JP2003159073A - New saccharide-producing gene group - Google Patents
New saccharide-producing gene groupInfo
- Publication number
- JP2003159073A JP2003159073A JP2001359154A JP2001359154A JP2003159073A JP 2003159073 A JP2003159073 A JP 2003159073A JP 2001359154 A JP2001359154 A JP 2001359154A JP 2001359154 A JP2001359154 A JP 2001359154A JP 2003159073 A JP2003159073 A JP 2003159073A
- Authority
- JP
- Japan
- Prior art keywords
- leu
- ile
- ser
- lys
- ala
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は微生物工業に関連し
たものであり、微生物の糖生成に関与する遺伝子とその
利用法に関するものである。その遺伝子の利用は、一方
で、微生物による有用糖類の生産性向上の手段を提供す
るし、あるいは、他方で、微生物が生成する不要な糖類
合成を抑制でき、その微生物がつくる目的物質の生産性
向上の手段や目的物質の取得方法を容易にさせる手段を
提供するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the microbial industry, and relates to genes involved in microbial sugar production and their use. The use of the gene provides, on the one hand, a means for improving the productivity of useful saccharides by the microorganism, or, on the other hand, it can suppress the unnecessary synthesis of saccharides produced by the microorganism, thereby increasing the productivity of the target substance produced by the microorganism. It is intended to provide a means for improving and a means for facilitating a method of obtaining a target substance.
【0002】特に、C1化合物、即ちメタノール、メタ
ン、二酸化炭素などの炭素原子1個を有する化合物を資
化する微生物での利用が有効である。In particular, it is effective to use a C1 compound, that is, a microorganism which assimilates a compound having one carbon atom such as methanol, methane or carbon dioxide.
【0003】[0003]
【従来の技術】C1化合物を資化する能力を有するシュー
ドモナス(Pseudomonas)属微生物を培養して多糖類を製
造する方法(例えば、特開昭51-151392号公報、特開昭5
6-48891号公報、特開昭56-61996号公報、特開昭56-9979
5号公報、特開昭56-140896号公報)や、CO2資化性のシ
ュードモナス・ヒドロゲノボラ(Pseudomonas hydrogeno
vora)を培養して多糖類を生成せしめること(Agric. Bio
l. Chem. 44(12), pp2925-2930 (1980))は知られてい
る。2. Description of the Related Art A method for producing a polysaccharide by culturing a microorganism belonging to the genus Pseudomonas having the ability to assimilate a C1 compound (for example, JP-A-51-151392 and JP-A-5-151392).
6-48891, JP-A-56-61996, JP-A-56-9979
No. 5, JP-A-56-140896) and CO2 assimilating Pseudomonas hydrogeno
vora) to produce polysaccharides (Agric. Bio
l. Chem. 44 (12), pp2925-2930 (1980)) are known.
【0004】U. Breuerら、Can.J.Microbiol.41(Sup
pl.1); pp.55-59(1995)には、メタノール資化性菌メチ
ロバクテリウム・ロデシアヌム(Methylobaterium rhode
sianum)が菌体外に多糖類を分泌することが記載されて
いる。B. Southgateら、J.Gen.Microbiol. 135, pp.285
9-2867(1989)にはメタノール資化性菌メチロフィルス・
メチロトロフス(Methylophilus methylotrophus)が菌体
外に多糖類を生産することが記載されている。また、メ
タノール資化性菌のメチロバチラス属細菌の変異体が、
メタノールから単糖類を生成(特開平10-113196号公
報)することも知られている。しかしながら、それらC1
資化性微生物の糖類生成に関与する遺伝子の構造につい
ては全く知られていない。U. Breuer et al., Can. J. Microbiol. 41 (Sup
pl.1); pp.55-59 (1995), Methylobaterium rhodecianum (Methylobaterium rhodesianum)
It is described that sianum) secretes polysaccharides outside the cells. B. Southgate et al., J. Gen. Microbiol. 135, pp.285.
9-2867 (1989) contains the methanol-assimilating bacterium Methylophilus
It is described that Methylophilus methylotrophus produces polysaccharides extracellularly. In addition, a mutant of Methylobacillus, a methanol-assimilating bacterium,
It is also known to produce monosaccharides from methanol (JP-A-10-113196). However, those C1
Nothing is known about the structure of genes involved in saccharide production of assimilating microorganisms.
【0005】なお、C1化合物を資化する微生物とは、例
えば、メチロバチラス属、メチロバクテリウム属、メチ
ロフィラス属、メチロモナス属、メチロバクター属、メ
チロコッカス属、メチロシナス属、メチロシスティス属
やメタノール資化性の酵母、例えば、キャンヂダ属、ピ
キア属、ハンセヌラ属の微生物をいう。The microorganisms that utilize C1 compounds are, for example, yeasts of the genus Methylobacillus, Methylobacterium, Methylophilus, Methylomonas, Methylobacter, Methylococcus, Methylocinas, Methylocistis and methanol. , For example, Candida, Pichia, Hansenula.
【0006】[0006]
【発明が解決しようとする課題】本発明は、C1化合物資
化性微生物の糖類生成に関与する遺伝子、及びその遺伝
子の利用についてのものであり、C1化合物資化性微生物
を用いることによるC1化合物から糖類の生産性向上や、
あるいは、場合によっては不要となる糖類生成を抑制
し、目的物質の生成収率を向上させる手段を提供しよう
とするものである。なお、ここでの目的物質とは、例え
ば、アミノ酸、核酸、ビタミン類、酵素類、タンパク質
などの有用物質をいう。DISCLOSURE OF THE INVENTION The present invention relates to a gene involved in saccharide production of a C1 compound-assimilating microorganism, and utilization of the gene. The C1 compound utilizing a C1 compound-assimilating microorganism is used. To improve sugar productivity,
Alternatively, it is intended to provide a means for suppressing unnecessary saccharide production in some cases and improving the production yield of the target substance. Here, the target substance means useful substances such as amino acids, nucleic acids, vitamins, enzymes and proteins.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討を重ねた結果、C1化合物を資
化して糖類を生産することができる微生物から、欠損さ
せると糖類の生成量が減少する遺伝子や、反対に、遺伝
子増幅させると生成糖類量が増加する遺伝子を発見し、
本発明を完成させた。従って本発明は、C1化合物を資化
し、糖類を分泌・生産することができる微生物をC1化
合物を炭素源として培養する際に、糖類生産量向上の為
に必要な遺伝子群と、また、糖類を分泌・生産する微生
物から、糖類以外の目的物質(例えば、アミノ酸、核
酸、ビタミン類、酵素類、タンパク質など)の生産を行
う際に、不要な糖類生成を抑制するのに必要な遺伝子群
を提供する。なお、糖生成に関わるいくつかの遺伝子の
クローニングでは、思いもよらずに難航した。その理由
は、遺伝子クローニングにより、異種微生物由来の糖類
合成に関連した酵素や、目的遺伝子周辺にあるDNAに由
来するタンパク質が、宿主である大腸菌体内で活性をも
って発現することで、大腸菌の糖代謝を攪乱し、生育を
悪化させるためと考えられた。従って目的の遺伝子が載
ったDNA断片が、通常の方法では取得できなかったこと
などがあった。このような場合は、そのDNA領域は、分
割してクローニングしたり、その遺伝子が発現しない工
夫を施す事でクローニングの成功に至り、解析すること
ができた。[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies in order to solve the above-mentioned problems, and as a result, microorganisms capable of assimilating C1 compounds to produce sugars have We have discovered genes that reduce the amount produced, and conversely, genes that increase the amount of saccharide produced by gene amplification,
The present invention has been completed. Therefore, the present invention, when culturing a microorganism capable of assimilating a C1 compound and secreting and producing a saccharide using a C1 compound as a carbon source, a gene group necessary for improving the saccharide production amount, and a saccharide Providing genes necessary to suppress unwanted saccharide formation when producing target substances other than saccharides (eg, amino acids, nucleic acids, vitamins, enzymes, proteins, etc.) from secreted and produced microorganisms To do. It was unexpectedly difficult to clone some genes involved in sugar production. The reason for this is that by gene cloning, enzymes related to saccharide synthesis derived from heterologous microorganisms and proteins derived from DNA around the target gene are actively expressed in Escherichia coli, which is the host. It was thought to be disturbing and deteriorating the growth. Therefore, the DNA fragment carrying the target gene could not be obtained by the usual method. In such a case, the DNA region could be cloned by dividing it, or by devising such that the gene was not expressed, the cloning was successful and the DNA could be analyzed.
【0008】[0008]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の遺伝子群は、C1化合物を資化し、糖類を分泌・
生産することができる微生物を変異せしめ、糖類をもは
や分泌生産できなくなった変異株や生産性が低下した変
異株から、その糖類生産性を回復させる遺伝子を取得す
ることが便利である。C1化合物を資化する事ができ、且
つ糖類を生産し、分泌することができる微生物は種々知
られており、それらを用いることができる。また、新た
に分離した、以上の性質をもった微生物を用いることも
できる。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The gene group of the present invention utilizes the C1 compound to secrete sugars and
It is convenient to mutate a microorganism that can be produced and obtain a gene that restores saccharide productivity from a mutant strain that can no longer secrete and produce saccharides or a mutant strain that has reduced productivity. A variety of microorganisms capable of assimilating C1 compounds and capable of producing and secreting sugars are known, and they can be used. Alternatively, a newly isolated microorganism having the above properties can be used.
【0009】変異の方法としては、微生物の変異株取得
の為に常用されている方法、例えば紫外線や放射線等を
用いる物理的方法、亜硝酸塩等を用いる化学的方法、ト
ランスポゾン等を用いる生物的方法などが使用できる。
本発明においてはトランスポゾンを用いる方法が特に便
利である。本発明では、土壌よりメタノール資化性菌を
多数分離し、その中から、培養上清に糖類を蓄積する株
として12S株を選択した。これをトランスポゾン(Tn)
挿入変異にかけることにより、培養上清に糖類の生産が
低減した変異株Ma1株を得た。このMa1株のゲノム中に挿
入されているTnの位置を解析することで、糖類の生成に
関与する遺伝子が発見され、取得できた。As a mutation method, a method commonly used for obtaining a mutant strain of a microorganism, for example, a physical method using ultraviolet rays or radiation, a chemical method using nitrite or the like, a biological method using a transposon or the like is used. Etc. can be used.
In the present invention, the method using a transposon is particularly convenient. In the present invention, a large number of methanol-assimilating bacteria were isolated from soil, and the 12S strain was selected as a strain that accumulates saccharides in the culture supernatant. This is a transposon (Tn)
By subjecting it to insertion mutation, a mutant strain Ma1 with reduced saccharide production was obtained in the culture supernatant. By analyzing the position of Tn inserted in the genome of this Ma1 strain, a gene involved in the production of saccharides was discovered and could be obtained.
【0010】上記の12S株は、Appl. Microbiol. Biotec
hnol., 54, pp.341-347 (2000)に記載されているメチロ
バチラス属細菌である。The above 12S strain is Appl. Microbiol. Biotec
It is a bacterium belonging to the genus Methylobacillus described in hnol., 54, pp.341-347 (2000).
【0011】この微生物を培養するには、この微生物が
資化しうる窒素源、好ましくは無機窒素源、例えば、硫
酸アンモニウム、塩化アンモニウム等を含有し、炭素源
としてメタノールのようなC1化合物を含有し、更に好ま
しくは無機塩類、例えば、リン酸塩、マグネシウム塩、
塩化カルシウム、硫酸鉄等を含有する培地において培養
すればよい。窒素源の濃度は、例えば無機物の場合0.01
〜0.3g/100ml培地であり、炭素源としては例えばメタノ
ールは1.2〜3.5g/100ml、好ましくは2g/100mlである。
培養は好気的条件下で行われ、培養温度は好ましくは25
℃から35℃、好ましくは30℃である。To cultivate this microorganism, a nitrogen source which can be assimilated by this microorganism, preferably an inorganic nitrogen source, such as ammonium sulfate, ammonium chloride, etc. is contained, and a C1 compound such as methanol is contained as a carbon source, More preferably inorganic salts such as phosphates, magnesium salts,
It may be cultured in a medium containing calcium chloride, iron sulfate and the like. The concentration of nitrogen source is, for example, 0.01 for inorganic substances.
