at most about 30% by weight. If the content is larger than this, the bioceramics powder particles are more likely to settle, and the obtained porosity is increased. There is a limit that the bottom side of the body contains a large amount of bioceramic powder particles and becomes extremely brittle.

【0014】また、上記の方法で製造される多孔体は、
通常、連続気孔の占める割合(気孔率)が80%以上と
大きいけれども、一般的に言って、孔径が数μmないし
数十μmと比較的小さい連続気孔しか得られないので、
多孔体内部への骨芽細胞の侵入と成長にとって理想的な
孔径、孔の形態を形成しているとは言えない。
Further, the porous body produced by the above method is
Usually, the proportion of the continuous pores (porosity) is as high as 80% or more, but generally speaking, since only relatively small continuous pores having a pore diameter of several μm to several tens of μm can be obtained,
It cannot be said that the pore diameter and pore morphology are ideal for the invasion and growth of osteoblasts inside the porous body.

【0015】本発明は、これらの問題を解決し得る有機
−無機複合多孔体と、その製造方法を提供することを目
的としている。
An object of the present invention is to provide an organic-inorganic composite porous material which can solve these problems and a method for producing the same.

【0016】[0016]

【課題を解決するための手段】本発明に係る有機−無機
複合多孔体は、有機ポリマー中に無機粉粒が実質的に均
一に分散し、内部に連続気孔を有する多孔体であって、
その表面と気孔内面に無機粉粒の一部が露出したもので
ある。そして、連続気孔は、骨芽細胞が侵入して増殖、
安定化するのに好適な100〜400μm程度の孔径に
調節され、無機粉粒は60〜90重量%と多量に含有さ
れている。また、多孔体の厚みは1〜50mmと大き
く、三次元立体形状を有している。
The organic-inorganic composite porous material according to the present invention is a porous material in which inorganic powder particles are dispersed substantially uniformly in an organic polymer and which has continuous pores inside.
Part of the inorganic powder particles is exposed on the surface and the inner surface of the pores. And, in the continuous pores, osteoblasts invade and proliferate,
It is adjusted to a pore size of about 100 to 400 μm, which is suitable for stabilization, and the inorganic powder particles are contained in a large amount of 60 to 90% by weight. The porous body has a large thickness of 1 to 50 mm and has a three-dimensional solid shape.

【0017】このような有機−無機複合多孔体は、本発
明の製造方法、即ち、揮発性溶媒に有機ポリマーを溶解
し無機粉粒を分散させて調製した懸濁液から不織布状の
繊維集合体をつくり、これを加熱下に加圧成形して多孔
質の繊維集合成形体となし、次いで、揮発性溶媒に繊維
集合成形体を浸漬したのち該溶剤を除去する方法によっ
て、製造することができる。懸濁液から不織布状の繊維
集合体をつくる手段としては、懸濁液を繊維化しつつス
プレーする手段が好ましく採用され、また、揮発性溶媒
に繊維集合成形体を浸漬する際には、繊維集合成形体の
形状を保持するような外力を加えておくことが望まし
く、これにより、機械的強度のある多孔体が得られる。
Such an organic-inorganic composite porous material is a nonwoven fabric-like fiber aggregate from a suspension prepared by the method of the present invention, that is, by dissolving an organic polymer in a volatile solvent and dispersing inorganic powder particles. It can be produced by a method of forming a porous fiber aggregated compact by heating under pressure to form a porous fiber aggregated compact, and then immersing the fiber aggregated compact in a volatile solvent and then removing the solvent. . As a means for producing a nonwoven fabric-like fiber assembly from a suspension, a means for spraying while making the suspension into fibers is preferably adopted, and when the fiber assembly formed body is immersed in a volatile solvent, the fiber assembly is It is desirable to apply an external force so as to maintain the shape of the molded body, whereby a porous body having mechanical strength can be obtained.

【0018】上記のように、繊維集合体をつくる手段と
して、調整された懸濁液を繊維化しつつスプレーする手
段を採用すると、無機粉粒を含んだ有機ポリマーの繊維
が互いに絡み合って相互の接点で溶着し、揮発性溶媒の
揮散により繊維が集合固化して、任意の形状の厚肉の不
織布状の繊維集合体が形成される。この繊維集合体は、
繊維間空隙は細胞状の孔(round cell space)ではない
が、溶着固化した繊維相互の間隔が数百μm程度の連続
した空間をもつものであり、無機粉粒は繊維に包含され
て繊維集合体の全体に亘って均一に分散している。この
繊維集合体を加熱下に加圧成形して多孔質の繊維集合成
形体をつくり、外力を加えながらその形状を保持しつつ
揮発性溶媒に浸漬すると、繊維が収縮、融合する。そし
て実質的に繊維状の形態が消失し、繊維間空隙が丸みを
有するセル構造をもった連続気孔体に形態変化した多孔
質マトリックスになる。そして、この変態に伴って、多
量に含有されている無機粉粒はその一部が気孔内面に露
出すると共に、表面にも無機粉粒が容易に脱落しない程
度に填まり込んで露出し、目的とする有機−無機複合多
孔体、即ち無機粉粒が高含有率で実質的に均一に分散
し、その一部が表面や連続気孔の内面に露出した有機−
無機複合多孔体が得られる。勿論、条件によって表面に
スキン層が形成されたときには、サンディングすること
で無機粉粒を露出させてもよい。この複合多孔体は、繊
維集合成形体を揮発性溶媒に浸漬する際に、その形状を
保持するための外圧を調節することによって、連続気孔
の平均孔径を骨芽細胞の侵入と安定化に都合のよい10
0〜400μm程度にコントロールできると共に、気孔
率を50〜90%程度の望ましい条件をもつ気孔形態に
することが望ましい。
As described above, when means for spraying the prepared suspension while fibrating the prepared suspension is adopted as means for forming the fiber aggregate, the fibers of the organic polymer containing the inorganic powder particles are entangled with each other and contacted with each other. And the fibers are aggregated and solidified by volatilization of the volatile solvent to form a thick non-woven fabric fiber aggregate having an arbitrary shape. This fiber assembly is
The inter-fiber void is not a round cell space, but it has a continuous space in which the welded and solidified fibers have a spacing of several hundreds of μm, and the inorganic powder particles are included in the fiber to form a fiber aggregate. It is evenly distributed throughout the body. When this fiber assembly is pressure-molded under heating to form a porous fiber assembly-molded body and is immersed in a volatile solvent while maintaining its shape while applying an external force, the fibers shrink and fuse. Then, the substantially fibrous morphology disappears, and a porous matrix is obtained in which the morphology is changed to a continuous pore body having a cell structure in which interfiber voids have a roundness. Along with this transformation, a part of the inorganic powder particles contained in a large amount is exposed on the inner surface of the pores and is also exposed on the surface to such an extent that the inorganic powder particles are not easily dropped. And organic-inorganic composite porous body, that is, inorganic powder particles are dispersed substantially uniformly at a high content, and a part of the organic material is exposed on the surface or inside the continuous pores.
An inorganic composite porous body is obtained. Of course, when the skin layer is formed on the surface depending on the conditions, the inorganic powder particles may be exposed by sanding. This composite porous body is suitable for infiltration and stabilization of osteoblasts by controlling the average pore size of continuous pores by adjusting the external pressure to maintain the shape of the fiber aggregated body when immersed in a volatile solvent. Good 10
It is desirable that the porosity be controlled so that the porosity can be controlled in the range of 0 to 400 μm and the porosity is in the desirable condition of 50 to 90%.

【0019】本発明の製造方法では、繊維化が可能な範
囲内で60〜90重量%(平均粒径が3μmのとき41
〜81容積%に相当)の無機粉粒を気孔体中に均一に含
有させることが可能である。多量に含有させても無機粉
粒が沈降する以前に該繊維が溶着するので、前述した溶
液沈殿法で得られる多孔体よりも無機粉粒が均一に分散
していて含有率が遥かに高い複合多孔体を最終的に得る
ことができる。但し、あまりに高含有率であれば、バイ
ンダーとしてのポリマー量が少なくなり、多孔体は脆く
なって形状を維持することが困難になる。
In the production method of the present invention, 60 to 90% by weight (41% when the average particle size is 3 μm) is used within the range where fiberization is possible.
(Corresponding to about 81% by volume) can be uniformly contained in the pore body. Even if contained in a large amount, the fibers are welded before the inorganic powder particles settle, so the inorganic powder particles are more evenly dispersed and the content is much higher than that of the porous body obtained by the solution precipitation method described above. The porous body can be finally obtained. However, if the content is too high, the amount of the polymer as the binder decreases, and the porous body becomes brittle and it becomes difficult to maintain its shape.

【0020】生体骨組織再生用の足場など医療用途を目
的とする本有機−無機複合多孔体は、有機ポリマーとし
て溶剤特性が本製造方法に見合っており、既に実用され
て安全性が確認されており、分解が比較的速く、多孔体
となっても脆くないポリマーが選択される。即ち、非晶
質あるいは結晶と非晶の混在したポリ−D,L−乳酸、
L−乳酸とD,L乳酸のブロック共重合体、乳酸とグリ
コール酸の共重合体、乳酸とp−ジオキサノンの共重合
体、乳酸とカプロラクトンの共重合体、乳酸とエチレン
グリコールの共重合体、或は、これらの混合体などの生
体内分解吸収性ポリマーが使用される。その粘度平均分
子量は、不織布状の繊維集合体を形成しやすいことや、
生体内での分解吸収の期間を考慮して、5万〜100万
のものが好ましく使用される。
The present organic-inorganic composite porous material for medical use such as scaffolding for regeneration of living bone tissue has solvent characteristics suitable for the present production method as an organic polymer, and has already been put into practical use and its safety has been confirmed. Therefore, a polymer is selected that decomposes relatively quickly and is not brittle even when it becomes a porous body. That is, amorphous or poly-D, L-lactic acid in which crystalline and amorphous are mixed,
Block copolymer of L-lactic acid and D, L-lactic acid, copolymer of lactic acid and glycolic acid, copolymer of lactic acid and p-dioxanone, copolymer of lactic acid and caprolactone, copolymer of lactic acid and ethylene glycol, Alternatively, biodegradable and absorbable polymers such as mixtures thereof are used. Its viscosity average molecular weight is that it is easy to form a non-woven fiber aggregate,
Considering the period of decomposition and absorption in the living body, 50,000 to 1,000,000 are preferably used.

【0021】特に、モノマー比率に起因して非晶性を示
すポリ−D,L−乳酸、L−乳酸とD,L乳酸のブロッ
ク共重合体、乳酸とグリコール酸の共重合体、乳酸とp
−ジオキサノンの共重合体などの生体内分解全吸収性ポ
リマーは、不織布状の繊維集合体を形成するとき、及
び、これを加熱下に加圧成形した繊維集合成形体を揮発
性溶媒で処理するときの溶媒特性からみて好適であり、
これらのポリマーを使用すると、多量の無機粉粒を含ん
でいても脆くなく、海綿骨なみの圧縮強度(1〜5MP
a程度の圧縮強度)を持ち、セラミックス単体の多孔体
とは異なって比較的低温(70℃程度)で熱変形させる
ことができ、生体内ですみやかに加水分解して6〜12
ケ月で全吸収される、有機−無機複合多孔体を得ること
ができる。このような特性を有する複合多孔体は、生体
骨の欠損部に充填する生体材料として極めて好ましいも
のである。複合体であるが故に、セラミックスのみの材
料と異なり手術中に熱変形させて欠損部に合致するよう
に形を整えることができる熱可塑性ポリマー特有の利点
も残している。
In particular, poly-D, L-lactic acid, which is amorphous due to the monomer ratio, a block copolymer of L-lactic acid and D, L lactic acid, a copolymer of lactic acid and glycolic acid, and lactic acid and p.
-A biodegradable total absorbable polymer such as a dioxanone copolymer is used to form a nonwoven fabric-like fiber assembly, and the fiber assembly-molded body which is pressure-molded under heating is treated with a volatile solvent. It is preferable in view of the solvent characteristics at that time,
When these polymers are used, they are not brittle even if they contain a large amount of inorganic powder particles, and have a compressive strength (1-5MP) similar to cancellous bone.
It has a compressive strength of about a) and can be thermally deformed at a relatively low temperature (about 70 ° C), unlike a porous body made of ceramics alone, and is rapidly hydrolyzed in vivo to 6-12.
It is possible to obtain an organic-inorganic composite porous body which is completely absorbed in a month. The composite porous body having such characteristics is extremely preferable as a biomaterial to be filled in a defect portion of a living bone. Since it is a composite, it also has the unique advantage of a thermoplastic polymer that, unlike a ceramic-only material, can be thermally deformed during surgery and shaped to match the defect.

【0022】生体内分解全吸収性ポリマーの分子量は、
加水分解して全吸収されるまでの時間や繊維化の可否に
影響を及ぼすので、上記のように5万〜100万の粘度
平均分子量を有するポリマーが使用される。5万より小
さい粘度平均分子量を有するポリマーは、オリゴマーな
いしモノマー単位の低分子までに加水分解される時間は
短いけれども、曳糸性が不足するので繊維化しながらス
プレーして複合繊維集合体を形成することが困難であ
る。また、100万より大きい粘度平均分子量を有する
ポリマーは、完全加水分解するまでに長期間を要するの
で、生体組織との早期置換を目的とする場合には複合多
孔体のポリマーとしては不適当である。ポリマーによっ
て異なるが、その好ましい粘度平均分子量は大略10万
〜30万であり、この範囲の分子量を有するポリマーを
用いると、繊維集合体の形成が容易となり、且つ、適度
な加水分解完了時間を有する本発明の複合多孔体を得る
ことができる。
The biodegradable total absorbable polymer has a molecular weight of
As described above, a polymer having a viscosity average molecular weight of 50,000 to 1,000,000 is used because it affects the time until hydrolysis and total absorption and the possibility of fiber formation. A polymer having a viscosity average molecular weight of less than 50,000 has a short time to be hydrolyzed to a low molecule of an oligomer or a monomer unit, but has insufficient spinnability, and thus is sprayed while forming a fiber to form a composite fiber aggregate. Is difficult. Further, a polymer having a viscosity average molecular weight of more than 1,000,000 requires a long period of time to be completely hydrolyzed, and is therefore unsuitable as a polymer of a composite porous body for the purpose of early replacement with biological tissue. . Although it depends on the polymer, the preferable viscosity average molecular weight is about 100,000 to 300,000. When a polymer having a molecular weight in this range is used, the formation of a fiber assembly is facilitated and the hydrolysis completion time is appropriate. The composite porous body of the present invention can be obtained.

【0023】前述の医療用途を目的とする有機−無機複
合多孔体では、無機粉粒として、生体活性があり、良好
な骨伝導能(時として骨誘導能を示すとされる)と良好
な生体親和性を有するバイオセラミックス粉粒が使用さ
れる。そのようなバイオセラミックス粉粒としては、例
えば、表面生体活性な焼成、仮焼成ハイドロキシアパタ
イト、アパタイトウォラストナイトガラスセラミック
ス、生体活性かつ生体内全吸収性の未仮焼、未焼成ハイ
ドロキシアパタイト、ジカルシウムホスフェート、トリ
カルシウムホスフェート、テトラカルシウムホスフェー
ト、オクタカルシウムホスフェート、カルサイト、セラ
バイタル、ジオプサイト、天然珊瑚等の粉粒が挙げられ
る。また、これらの粉粒の表面にアルカリ性の無機化合
物や塩基性の有機物等を付着させたものも使用可能であ
る。自らの生体組織により全置換が為されて組織再生が
行われることは理想的であるとの理由により、これらの
中でも、生体内で全吸収され骨組織と完全に置換される
生体内全吸収性のバイオセラミックス粉体が好ましく、
特に未仮焼、未焼成のハイドロキシアパタイト、トリカ
ルシウムホスフェート、オクタカルシウムホスフェート
は、活性が最も大きく、骨伝導能に優れ、生体親和性に
優れて為害性が低く、短期間で生体に吸収されるので、
最適である。
In the above-mentioned organic-inorganic composite porous body intended for medical use, inorganic powder particles have bioactivity and have good osteoconductivity (sometimes said to show osteoinduction ability) and good organism. Bioceramics powder with affinity is used. As such bioceramic powder particles, for example, surface bioactive calcination, calcined hydroxyapatite, apatite wollastonite glass ceramics, bioactive and total bioabsorbable uncalcined, uncalcined hydroxyapatite, dicalcium. Powder particles of phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, calcite, ceravital, diopsite, natural coral and the like can be mentioned. Further, it is also possible to use those in which an alkaline inorganic compound, a basic organic substance or the like is attached to the surface of these powder particles. Among them, it is ideal that total replacement is performed by one's own living tissue and tissue regeneration is performed. Among these, total absorbability in vivo is completely absorbed and completely replaced with bone tissue. Bioceramic powder of
In particular, uncalcined and uncalcined hydroxyapatite, tricalcium phosphate, and octacalcium phosphate have the highest activity, excellent osteoconductivity, excellent biocompatibility, low toxicity, and are absorbed into the body in a short period of time. So
Optimal.

【0024】上記のバイオセラミックス粉粒は、粒径が
10μm以下のものを使用することが好ましく、これよ
り大きい粒径のバイオセラミックス粉粒を使用すると、
該粉粒を混合した懸濁液を繊維化しながらスプレーする
際に繊維が短く切断されて、繊維集合体を形成すること
が困難となり、たとえ繊維集合体を形成できたとして
も、繊維が固化するまでにバイオセラミックス粉粒が多
少沈降して不均一に分散する恐れがある。20〜30μ
mを越える大きさのものは、それが全吸収性であっても
完全吸収に長時間を要し、その間の組織反応が時として
発現するので好ましくない。
It is preferable to use the above-mentioned bioceramic powder particles having a particle size of 10 μm or less, and if the bioceramic powder particles having a larger particle size are used,
When the suspension in which the powder particles are mixed is sprayed while forming fibers, the fibers are cut into short pieces, which makes it difficult to form fiber aggregates, and even if the fiber aggregates can be formed, the fibers solidify. By the time, the bioceramics powder particles may be slightly settled and dispersed unevenly. 20-30μ
If the size exceeds m, even if it is totally absorbable, it takes a long time for complete absorption, and a tissue reaction during that time sometimes appears, which is not preferable.

【0025】バイオセラミックス粉粒の更に好ましい粒
径は0.2〜5μmであり、このようなバイオセラミッ
クス粉粒を使用すると、本発明のように高濃度に該粉粒
を混合した懸濁液を1〜3μm程度と細く繊維化して繊
維集合体を形成する場合でも、繊維が切断され難く、本
発明のように高濃度であるときには該粉粒が繊維から露
出した状態で繊維に包含されるようになり、繊維集合体
を揮発性溶媒で浸漬処理した後に、該粉粒が表面や連続
気孔の内面から露出した複合多孔体となる。
The more preferable particle size of the bioceramic powder particles is 0.2 to 5 μm. When such bioceramic powder particles are used, a suspension obtained by mixing the powder particles at a high concentration as in the present invention is used. Even when a fiber aggregate is formed by thinning the fiber to about 1 to 3 μm, the fiber is difficult to be cut, and when the concentration is high as in the present invention, the powder particles are included in the fiber in a state of being exposed from the fiber. After the fiber assembly is immersed in the volatile solvent, the powder particles become a composite porous body exposed from the surface and the inner surface of the continuous pores.

【0026】バイオセラミックス粉粒の含有率は、再生
医工学における足場やDDSのためのキャリアあるいは
ボーンフィラー、異形状海綿骨(Allograft:同種異植
片)の代替物等の医療用途を目的とする有機−無機複合
多孔体の場合、60〜90重量%とすることはバイオセ
ラミックスの生体活性効果からすると好ましい。本発明
のように無機粉粒を含んだ繊維の集合体を形成し、これ
を加熱下に加圧成形した繊維集合成形体を揮発性溶媒に
浸漬して複合多孔体を得る場合は、繊維化が可能な範囲
内で多量の無機粉粒を含有させることができるため、上
記のようにバイオセラミックス粉粒の含有率を60〜9
0重量%(平均粒径3μmのときの体積比率は41〜8
1%の高比率に相当する)と高めることができる。バイ
オセラミックス粉粒の含有率が90重量%を越えると、
繊維化するときに短く切れて満足な繊維にならないため
繊維集合体の形成が困難となり、一方、60重量%を下
回ると、バイオセラミックス粉粒が不足し、表面に露出
するものが少ないので、生体に埋入した初期からバイオ
セラミックス粉体に由来する生体活性が発現され難い。
The content of the bioceramics powder particles is intended for medical applications such as scaffolds in regenerative medical engineering, carriers or bone fillers for DDS, substitutes for irregularly shaped cancellous bone (Allograft). In the case of the organic-inorganic composite porous body, it is preferable to set the content to 60 to 90% by weight in view of the bioactivity effect of bioceramics. In the case of forming a fiber aggregate containing inorganic powder particles as in the present invention, and immersing the fiber aggregate formed body which is pressure-molded under heating into a volatile solvent to obtain a composite porous body, it is formed into a fiber. Since a large amount of inorganic powder particles can be contained within the range where it is possible to achieve the above, the content rate of bioceramic powder particles is 60 to 9 as described above.
0% by weight (volume ratio when the average particle size is 3 μm is 41 to 8)
(Corresponding to a high ratio of 1%). When the content rate of bioceramic powder particles exceeds 90% by weight,
It becomes difficult to form a fiber aggregate because it does not become a satisfactory fiber when cut into fibers. On the other hand, when it is less than 60% by weight, bioceramic powder particles are insufficient and few are exposed on the surface. The bioactivity derived from the bioceramics powder is difficult to be expressed from the beginning when it is embedded in the.