.About.0.3 g / 100 ml medium, and as a carbon source, for example, methanol is 1.2 to 3.5 g / 100 ml, preferably 2 g / 100 ml.
The culture is carried out under aerobic conditions, and the culture temperature is preferably 25
C. to 35.degree. C., preferably 30.degree.
【0012】本発明の遺伝子や方法は種々利用すること
ができる。例えば、C1化合物からの糖類生成において、
本発明の遺伝子を利用することで、目的糖類の生成量、
生産性を向上させることができる。糖類とは多糖類や、
オリゴ等、単糖、更にはヌクレオチド糖などをいう。一
方、目的物質が糖類以外でありながら、その生産のため
の微生物が、副産物として糖類を生成している場合など
は、本発明での遺伝子を用いる事で、不要な糖類の合
成、分泌、生産が抑制され、結果として、目的物質の生
産性の向上に寄与できる事になる。Various genes and methods of the present invention can be used. For example, in the production of sugars from C1 compounds,
By using the gene of the present invention, the production amount of the target sugar,
Productivity can be improved. What is a saccharide?
Oligos, monosaccharides, and nucleotide sugars. On the other hand, when the target substance is a substance other than saccharides, but the microorganism for its production produces saccharides as a by-product, by using the gene of the present invention, synthesis, secretion, production of unnecessary saccharides Is suppressed, and as a result, the productivity of the target substance can be improved.
【0013】[0013]
【実施例】以下、本発明を実施例により更に具体的に説
明する。EXAMPLES The present invention will be described in more detail below with reference to examples.
【0014】[0014]
【実施例1】菌体外多糖の生成が抑制されたメチロバチ
ラス属細菌の変異株Ma1株の取得
メチロバチラス属細菌の12S株を、以下の様にトランス
ポゾン挿入変異処理にかけた。トランスポゾン供与菌大
腸菌S17-1(pSUP5011)をLB培地寒天プレートに塗布し3
7℃で一晩前培養した後、そこから一白金耳をとり、5ml
のLB液体培地に植菌し、37℃、一晩振とう培養させた。
受容菌である12S株の細胞をメタノール(2.26%(v/v))
を唯一の炭素源として含む寒天培地であるMMe寒天培地
(1L中の組成は、1gの(NH4)2SO4、5.5gのKH2PO4、10g
のNa2HPO4・12H2O、0.1gのMgSO4・7H2O、0.01gのFeSO4
・7H2O、0.01gのCaCl2・2H2O、および22.6mlのメタノー
ル、15gの寒天を含有する培地)に塗布し、30℃で培養
した後、そこから一白金耳をとり、5mlの同じ液体培地
に植菌し、30℃で数日間振とう培養させた。Example 1 Acquisition of Mutant Ma1 Strain of Methylobacillus Saccharide with Suppressed Extracellular Polysaccharide Production The 12S strain of Methylobacillus bacterium was subjected to transposon insertion mutation treatment as follows. Apply the transposon donor E. coli S17-1 (pSUP5011) to the LB medium agar plate. 3
Pre-incubate at 7 ℃ overnight, remove 1 platinum loop from it, and
Was inoculated into the LB liquid medium of and cultured at 37 ° C. overnight with shaking.
Recipient cells of 12S strain are methanol (2.26% (v / v))
Agar medium containing only as a carbon source, MMe agar medium (composition in 1 L is 1 g of (NH4) 2SO4, 5.5 g of KH2PO4, 10 g
Na2HPO4 / 12H2O, 0.1g MgSO4 / 7H2O, 0.01g FeSO4
・ 7H2O, 0.01g CaCl2 ・ 2H2O, and 22.6ml methanol, 15g agar containing medium), after culturing at 30 ℃, remove one platinum loop from it and plant in 5ml of the same liquid medium. The cells were cultivated and shake-cultured at 30 ° C. for several days.
【0015】培養後、トランスポゾン供与菌と受容菌を
1:1で混合し、シリンジを用いて、pore sizeが0.45マイ
クロメートル(μm)のフィルター上に集菌し、そのフィ
ルターをLB固体培地(組成:トリプトン10g、酵母エキ
ス5g、NaCl10g/L. に、寒天を最終濃度1.5%(w/v)になる
ように添加した固体培地)上に、菌体を上向きにしての
せ、30℃で6時間静置培養し、接合伝達を行わせた。After culturing, the transposon donor and recipient bacteria were
Mix 1: 1 and collect using a syringe on a filter with a pore size of 0.45 micrometer (μm), and filter the filter in LB solid medium (composition: tryptone 10 g, yeast extract 5 g, NaCl 10 g / L. The cells were placed face up on a solid medium containing agar at a final concentration of 1.5% (w / v), and statically cultured at 30 ° C for 6 hours for conjugal transfer.
【0016】培養後、そのフィルター上の菌体を、50mM
リン酸バッファー(KH2PO4-NaOH, pH7.0)に懸濁し、そ
の懸濁液を適宜希釈して、メタノール(2.26%(v/v))およ
びカナマイシン(50mg/L)を含有する寒天培地に塗布し、
30℃で数日間培養した後に、出現したカナマイシン耐性
コロニーはトランスポゾン挿入株とみなし、以後の実験
に供した。得られた株は11200株であった。After culturing, the cells on the filter were treated with 50 mM.
Suspend in phosphate buffer (KH2PO4-NaOH, pH 7.0), dilute the suspension appropriately, and apply to an agar medium containing methanol (2.26% (v / v)) and kanamycin (50 mg / L). Then
After culturing at 30 ° C. for several days, the emerged kanamycin-resistant colonies were regarded as transposon-inserted strains and used for the subsequent experiments. The number of strains obtained was 11,200.
【0017】これらのうち、コロニーの表面がmucoid
(変異前)からnon-mucoidの表現型に変異している変異
株50株を選択した。次に、これらの変異株をメタノール
を炭素源とした液体培地中で振とう培養し、親株と比較
して培養液の粘度が低下している変異株を選択した。そ
の中で、特に、培地への糖類の分泌、生産が低下してい
た株を単離して、これをMa1株(AJ13934株)と命名し
た。なお、この株は、独立行政法人産業総合研究所 特
許微生物寄託センターに、FERM P-18592として平
成13年11月7日に寄託された。Of these, the surface of the colony is mucoid
From (before mutation), 50 mutant strains having a non-mucoid phenotype were selected. Next, these mutant strains were shake-cultured in a liquid medium containing methanol as a carbon source, and mutant strains in which the viscosity of the culture solution was lower than that of the parent strain were selected. Among them, in particular, a strain in which the secretion and production of saccharides into the medium was reduced was isolated and named as Ma1 strain (AJ13934 strain). This strain was deposited at the Patent Microorganism Depositary Center, National Institute of Advanced Industrial Science and Technology as FERM P-18592 on November 7, 2001.
【0018】[0018]
【実施例2】Ma1株の変異点の特定と糖類生成に関与す
る遺伝子領域の解析
Ma1株のゲノムに挿入されているトランスポゾンTn5の位
置を、以下のようにして調べた。Tn5が挿入された12S
株、つまりMa1株からゲノムDNAを調製し、制限酵素EcoR
Iにて消化したものを、0.9%(w/v)のアガロースゲル電気
泳動にて分離した。DNAの長さが7kbpから10kbpのもの
を、そのゲルから精製し、ベクターであるpUC19へライ
ゲーションした後、大腸菌DH5α株に形質転換した。こ
の中からカナマイシン耐性株を選択する事で、Tn5が挿
入されたゲノムDNAをもつプラスミドを取得した。[Example 2] Identification of mutation point of Ma1 strain and analysis of gene region involved in saccharide production The position of transposon Tn5 inserted in the genome of Ma1 strain was examined as follows. 12S with Tn5 inserted
Genomic DNA was prepared from the strain, namely Ma1 strain, and the restriction enzyme EcoR
The product digested with I was separated by 0.9% (w / v) agarose gel electrophoresis. A DNA having a length of 7 kbp to 10 kbp was purified from the gel, ligated to pUC19 as a vector, and transformed into Escherichia coli DH5α strain. By selecting a kanamycin resistant strain from among these, a plasmid having a genomic DNA in which Tn5 was inserted was obtained.
【0019】このプラスミドDNAがもつ12S株のゲノムDN
A部分の塩基配列を、常法により、決定した。そして、
その挿入DNAの両端に相当する配列のDNAプライマー(配
列番号8、9)を、常法により合成した。このDNAプラ
イマーの一対をもちいて、12S株のゲノムを鋳型にしてP
CRを行った。条件は、95℃、5分での変性処理後、95℃
‐30秒、57℃‐30秒、72℃‐3分の処理を30回繰り返す
というものであった。こうして増幅されたDNA断片はpT7
blue(R)(Novagen 社製)にクローニングされ、できた
プラスミドはpTMS3と命名された。Genomic DN of 12S strain possessed by this plasmid DNA
The base sequence of the A portion was determined by a conventional method. And
DNA primers (SEQ ID NOs: 8 and 9) having sequences corresponding to both ends of the inserted DNA were synthesized by a conventional method. Using this pair of DNA primers, P
I did a CR. Conditions are 95 ℃, 95 ℃ after denaturing treatment for 5 minutes
-30 seconds, 57 ° C-30 seconds, 72 ° C-3 minutes treatment was repeated 30 times. The DNA fragment thus amplified is pT7
The resulting plasmid cloned into blue (R) (Novagen) was named pTMS3.
【0020】一方、野生株12S株のゲノムライブラリー
は、12S株のゲノムDNAを制限酵素SalIにより消化し、DN
A鎖長が4kbpから8kbpのDNA断片をpUC19へクローニング
する事で作成された。そして、Ma1株のTn5挿入部位の全
体像を調べるために、pTMS3の挿入DNA断片をプローブと
して用いて、上記のゲノムライブラリーに対してコロニ
ーハイブリダイゼーションを行い、陽性クローンを取得
した。なお、プローブは[α-32P]dCTPとMegaprime DNA
labeling system(Amersham Pharmacia Biotech社製)
を用いて作成された。On the other hand, the wild type 12S strain genomic library was prepared by digesting the 12S strain genomic DNA with the restriction enzyme SalI, and
It was prepared by cloning a DNA fragment with A chain length of 4 kbp to 8 kbp into pUC19. Then, in order to examine the whole image of the Tn5 insertion site of the Ma1 strain, colony hybridization was performed on the above genomic library using the inserted DNA fragment of pTMS3 as a probe to obtain a positive clone. The probe is [α-32P] dCTP and Megaprime DNA.
labeling system (Amersham Pharmacia Biotech)
Was created using.
【0021】上記の取得した陽性クローンはpUMS1‐Xと
命名した。そして常法に従い、この挿入DNA断片領域のD
NA塩基配列を決定した。このうちの4330bpを配列番号7
に示す。配列の解析の結果、ここには3つのオープンリ
ーディングフレーム(orf)が、全て同じ方向にある事が
判明した。それぞれをorf1(epsA), orf2(epsB), or
f3(epsC)とした。そしてそれぞれのorfの塩基配列
と、コードするアミノ酸配列は、配列番号1乃至6に示
した。orf1の配列が配列表1,2に、orf2の配列が配
列表3,4に、orf3の配列が配列表5,6に各々記載
されている。またTn5は、epsBの中に挿入されていた。The positive clone obtained above was named pUMS1-X. Then, according to a conventional method, D of this inserted DNA fragment region is
The NA base sequence was determined. 4330 bp of this is SEQ ID NO: 7
Shown in. As a result of sequence analysis, it was found that all three open reading frames (orf) were in the same direction. Orf1 (epsA), orf2 (epsB), or
It was set to f3 (epsC). The base sequence of each orf and the encoded amino acid sequence are shown in SEQ ID NOs: 1 to 6. The sequence of orf1 is shown in Sequence Listings 1 and 2, the sequence of orf2 is shown in Sequence Listings 3 and 4, and the sequence of orf3 is shown in Sequence Listings 5 and 6, respectively. Tn5 was also inserted in epsB.
【0022】orf1(epsA)は798塩基対からなり、265個の
アミノ酸をコードしうる。そのアミノ酸配列は、いくつ
かの微生物で知られているLuxRスーパーファミリーに属
する転写調節因子のものと若干の相同性があった。orf2
(epsB)は1371塩基対からなり、456個のアミノ酸をコー
ドしうる。アミノ酸配列の相同性は、いくつかのグリコ
シルトランスフェラーゼのものとの間でみられた。orf3
(epsC)は1011塩基対からなり、336個のアミノ酸をコー
ドしうる。このアミノ酸配列は、ストレプトコッカス・
ニューモニアエ(Streptococcus pneumoniae)のCPS(きょ
う膜)合成に関与するとされている遺伝子がコードする
アミノ酸配列と相同性があった。Orf1 (epsA) consists of 798 base pairs and can encode 265 amino acids. The amino acid sequence had some homology with those of transcriptional regulators belonging to the LuxR superfamily known in some microorganisms. orf2
(epsB) consists of 1371 base pairs and can encode 456 amino acids. Amino acid sequence homology was found with that of several glycosyltransferases. orf3
(epsC) consists of 1011 base pairs and can encode 336 amino acids. This amino acid sequence is Streptococcus
It was homologous to the amino acid sequence encoded by a gene that is said to be involved in CPS (capsular) synthesis in Streptococcus pneumoniae.
【0023】[0023]
【実施例3】Orf1(epsA)、orf2(epsB)、orf3(epsC)の欠
失効果
ベクターpUC19上に、各々、クローニングされたepsAあ
るいはepsBあるいはepsCのコーディング領域の中に、カ
ナマイシン耐性遺伝子を挿入し、それぞれpMm△A、pMm
△B、 pMm△Cを作成した。これらのプラスミドを、12S
株にエレクトロポレーションにより導入し、カナマイシ
ン耐性であるがアンピシリン感受性株を選択した。この
耐性の表現型を示す株は、例えば、pMm△A を用いた場
合、12S株のゲノム中のepsAの位置に、pMm△AのepsA::K
m部分が2回相同組換えを起こした株(Mm△A株と命名)
である。こうして他の2つの遺伝子についても、遺伝子
の欠損株を作成した(それぞれ、Mm△B株、Mm△C株と命
名)。[Example 3] A kanamycin resistance gene was inserted into the cloned coding regions of epsA, epsB, and epsC on the deletion effect vector pUC19 of Orf1 (epsA), orf2 (epsB), and orf3 (epsC), respectively. , PMm △ A and pMm respectively
ΔB and pMmΔC were prepared. These plasmids are
The strain was introduced by electroporation, and a kanamycin-resistant but ampicillin-sensitive strain was selected. Strains exhibiting this resistance phenotype are, for example, when pMmΔA is used, at the position of epsA in the genome of the 12S strain, epsA :: K of pMmΔA
A strain in which the m part has undergone homologous recombination twice (named MmΔA strain)
Is. In this way, gene-deficient strains of the other two genes were also prepared (named MmΔB strain and MmΔC strain, respectively).
【0024】上記のようにして得られた株の糖類生成の
程度を、野生株と比較して調べた。各々の株をメタノー
ルを炭素源とした培地に植菌し、30℃にて7日間培養し
た。その後、培地上清の糖類量をフェノール・硫酸方法
(Anal. Chem.28, pp.350-356, (1956年))にて定量し
た。その結果、Mm△B株 とMm△C株の糖類生成量は、野
生株の17%以下まで低下していた。このことは、epsBと
epsCは12S株での菌体外糖類の生成に重要な遺伝子であ
ることがわかった。またMm△A株では、野生株の半分程
度にまで低下していた。The degree of saccharide production of the strain obtained as described above was examined in comparison with the wild strain. Each strain was inoculated into a medium containing methanol as a carbon source and cultured at 30 ° C. for 7 days. Then, the amount of saccharides in the medium supernatant was quantified by the phenol / sulfuric acid method (Anal. Chem. 28, pp.350-356, (1956)). As a result, the amount of saccharides produced by the MmΔB and MmΔC strains was reduced to less than 17% of the wild strain. This means that epsB
It was found that epsC is an important gene for the production of extracellular sugars in the 12S strain. In addition, the MmΔA strain was reduced to about half that of the wild strain.
【0025】[0025]
【実施例4】Orf1(epsA)の遺伝子発現増強効果
EpsAの機能を調べるために、この遺伝子発現を増強させ
た場合の、糖類合成に及ぼす影響を調べた。まず、上に
記載のpUMS1をPCR増幅の鋳型にして、DNAプライマーと
して、配列番号10、11を用いて、epsA遺伝子の部分
を増やした。PCRの反応条件は、95℃5分での変性処理
後、95℃30秒、55℃30秒、72℃1分の処理を30回繰り返
すというものであった。こうして増幅された0.9kbpのDN
A断片をpT7Blue(R)ベクター(Novagen社)に組み入れ、pT
epsAを得た。さらに、このプラスミドから制限酵素Hinc
IIとSmaIで切り出されるepsA遺伝子を含む長さ約0.9kbp
のDNA断片を、制限酵素DraIで処理した広宿主域ベクタ
ーpBBR122(MobiTec社製)に組み入れ、pBBAを作成し
た。これをエレクトロポレーションにて12S株に導入
し、カナマイシン耐性株を取得することで、pBBAを保持
した12S株、即ち、12SA株を取得した。[Example 4] Gene expression enhancing effect of Orf1 (epsA) In order to examine the function of EpsA, the effect of enhancing the gene expression on saccharide synthesis was examined. First, using pUMS1 described above as a template for PCR amplification and using SEQ ID NOs: 10 and 11 as DNA primers, the epsA gene portion was increased. The reaction conditions of PCR were such that after denaturing treatment at 95 ° C for 5 minutes, treatments at 95 ° C for 30 seconds, 55 ° C for 30 seconds and 72 ° C for 1 minute were repeated 30 times. 0.9 kbp DN amplified in this way
A fragment was inserted into pT7Blue (R) vector (Novagen),
got epsA. Furthermore, the restriction enzyme Hinc
Approximately 0.9 kbp including epsA gene excised by II and SmaI
Was inserted into a wide host range vector pBBR122 (manufactured by MobiTec) treated with a restriction enzyme DraI to prepare pBBA. By introducing this into 12S strain by electroporation and obtaining a kanamycin resistant strain, a 12S strain having pBBA, that is, 12SA strain was obtained.
【0026】この12SA株の糖類合成能を、上記と同様
に調べた。その結果、この株は野生株より約1.4倍多
く糖類を合成することが判明した。それゆえ、この遺伝
子は、糖類合成能力の向上に役立つ遺伝子であることが
わかった。The saccharide synthesizing ability of this 12SA strain was examined in the same manner as above. As a result, this strain was found to synthesize about 1.4 times more saccharide than the wild strain. Therefore, it was found that this gene is a gene that helps improve the ability to synthesize sugars.
【0027】[0027]
【実施例5】epsB遺伝子産物の活性評価
EpsBは、アミノ酸配列の相同性よりグリコシルトランス
フェラーゼの可能性があったので、実際にその活性を有
するのかどうかを、以下のようにして検討した。野生株
12S株とepsB欠損株を、それぞれ5mlのMMe培地に植菌
し、30℃で一晩培養した。その後、各々の培養液1ml
を、新しい同培地100mlに移し培養を継続した。菌体の
生育が対数増殖の中期程度(OD560=0.6から1.0)まで培
養後、各菌体を集菌し、各々、10mlの緩衝液A(組成:
1.2Mシュークロース、50mM Tris-HCl(pH8.0)、1mM EDT
A、20mMリゾチーム)に懸濁した。その後、25℃で5分間
インキュベートした。[Example 5] Evaluation of activity of epsB gene product EpsB was possibly a glycosyltransferase due to homology of amino acid sequences. Therefore, whether or not EpsB actually had the activity was examined as follows. Wild strain
The 12S strain and the epsB deficient strain were inoculated into 5 ml of MMe medium and cultured at 30 ° C. overnight. After that, 1 ml of each culture
Was transferred to 100 ml of the same medium and the culture was continued. After culturing the cells to a mid-logarithmic growth phase (OD560 = 0.6 to 1.0), each cell was collected and 10 ml of buffer A (composition:
1.2M sucrose, 50mM Tris-HCl (pH8.0), 1mM EDT
A, 20 mM lysozyme). Then, it incubated at 25 degreeC for 5 minutes.
【0028】次に、そのプロトプラストを4℃にて8000
g、20分の遠心により集め、緩衝液B(組成:20mM Tris
-HCl(pH8.0)、1mM EDTA、200μM フェニルメチルスルフ
ォニルフルオライド)に懸濁し、これを超音波処理に供
した。菌体の破砕後、菌の残骸部分(デブリ)は4℃で
8000g、20分の遠心にて除去し、その後、菌体の膜画分
は0℃で30000g、1時間の超遠心にて集められた。この
画分は緩衝液C(組成:50mM Tris-acetate(pH8.3)、1mM
EDTA、200μMフェニルメチルスルフォニルフルオライ
ド )で洗浄された後、もう一度、上記の超遠心にて集
められ、最終的には、0.5mlの緩衝液Cに懸濁された。Next, the protoplasts were 8000 at 4 ° C.
g, collected by centrifugation for 20 minutes, buffer B (composition: 20 mM Tris
-HCl (pH8.0), 1 mM EDTA, 200 μM phenylmethylsulfonyl fluoride), and this was subjected to ultrasonic treatment. After crushing the microbial cells, the debris of the microbial cells is at 4 ° C
The cells were removed by centrifugation at 8,000 g for 20 minutes, and then the membrane fraction of the bacterial cells was collected by ultracentrifugation at 30,000 g for 1 hour at 0 ° C. This fraction is buffer C (composition: 50 mM Tris-acetate (pH 8.3), 1 mM
After washing with EDTA and 200 μM phenylmethylsulfonyl fluoride), the cells were collected again by the above ultracentrifugation and finally suspended in 0.5 ml of buffer C.
【0029】グリコシルトランスフェラーゼ活性の測定
は、基本的にKolkmanらの方法(J. Bacteriol., 178, p
p.3736-3741, (1996))によった。但し、ウリジンジフ
ォスフェート D-[U-14C]グルコース(300 mCi/mmol; NE
N Life Science社)、ウリジンジフォスフェート D-[U-
14C]ガラクトース(300mCi/mmol; Amersham PharmaciaB
iotech社)そしてグアノシンジフォスフェートD-[U-
14C]マンノース(300mCi/mmol; Amersham Pharmacia Bi
otech社)が、反応基質として用いられた。The glycosyltransferase activity is basically measured by the method of Kolkman et al. (J. Bacteriol., 178, p.
p.3736-3741, (1996)). However, uridine diphosphate D- [U- 14 C] glucose (300 mCi / mmol; NE
N Life Science), uridine diphosphate D- [U-
14 C] Galactose (300 mCi / mmol; Amersham PharmaciaB
iotech) and guanosine diphosphate D- [U-
14 C] mannose (300 mCi / mmol; Amersham Pharmacia Bi
otech) was used as the reaction substrate.
【0030】その結果、12S株から調製した膜画分を用
いると、膜での脂質キャリアーへのグルコースの取り込
みが観察された。しかしepsB欠損株の場合は、グルコー
ス、ガラクトース、マンノースのいずれの取込みも観察
されなかった。こうして、EpsBはグルコシル-1-フォス
フェート トランスフェラーゼ活性を示す事が示され
た。As a result, when the membrane fraction prepared from the 12S strain was used, glucose uptake into the lipid carrier in the membrane was observed. However, in the case of the epsB-deficient strain, uptake of glucose, galactose and mannose was not observed. Thus, EpsB was shown to exhibit glucosyl-1-phosphate transferase activity.