【0027】ハイドロキシアパタイト等のセラミックス
を焼結して得られる多孔性セラミックスは、硬いけれど
も脆いため、薄物は外力により容易に割れたり欠けたり
するので、インプラントとしては不満足なものである。
これに対し、バイオセラミックス粉体を殊に非晶性であ
る生体内分解吸収性ポリマーに含有させた複合多孔体
は、バイオセラミックス粉体の含有率が60〜90重量
%と高い場合でも、そのポリマーの結合(binding) 効
果により、可撓性を保持した脆くない海綿骨なみの圧縮
強度、具体的には1MPa〜5MPa程度の圧縮強度を
有するため、海綿骨の代替(同種骨移植用:Allograft
boneの代替)、ボーンフィラーや補綴材、再生用の足場
やDDSのキャリアとして好適に使用される。
Porous ceramics obtained by sintering ceramics such as hydroxyapatite are hard but brittle, so that a thin material is easily cracked or chipped by an external force, which is unsatisfactory as an implant.
On the other hand, the composite porous body containing the bioceramic powder in the biodegradable and absorbable polymer, which is particularly amorphous, has a high content of the bioceramic powder of 60 to 90% by weight. Due to the binding effect of the polymer, it has a compressive strength similar to that of cancellous bone that retains its flexibility and is not brittle, specifically, it has a compressive strength of about 1 MPa to 5 MPa, so it can replace cancellous bone (for allograft: Allograft
Substitute for bone), bone filler, prosthesis, scaffold for regeneration and carrier of DDS.

【0028】また、別の有力な用途として、生体骨(硬
骨、軟骨)用の人工インプラントとの間の介在物が挙げ
られる。例えば、生体活性かつ生体吸収性の骨接合材で
あるバイオセラミックス粉入りのポリ乳酸系ポリマーか
ら造られた高濃度を有する人工物を埋入するとき、生体
との間に隙間が生ずることは避け難いので、この間に本
複合多孔体を介在して直接骨組織と接触させると、骨伝
導性が顕著に発現される。これは生体骨の種々の部位で
有効に働くが、例えば胸骨正中切開の場合に本多孔体を
貫通させた胸骨固定ピンを正中骨に埋入することで、骨
粗鬆症(osteoporosis)のはげしい中空化した骨中に骨
誘導(サイトカインとの併用)や骨伝導をもたらすこと
ができる。あるいはこの種のプレートの下敷きとして使
い、骨との密着を図ることもできる。人工椎間板と椎体
終板(endplate)への直接の結合を図るなど、生体と人
工物の介在物としての用途は多い。
Another promising application is an inclusion with an artificial implant for living bone (hard bone, cartilage). For example, when implanting an artificial material with a high concentration made of polylactic acid-based polymer containing bioceramic powder, which is a bioactive and bioabsorbable bone cement, avoid creating a gap with the living body. Since it is difficult, direct contact with bone tissue with the present composite porous body interposed therebetween causes remarkable osteoconductivity. This works effectively in various parts of the living bone, but for example, in the case of median sternotomy, the sternum fixation pin that penetrates this porous body is embedded in the median bone to make the osteoporosis extremely hollow. It can bring osteoinduction (combination with cytokine) and bone conduction into bone. Alternatively, it can be used as an underlay of this type of plate to achieve close contact with bone. It has many uses as an intervening body and an artificial body, such as direct connection between an artificial intervertebral disc and a vertebral endplate.

【0029】この有機−無機複合多孔体は、気孔率(全
気孔率)が50%以上であり、技術的には約90%まで
可能であるが、この複合多孔体の物理的強度と骨芽細胞
の侵入および安定化の双方を勘案すれば、大略60〜8
0%が良く、また、複合多孔体の中心部までの骨芽細胞
の侵入の効率を考えれば、連続気孔が気孔全体の50〜
90%、なかんずく70〜90%を占めることが好まし
い。
The organic-inorganic composite porous body has a porosity (total porosity) of 50% or more, and technically, it is possible to reach up to about 90%. Considering both invasion and stabilization of cells, it is approximately 60 to 8
0% is good, and considering the efficiency of invasion of osteoblasts to the central part of the composite porous body, the number of continuous pores is 50 to 50%.
It is preferable to occupy 90%, especially 70 to 90%.

【0030】この有機−無機複合多孔体の連続気孔は、
その孔径が大略100〜400μmに調整されている。
ポーラスセラミックスの孔径と骨芽細胞の侵入および安
定化の研究は既に幾度も為されており、その結果からす
ると300〜400μmの孔径が最も石灰化に効果的で
あって、それより離れるに従い効果が薄れることが判っ
ている。それ故、本発明の複合多孔体の孔径は上記のよ
うに大略100〜400μmに調節されているが、50
〜500μmの範囲の孔径のものを含み、分布中心が2
00〜400μmであってもよい。
The continuous pores of this organic-inorganic composite porous material are
The pore diameter is adjusted to about 100 to 400 μm.
Studies on the pore size of porous ceramics and invasion and stabilization of osteoblasts have already been carried out many times. From the results, the pore size of 300 to 400 μm is the most effective for calcification, and the effect increases with increasing distance. It is known to fade. Therefore, the pore diameter of the composite porous body of the present invention is adjusted to about 100 to 400 μm as described above, but 50
Includes pores with diameters in the range of up to 500 μm and the center of distribution is 2
It may be from 00 to 400 μm.

【0031】因みに、連続気孔の孔径が400μmより
大きく、気孔率(全気孔率)が90%よりも高い場合は、
複合多孔体の強度が低下するので生体内埋入中に容易に
破壊する恐れが大きい。一方、孔径が100μmよりも
小さく、気孔率が50%よりも低い場合は、複合多孔体
の強度は向上するが、骨芽細胞の侵入が困難であり、加
水分解して完全吸収するまでの時間が長くなる。しか
し、このような孔径の小さい低気孔率の複合多孔体は、
DDSのキャリアとしてポリマーの分解と併行する比較
的長い時間の徐放性を維持することを望む材料としては
場合によって利用可能である。連続気孔のより好ましい
孔径は150〜350μmであり、より好ましい気孔率
(全気孔率)は70〜80%である。尚、連続気孔の孔
径や、気孔全体に占める連続気孔の比率は、前述したよ
うに、繊維集合体を加圧成形して繊維集合成形体となす
ときの圧縮率の調節や、繊維集合成形体をその形状を保
持して揮発性溶媒に浸漬するときの形状保持のための外
圧の調節によって、コントロールできる。
By the way, when the diameter of continuous pores is larger than 400 μm and the porosity (total porosity) is higher than 90%,
Since the strength of the composite porous body is lowered, there is a high possibility that it will be easily broken during implantation in a living body. On the other hand, when the pore size is smaller than 100 μm and the porosity is lower than 50%, the strength of the composite porous body is improved, but the invasion of osteoblasts is difficult and the time required for complete hydrolysis and absorption Becomes longer. However, such a low-porosity composite porous body having a small pore size,
It can be optionally used as a carrier for DDS as a material that is desired to maintain sustained release for a relatively long period of time that accompanies degradation of a polymer. The more preferable pore diameter of the continuous pores is 150 to 350 μm, and the more preferable porosity (total porosity) is 70 to 80%. The pore diameter of the continuous pores and the ratio of the continuous pores to the entire pores are, as described above, the compression ratio when the fiber aggregate is pressure-molded to form the fiber aggregate molded body, and the fiber aggregate molded body. Can be controlled by adjusting the external pressure for maintaining the shape when the shape is retained and immersed in a volatile solvent.

【0032】以上のような有機−無機複合多孔体は、例
えば種々の形状のインプラントとして生体骨の欠損部位
に埋め込んで使用できる。その際、有機ポリマーの熱可
塑性を利用して複合多孔体を70℃程度に加熱して欠損
部分の形状に合致するように変形させることにより、欠
損部分に隙間なく埋め込むことができるので、埋め込み
作業を簡単且つ正確に行うことが可能となる。また、有
機ポリマーのもつ靱性とセラミックス粉粒の硬さのため
に、手術中にメスで任意の形状に形崩れなく切断して使
うこともできる。
The organic-inorganic composite porous material as described above can be used, for example, as an implant of various shapes by embedding it in a defective portion of a living bone. At that time, since the composite porous body is heated to about 70 ° C. by utilizing the thermoplasticity of the organic polymer and deformed so as to conform to the shape of the defect portion, the defect portion can be embedded without a gap. Can be performed easily and accurately. Further, due to the toughness of the organic polymer and the hardness of the ceramic powder particles, it can be used by cutting with a scalpel into a desired shape without being deformed during surgery.

【0033】複合多孔体を例えば上記のように生体の骨
組織内に埋め込むと、体液が複合多孔体の表面から連続
気孔内を通って複合多孔体の内部に速やかに浸透するた
め、複合多孔体の表面と連続気孔の内部の双方から生体
内分解吸収性ポリマーの加水分解が殆ど同時に進行する
ので、多孔体全体に亘って均一に分解が進行する(但
し、生体液との濡れ特性は多量に含有し、表面に露出し
たバイオセラミックス粉粒の濡れ特性により、ポリマー
のみの場合より著しく向上しているか、ポリマーの濡れ
特性も改善して増殖すべき細胞の侵入、成長をより効果
的にする目的で、多孔体にコロナ放電、プラズマ処理、
過酸化水素水処理などの酸化処理を行ってもよい)。そ
して、骨細胞が存在するか、骨細胞と接触する部位に埋
入された複合多孔体は、その表面に露出するバイオセラ
ミックス粉粒の骨伝導能により、複合多孔体の表層部に
骨組織がすみやかに伝導形成されて骨の小柱(trabecul
arbone)となって成長し、短期間のうちに複合多孔体が
生体骨の欠損部位と結合すると共に、気孔内面に露出す
るバイオセラミックス粉粒の骨伝導能により、骨組織が
複合多孔体の内部にも侵入して骨芽細胞が伝導されて成
長するので、周囲骨と直接結合する。この現象は、生体
内分解吸収性ポリマーの分解の進行に伴って顕著とな
り、徐々に周囲骨と置換される。そして、最終的にはポ
リマーが完全に分解吸収され、また、バイオセラミック
ス粉粒が生体内吸収性である場合はバイオセラミックス
粉粒も完全に吸収されて、成長した骨組織によって完全
に置換され、骨欠損部の再生が完了する。
When the composite porous body is embedded in the bone tissue of a living body as described above, for example, a body fluid rapidly penetrates from the surface of the composite porous body into the inside of the composite porous body through the continuous pores. Since the hydrolysis of the biodegradable and absorbable polymer progresses almost simultaneously from both the surface and inside of the continuous pores, the degradation progresses uniformly over the entire porous body (however, the wetting property with biological fluid is large. Due to the wetting property of the bioceramic powder particles that are contained and exposed on the surface, it is significantly improved as compared with the case of using only the polymer, or the property of improving the wetting property of the polymer is also intended to make the invasion and growth of cells to be proliferated more effective. With corona discharge, plasma treatment,
Oxidizing treatment such as hydrogen peroxide treatment may be performed). Then, the composite porous body in which bone cells are present or which is in contact with the bone cells, has a bone tissue in the surface layer portion of the composite porous body due to the osteoconductivity of the bioceramic powder particles exposed on the surface thereof. Propagation is quickly formed by trabeculae of trabecul
arbone), the composite porous body binds to the defect site of the living bone within a short period of time, and the bone conductivity of the bioceramic powder particles exposed on the inner surface of the pores causes bone tissue to form inside the composite porous body. It also penetrates into the bone and conducts and grows osteoblasts, so that it directly binds to the surrounding bone. This phenomenon becomes remarkable as the degradation of the biodegradable and absorbable polymer progresses, and gradually replaces the surrounding bone. And finally, the polymer is completely decomposed and absorbed, and when the bioceramic powder particles are bioabsorbable, the bioceramic powder particles are also completely absorbed and completely replaced by the grown bone tissue, Regeneration of the bone defect is complete.