【0031】[0031]
【実施例6】epsB、epsC遺伝子増幅による糖類生産量の
向上
実施例2で作成したpUMS1-Xには、epsA, epsB, そしてe
psCの3つのorfが存在するが、その内、epsAのコーディ
ング領域の内部にのみ、カナマイシン耐性遺伝子を挿入
し、pUMS△0を作成した。このプラスミドをメチロバチ
ラス属細菌12S株へ導入し、カナマイシン耐性株を取得
したところ、同時にアンピシリン耐性でもある株が取得
できた。これは宿主の染色体部分とプラスミドDNA部分
との間で、相同組換えが1回起こった株である事が、染
色体構造の解析により判明した。そこでこの株をMm0-2
株と命名した。[Example 6] Improvement of saccharide production by amplification of epsB and epsC genes pUMS1-X prepared in Example 2 contained epsA, epsB, and e.
Although there are three orfs of psC, the kanamycin resistance gene was inserted only within the coding region of epsA to construct pUMSΔ0. When this plasmid was introduced into a Methylobacillus bacterium 12S strain and a kanamycin resistant strain was obtained, a strain that was also ampicillin resistant was obtained at the same time. Analysis of the chromosome structure revealed that this is a strain in which homologous recombination occurred once between the chromosome portion of the host and the plasmid DNA portion. So this strain Mm0-2
It was named a strain.
【0032】そこで、このMm0-2株と元の野生株12S株を
培養し、培養液中に生産されてくる糖類の量を検定した
ところ、Mm0-2株は、対照株に比べ約1.3倍多く糖類を生
産することがわかった。このことから、epsB, epsCの遺
伝子の増大が、糖類生成に効果があることが判明した。Then, when this Mm0-2 strain and the original wild strain 12S strain were cultured and assayed for the amount of saccharides produced in the culture solution, the Mm0-2 strain was about 1.3 times as much as the control strain. It was found to produce a lot of sugars. From this, it was revealed that the increase of the genes of epsB and epsC had an effect on saccharide production.
【発明の効果】本発明により、微生物において糖類、特
に多糖類の過剰生産、あるいは生成の抑制を任意に行う
ことが可能となる。EFFECTS OF THE INVENTION According to the present invention, it is possible to optionally overproduce or suppress the production of saccharides, particularly polysaccharides, in microorganisms.
【配列表】 SEQUENCE LISTING <110> Ajinomoto Co., Inc. <120> <130> <160> 11 <170> PatentIn Ver. 2.1 <210> 1 <211> 798 <212> DNA <213> Methylobacillus sp. <220> <221> CDS <222> (1)..(798) <400> 1 atg ttt att acc aaa gaa cta acc gat att gag aag gca cag ctt att 48 Met Phe Ile Thr Lys Glu Leu Thr Asp Ile Glu Lys Ala Gln Leu Ile 1 5 10 15 gac ttg atg cac gag tct ttg cga atc cgc tcg cac ttc gag ttc ttc 96 Asp Leu Met His Glu Ser Leu Arg Ile Arg Ser His Phe Glu Phe Phe 20 25 30 ctt tgg atg caa ggc aag ctt cag cag ttt tta ccg cat gaa atc atg 144 Leu Trp Met Gln Gly Lys Leu Gln Gln Phe Leu Pro His Glu Ile Met 35 40 45 atc acc gcc tgg ggc gat ttc tcc atg ggc gtc atc tat ttc aat att 192 Ile Thr Ala Trp Gly Asp Phe Ser Met Gly Val Ile Tyr Phe Asn Ile 50 55 60 gtg tcg ccg ctc ccc gga gta cgt acc gag aag ata tca agt ggc gat 240 Val Ser Pro Leu Pro Gly Val Arg Thr Glu Lys Ile Ser Ser Gly Asp 65 70 75 80 ctg aat cca ttg ctc aaa cgg ctt ttc aat tac tgg ctt agt cat acc 288 Leu Asn Pro Leu Leu Lys Arg Leu Phe Asn Tyr Trp Leu Ser His Thr 85 90 95 aaa gcc ccg ttt acc tta tcg gcg gag aat ggc gta ttc cag gac tgc 336 Lys Ala Pro Phe Thr Leu Ser Ala Glu Asn Gly Val Phe Gln Asp Cys 100 105 110 gat gta ctg cca gcg gaa gtg aac agc cat ctg aaa aac atg aag tca 384 Asp Val Leu Pro Ala Glu Val Asn Ser His Leu Lys Asn Met Lys Ser 115 120 125 gcg ctg gtg cac ggc atc aag gat ttc cgt ggg cgc cat gac tgc ctt 432 Ala Leu Val His Gly Ile Lys Asp Phe Arg Gly Arg His Asp Cys Leu 130 135 140 tac ata ttg ctg aat tca acc ccc acc atg ccg aat acc tca cgg tac 480 Tyr Ile Leu Leu Asn Ser Thr Pro Thr Met Pro Asn Thr Ser Arg Tyr 145 150 155 160 atg ctg gag tca ttg cta cct tac att gac agc gcg ctc agg caa ctg 528 Met Leu Glu Ser Leu Leu Pro Tyr Ile Asp Ser Ala Leu Arg Gln Leu 165 170 175 gag cat ttg cct gtg cag cac ccg gca gat aaa gaa gcc agt gaa gat 576 Glu His Leu Pro Val Gln His Pro Ala Asp Lys Glu Ala Ser Glu Asp 180 185 190 ctg cac gaa gaa gaa aac gaa gcg ctg gag cag ctt tct tcc cgt gag 624 Leu His Glu Glu Glu Asn Glu Ala Leu Glu Gln Leu Ser Ser Arg Glu 195 200 205 atc gaa atc atg gaa tgg gtg cgc aac ggc aaa acc aat cag gaa atc 672 Ile Glu Ile Met Glu Trp Val Arg Asn Gly Lys Thr Asn Gln Glu Ile 210 215 220 ggc atg atc ctg gac att agt tca ttt acc gtc aaa aac cat ttg caa 720 Gly Met Ile Leu Asp Ile Ser Ser Phe Thr Val Lys Asn His Leu Gln 225 230 235 240 cgc ata ttt aaa aag ctt gat gtt ctg aat aga gcg caa gcc gtt tcc 768 Arg Ile Phe Lys Lys Leu Asp Val Leu Asn Arg Ala Gln Ala Val Ser 245 250 255 aaa ttc aag cag act cca cgg gcc tca tga 798 Lys Phe Lys Gln Thr Pro Arg Ala Ser 260 265 <210> 2 <211> 265 <212> PRT <213> Methylobacillus sp. <400> 2 Met Phe Ile Thr Lys Glu Leu Thr Asp Ile Glu Lys Ala Gln Leu Ile 1 5 10 15 Asp Leu Met His Glu Ser Leu Arg Ile Arg Ser His Phe Glu Phe Phe 20 25 30 Leu Trp Met Gln Gly Lys Leu Gln Gln Phe Leu Pro His Glu Ile Met 35 40 45 Ile Thr Ala Trp Gly Asp Phe Ser Met Gly Val Ile Tyr Phe Asn Ile 50 55 60 Val Ser Pro Leu Pro Gly Val Arg Thr Glu Lys Ile Ser Ser Gly Asp 65 70 75 80 Leu Asn Pro Leu Leu Lys Arg Leu Phe Asn Tyr Trp Leu Ser His Thr 85 90 95 Lys Ala Pro Phe Thr Leu Ser Ala Glu Asn Gly Val Phe Gln Asp Cys 100 105 110 Asp Val Leu Pro Ala Glu Val Asn Ser His Leu Lys Asn Met Lys Ser 115 120 125 Ala Leu Val His Gly Ile Lys Asp Phe Arg Gly Arg His Asp Cys Leu 130 135 140 Tyr Ile Leu Leu Asn Ser Thr Pro Thr Met Pro Asn Thr Ser Arg Tyr 145 150 155 160 Met Leu Glu Ser Leu Leu Pro Tyr Ile Asp Ser Ala Leu Arg Gln Leu 165 170 175 Glu His Leu Pro Val Gln His Pro Ala Asp Lys Glu Ala Ser Glu Asp 180 185 190 Leu His Glu Glu Glu Asn Glu Ala Leu Glu Gln Leu Ser Ser Arg Glu 195 200 205 Ile Glu Ile Met Glu Trp Val Arg Asn Gly Lys Thr Asn Gln Glu Ile 210 215 220 Gly Met Ile Leu Asp Ile Ser Ser Phe Thr Val Lys Asn His Leu Gln 225 230 235 240 Arg Ile Phe Lys Lys Leu Asp Val Leu Asn Arg Ala Gln Ala Val Ser 245 250 255 Lys Phe Lys Gln Thr Pro Arg Ala Ser 260 265 <210> 3 <211> 1374 <212> DNA <213> Methylobacillus sp. <220> <221> CDS <222> (1)..(1374) <400> 3 ctg gca tta cct ttg cac gtg aca ata ttt tgc acg gtg ttg aag ccc 48 Met Ala Leu Pro Leu His Val Thr Ile Phe Cys Thr Val Leu Lys Pro 1 5 10 15 tgc ttg atc cgc ttg tcg tcg tca ttt cac tgt gga tcg tgg cgt ttt 96 Cys Leu Ile Arg Leu Ser Ser Ser Phe His Cys Gly Ser Trp Arg Phe 20 25 30 gtt tat gaa aac gat ctg cca cct cac tac ctg atc atg tcg ctg att 144 Val Tyr Glu Asn Asp Leu Pro Pro His Tyr Leu Ile Met Ser Leu Ile 35 40 45 ctg ttt tcg ctg atg ttc ccc agc acc acc aaa atc agc cag ccc atc 192 Leu Phe Ser Leu Met Phe Pro Ser Thr Thr Lys Ile Ser Gln Pro Ile 50 55 60 agt tca gtt att caa aac acg ttg ctg gca tgg ttt gtt ctg gcc ggg 240 Ser Ser Val Ile Gln Asn Thr Leu Leu Ala Trp Phe Val Leu Ala Gly 65 70 75 80 cta ttg atg gcg ttt gga tat gct tct gaa tac atc tat atc ttc ccc 288 Leu Leu Met Ala Phe Gly Tyr Ala Ser Glu Tyr Ile Tyr Ile Phe Pro 85 90 95 aaa gcc tcg att aca tta tgg ctc tgg ctg acc cct acc ctg ctt atc 336 Lys Ala Ser Ile Thr Leu Trp Leu Trp Leu Thr Pro Thr Leu Leu Ile 100 105 110 gca gca acc ctc ggt tta cgc atg gcg gcg ccg cta ctc atc aag atg 384 Ala Ala Thr Leu Gly Leu Arg Met Ala Ala Pro Leu Leu Ile Lys Met 115 120 125 caa ggg cct atg cga cgg gcg gtg att gcg ggc atg aac gaa cag ggc 432 Gln Gly Pro Met Arg Arg Ala Val Ile Ala Gly Met Asn Glu Gln Gly 130 135 140 ctg gcc ctg gca gaa cgc ttg cag cgt agc cac tac cat cca aca gag 480 Leu Ala Leu Ala Glu Arg Leu Gln Arg Ser His Tyr His Pro Thr Glu 145 150 155 160 ttg cag ggc ttc ttt gag gat cgc agt gtg gac cga ctc aat tca gaa 528 Leu Gln Gly Phe Phe Glu Asp Arg Ser Val Asp Arg Leu Asn Ser Glu 165 170 175 ttg cat tac ccc att ctt ggc cgc atc gac agc atg