【0034】また、上記のような全置換を要求される生
体再建用の足場として分解吸収される速度に見合って、
気孔内に予め充填されるか、ポリマー中に予め溶解して
担持させたサイトカイン等の種々の成長因子や、種々の
治療のための薬剤、抗菌剤などを徐放させることで、生
体再生や病気の治癒を促進したり効果的にしたりするこ
とができる。尚、上記の複合多孔体が当然、先述したよ
うに単独又は同種骨(Allograft bone)との組合わせに
よって欠損組織の充填材や補綴材になることは明らかで
ある。
Further, in consideration of the rate of decomposition and absorption as a scaffold for bioreconstruction which requires the above total replacement,
By gradually releasing various growth factors such as cytokines, various therapeutic agents, antibacterial agents, etc., which are pre-filled in the pores or dissolved in a polymer in advance and carried, it is possible to regenerate the living body or disease. It can accelerate or be effective in healing. It is obvious that the composite porous body can be used as a filling material or a prosthesis material for a defective tissue by itself or in combination with allograft bone as described above.

【0035】上記の有機−無機複合多孔体は、全置換又
は一部置換型の生体組織再生用の足場、薬剤のキャリ
ア、補綴材、ボーンフィラー、インプラントと生体組織
との間の介在物、海綿骨の代替物等の医療用途を目的と
するものであるが、他の用途を目的とする有機−無機複
合多孔体の場合は、有機ポリマーとしてポリメチルメタ
クリレート、ポリ酢酸ビニル、ポリ塩化ビニル、ポリウ
レタン、ポリアルキレンオキサイド、その他の揮発性溶
媒に可溶な各種の汎用樹脂が用途に応じて適宜選択使用
される。そして、無機粉粒も、用途に応じて各種の工業
用フィラー、機能性フィラー、セラミックス粉粒、カー
ボン粉、カーボンナノチューブ等が適宜選択使用され
る。
The above-mentioned organic-inorganic composite porous material is a scaffold for regenerating living tissue of total or partial replacement type, drug carrier, prosthesis, bone filler, inclusion between implant and living tissue, and sponge. Although intended for medical uses such as bone substitutes, in the case of organic-inorganic composite porous bodies intended for other purposes, polymethyl methacrylate, polyvinyl acetate, polyvinyl chloride, polyurethane as the organic polymer. , Polyalkylene oxide, and various general-purpose resins soluble in other volatile solvents are appropriately selected and used according to the application. As the inorganic powder particles, various industrial fillers, functional fillers, ceramics powder particles, carbon powders, carbon nanotubes and the like are appropriately selected and used according to the application.

【0036】次に、本発明の製造方法について説明す
る。
Next, the manufacturing method of the present invention will be described.

【0037】本発明の製造方法によれば、まず、揮発性
溶媒に前述の有機ポリマーを溶解させると共に前述の無
機粉粒を均一に分散させて懸濁液を調製する。揮発性溶
媒としては、常温よりやや高い温度で揮散しやすい低沸
点のジクロロメタン、ジクロロエタン、塩化メチレン、
クロロホルム等の溶剤が使用される。また、これらの溶
剤に、これらの溶剤よりも沸点が高い非溶剤、例えば、
沸点が60〜110℃の範囲にあるメタノール、エタノ
ール、1−プロパノール、2−プロパノール、2−ブタ
ノール、ter−ブタノール、ter−ペンタノール等
のアルコールのいずれか単独又は二種以上を混合した揮
発性の混合溶媒も使用される。
According to the production method of the present invention, first, the above-mentioned organic polymer is dissolved in a volatile solvent and the above-mentioned inorganic powder particles are uniformly dispersed to prepare a suspension. As the volatile solvent, low boiling point dichloromethane, dichloroethane, methylene chloride, which easily volatilizes at a temperature slightly higher than room temperature,
A solvent such as chloroform is used. In addition, these solvents, non-solvents having a higher boiling point than these solvents, for example,
Volatility in which any one of alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 2-butanol, ter-butanol, and ter-pentanol having a boiling point in the range of 60 to 110 ° C is used alone or in combination of two or more. A mixed solvent of is also used.

【0038】次いで、懸濁液をスプレー器に填装し、窒
素ガス等の不活性な高圧噴射ガスでスプレー器の噴射孔
から懸濁液を被噴射体に繊維化しながらスプレーする。
このようにスプレーすると、揮発性溶媒が揮散しつつ懸
濁液が繊維化されて互いに絡み合い、繊維が相互の接点
で溶着しながら固化して、不織布状の繊維集合体が形成
される。医療用途の生体材料として時として必要な5〜
50mmの厚肉の複合多孔体を得るには、この繊維集合
体をスプレーにより形成した後、溶媒が揮散して乾燥す
るのを待って、再び、その上にスプレーして厚肉化する
操作を繰り返して所定の肉厚となるようにすればよい。
Next, the suspension is filled in a sprayer, and is sprayed from an injection hole of the sprayer with an inert high-pressure injection gas such as nitrogen gas while fiberizing the suspension onto an object to be injected.
When sprayed in this way, the volatile solvent is volatilized and the suspension is made into fibers and entangled with each other, and the fibers are solidified while being welded at their mutual contact points to form a non-woven fiber aggregate. 5 sometimes necessary as biomaterial for medical use
In order to obtain a composite porous body with a thickness of 50 mm, after forming this fiber assembly by spraying, wait for the solvent to evaporate and dry, and then spray it again to thicken it. It suffices to repeatedly obtain a predetermined wall thickness.

【0039】被噴射体としては、剥離性の良好なポリエ
チレンその他のオレフィン系樹脂、フッ素樹脂、シリコ
ン系樹脂等からなる網体や板体が使用される。特に、網
体のような通気自在な被噴射体を用いると、スプレーに
より懸濁液が繊維化されて網体に当った後、揮発性溶媒
が網目を通じて揮散するため、網体側の表面の繊維が融
合してスキン層を生じることがなく、溶剤の浸透処理が
しやすい繊維集合体を形成できる利点がある。網体とし
ては50〜300メッシュのものが好ましく、50メッ
シュよりも大きい網目を有する網体は、繊維が網目を通
して裏側まで回り込むため、形成された繊維集合体を網
体から剥離することが難くなり、300メッシュよりも
小さい網目を有する網体は、揮発性溶媒がスムーズに揮
散しにくいため、網体側の繊維が融合してスキン層が形
成され易くなる。なお、被噴射体は平坦な網体や板体に
限らず、凸曲及び/又は凹曲した立体的な網体や板体を
使用してもよい。このような立体的な被噴射体を使用す
ると、その立体的な形状通りの厚肉の繊維集合体を形成
できる利点がある。
As the object to be ejected, a mesh or plate made of polyethylene or other olefin resin, fluororesin, silicon resin or the like having good peelability is used. In particular, when a sprayable body such as a mesh is used, the volatile solvent is volatilized through the mesh after the suspension is fibrillated by the spray and hits the mesh. There is an advantage that a fiber assembly can be formed which is easy to be permeated by a solvent without being fused to form a skin layer. The mesh is preferably 50-300 mesh, and the mesh having a mesh larger than 50 mesh has fibers wrapping around to the back side through the mesh, which makes it difficult to separate the formed fiber assembly from the mesh. , A mesh having a mesh smaller than 300 mesh is less likely to volatilize the volatile solvent smoothly, so that the fibers on the mesh side are fused and a skin layer is easily formed. The object to be ejected is not limited to a flat net body or a plate body, and a three-dimensional net body or a plate body having a convex curve and / or a concave curve may be used. The use of such a three-dimensional object to be ejected has an advantage that a thick fiber assembly having the three-dimensional shape can be formed.

【0040】上記のように懸濁液を繊維化しながらスプ
レーして形成される繊維集合体は、繊維間空隙の大きさ
が数百μmと大きく、繊維間空隙の占める割合(空隙
率)は60〜90%程度である。そして、無機粉粒が繊
維に包含されて、沈降することなく、繊維集合体の全体
に亘って均一に分散している。
In the fiber assembly formed by spraying the suspension while making it into fibers as described above, the size of inter-fiber voids is as large as several hundred μm, and the ratio of inter-fiber voids (porosity) is 60. It is about 90%. Then, the inorganic powder particles are included in the fiber and are dispersed uniformly throughout the entire fiber aggregate without settling.

【0041】この繊維集合体の繊維長は3〜100mm
程度であることが好ましく、繊維径は0.5〜50μm
程度であることが好ましい。この程度の繊維長及び繊維
径を有する繊維集合体は、後の溶剤の浸透処理によって
繊維が容易に融合し、実質的に繊維が消失した複合多孔
体となる。
The fiber length of this fiber assembly is 3 to 100 mm.
The fiber diameter is preferably 0.5 to 50 μm.
It is preferably about the same. A fiber aggregate having such a fiber length and a fiber diameter becomes a composite porous body in which the fibers are easily fused by the subsequent solvent permeation treatment and the fibers are substantially lost.

【0042】繊維長は主として有機ポリマーの分子量、
懸濁液のポリマー濃度、無機粉粒の含有率や粒径などに
依存し、分子量が大きくなるほど、ポリマー濃度が高く
なるほど、無機粉粒の含有率が少なくなるほど、無機粉
粒の粒径が小さくなるほど、長くなる傾向にある。一
方、繊維径は主として懸濁液のポリマー濃度、無機粉粒
の含有率、スプレー器の噴射孔の大きさなどに依存し、
ポリマー濃度が高くなるほど、無機粉粒の含有率が多く
なるほど、噴射孔が大きくなるほど、太くなる傾向にあ
る。また、繊維径は噴射ガスの圧力によっても変化す
る。従って、上記の繊維長及び繊維径となるように、ポ
リマーの分子量、ポリマー濃度、無機粉粒の含有率と粒
径、噴射孔の大きさ、ガス圧などを調製することが必要
である。
The fiber length is mainly the molecular weight of the organic polymer,
Depending on the polymer concentration of the suspension, the content and particle size of the inorganic powder, the higher the molecular weight, the higher the polymer concentration, the lower the content of the inorganic powder, the smaller the particle size of the inorganic powder. I see, it tends to be longer. On the other hand, the fiber diameter mainly depends on the polymer concentration of the suspension, the content ratio of the inorganic powder particles, the size of the injection hole of the sprayer, etc.
The higher the polymer concentration, the higher the content ratio of the inorganic powder particles, and the larger the injection hole, the larger the thickness tends to be. The fiber diameter also changes depending on the pressure of the jet gas. Therefore, it is necessary to adjust the molecular weight of the polymer, the concentration of the polymer, the content and particle size of the inorganic powder particles, the size of the injection hole, the gas pressure, etc. so that the fiber length and the fiber diameter described above are obtained.

【0043】上記の繊維集合体は、次いで、加熱下に加
圧成形して多孔質の繊維集合成形体とする。その際、ま
ず繊維集合体を加熱、加圧下に固めて連続した空隙を持
つ予備成形物をつくり、更に、より高圧下に予備成形物
を加圧成形して、連続空隙孔が調整された強度のある多
孔質の繊維集合成形体とすることが望ましい。このよう
に加圧成形して多孔質の繊維集合成形体をつくると、最
終的に得られる複合多孔体の連続気孔の孔径や気孔率を
調節することができ、複合多孔体の強度を向上させるこ
ともできる。尚、加圧成形時の加熱は、繊維集合体が少
し軟化する程度で充分であり、また、加圧は、最終的に
得られる複合多孔体の気孔率が50〜90%となるよう
に、且つ、連続気孔の孔径が大略100〜400μmと
なるように圧縮できる圧力で行えばよい。
The above fiber assembly is then pressure-molded under heating to form a porous fiber assembly molded body. At that time, first, the fiber aggregate was heated and solidified under pressure to form a preform having continuous voids, and then the preform was pressure-molded under a higher pressure to obtain a continuous void having a controlled strength. It is desirable to use a porous fiber aggregated molded body having a certain amount. When a porous fiber aggregated molded body is produced by pressure molding in this way, the pore size and porosity of the continuous pores of the finally obtained composite porous body can be adjusted, and the strength of the composite porous body is improved. You can also The heating at the time of pressure molding is sufficient to soften the fiber aggregate a little, and the pressure is adjusted so that the porosity of the finally obtained composite porous body is 50 to 90%. In addition, the pressure may be set so that the diameter of the continuous pores is approximately 100 to 400 μm.

【0044】次いで、この繊維集合成形体を揮発性溶媒
に浸漬して成形体内部に該溶媒を浸透させた後、この浸
透させた溶媒を除去する。繊維集合成形体を揮発性溶媒
に浸漬する際には、多数の細孔を有する所定の型に繊維
集合成形体を充填し、外側から繊維集合成形体に圧力を
加えた状態で形状を保持しながら浸漬することが好まし
い。尚、繊維集合成形体の上面に溶媒を流して浸透させ
るようにしてもよい。また、溶媒を除去する方法として
は、繊維集合成形体内部の溶媒を真空吸引する方法など
が採用される。
Next, the fiber aggregated molded body is dipped in a volatile solvent to permeate the solvent into the molded body, and then the permeated solvent is removed. When immersing the fiber assembly formed body in a volatile solvent, the fiber assembly formed body is filled in a predetermined mold having a large number of pores, and the shape is maintained while pressure is applied to the fiber assembly formed body from the outside. It is preferable to soak while soaking. It should be noted that a solvent may be poured onto the upper surface of the fiber aggregated molded body so as to permeate the solvent. Further, as a method of removing the solvent, a method of vacuum suction of the solvent inside the fiber aggregated molded body or the like is adopted.

【0045】揮発性溶媒としては、前述したジクロロメ
タン、ジクロロエタン、塩化メチレン、クロロホルム等
の溶剤や、これらの溶剤に前述のメタノール、エタノー
ル、1−プロパノール、2−プロパノール、2−ブタノ
ール、ter−ブタノール、ter−ペンタノール等の
アルコールのいずれか単独又は二種以上を混合したもの
が好ましく使用される。
Examples of the volatile solvent include the above-mentioned solvents such as dichloromethane, dichloroethane, methylene chloride and chloroform, and these solvents including the above-mentioned methanol, ethanol, 1-propanol, 2-propanol, 2-butanol, ter-butanol, One of alcohols such as ter-pentanol or a mixture of two or more thereof is preferably used.

【0046】上記のように繊維集合成形体を揮発性溶媒
に浸漬して成形体内部に溶媒を浸透させると、繊維が表
面から溶媒に溶けるため、繊維同士が融合して実質的に
繊維が消失し、繊維間空隙が100〜400μm程度の
孔径を有する丸みを持った連続気孔を残した状態で気泡
壁を形成する。そして、繊維に含まれた無機粉粒の一部
は、繊維の融合に伴って沈降することなく気孔内面(気
泡壁面)に露出し、多孔体表面にも露出する。但し、ス
キン層が表面に形成された場合は、これをサンディング
することで取り除き、表層に存在する無機粉粒を露出さ
せる処置を施せばよい。以上により、孔径が100〜4
00μmと大きい連続気孔を有し、多量の無機粉粒が均
一に分散すると共に、表面と気孔内面に無機粉粒が露出
した、目的とする有機−無機複合多孔体が得られる。そ
の場合、50〜60℃の加熱下に繊維集合成形体の揮発
性溶媒への浸漬処理を行うと、繊維集合成形体を5〜1
0分間放置するだけで、繊維同士が充分に融合し、目的
とする複合多孔体を効率良く得ることができる。
As described above, when the fiber aggregate molded body is dipped in a volatile solvent and the solvent is permeated into the molded body, the fibers are dissolved in the solvent from the surface, and the fibers are fused with each other to substantially disappear the fibers. Then, the cell walls are formed in a state where the inter-fiber voids have rounded continuous pores having a pore diameter of about 100 to 400 μm. Then, some of the inorganic powder particles contained in the fibers are exposed to the inner surface of the pores (wall surface of the bubbles) without settling due to the fusion of the fibers, and are also exposed to the surface of the porous body. However, when the skin layer is formed on the surface, the skin layer may be removed by sanding to expose the inorganic powder particles existing in the surface layer. Due to the above, the pore size is 100 to 4
A target organic-inorganic composite porous body is obtained which has a large number of continuous pores of 00 μm, a large amount of inorganic powder particles are uniformly dispersed, and the inorganic powder particles are exposed on the surface and the inner surface of the pores. In that case, when the fiber aggregated molded body is immersed in a volatile solvent while being heated at 50 to 60 ° C., the fiber aggregated molded body is reduced to 5-1.
The fibers can be sufficiently fused with each other by leaving it for 0 minutes to efficiently obtain the desired composite porous body.

【0047】以上の製造方法によって得られる有機−無
機複合多孔体は、既述したように、生体骨組織再建用の
足場、補綴材、ボーンフィラー、インプラントと生体骨
組織との間の介在物、バルク形状の海綿骨の代替物、薬
物徐放用キャリア等として有効に使用されるものであ
り、従って、この有機−無機複合多孔体よりなる生体骨
組織再建用の足場、補綴材、ボーンフィラー、インプラ
ントと生体骨組織との間の介在物、バルク形状の海綿骨
の代替物、薬物徐放用キャリアは、いずれも本発明に含
まれる。
As described above, the organic-inorganic composite porous body obtained by the above-mentioned production method is a scaffold for reconstructing a living bone tissue, a prosthesis, a bone filler, an inclusion between an implant and a living bone tissue, Substitute for cancellous bone in bulk form, which is effectively used as a carrier for sustained drug release, etc., and therefore, a scaffold for reconstructing living bone tissue comprising this organic-inorganic composite porous material, a prosthesis material, a bone filler, Any inclusions between implants and living bone tissue, bulk-shaped cancellous bone substitutes, and sustained drug release carriers are included in the present invention.

【0048】[0048]

【発明の実施の形態】次に、本発明の具体的な実施例を
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, specific examples of the present invention will be described.

【0049】[実施例1]粘度平均分子量が20万のポ
リ−D,L−乳酸(PDLLA)(D−乳酸とL−乳酸
のモル比50/50)をジクロロメタンに溶解したポリ
マー溶液(濃度:PDLLA4g/ジクロロメタン10
0ml)と、平均粒径3μmの未焼成のハイドロキシア
パタイト粉粒(u−HA)をエタノールに混和した混和
液とを均一にホモジナイズすることによって、u−HA
をPDLLA100重量部に対して230重量部の割合
となるように混合した懸濁液を調製した。
Example 1 A polymer solution (concentration: poly-D, L-lactic acid (PDLLA) having a viscosity average molecular weight of 200,000 (molar ratio of D-lactic acid and L-lactic acid of 50/50) was dissolved in dichloromethane. PDLLA 4 g / dichloromethane 10
0 ml) and an unsintered hydroxyapatite powder (u-HA) having an average particle size of 3 μm are mixed with ethanol to homogenize them uniformly, thereby producing u-HA.
Was mixed in an amount of 230 parts by weight with respect to 100 parts by weight of PDLLA to prepare a suspension.

【0050】スプレー器としてHP−Eエアーブラシ
(アネスト岩田(株)製)を使用し、これに上記の懸濁液
を填装して、1.6kg/cm2 の窒素ガスにより、約
120cm離れたポリエチレン製の網体(150メッシ
ュ)にスプレーして、繊維集合体を形成し、網体から繊
維集合体を剥離した。この繊維集合体の繊維径は1.0
μm程度、繊維長は10〜20mm程度、見掛け比重は
0.2であった。
An HP-E air brush (manufactured by Anest Iwata Co., Ltd.) was used as a sprayer, and the above suspension was filled in the sprayer. The nitrogen gas was 1.6 kg / cm 2 , and the separation was about 120 cm. The polyethylene net body (150 mesh) was sprayed to form a fiber aggregate, and the fiber aggregate was peeled from the mesh body. The fiber diameter of this fiber assembly is 1.0
The fiber length was about 10 μm, the apparent specific gravity was 0.2.