gcg gag tat gtg 576 Leu His Tyr Pro Ile Leu Gly Arg Ile Asp Ser Met Ala Glu Tyr Val 180 185 190 aaa gag cat cac atc aac acc atc tac ctt tca ctg ccc atg gcg agc 624 Lys Glu His His Ile Asn Thr Ile Tyr Leu Ser Leu Pro Met Ala Ser 195 200 205 caa cca cgc atc atg aag ttg tta gat gat ttg aaa gac acc acg gcg 672 Gln Pro Arg Ile Met Lys Leu Leu Asp Asp Leu Lys Asp Thr Thr Ala 210 215 220 tcc att tac ttt gtc ccg gat att ttc atg aca gat ctg ata caa ggg 720 Ser Ile Tyr Phe Val Pro Asp Ile Phe Met Thr Asp Leu Ile Gln Gly 225 230 235 240 cgt gtc gat cag gta gaa aac atc ccg gtg gtc agc gta tgt gaa acc 768 Arg Val Asp Gln Val Glu Asn Ile Pro Val Val Ser Val Cys Glu Thr 245 250 255 cca ttt acc ggc ttt gac ggt ctg ttg aaa cgc tca gct gat atc gct 816 Pro Phe Thr Gly Phe Asp Gly Leu Leu Lys Arg Ser Ala Asp Ile Ala 260 265 270 ttc tcg ttg ctg atc ctg atc ctt atc tcg ccg gta tta ttg gcg atc 864 Phe Ser Leu Leu Ile Leu Ile Leu Ile Ser Pro Val Leu Leu Ala Ile 275 280 285 gcg att ggc gtg aag atg agt tca cca ggc cca gtc att ttc aaa cag 912 Ala Ile Gly Val Lys Met Ser Ser Pro Gly Pro Val Ile Phe Lys Gln 290 295 300 cgc cgt tat ggg ctt gat ggc gaa gag atc ctt gtc tac aaa ttc cgc 960 Arg Arg Tyr Gly Leu Asp Gly Glu Glu Ile Leu Val Tyr Lys Phe Arg 305 310 315 320 tcc atg acg gta tgc gaa gat ggc gca aaa gtg acg caa gcg acg aaa 1008 Ser Met Thr Val Cys Glu Asp Gly Ala Lys Val Thr Gln Ala Thr Lys 325 330 335 aat gac cag cgc acc acc aag ttt ggc gcc ttc ctg cgc cgc aac tcg 1056 Asn Asp Gln Arg Thr Thr Lys Phe Gly Ala Phe Leu Arg Arg Asn Ser 340 345 350 ctg gat gaa ctg ccg cag ttc atc aat gtg ctg caa ggg cgt atg agt 1104 Leu Asp Glu Leu Pro Gln Phe Ile Asn Val Leu Gln Gly Arg Met Ser 355 360 365 gtc gtg ggt ccc cgc cct cac gcc gtc tcc cac aac gag atg tac cgc 1152 Val Val Gly Pro Arg Pro His Ala Val Ser His Asn Glu Met Tyr Arg 370 375 380 aag ctg atc aaa ggc tac atg atc cgg cac aag gta aaa cct ggc att 1200 Lys Leu Ile Lys Gly Tyr Met Ile Arg His Lys Val Lys Pro Gly Ile 385 390 395 400 aca ggc tgg gcg caa gtg aat ggc ctg cgc ggg gaa act gaa acc ctg 1248 Thr Gly Trp Ala Gln Val Asn Gly Leu Arg Gly Glu Thr Glu Thr Leu 405 410 415 gac aaa atg aag gca cgc atc gac tac gac atc gac tat ttg cgt aac 1296 Asp Lys Met Lys Ala Arg Ile Asp Tyr Asp Ile Asp Tyr Leu Arg Asn 420 425 430 tgg acg ccc aaa ctg gac atg tac atc att tat aaa aca gtc agc gta 1344 Trp Thr Pro Lys Leu Asp Met Tyr Ile Ile Tyr Lys Thr Val Ser Val 435 440 445 gtg ttt acc ggt gag aaa aac gct tac tag 1374 Val Phe Thr Gly Glu Lys Asn Ala Tyr 450 455 <210> 4 <211> 457 <212> PRT <213> Methylobacillus sp. <400> 4 Met Ala Leu Pro Leu His Val Thr Ile Phe Cys Thr Val Leu Lys Pro 1 5 10 15 Cys Leu Ile Arg Leu Ser Ser Ser Phe His Cys Gly Ser Trp Arg Phe 20 25 30 Val Tyr Glu Asn Asp Leu Pro Pro His Tyr Leu Ile Met Ser Leu Ile 35 40 45 Leu Phe Ser Leu Met Phe Pro Ser Thr Thr Lys Ile Ser Gln Pro Ile 50 55 60 Ser Ser Val Ile Gln Asn Thr Leu Leu Ala Trp Phe Val Leu Ala Gly 65 70 75 80 Leu Leu Met Ala Phe Gly Tyr Ala Ser Glu Tyr Ile Tyr Ile Phe Pro 85 90 95 Lys Ala Ser Ile Thr Leu Trp Leu Trp Leu Thr Pro Thr Leu Leu Ile 100 105 110 Ala Ala Thr Leu Gly Leu Arg Met Ala Ala Pro Leu Leu Ile Lys Met 115 120 125 Gln Gly Pro Met Arg Arg Ala Val Ile Ala Gly Met Asn Glu Gln Gly 130 135 140 Leu Ala Leu Ala Glu Arg Leu Gln Arg Ser His Tyr His Pro Thr Glu 145 150 155 160 Leu Gln Gly Phe Phe Glu Asp Arg Ser Val Asp Arg Leu Asn Ser Glu 165 170 175 Leu His Tyr Pro Ile Leu Gly Arg Ile Asp Ser Met Ala Glu Tyr Val 180 185 190 Lys Glu His His Ile Asn Thr Ile Tyr Leu Ser Leu Pro Met Ala Ser 195 200 205 Gln Pro Arg Ile Met Lys Leu Leu Asp Asp Leu Lys Asp Thr Thr Ala 210 215 220 Ser Ile Tyr Phe Val Pro Asp Ile Phe Met Thr Asp Leu Ile Gln Gly 225 230 235 240 Arg Val Asp Gln Val Glu Asn Ile Pro Val Val Ser Val Cys Glu Thr 245 250 255 Pro Phe Thr Gly Phe Asp Gly Leu Leu Lys Arg Ser Ala Asp Ile Ala 260 265 270 Phe Ser Leu Leu Ile Leu Ile Leu Ile Ser Pro Val Leu Leu Ala Ile 275 280 285 Ala Ile Gly Val Lys Met Ser Ser Pro Gly Pro Val Ile Phe Lys Gln 290 295 300 Arg Arg Tyr Gly Leu Asp Gly Glu Glu Ile Leu Val Tyr Lys Phe Arg 305 310 315 320 Ser Met Thr Val Cys Glu Asp Gly Ala Lys Val Thr Gln Ala Thr Lys 325 330 335 Asn Asp Gln Arg Thr Thr Lys Phe Gly Ala Phe Leu Arg Arg Asn Ser 340 345 350 Leu Asp Glu Leu Pro Gln Phe Ile Asn Val Leu Gln Gly Arg Met Ser 355 360 365 Val Val Gly Pro Arg Pro His Ala Val Ser His Asn Glu Met Tyr Arg 370 375 380 Lys Leu Ile Lys Gly Tyr Met Ile Arg His Lys Val Lys Pro Gly Ile 385 390 395 400 Thr Gly Trp Ala Gln Val Asn Gly Leu Arg Gly Glu Thr Glu Thr Leu 405 410 415 Asp Lys Met Lys Ala Arg Ile Asp Tyr Asp Ile Asp Tyr Leu Arg Asn 420 425 430 Trp Thr Pro Lys Leu Asp Met Tyr Ile Ile Tyr Lys Thr Val Ser Val 435 440 445 Val Phe Thr Gly Glu Lys Asn Ala Tyr 450 455 <210> 5 <211> 1011 <212> DNA <213> Methylobacillus sp. <220> <221> CDS <222> (1)..(1011) <400> 5 atg tat cct cag cag gga aaa acc agc gtc cct cgt cga cgg ctt cgg 48 Met Tyr Pro Gln Gln Gly Lys Thr Ser Val Pro Arg Arg Arg Leu Arg 1 5 10 15 ccg ccg gga tgt cat gaa cac caa gga att ttc gac atg aac ttc act 96 Pro Pro Gly Cys His Glu His Gln Gly Ile Phe Asp Met Asn Phe Thr 20 25 30 tcg gcc cat ttc tgc aat cga gta tta ggc aag gcc agc aag ctg att 144 Ser Ala His Phe Cys Asn Arg Val Leu Gly Lys Ala Ser Lys Leu Ile 35 40 45 caa cgt tcg ttc atc cct gtg ggc atc cag tct gct gtt cat cgc gcc 192 Gln Arg Ser Phe Ile Pro Val Gly Ile Gln Ser Ala Val His Arg Ala 50 55 60 agg att ggc att gtc cag cat tac ctc acc caa caa tac ggc tcg ctt 240 Arg Ile Gly Ile Val Gln His Tyr Leu Thr Gln Gln Tyr Gly Ser Leu 65 70 75 80 atc aac gca tac cag cct ctg gtg aaa gac ccc gca gaa cta aac ctg 288 Ile Asn Ala Tyr Gln Pro Leu Val Lys Asp Pro Ala Glu Leu Asn Leu 85 90 95 cct gct gac aag atc atc tgg gta tgc tgg cta cag ggc ctg gac cac 336 Pro Ala Asp Lys Ile Ile Trp Val Cys Trp Leu Gln Gly Leu Asp His 100 105 110 gct cca gag ata gtg aaa aaa tgc att gcc aac ctc cag ttg ttt cac 384 Ala Pro Glu Ile Val Lys Lys Cys Ile Ala Asn Leu Gln Leu Phe His 115 120 125 ggt gag gac tgc act att cat ctg ata acg ctg gag aat tat aaa aac 432 Gly Glu Asp Cys Thr Ile His Leu Ile Thr Leu Glu Asn Tyr Lys Asn 130 135 140 ttc gtg acg ctc cca aga cat att gag gag aag ttc gaa aag aaa ctc 480 Phe Val Thr Leu Pro Arg His Ile Glu Glu Lys Phe Glu Lys Lys Leu 145 150 155 160 atg aag cca gcg cat ttt tcc gat gtg cta cgg cta tgt tta ttg gca 528 Met Lys Pro Ala His Phe Ser Asp Val Leu Arg Leu Cys Leu Leu Ala 165 170 175 aaa cac ggc ggt gcg tgg ata gac tcc acc gta ctc atc ctg aag aaa 576 Lys His Gly Gly Ala Trp Ile Asp Ser Thr Val Leu Ile Leu Lys Lys 180 185 190 ctg cct gat gac gtt ttc aat gaa caa ttt ttt aca ctg aaa agt cac 624 Leu Pro Asp Asp Val Phe Asn Glu Gln Phe Phe Thr Leu Lys Ser His 195 200 205 tcc tac tca acc ata tca agc att tcc ctg ggt aag tgg acc act ttt 672 Ser Tyr Ser Thr Ile Ser Ser Ile Ser Leu Gly Lys Trp Thr Thr Phe 210 215 220 ttt ctc cag gcc agg cgc ggg tac acc cct gtt tta ttc ttg cgg gac 720 Phe Leu Gln Ala Arg Arg Gly Tyr Thr Pro Val Leu Phe Leu Arg Asp 225 230 235 240 ctc ctt att cag tat tgg caa ggc cat gat aaa gag ttg gat tat ttt 768 Leu Leu Ile Gln Tyr Trp Gln Gly His Asp Lys Glu Leu Asp Tyr Phe 245 250 255 ctt ttc gac cat gcc atc agc atc gcc tat caa cac ttc cca gag ttt 816 Leu Phe Asp His Ala Ile Ser Ile Ala Tyr Gln His Phe Pro Glu Phe 260 265 270 aaa tac cag gta gat cac ctg ggt tat ttt ggc aat cat cgc cac cta 864 Lys Tyr Gln Val Asp His Leu Gly Tyr Phe Gly Asn His Arg His Leu 