【0051】この繊維集合体を適当な大きさに切断し
て、直径30mm、深さ30mmの円筒雌型に充填し、
繊維集合体の見掛け比重が0.5になるように雄型で圧
縮することにより、直径30mm、厚さ5mmの円板状
の繊維集合成形体を得た。
This fiber assembly was cut into an appropriate size and filled in a cylindrical female mold having a diameter of 30 mm and a depth of 30 mm,
A disk-shaped fiber aggregate molded body having a diameter of 30 mm and a thickness of 5 mm was obtained by compressing with a male mold so that the apparent specific gravity of the fiber aggregate was 0.5.

【0052】次いで、エタノールを混合したジクロロメ
タンからなる溶媒に上記の繊維集合成形体を浸漬して該
溶媒を成形体内部に浸透させ、60℃で10分放置した
後、成形体内部の溶媒を真空吸引により除去して、直径
30mm、厚さ5mm、u−HAの含有率70重量%の
有機−無機複合多孔体を得た。
Next, the above fiber aggregate molded body is immersed in a solvent consisting of dichloromethane mixed with ethanol to allow the solvent to permeate the inside of the molded body and allowed to stand at 60 ° C. for 10 minutes, and then the solvent inside the molded body is vacuumed. After removal by suction, an organic-inorganic composite porous body having a diameter of 30 mm, a thickness of 5 mm and a u-HA content of 70% by weight was obtained.

【0053】この複合多孔体の部分切断面を電子顕微鏡
で観察したところ、繊維が融合して消失し、100〜4
00μm程度の大きい孔径を有する連続気孔が形成さ
れ、u−HAが均一に分散し、気孔内面と表面にu−H
Aが露出していた。この複合多孔体の見掛け比重は0.
5、連続気孔の気孔全体に占める率(連続気孔率)は7
5%、圧縮強度は1.1MPaであった。
When the partially cut surface of this composite porous body was observed with an electron microscope, fibers fused and disappeared, and 100 to 4
Continuous pores having a large pore size of about 00 μm are formed, u-HA is uniformly dispersed, and u-H is formed on the inner surface and the surface of the pores.
A was exposed. The apparent specific gravity of this composite porous body is 0.
5, the ratio of continuous pores to all pores (continuous porosity) is 7
The compression strength was 5% and the compression strength was 1.1 MPa.

【0054】[実施例2]実施例1と同様にして、直径
30mm、厚さ5mmの円板状の繊維集合成形体を予備
成形物として造り、これをギヤオーブン中で80℃に加
熱した後、直径の大きさが異なる縮径部を有するチャン
バーに入れ、下部の直径が10.6mmの円筒に圧入し
た。このようにして加熱下に加圧成形された円柱ロッド
状の繊維集合成形体の圧縮強度は、約2.5MPaであ
った。
Example 2 In the same manner as in Example 1, a disk-shaped fiber aggregate molded body having a diameter of 30 mm and a thickness of 5 mm was prepared as a preform, which was heated to 80 ° C. in a gear oven. Then, they were placed in a chamber having a reduced diameter portion having different diameters, and press-fitted into a cylinder having a lower diameter of 10.6 mm. The compressive strength of the cylindrical rod-shaped fiber aggregate molded body that was pressure-molded under heating in this manner was about 2.5 MPa.

【0055】次いで、この円柱ロッド状の繊維集合成形
体を、周囲に孔の開いた同径のシリンジに充填し、その
上面と下面から圧力を加えて円柱ロッド状の繊維集合成
形体の高さが変わらない程度に圧迫しながら、15重量
%のメタノールを混合したジクロロメタンよりなる溶媒
(60℃)に10分間浸漬した後、該溶媒を除去して複
合多孔体を得た。
Next, the cylindrical rod-shaped fiber aggregate molded body is filled in a syringe having holes of the same diameter and having the same diameter, and pressure is applied from the upper surface and the lower surface thereof to increase the height of the cylindrical rod-shaped fiber aggregate molded body. While squeezing to such an extent that it did not change, it was immersed in a solvent (60 ° C.) made of dichloromethane mixed with 15% by weight of methanol for 10 minutes, and then the solvent was removed to obtain a composite porous body.

【0056】この複合多孔体の部分切断面とサンディン
グした表面の電子顕微鏡写真は、繊維が消失した多孔質
の形態をとり、孔径は150〜300μm程の混合孔か
ら成っており、u−HA粒は多孔体表面や気孔内面から
露出していた。この複合多孔体の見掛け比重は約0.5
5であり、連続気孔率は70%、圧縮強度は約3.5M
Paに上昇していた。本複合多孔体は、PDLLAの粘
度平均分子量と、占める量の比率、平均粒径3μmのu
−HAのin vivoでの生体内分解吸収特性からす
ると、埋入部位やサイズに依存するが、約6ケ月で完全
吸収すると考えられる。
An electron micrograph of the partially cut surface and the sanded surface of this composite porous body shows a porous form in which the fibers have disappeared, and is composed of mixed pores having a pore diameter of about 150 to 300 μm. Was exposed from the surface of the porous body and the inner surface of the pores. The apparent specific gravity of this composite porous body is about 0.5.
5, continuous porosity 70%, compressive strength about 3.5M
It had risen to Pa. This composite porous body has a viscosity average molecular weight of PDLLA and a ratio of the occupied amount, and an average particle size of 3 μm.
Based on the in vivo biodegradation and absorption characteristics of -HA, it is considered that complete absorption occurs in about 6 months, depending on the implantation site and size.

【0057】[実施例3]粘度平均分子量が10万のP
DLLA(D−乳酸とL−乳酸のモル比30/70)を
合成し、実施例1と同様の方法で平均粒径3μm程度の
β−トリカルシウムホスフェート(β−TCP)を80
重量%均一に混合して懸濁液を調製した。このβ−TC
Pは生体活性かつ生体内吸収性であることが確認されて
おり、機構はu−HAとは異なるが、生体内でHA生成
による骨伝導性を示すことが知られている。
[Example 3] P having a viscosity average molecular weight of 100,000
DLLA (molar ratio of D-lactic acid and L-lactic acid 30/70) was synthesized, and β-tricalcium phosphate (β-TCP) having an average particle size of about 3 μm was mixed with 80 by the same method as in Example 1.
A suspension was prepared by uniformly mixing the mixture by weight%. This β-TC
It has been confirmed that P is bioactive and bioabsorbable, and although it has a different mechanism from u-HA, it is known to show osteoconductivity due to HA formation in vivo.

【0058】この懸濁液を用いて、実施例2と同様にス
プレー法で作製した繊維集合体を加熱下に圧縮成形して
繊維集合成形体となし、これを溶剤浸漬処理すること
で、見掛け比重が約0.6、連続気孔率が75%、圧縮
強度が4.2MPaの複合多孔体を得た。この複合多孔
体のβ−TCP粒の体積比率は約65容量%であり、u
−HAが70重量%(約55容量%)の実施例1,2の
複合多孔体よりもかなり無機粉粒の体積が大きいので、
多孔体の表面や気孔内面へのβ−TCPの露出により、
生体活性が顕著に発現される。
Using this suspension, a fiber assembly produced by the spray method in the same manner as in Example 2 was compression molded under heating to form a fiber assembly molded body, which was subjected to a solvent immersion treatment to give an apparent appearance. A composite porous body having a specific gravity of about 0.6, a continuous porosity of 75% and a compressive strength of 4.2 MPa was obtained. The volume ratio of β-TCP particles in this composite porous body was about 65% by volume, and u
Since the volume of the inorganic powder particles is considerably larger than that of the composite porous bodies of Examples 1 and 2 in which HA is 70% by weight (about 55% by volume),
Due to the exposure of β-TCP to the surface of the porous body and the inner surface of the pores,
The bioactivity is remarkably expressed.

【0059】この複合多孔体は、不織布状の繊維集合体
のときの繊維が消失してバルク状のセル壁にβ−TCP
粒が埋没した形態に変化しているので、生体内の体液に
浸漬しているときも崩壊してこの粉粒が周囲に分散され
ることは容易に起きず、3〜5ケ月程度で良好な生体活
性を示しながら完全に分解吸収されることが確認され
た。従って、この複合多孔体は良好な硬組織(硬骨、軟
骨)用の足場となる。
In this composite porous body, the fibers in the non-woven fiber assembly disappeared and β-TCP was formed on the bulk cell wall.
Since the particles have changed into a buried form, they do not easily disintegrate even when immersed in body fluid in the living body and the powder particles do not easily disperse in the surroundings. It was confirmed that it was completely decomposed and absorbed while showing bioactivity. Therefore, this composite porous body is a good scaffold for hard tissues (bone, cartilage).

【0060】[実施例4]D,L−乳酸(D/Lのモル
比1)とグリコール酸(GA)を、そのモル比が8:2
となるように配合し、既知の方法により粘度平均分子量
が13万の共重合体P(DLLA−GA)を合成した。
実施例1と同様の方法で、このポリマーにオクタカルシ
ウムホスフェート(OCP)を60重量%均一に混合し
た懸濁液を調製し、実施例2と同様にスプレー法で作製
した繊維集合体を加熱下に圧縮成形して繊維集合成形体
となし、これを溶剤浸漬処理することで、最終的に見掛
け比重が0.50の複合多孔体を得た。この複合多孔体
は、OCPの活性度が高く、共重合体の分解吸収がGA
に起因して速いので、良好な骨伝導(新生骨に変わり易
い)を示しながら、3〜4ケ月後にはその大半が吸収さ
れて骨に置換されていた。
Example 4 D, L-lactic acid (D / L molar ratio 1) and glycolic acid (GA) were mixed at a molar ratio of 8: 2.
And a copolymer P (DLLA-GA) having a viscosity average molecular weight of 130,000 was synthesized by a known method.
In the same manner as in Example 1, a suspension was prepared by uniformly mixing this polymer with 60% by weight of octacalcium phosphate (OCP) and heating the fiber assembly produced by the spray method in the same manner as in Example 2. The mixture was compression-molded into a fiber aggregate molded body, which was then subjected to a solvent immersion treatment to finally obtain a composite porous body having an apparent specific gravity of 0.50. This composite porous body has a high OCP activity and the decomposition and absorption of the copolymer is GA.
Since it is fast due to the above, while most of the bone was absorbed and replaced with bone after 3 to 4 months, it showed good bone conduction (it is easily converted to new bone).

【0061】[実施例5]D,L−ラクチド(lactid
e) とパラ−ジオキサノン(p−DOX)をそのモル比
が8:2となるように配合し、既知の方法で共重合して
粘度平均分子量が約10万の共重合体を得た。p−DO
Xのポリマーは揮発性の汎用な良溶媒は見当たらない
が、上記の比率ではクロロホルム、ジクロロメタンなど
に可溶となるので、前述した実施例と同様の方法で目的
とする複合多孔体を得ることができた。また、上記の共
重合体は、実施例4のD,L−乳酸とグリコール酸との
共重合体P(DLLA−GA)よりは可塑性のあるゴム
様の性状を示すので、無機粉粒の粒径が3μmのときに
無機粉粒の体積比率が70容量%(85重量%)と高く
できるため、この複合多孔体は、共重合体の分解生成物
による生体反応が極力回避され、生体活性な無機粉粒の
活性度が極めて有効に発現される。特に、p−DOXの
特性から、親水性がPDLLAよりも高いので、この複
合多孔体はEx vivo(体外シャーレ)で細胞を増殖させ
るための軟骨の再生の足場などに有効と考えられる。
Example 5 D, L-lactide (lactid)
e) and para-dioxanone (p-DOX) were blended in a molar ratio of 8: 2 and copolymerized by a known method to obtain a copolymer having a viscosity average molecular weight of about 100,000. p-DO
The polymer of X is not found to be a volatile general-purpose good solvent, but since it becomes soluble in chloroform, dichloromethane, etc. at the above ratio, the target composite porous body can be obtained by the same method as in the above-mentioned examples. did it. Moreover, since the above-mentioned copolymer shows rubber-like properties having plasticity, which is more plastic than the copolymer P (DLLA-GA) of D, L-lactic acid and glycolic acid of Example 4, the particles of the inorganic powder particles are Since the volume ratio of the inorganic powder particles can be as high as 70% by volume (85% by weight) when the diameter is 3 μm, this composite porous body avoids biological reactions due to the decomposition products of the copolymer as much as possible and is bioactive. The activity of the inorganic powder is expressed very effectively. In particular, p-DOX has a higher hydrophilicity than PDLLA because of the characteristics of p-DOX. Therefore, it is considered that this composite porous body is effective as a scaffold for cartilage regeneration for cell growth in Ex vivo (in vitro petri dish).

【0062】[0062]

【発明の効果】以上の説明から明らかなように、本発明
の有機−無機複合多孔体は、多量の無機粉粒を有機ポリ
マー中に均一な分散状態で含有しており、内部に形成さ
れた孔径の大きい連続気孔を通じて体液等がすみやかに
浸入して、表面や連続気孔の内面に露出したバイオセラ
ミックス等の無機粉粒によって、早期に生体骨との結合
や生体(骨)組織の再生を行うことができる場を提供し、
医療用途に必要な実用強度も備えるといった効果を奏す
る。従って、生体骨組織再建用の足場、補綴材、ボーン
フィラー、インプラントと生体骨組織との間の介在物、
海綿骨の代替物、薬物徐放用キャリアとして実用され
る。
As is apparent from the above description, the organic-inorganic composite porous material of the present invention contains a large amount of inorganic powder particles in the organic polymer in a uniformly dispersed state and is formed inside. Bodily fluids quickly infiltrate through large pores with large pores, and inorganic powder particles such as bioceramics exposed on the surface and the inner surface of continuous pores early bond with biological bone and regenerate biological (bone) tissue. To provide a place where
It has an effect of having practical strength required for medical use. Therefore, a scaffold for living bone tissue reconstruction, a prosthesis, a bone filler, an inclusion between the implant and living bone tissue,
It is used as an alternative to cancellous bone and as a carrier for sustained drug release.

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】有機ポリマー中に無機粉粒が実質的に均一
に分散し、内部に連続気孔を有し、表面と気孔内面に無
機粉粒の一部が露出している有機−無機複合多孔体。
1. An organic-inorganic composite porous structure in which inorganic powder particles are substantially uniformly dispersed in an organic polymer, continuous pores are formed inside, and a part of the inorganic powder particles is exposed on the surface and inside the pores. body.
【請求項2】揮発性溶媒に有機ポリマーを溶解し無機粉
粒を分散させて調製した懸濁液から不織布状の繊維集合
体をつくり、これを加熱下に加圧成形して多孔質の繊維
集合成形体となし、揮発性溶媒に繊維集合成形体を浸漬
したのち該溶媒を除去して得られる多孔体であって、有
機ポリマー中に無機粉粒が実質的に均一に分散し、内部
に連続気孔を有し、表面と気孔内面に無機粉粒の一部が
露出している有機−無機複合多孔体。
2. A non-woven fabric-like fiber aggregate is prepared from a suspension prepared by dissolving an organic polymer in a volatile solvent and dispersing inorganic powder particles, and this is pressure-molded under heating to form a porous fiber. An aggregate molded body, which is a porous body obtained by immersing a fiber aggregated molded body in a volatile solvent and then removing the solvent, in which inorganic powder particles are substantially uniformly dispersed in an organic polymer, An organic-inorganic composite porous body having continuous pores, wherein a part of the inorganic powder particles is exposed on the surface and the inner surface of the pores.
【請求項3】気孔率が50〜90%であり、連続気孔が
気孔全体の50〜90%を占めている請求項1又は請求
項2に記載の有機−無機複合多孔体。
3. The organic-inorganic composite porous body according to claim 1 or 2, wherein the porosity is 50 to 90%, and the continuous pores occupy 50 to 90% of all the pores.
【請求項4】連続気孔の孔径が大略100〜400μm
である請求項1ないし請求項3のいずれかに記載の有機
−無機複合多孔体。
4. The diameter of continuous pores is approximately 100 to 400 μm.
The organic-inorganic composite porous body according to any one of claims 1 to 3.
【請求項5】無機粉粒の含有率が60〜90重量%であ
る請求項1ないし請求項4のいずれかに記載の有機−無
機複合多孔体。
5. The organic-inorganic composite porous body according to claim 1, wherein the content of the inorganic powder particles is 60 to 90% by weight.
【請求項6】厚みが1〜50mmであり、厚い三次元立
体形状を有する請求項1ないし請求項5のいずれかに記
載の有機−無機複合多孔体。
6. The organic-inorganic composite porous body according to claim 1, having a thickness of 1 to 50 mm and having a thick three-dimensional three-dimensional shape.
【請求項7】有機ポリマーが生体内分解吸収性ポリマー
であり、無機粉粒が10μm以下の平均粒径を有する生
体活性なバイオセラミックス粉粒である請求項1ないし
請求項6のいずれかに記載の有機−無機複合多孔体。
7. The organic polymer is a biodegradable and absorbable polymer, and the inorganic powder particles are bioactive bioceramic powder particles having an average particle size of 10 μm or less, according to any one of claims 1 to 6. The organic-inorganic composite porous body of.
【請求項8】有機ポリマーが生体内分解全吸収性ポリマ
ーであり、無機粉粒が全吸収性の生体活性なバイオセラ
ミックス粉粒である請求項1ないし請求項6のいずれか
に記載の有機−無機複合多孔体。
8. The organic polymer according to any one of claims 1 to 6, wherein the organic polymer is a biodegradable total absorbable polymer, and the inorganic powder particles are bioabsorbable bioceramic powder particles having total absorbability. Inorganic composite porous body.
【請求項9】生体内分解全吸収性ポリマーが、ポリ−
D,L−乳酸、L−乳酸とD,L−乳酸のブロック共重
合体、乳酸とグリコール酸の共重合体、乳酸とp−ジオ
キサノンの共重合体、乳酸とエチレングリコールのブロ
ック共重合体のいずれかであり、全吸収性の生体活性な
バイオセラミックス粉粒が、未仮焼、未焼成のハイドロ
キシアパタイト、ジカルシウムホスフェート、トリカル
シウムホスフェート、テトラカルシウムホスフェート、
オクタカルシウムホスフェート、カルサイト、セラバイ
タル、ジオプサイト、天然珊瑚のいずれかの粉粒である
請求項8に記載の有機−無機複合多孔体。
9. A biodegradable total absorbable polymer is a poly-
D, L-lactic acid, L-lactic acid and D, L-lactic acid block copolymers, lactic acid and glycolic acid copolymers, lactic acid and p-dioxanone copolymers, lactic acid and ethylene glycol block copolymers Either, the bioabsorbable bioceramic powder particles of total absorbability, uncalcined, unbaked hydroxyapatite, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate,
The organic-inorganic composite porous body according to claim 8, which is a powder particle of any one of octacalcium phosphate, calcite, ceravital, diopsite, and natural coral.
【請求項10】圧縮強度が1〜5MPaである請求項
7、請求項8、請求項9のいずれかに記載の有機−無機
複合体。
10. The organic-inorganic composite according to claim 7, which has a compressive strength of 1 to 5 MPa.
【請求項11】コロナ放電、プラズマ処理などの酸化処
理が施された請求項7、請求項8、請求項9、請求項1
0のいずれかに記載の有機−無機複合体。
11. A oxidative treatment such as corona discharge or plasma treatment is performed, claim 8, claim 9, claim 1 or claim 1.
The organic-inorganic composite according to any one of 0.
【請求項12】揮発性溶媒に有機ポリマーを溶解し無機
粉粒を分散させて調製した懸濁液から不織布状の繊維集
合体をつくり、これを加熱下に加圧成形して多孔質の繊
維集合成形体となし、揮発性溶媒に繊維集合成形体を浸
漬したのち該溶媒を除去することを特徴とする有機−無
機複合多孔体の製造方法。
12. A non-woven fabric-like fiber aggregate is prepared from a suspension prepared by dissolving an organic polymer in a volatile solvent and dispersing inorganic powder particles, and this is pressure-molded under heating to form a porous fiber. A method for producing an organic-inorganic composite porous body, which comprises forming an aggregated molded body, immersing the fiber aggregated molded body in a volatile solvent, and then removing the solvent.
【請求項13】繊維集合体を加熱下に加圧成形して多孔
質の繊維集合成形体とするに際し、まず繊維集合体を加
熱、加圧下に固めて連続した空隙を持つ予備成形物をつ
くり、次いで、より高圧下に予備成形物を加圧成形し
て、連続空隙孔が調整された強度のある多孔質の繊維集
合成形体とすることを特徴とする請求項12に記載の製
造方法。
13. When forming a porous fiber aggregated compact by heat-molding the fiber aggregate under heating, first, the fiber aggregate is heated and solidified under pressure to form a preform having continuous voids. 13. The method according to claim 12, wherein the preform is then pressure-molded under a higher pressure to obtain a porous fiber aggregate molded body having continuous voids adjusted and high strength.
【請求項14】多孔質の繊維集合成形体を揮発性溶媒に
浸漬するに際し、多数の細孔を有する所定の型に繊維集
合成形体を充填して形状を保持しながら浸漬することを
特徴とする請求項12に記載の製造方法。
14. A method of immersing a porous fiber aggregated molded body in a volatile solvent, wherein the fiber aggregated molded body is filled in a predetermined mold having a large number of pores and the shape is maintained. The manufacturing method according to claim 12.
【請求項15】請求項7、請求項8、請求項9、請求項
10、請求項11のいずれかに記載された有機−無機複
合多孔体からなる生体硬骨あるいは軟骨組織再生用の足
場。
15. A scaffold for regenerating biological bone or cartilage tissue, which comprises the organic-inorganic composite porous body according to any one of claims 7, 8, 9, 10, and 11.
【請求項16】請求項7、請求項8、請求項9、請求項
10、請求項11のいずれかに記載された有機−無機複
合多孔体からなる生体補綴材。
16. A bioprosthesis material comprising the organic-inorganic composite porous body according to claim 7, claim 8, claim 9, claim 10, or claim 11.
【請求項17】請求項7、請求項8、請求項9、請求項
10、請求項11のいずれかに記載された有機−無機複
合多孔体からなるボーンフィラー。
17. A bone filler comprising the organic-inorganic composite porous material according to any one of claims 7, 8, 9, 10, and 11.
【請求項18】請求項7、請求項8、請求項9、請求項
10、請求項11のいずれかに記載された有機−無機複
合多孔体からなる、インプラントと生体骨組織との間の
介在物。
18. An interposition between an implant and a living bone tissue, which is composed of the organic-inorganic composite porous body according to any one of claims 7, 8, 9, 10 and 11. object.
【請求項19】請求項7、請求項8、請求項9、請求項
10、請求項11のいずれかに記載された有機−無機複
合多孔体からなるバルク形状の海綿骨の代替物。
19. A bulk-shaped cancellous bone substitute comprising the organic-inorganic composite porous material according to any one of claims 7, 8, 9, 10, and 11.
【請求項20】請求項7、請求項8、請求項9、請求項
10、請求項11のいずれかに記載された有機−無機複
合多孔体からなる薬物徐放用キャリア。
20. A sustained drug release carrier comprising the organic-inorganic composite porous material according to any one of claims 7, 8, 9, 10 and 11.
JP2001360766A 2001-11-27 2001-11-27 Organic-inorganic composite porous body and method for producing the same Expired - Lifetime JP4184652B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2001360766A JP4184652B2 (en) 2001-11-27 2001-11-27 Organic-inorganic composite porous body and method for producing the same
US10/496,076 US8119152B2 (en) 2001-11-27 2002-11-20 Implant material and process for producing the same
CNB028276000A CN1301757C (en) 2001-11-27 2002-11-20 Implant material and process for producing the same
CN 200710003839 CN1981879A (en) 2001-11-27 2002-11-20 Implant material for synthetic gristle
AU2002355020A AU2002355020B2 (en) 2001-11-27 2002-11-20 Implant material and process for producing the same
EP02788632A EP1457214A4 (en) 2001-11-27 2002-11-20 Implant material and process for producing the same
PCT/JP2002/012130 WO2003045460A1 (en) 2001-11-27 2002-11-20 Implant material and process for producing the same
CA2467260A CA2467260C (en) 2001-11-27 2002-11-20 A porous organic-inorganic composite implant material and process for producing the same
KR1020097006199A KR100955410B1 (en) 2001-11-27 2002-11-20 Implant material and process for producing the same
KR1020047008071A KR100903761B1 (en) 2001-11-27 2002-11-20 Implant material and process for producing the same
TW91134292A TWI252112B (en) 2001-11-27 2002-11-26 Implant material and process for producing the same
NO20042189A NO331588B1 (en) 2001-11-27 2004-05-26 Implant material and process for making the same
US13/349,737 US20120114733A1 (en) 2001-11-27 2012-01-13 Implant material and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360766A JP4184652B2 (en) 2001-11-27 2001-11-27 Organic-inorganic composite porous body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003159321A true JP2003159321A (en) 2003-06-03
JP4184652B2 JP4184652B2 (en) 2008-11-19