275 280 285 tta atg cca tta cta ttg acc gaa tat agc gca gaa gcc gcc agc ccc 912 Leu Met Pro Leu Leu Leu Thr Glu Tyr Ser Ala Glu Ala Ala Ser Pro 290 295 300 atc aac gaa gat ccg gtg cag ata tat aaa ttg acc tac aag atc gac 960 Ile Asn Glu Asp Pro Val Gln Ile Tyr Lys Leu Thr Tyr Lys Ile Asp 305 310 315 320 tca acg cac act gtt ccg cag cat tcg ttt tat cag cat tac att aag 1008 Ser Thr His Thr Val Pro Gln His Ser Phe Tyr Gln His Tyr Ile Lys 325 330 335 tag 1011 <210> 6 <211> 336 <212> PRT <213> Methylobacillus sp. <400> 6 Met Tyr Pro Gln Gln Gly Lys Thr Ser Val Pro Arg Arg Arg Leu Arg 1 5 10 15 Pro Pro Gly Cys His Glu His Gln Gly Ile Phe Asp Met Asn Phe Thr 20 25 30 Ser Ala His Phe Cys Asn Arg Val Leu Gly Lys Ala Ser Lys Leu Ile 35 40 45 Gln Arg Ser Phe Ile Pro Val Gly Ile Gln Ser Ala Val His Arg Ala 50 55 60 Arg Ile Gly Ile Val Gln His Tyr Leu Thr Gln Gln Tyr Gly Ser Leu 65 70 75 80 Ile Asn Ala Tyr Gln Pro Leu Val Lys Asp Pro Ala Glu Leu Asn Leu 85 90 95 Pro Ala Asp Lys Ile Ile Trp Val Cys Trp Leu Gln Gly Leu Asp His 100 105 110 Ala Pro Glu Ile Val Lys Lys Cys Ile Ala Asn Leu Gln Leu Phe His 115 120 125 Gly Glu Asp Cys Thr Ile His Leu Ile Thr Leu Glu Asn Tyr Lys Asn 130 135 140 Phe Val Thr Leu Pro Arg His Ile Glu Glu Lys Phe Glu Lys Lys Leu 145 150 155 160 Met Lys Pro Ala His Phe Ser Asp Val Leu Arg Leu Cys Leu Leu Ala 165 170 175 Lys His Gly Gly Ala Trp Ile Asp Ser Thr Val Leu Ile Leu Lys Lys 180 185 190 Leu Pro Asp Asp Val Phe Asn Glu Gln Phe Phe Thr Leu Lys Ser His 195 200 205 Ser Tyr Ser Thr Ile Ser Ser Ile Ser Leu Gly Lys Trp Thr Thr Phe 210 215 220 Phe Leu Gln Ala Arg Arg Gly Tyr Thr Pro Val Leu Phe Leu Arg Asp 225 230 235 240 Leu Leu Ile Gln Tyr Trp Gln Gly His Asp Lys Glu Leu Asp Tyr Phe 245 250 255 Leu Phe Asp His Ala Ile Ser Ile Ala Tyr Gln His Phe Pro Glu Phe 260 265 270 Lys Tyr Gln Val Asp His Leu Gly Tyr Phe Gly Asn His Arg His Leu 275 280 285 Leu Met Pro Leu Leu Leu Thr Glu Tyr Ser Ala Glu Ala Ala Ser Pro 290 295 300 Ile Asn Glu Asp Pro Val Gln Ile Tyr Lys Leu Thr Tyr Lys Ile Asp 305 310 315 320 Ser Thr His Thr Val Pro Gln His Ser Phe Tyr Gln His Tyr Ile Lys 325 330 335 <210> 7 <211> 3690 <212> DNA <213> Methylobacillus sp. <400> 7 tgtatggact gtagagggtg acaacaatag tccaaaagaa ctaccactga tgtaggcaaa 60 agttttatca tagtgacagc cgtcacatac aagaatacgc taggattcca cgcttgatcc 120 aaatataaaa tggccaccta caaacacatg agcaaatatc cttttcagca tgtcccacaa 180 tttgagtgga ggatctactg ctggacagca ctggcgccct tgcagctggc ccaataattg 240 ctctcaaaga caagtgtttg caacgtaaat gattttttat atttgaacgg ctatgtttat 300 taccaaagaa ctaaccgata ttgagaaggc acagcttatt gacttgatgc acgagtcttt 360 gcgaatccgc tcgcacttcg agttcttcct ttggatgcaa ggcaagcttc agcagttttt 420 accgcatgaa atcatgatca ccgcctgggg cgatttctcc atgggcgtca tctatttcaa 480 tattgtgtcg ccgctccccg gagtacgtac cgagaagata tcaagtggcg atctgaatcc 540 attgctcaaa cggcttttca attactggct tagtcatacc aaagccccgt ttaccttatc 600 ggcggagaat ggcgtattcc aggactgcga tgtactgcca gcggaagtga acagccatct 660 gaaaaacatg aagtcagcgc tggtgcacgg catcaaggat ttccgtgggc gccatgactg 720 cctttacata ttgctgaatt caacccccac catgccgaat acctcacggt acatgctgga 780 gtcattgcta ccttacattg acagcgcgct caggcaactg gagcatttgc ctgtgcagca 840 cccggcagat aaagaagcca gtgaagatct gcacgaagaa gaaaacgaag cgctggagca 900 gctttcttcc cgtgagatcg aaatcatgga atgggtgcgc aacggcaaaa ccaatcagga 960 aatcggcatg atcctggaca ttagttcatt taccgtcaaa aaccatttgc aacgcatatt 1020 taaaaagctt gatgttctga atagagcgca agccgtttcc aaattcaagc agactccacg 1080 ggcctcatga aaccaatatt agccgccacc aagccgactt cacgaaaaac cttcgctggc 1140 attacctttg cacgtgacaa tattttgcac ggtgttgaag ccctgcttga tccgcttgtc 1200 gtcgtcattt cactgtggat cgtggcgttt tgtttatgaa aacgatctgc cacctcacta 1260 cctgatcatg tcgctgattc tgttttcgct gatgttcccc agcaccacca aaatcagcca 1320 gcccatcagt tcagttattc aaaacacgtt gctggcatgg tttgttctgg ccgggctatt 1380 gatggcgttt ggatatgctt ctgaatacat ctatatcttc cccaaagcct cgattacatt 1440 atggctctgg ctgaccccta ccctgcttat cgcagcaacc ctcggtttac gcatggcggc 1500 gccgctactc atcaagatgc aagggcctat gcgacgggcg gtgattgcgg gcatgaacga 1560 acagggcctg gccctggcag aacgcttgca gcgtagccac taccatccaa cagagttgca 1620 gggcttcttt gaggatcgca gtgtggaccg actcaattca gaattgcatt accccattct 1680 tggccgcatc gacagcatgg cggagtatgt gaaagagcat cacatcaaca ccatctacct 1740 ttcactgccc atggcgagcc aaccacgcat catgaagttg ttagatgatt tgaaagacac 1800 cacggcgtcc atttactttg tcccggatat tttcatgaca gatctgatac aagggcgtgt 1860 cgatcaggta gaaaacatcc cggtggtcag cgtatgtgaa accccattta ccggctttga 1920 cggtctgttg aaacgctcag ctgatatcgc tttctcgttg ctgatcctga tccttatctc 1980 gccggtatta ttggcgatcg cgattggcgt gaagatgagt tcaccaggcc cagtcatttt 2040 caaacagcgc cgttatgggc ttgatggcga agagatcctt gtctacaaat tccgctccat 2100 gacggtatgc gaagatggcg caaaagtgac gcaagcgacg aaaaatgacc agcgcaccac 2160 caagtttggc gccttcctgc gccgcaactc gctggatgaa ctgccgcagt tcatcaatgt 2220 gctgcaaggg cgtatgagtg tcgtgggtcc ccgccctcac gccgtctccc acaacgagat 2280 gtaccgcaag ctgatcaaag gctacatgat ccggcacaag gtaaaacctg gcattacagg 2340 ctgggcgcaa gtgaatggcc tgcgcgggga aactgaaacc ctggacaaaa tgaaggcacg 2400 catcgactac gacatcgact atttgcgtaa ctggacgccc aaactggaca tgtacatcat 2460 ttataaaaca gtcagcgtag tgtttaccgg tgagaaaaac gcttactaga tagtcttgtg 2520 cattcgtgca tatcagattg agcgagctgg acgccattct agaaccaagg aatgtatcct 2580 cagcagggaa aaaccagcgt ccctcgtcga cggcttcggc cgccgggatg tcatgaacac 2640 caaggaattt tcgacatgaa cttcacttcg gcccatttct gcaatcgagt attaggcaag 2700 gccagcaagc tgattcaacg ttcgttcatc cctgtgggca tccagtctgc tgttcatcgc 2760 gccaggattg gcattgtcca gcattacctc acccaacaat acggctcgct tatcaacgca 2820 taccagcctc tggtgaaaga ccccgcagaa ctaaacctgc ctgctgacaa gatcatctgg 2880 gtatgctggc tacagggcct ggaccacgct ccagagatag tgaaaaaatg cattgccaac 2940 ctccagttgt ttcacggtga ggactgcact attcatctga taacgctgga gaattataaa 3000 aacttcgtga cgctcccaag acatattgag gagaagttcg aaaagaaact catgaagcca 3060 gcgcattttt ccgatgtgct acggctatgt ttattggcaa aacacggcgg tgcgtggata 3120 gactccaccg tactcatcct gaagaaactg cctgatgacg ttttcaatga acaatttttt 3180 acactgaaaa gtcactccta ctcaaccata tcaagcattt ccctgggtaa gtggaccact 3240 ttttttctcc aggccaggcg cgggtacacc cctgttttat tcttgcggga cctccttatt 3300 cagtattggc aaggccatga taaagagttg gattattttc ttttcgacca tgccatcagc 3360 atcgcctatc aacacttccc agagtttaaa taccaggtag atcacctggg ttattttggc 3420 aatcatcgcc acctattaat gccattacta ttgaccgaat atagcgcaga agccgccagc 3480 cccatcaacg aagatccggt gcagatatat aaattgacct acaagatcga ctcaacgcac 3540 actgttccgc agcattcgtt ttatcagcat tacattaagt agctcacttt aatatccgga 3600 atatccgcga caccattttc aaatcactcc gcagaattca aggcgaaaaa aaaccccgca 3660 tttgcggggt tttttattac ttaagcagct 3690 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:PCR primer <400> 8 aacgaatgct gcggaacagt 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:PCR primer <400> 9 accttacatt gacagcgcgc 20 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:PCR primer <400> 10 gcccaataat tgctctcaaa g 21 <210> 11 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:PCR primer <400> 11 ttggtggcgg ctaatattg 19[Sequence list] SEQUENCE LISTING <110> Ajinomoto Co., Inc. <120> <130> <160> 11 <170> PatentIn Ver. 2.1 <210> 1 <211> 798 <212> DNA <213> Methylobacillus sp. <220> <221> CDS <222> (1) .. (798) <400> 1 atg ttt att acc aaa gaa cta acc gat att gag aag gca cag ctt att 48 Met Phe Ile Thr Lys Glu Leu Thr Asp Ile Glu Lys Ala Gln Leu Ile 1 5 10 15 gac ttg atg cac gag tct ttg cga atc cgc tcg cac ttc gag ttc ttc 96 Asp Leu Met His Glu Ser Leu Arg Ile Arg Ser His Phe Glu Phe Phe 20 25 30 