Family

ID=19171526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360766A Expired - Lifetime JP4184652B2 (en) 2001-11-27 2001-11-27 Organic-inorganic composite porous body and method for producing the same

Country Status (2)

Country Link
JP (1) JP4184652B2 (en)
CN (1) CN1981879A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052224A (en) * 2003-08-06 2005-03-03 Gunze Ltd Substrate for osteoanagenesis and its manufacturing method
JP2008509240A (en) * 2004-08-03 2008-03-27 エイジェンシー フォー サイエンス,テクノロジー アンド リサーチ Polymers and methods having continuous pores for drug delivery
WO2008053865A1 (en) * 2006-10-30 2008-05-08 National University Corporation Kobe University Dispersing agent for ceramic particles and method of preparing monomer suspension
JP2009034302A (en) * 2007-08-01 2009-02-19 Ngk Spark Plug Co Ltd Biological implant and its production method
WO2009028740A1 (en) * 2007-08-31 2009-03-05 Es Fibervisions Co., Ltd. Shrinkable fiber for porous molded body
JP2009136652A (en) * 2007-11-16 2009-06-25 Takiron Co Ltd Filling material for bone defect part
JP2009178392A (en) * 2008-01-31 2009-08-13 Ngk Spark Plug Co Ltd In-vivo implant
JP5067957B2 (en) * 2010-10-21 2012-11-07 保夫 敷波 Complementary reinforced composite and method for producing the same
JP2013070724A (en) * 2011-09-27 2013-04-22 Ngk Spark Plug Co Ltd Bioabsorbable implant and method for manufacturing the same
US8513353B2 (en) 2009-03-19 2013-08-20 Agency For Science, Technology And Research Forming copolymer from bicontinuous microemulsion comprising monomers of different hydrophilicity
JP2016155964A (en) * 2015-02-26 2016-09-01 タキロン株式会社 Composite material and method for producing the same
JP2019530792A (en) * 2016-09-19 2019-10-24 タンペレーン コルケアコウルサーティオ エスアールTampereen Korkeakoulusaatio Sr Porous composite material
CN110891520A (en) * 2017-07-10 2020-03-17 卡尔·莱宾格医疗技术有限责任两合公司 Bone augmentation element and kit of bone augmentation elements with inserted (dental) implants
JP2021129975A (en) * 2020-02-20 2021-09-09 国立大学法人東北大学 Bone regeneration material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113528290B (en) * 2020-04-17 2022-06-21 钟春燕 Device and method for preparing bacterial cellulose composite material with core-shell structure through dynamic fermentation

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4717336B2 (en) * 2003-08-06 2011-07-06 グンゼ株式会社 Bone regeneration base material and method for producing the same
JP2005052224A (en) * 2003-08-06 2005-03-03 Gunze Ltd Substrate for osteoanagenesis and its manufacturing method
JP2008509240A (en) * 2004-08-03 2008-03-27 エイジェンシー フォー サイエンス,テクノロジー アンド リサーチ Polymers and methods having continuous pores for drug delivery
WO2008053865A1 (en) * 2006-10-30 2008-05-08 National University Corporation Kobe University Dispersing agent for ceramic particles and method of preparing monomer suspension
JPWO2008053865A1 (en) * 2006-10-30 2010-03-18 アルブラスト株式会社 Dispersant for ceramic particles and method for preparing monomer suspension
JP2009034302A (en) * 2007-08-01 2009-02-19 Ngk Spark Plug Co Ltd Biological implant and its production method
WO2009028740A1 (en) * 2007-08-31 2009-03-05 Es Fibervisions Co., Ltd. Shrinkable fiber for porous molded body
JP2009074226A (en) * 2007-08-31 2009-04-09 Es Fibervisions Co Ltd Shrinkable fiber for forming porous molded body
US9556539B2 (en) 2007-08-31 2017-01-31 Es Fibervisions Co., Ltd. Shrinkable fiber for porous molded body
JP2009136652A (en) * 2007-11-16 2009-06-25 Takiron Co Ltd Filling material for bone defect part
JP2009178392A (en) * 2008-01-31 2009-08-13 Ngk Spark Plug Co Ltd In-vivo implant
US8513353B2 (en) 2009-03-19 2013-08-20 Agency For Science, Technology And Research Forming copolymer from bicontinuous microemulsion comprising monomers of different hydrophilicity
JP5067957B2 (en) * 2010-10-21 2012-11-07 保夫 敷波 Complementary reinforced composite and method for producing the same
JP2013070724A (en) * 2011-09-27 2013-04-22 Ngk Spark Plug Co Ltd Bioabsorbable implant and method for manufacturing the same
JP2016155964A (en) * 2015-02-26 2016-09-01 タキロン株式会社 Composite material and method for producing the same
JP2019530792A (en) * 2016-09-19 2019-10-24 タンペレーン コルケアコウルサーティオ エスアールTampereen Korkeakoulusaatio Sr Porous composite material
AU2017328807B2 (en) * 2016-09-19 2022-05-19 Biomendex Oy Porous composite material
AU2017328807C1 (en) * 2016-09-19 2022-11-03 Biomendex Oy Porous composite material
US11524094B2 (en) 2016-09-19 2022-12-13 Biomendex Oy Porous composite material
CN110891520A (en) * 2017-07-10 2020-03-17 卡尔·莱宾格医疗技术有限责任两合公司 Bone augmentation element and kit of bone augmentation elements with inserted (dental) implants
CN110891520B (en) * 2017-07-10 2022-07-29 卡尔·莱宾格医疗技术有限责任两合公司 Bone augmentation member and kit of bone augmentation members with inserted implant
JP2021129975A (en) * 2020-02-20 2021-09-09 国立大学法人東北大学 Bone regeneration material

Also Published As

Publication number Publication date
CN1981879A (en) 2007-06-20
JP4184652B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
US10478528B2 (en) Bone graft implants containing allograft
US10500312B2 (en) Bioactive porous bone graft compositions with collagen
KR100903761B1 (en) Implant material and process for producing the same
EP2968658B1 (en) Bioactive porous composite bone graft implants
JP6810331B2 (en) Bioactive porous bone graft implant
JP5049119B2 (en) Biocompatible bone implant composition and method for repairing bone defects
US8153148B2 (en) Porous biocompatible implant material and method for its fabrication
KR101375828B1 (en) Complex Scaffold For Bone-Cartilage Regeneration, Method For Preparing Thereof And Composition for Treating Bone Cartilage Disease Comprising The Same
JP4184652B2 (en) Organic-inorganic composite porous body and method for producing the same
JP2001224679A (en) Porous ceramic body
EP1086711B1 (en) Ceramic-polymer composites
CN110087699A (en) Bone graft substitute
JP2008054908A (en) Bone prosthetic material
WO2003075973A1 (en) Spherical calcium phosphate molding and use thereof
KR101890192B1 (en) Method for preparing bone grafting substitutes comprising ceramic granules
JP2003033429A (en) Bioceramics-containing cell composition
TWI252112B (en) Implant material and process for producing the same
AU2007229341A1 (en) Implant material and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4184652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term