ctt tgg atg caa ggc aag ctt cag cag ttt tta ccg cat gaa atc atg 144 Leu Trp Met Gln Gly Lys Leu Gln Gln Phe Leu Pro His Glu Ile Met 35 40 45 atc acc gcc tgg ggc gat ttc tcc atg ggc gtc atc tat ttc aat att 192 Ile Thr Ala Trp Gly Asp Phe Ser Met Gly Val Ile Tyr Phe Asn Ile 50 55 60 gtg tcg ccg ctc ccc gga gta cgt acc gag aag ata tca agt ggc gat 240 Val Ser Pro Leu Pro Gly Val Arg Thr Glu Lys Ile Ser Ser Gly Asp 65 70 75 80 ctg aat cca ttg ctc aaa cgg ctt ttc aat tac tgg ctt agt cat acc 288 Leu Asn Pro Leu Leu Lys Arg Leu Phe Asn Tyr Trp Leu Ser His Thr 85 90 95 aaa gcc ccg ttt acc tta tcg gcg gag aat ggc gta ttc cag gac tgc 336 Lys Ala Pro Phe Thr Leu Ser Ala Glu Asn Gly Val Phe Gln Asp Cys 100 105 110 gat gta ctg cca gcg gaa gtg aac agc cat ctg aaa aac atg aag tca 384 Asp Val Leu Pro Ala Glu Val Asn Ser His Leu Lys Asn Met Lys Ser 115 120 125 gcg ctg gtg cac ggc atc aag gat ttc cgt ggg cgc cat gac tgc ctt 432 Ala Leu Val His Gly Ile Lys Asp Phe Arg Gly Arg His Asp Cys Leu 130 135 140 tac ata ttg ctg aat tca acc ccc acc atg ccg aat acc tca cgg tac 480 Tyr Ile Leu Leu Asn Ser Thr Pro Thr Met Pro Asn Thr Ser Arg Tyr 145 150 155 160 atg ctg gag tca ttg cta cct tac att gac agc gcg ctc agg caa ctg 528 Met Leu Glu Ser Leu Leu Pro Tyr Ile Asp Ser Ala Leu Arg Gln Leu 165 170 175 gag cat ttg cct gtg cag cac ccg gca gat aaa gaa gcc agt gaa gat 576 Glu His Leu Pro Val Gln His Pro Ala Asp Lys Glu Ala Ser Glu Asp 180 185 190 ctg cac gaa gaa gaa aac gaa gcg ctg gag cag ctt tct tcc cgt gag 624 Leu His Glu Glu Glu Asn Glu Ala Leu Glu Gln Leu Ser Ser Arg Glu 195 200 205 atc gaa atc atg gaa tgg gtg cgc aac ggc aaa acc aat cag gaa atc 672 Ile Glu Ile Met Glu Trp Val Arg Asn Gly Lys Thr Asn Gln Glu Ile 210 215 220 ggc atg atc ctg gac att agt tca ttt acc gtc aaa aac cat ttg caa 720 Gly Met Ile Leu Asp Ile Ser Ser Phe Thr Val Lys Asn His Leu Gln 225 230 235 240 cgc ata ttt aaa aag ctt gat gtt ctg aat aga gcg caa gcc gtt tcc 768 Arg Ile Phe Lys Lys Leu Asp Val Leu Asn Arg Ala Gln Ala Val Ser 245 250 255 aaa ttc aag cag act cca cgg gcc tca tga 798 Lys Phe Lys Gln Thr Pro Arg Ala Ser 260 265 <210> 2 <211> 265 <212> PRT <213> Methylobacillus sp. <400> 2 Met Phe Ile Thr Lys Glu Leu Thr Asp Ile Glu Lys Ala Gln Leu Ile 1 5 10 15 Asp Leu Met His Glu Ser Leu Arg Ile Arg Ser His Phe Glu Phe Phe 20 25 30 Leu Trp Met Gln Gly Lys Leu Gln Gln Phe Leu Pro His Glu Ile Met 35 40 45 Ile Thr Ala Trp Gly Asp Phe Ser Met Gly Val Ile Tyr Phe Asn Ile 50 55 60 Val Ser Pro Leu Pro Gly Val Arg Thr Glu Lys Ile Ser Ser Gly Asp 65 70 75 80 Leu Asn Pro Leu Leu Lys Arg Leu Phe Asn Tyr Trp Leu Ser His Thr 85 90 95 Lys Ala Pro Phe Thr Leu Ser Ala Glu Asn Gly Val Phe Gln Asp Cys 100 105 110 Asp Val Leu Pro Ala Glu Val Asn Ser His Leu Lys Asn Met Lys Ser 115 120 125 Ala Leu Val His Gly Ile Lys Asp Phe Arg Gly Arg His Asp Cys Leu 130 135 140 Tyr Ile Leu Leu Asn Ser Thr Pro Thr Met Pro Asn Thr Ser Arg Tyr 145 150 155 160 Met Leu Glu Ser Leu Leu Pro Tyr Ile Asp Ser Ala Leu Arg Gln Leu 165 170 175 Glu His Leu Pro Val Gln His Pro Ala Asp Lys Glu Ala Ser Glu Asp 180 185 190 Leu His Glu Glu Glu Asn Glu Ala Leu Glu Gln Leu Ser Ser Arg Glu 195 200 205 Ile Glu Ile Met Glu Trp Val Arg Asn Gly Lys Thr Asn Gln Glu Ile 210 215 220 Gly Met Ile Leu Asp Ile Ser Ser Phe Thr Val Lys Asn His Leu Gln 225 230 235 240 Arg Ile Phe Lys Lys Leu Asp Val Leu Asn Arg Ala Gln Ala Val Ser 245 250 255 Lys Phe Lys Gln Thr Pro Arg Ala Ser 260 265 <210> 3 <211> 1374 <212> DNA <213> Methylobacillus sp. <220> <221> CDS <222> (1) .. (1374) <400> 3 ctg gca tta cct ttg cac gtg aca ata ttt tgc acg gtg ttg aag ccc 48 Met Ala Leu Pro Leu His Val Thr Ile Phe Cys Thr Val Leu Lys Pro 1 5 10 15 tgc ttg atc cgc ttg tcg tcg tca ttt cac tgt gga tcg tgg cgt ttt 96 Cys Leu Ile Arg Leu Ser Ser Ser Phe His Cys Gly Ser Trp Arg Phe 20 25 30 gtt tat gaa aac gat ctg cca cct cac tac ctg atc atg tcg ctg att 144 Val Tyr Glu Asn Asp Leu Pro Pro His Tyr Leu Ile Met Ser Leu Ile 35 40 45 ctg ttt tcg ctg atg ttc ccc agc acc acc aaa atc agc cag ccc atc 192 Leu Phe Ser Leu Met Phe Pro Ser Thr Thr Lys Ile Ser Gln Pro Ile 50 55 60 agt tca gtt att caa aac acg ttg ctg gca tgg ttt gtt ctg gcc ggg 240 Ser Ser Val Ile Gln Asn Thr Leu Leu Ala Trp Phe Val Leu Ala Gly 65 70 75 80 cta ttg atg gcg ttt gga tat gct tct gaa tac atc tat atc ttc ccc 288 Leu Leu Met Ala Phe Gly Tyr Ala Ser Glu Tyr Ile Tyr Ile Phe Pro 85 90 95 aaa gcc tcg att aca tta tgg ctc tgg ctg acc cct acc ctg ctt atc 336 Lys Ala Ser Ile Thr Leu Trp Leu Trp Leu Thr Pro Thr Leu Leu Ile 100 105 110 gca gca acc ctc ggt tta cgc atg gcg gcg ccg cta ctc atc aag atg 384 Ala Ala Thr Leu Gly Leu Arg Met Ala Ala Pro Leu Leu Ile Lys Met 115 120 125 caa ggg cct atg cga cgg gcg gtg att gcg ggc atg aac gaa cag ggc 432 Gln Gly Pro Met Arg Arg Ala Val Ile Ala Gly Met Asn Glu Gln Gly 130 135 140 ctg gcc ctg gca gaa cgc ttg cag cgt agc cac tac cat cca aca gag 480 Leu Ala Leu Ala Glu Arg Leu Gln Arg Ser His Tyr His Pro Thr Glu 145 150 155 160 ttg cag ggc ttc ttt gag gat cgc agt gtg gac cga ctc aat tca gaa 528 Leu Gln Gly Phe Phe Glu Asp Arg Ser Val Asp Arg Leu Asn Ser Glu 165 170 175 ttg cat tac ccc att ctt ggc cgc atc gac agc atg gcg gag tat gtg 576 Leu His Tyr Pro Ile Leu Gly Arg Ile Asp Ser Met Ala Glu Tyr Val 180 185 190 aaa gag cat cac atc aac acc atc tac ctt tca ctg ccc atg gcg agc 624 Lys Glu His His Ile Asn Thr Ile Tyr Leu Ser Leu Pro Met Ala Ser 195 200 205 caa cca cgc atc atg aag ttg tta gat gat ttg aaa gac acc acg gcg 672 Gln Pro Arg Ile Met Lys Leu Leu Asp Asp Leu Lys Asp Thr Thr Ala 210 215 220 tcc att tac ttt gtc ccg gat att ttc atg aca gat ctg ata caa ggg 720 Ser Ile Tyr Phe Val Pro Asp Ile Phe Met Thr Asp Leu Ile Gln Gly 225 230 235 240 cgt gtc gat cag gta gaa aac atc ccg gtg gtc agc gta tgt gaa acc 768 Arg Val Asp Gln Val Glu Asn Ile Pro Val Val Ser Val Cys Glu Thr 245 250 255 cca ttt acc ggc ttt gac ggt ctg ttg aaa cgc tca gct gat atc gct 816 Pro Phe Thr Gly Phe Asp Gly Leu Leu Lys Arg Ser Ala Asp Ile Ala 260 265 270 ttc tcg ttg ctg atc ctg atc ctt atc tcg ccg gta tta ttg gcg atc 864 Phe Ser Leu Leu Ile Leu Ile Leu Ile Ser Pro Val Leu Leu Ala Ile 275 280 285 gcg att ggc gtg aag atg agt tca cca ggc cca gtc att ttc aaa cag 912 Ala Ile Gly Val Lys Met Ser Ser Pro Gly Pro Val Ile Phe Lys Gln 290 295 300 cgc cgt tat ggg ctt gat ggc gaa gag atc ctt gtc tac aaa ttc cgc 960 Arg Arg Tyr Gly Leu Asp Gly Glu Glu Ile Leu Val Tyr Lys Phe Arg 305 310 315 320 tcc atg acg gta tgc gaa gat ggc gca aaa gtg acg caa gcg acg aaa 1008 Ser Met Thr Val Cys Glu Asp Gly Ala Lys Val Thr Gln Ala Thr Lys 325 330 335 aat gac cag cgc acc acc aag ttt ggc gcc ttc ctg cgc cgc aac tcg 1056 Asn Asp Gln Arg Thr Thr Lys Phe Gly Ala Phe Leu Arg Arg Asn Ser 340 345 350 ctg gat gaa ctg ccg cag ttc atc aat gtg ctg caa ggg cgt atg agt 1104 Leu Asp Glu Leu Pro Gln Phe Ile Asn Val Leu Gln Gly Arg Met Ser 355 360 365 gtc gtg ggt ccc cgc cct cac gcc gtc tcc cac aac gag atg tac cgc 1152 Val Val Gly Pro Arg Pro His Ala Val Ser His Asn Glu Met Tyr Arg 370 375 380 aag ctg atc aaa ggc tac atg atc cgg cac aag gta aaa cct ggc att 1200 Lys Leu Ile Lys Gly Tyr Met Ile Arg His Lys Val Lys Pro Gly Ile 385 390 395 400 aca ggc tgg gcg caa gtg aat ggc ctg cgc ggg gaa act gaa acc ctg 1248 Thr Gly Trp Ala Gln Val Asn Gly Leu Arg Gly Glu Thr Glu Thr Leu 405 410 415 gac aaa atg aag gca cgc atc gac tac gac atc gac tat ttg cgt aac 1296 Asp Lys Met Lys Ala Arg Ile Asp Tyr Asp Ile Asp Tyr Leu Arg Asn 420 425 430 tgg acg ccc aaa ctg gac atg tac atc att tat aaa aca gtc agc gta 1344 Trp Thr Pro Lys Leu Asp Met Tyr Ile Ile Tyr Lys Thr Val Ser Val 435 440 445 gtg ttt acc ggt gag aaa aac gct tac tag 1374 Val Phe Thr Gly Glu Lys Asn Ala Tyr 450 455 <210> 4 <211> 457 <212> PRT <213> Methylobacillus sp. <400> 4 Met Ala Leu Pro Leu His Val Thr Ile Phe Cys Thr Val Leu Lys Pro 1 5 10 15 Cys Leu Ile Arg Leu Ser Ser Ser Phe His Cys Gly Ser Trp Arg Phe 20 25 30 Val Tyr Glu Asn Asp Leu Pro Pro His Tyr Leu Ile Met Ser Leu Ile 35 40 45 Leu Phe Ser Leu Met Phe Pro Ser Thr Thr Lys Ile Ser Gln Pro Ile 50 55 60 Ser Ser Val Ile Gln Asn Thr Leu Leu Ala Trp Phe Val Leu Ala Gly 65 70 75 80 Leu Leu Met Ala Phe Gly Tyr Ala Ser Glu Tyr Ile Tyr Ile Phe Pro 85 90 95 Lys Ala Ser Ile Thr Leu Trp Leu Trp Leu Thr Pro Thr Leu Leu Ile 100 105 110 Ala Ala Thr Leu Gly Leu Arg Met Ala Ala Pro Leu Leu Ile Lys Met 115 120 125 Gln Gly Pro Met Arg Arg Ala Val Ile Ala Gly Met Asn Glu Gln Gly 130 135 140 Leu Ala Leu Ala Glu Arg Leu Gln Arg Ser His Tyr His Pro Thr Glu 145 150 155 160 Leu Gln Gly Phe Phe Glu Asp Arg Ser Val Asp Arg Leu Asn Ser Glu 165 170 175 Leu His Tyr Pro Ile Leu Gly Arg Ile Asp Ser Met Ala Glu Tyr Val 180 185 190 Lys Glu His His Ile Asn Thr Ile Tyr Leu Ser Leu Pro Met Ala Ser 195 200 205 Gln Pro Arg Ile Met Lys Leu Leu Asp Asp Leu Lys Asp Thr Thr Ala 210 215 220 Ser Ile Tyr Phe Val Pro Asp Ile Phe Met Thr Asp Leu Ile Gln Gly 225 230 235 240 Arg Val Asp Gln Val Glu Asn Ile Pro Val Val Ser Val Cys Glu Thr 245 250 255 Pro Phe Thr Gly Phe Asp Gly Leu Leu Lys Arg Ser Ala Asp Ile Ala 260 265 270 Phe Ser Leu Leu Ile Leu Ile Leu Ile Ser Pro Val Leu Leu Ala Ile 275 280 285 Ala Ile Gly Val Lys Met Ser Ser Pro Gly Pro Val Ile Phe Lys Gln 290 295 300 Arg Arg Tyr Gly Leu Asp Gly Glu Glu Ile Leu Val Tyr Lys Phe Arg 305 310 315 320 Ser Met Thr Val Cys Glu Asp Gly Ala Lys Val Thr Gln Ala Thr Lys 325 330 335 Asn Asp Gln Arg Thr Thr Lys Phe Gly Ala Phe Leu Arg Arg Asn Ser 340 345 350 Leu Asp Glu Leu Pro Gln Phe Ile Asn Val Leu Gln Gly Arg Met Ser 355 360 365 Val Val Gly Pro Arg Pro His Ala Val Ser His Asn Glu Met Tyr Arg 370 375 380 Lys Leu Ile Lys Gly Tyr Met Ile Arg His Lys Val Lys Pro Gly Ile 385 390 395 400 Thr Gly Trp Ala Gln Val Asn Gly Leu Arg Gly Glu Thr Glu Thr Leu 405 410 415 Asp Lys Met Lys Ala Arg Ile Asp Tyr Asp Ile Asp Tyr Leu Arg Asn 420 425 430 Trp Thr Pro Lys Leu Asp Met Tyr Ile Ile Tyr Lys Thr Val Ser Val 435 440 445 Val Phe Thr Gly Glu Lys Asn Ala Tyr 450 455 <210> 5 <211> 1011 <212> DNA <213> Methylobacillus sp. <220> <221> CDS <222> (1) .. (1011) <400> 5 atg tat cct cag cag gga aaa acc agc gtc cct cgt cga cgg ctt cgg 48 Met Tyr Pro Gln Gln Gly Lys Thr Ser Val Pro Arg Arg Arg Leu Arg 1 5 10 15 ccg ccg gga tgt cat gaa cac caa gga att ttc gac atg aac ttc act 96 Pro Pro Gly Cys His Glu His Gln Gly Ile Phe Asp Met Asn Phe Thr 20 25 30 tcg gcc cat ttc tgc aat cga gta tta ggc aag gcc agc aag ctg att 144 Ser Ala His Phe Cys Asn Arg Val Leu Gly Lys Ala Ser Lys Leu Ile 35 40 45 caa cgt tcg ttc atc cct gtg ggc atc cag tct gct gtt cat cgc gcc 192 Gln Arg Ser Phe Ile Pro Val Gly Ile Gln Ser Ala Val His Arg Ala 50 55 60 agg att ggc att gtc cag cat tac ctc acc caa caa tac ggc tcg ctt 240 Arg Ile Gly Ile Val Gln His Tyr Leu Thr Gln Gln Tyr Gly Ser Leu 65 70 75 80 atc aac gca tac cag cct ctg gtg aaa gac ccc gca gaa cta aac ctg 288 Ile Asn Ala Tyr Gln Pro Leu Val Lys Asp Pro Ala Glu Leu Asn Leu 85 90 95 cct gct gac aag atc atc tgg gta tgc tgg cta cag ggc ctg gac cac 336 Pro Ala Asp Lys Ile Ile Trp Val Cys Trp Leu Gln Gly Leu Asp His 100 105 110 gct cca gag ata gtg aaa aaa tgc att gcc aac ctc cag ttg ttt cac 384 Ala Pro Glu Ile Val Lys Lys Cys Ile Ala Asn Leu Gln Leu Phe His 115 120 125 ggt gag gac tgc act att cat ctg ata acg ctg gag aat tat aaa aac 432 Gly Glu Asp Cys Thr Ile His Leu Ile Thr Leu Glu Asn Tyr Lys Asn 130 135 140 ttc gtg acg ctc cca aga cat att gag gag aag ttc gaa aag aaa ctc 480 Phe Val Thr Leu Pro Arg His Ile Glu Glu Lys Phe Glu Lys Lys Leu 145 150 155 160 atg aag cca gcg cat ttt tcc gat gtg cta cgg cta tgt tta ttg gca 528 Met Lys Pro Ala His Phe Ser Asp Val Leu Arg Leu Cys Leu Leu Ala 165 170 175 aaa cac ggc ggt gcg tgg ata gac tcc acc gta ctc atc ctg aag aaa 576 Lys His Gly Gly Ala Trp Ile Asp Ser Thr Val Leu Ile Leu Lys Lys 180 185 190 ctg cct gat gac gtt ttc aat gaa caa ttt ttt aca ctg aaa agt cac 624 Leu Pro Asp Asp Val Phe Asn Glu Gln Phe Phe Thr Leu Lys Ser His 195 200 205 tcc tac tca acc ata tca agc att tcc ctg ggt aag tgg acc act ttt 672 Ser Tyr Ser Thr Ile Ser Ser Ile Ser Leu Gly Lys Trp Thr Thr Phe 210 215 220 ttt ctc cag gcc agg cgc ggg tac acc cct gtt tta ttc ttg cgg gac 720 Phe Leu Gln Ala Arg Arg Gly Tyr Thr Pro Val Leu Phe Leu Arg Asp 225 230 235 240 ctc ctt att cag tat tgg caa ggc cat gat aaa gag ttg gat tat ttt 768 Leu Leu Ile Gln Tyr Trp Gln Gly His Asp Lys Glu Leu Asp Tyr Phe 245 250 255 ctt ttc gac cat gcc atc agc atc gcc tat caa cac ttc cca gag ttt 816 Leu Phe Asp His Ala Ile Ser Ile Ala Tyr Gln His Phe Pro Glu Phe 260 265 270 aaa tac cag gta gat cac ctg ggt tat ttt ggc aat cat cgc cac cta 864 Lys Tyr Gln Val Asp His Leu Gly Tyr Phe Gly Asn His Arg His Leu 275 280 285 tta atg cca tta cta ttg acc gaa tat agc gca gaa gcc gcc agc ccc 912 Leu Met Pro Leu Leu Leu Thr Glu Tyr Ser Ala Glu Ala Ala Ser Pro 290 295 300 atc aac gaa gat ccg gtg cag ata tat aaa ttg acc tac aag atc gac 960 Ile Asn Glu Asp Pro Val Gln Ile Tyr Lys Leu Thr Tyr Lys Ile Asp 305 310 315 320 tca acg cac act gtt ccg cag cat tcg ttt tat cag cat tac att aag 1008 Ser Thr His Thr Val Pro Gln His Ser Phe Tyr Gln His Tyr Ile Lys 325 330 335 tag 1011 <210> 6 <211> 336 <212> PRT <213> Methylobacillus sp. <400> 6 Met Tyr Pro Gln Gln Gly Lys Thr Ser Val Pro Arg Arg Arg Leu Arg 1 5 10 15 Pro Pro Gly Cys His Glu His Gln Gly Ile Phe Asp Met Asn Phe Thr 20 25 30 Ser Ala His Phe Cys Asn Arg Val Leu Gly Lys Ala Ser Lys Leu Ile 35 40 45 Gln Arg Ser Phe Ile Pro Val Gly Ile Gln Ser Ala Val His Arg Ala 50 55 60 Arg Ile Gly Ile Val Gln His Tyr Leu Thr Gln Gln Tyr Gly Ser Leu 65 70 75 80 Ile Asn Ala Tyr Gln Pro Leu Val Lys Asp Pro Ala Glu Leu Asn Leu 85 90 95 Pro Ala Asp Lys Ile Ile Trp Val Cys Trp Leu Gln Gly Leu Asp His 100 105 110 Ala Pro Glu Ile Val Lys Lys Cys Ile Ala Asn Leu Gln Leu Phe His 115 120 125 Gly Glu Asp Cys Thr Ile His Leu Ile Thr Leu Glu Asn Tyr Lys Asn 130 135 140 Phe Val Thr Leu Pro Arg His Ile Glu Glu Lys Phe Glu Lys Lys Leu 145 150 155 160 Met Lys Pro Ala His Phe Ser Asp Val Leu Arg Leu Cys Leu Leu Ala 165 170 175 Lys His Gly Gly Ala Trp Ile Asp Ser Thr Val Leu Ile Leu Lys Lys 180 185 190 Leu Pro Asp Asp Val Phe Asn Glu Gln Phe Phe Thr Leu Lys Ser His 195 200 205 Ser Tyr Ser Thr Ile Ser Ser Ile Ser Leu Gly Lys Trp Thr Thr Phe 210 215 220 Phe Leu Gln Ala Arg Arg Gly Tyr Thr Pro Val Leu Phe Leu Arg Asp 225 230 235 240 Leu Leu Ile Gln Tyr Trp Gln Gly His Asp Lys Glu Leu Asp Tyr Phe 245 250 255 Leu Phe Asp His Ala Ile Ser Ile Ala Tyr Gln His Phe Pro Glu Phe 260 265 270 Lys Tyr Gln Val Asp His Leu Gly Tyr Phe Gly Asn His Arg His Leu 275 280 285 Leu Met Pro Leu Leu Leu Thr Glu Tyr Ser Ala Glu Ala Ala Ser Pro 290 295 300 Ile Asn Glu Asp Pro Val Gln Ile Tyr Lys Leu Thr Tyr Lys Ile Asp 305 310 315 320 Ser Thr His Thr Val Pro Gln His Ser Phe Tyr Gln His Tyr Ile Lys 325 330 335 <210> 7 <211> 3690 <212> DNA <213> Methylobacillus sp. <400> 7 tgtatggact gtagagggtg acaacaatag tccaaaagaa ctaccactga tgtaggcaaa 60 agttttatca tagtgacagc cgtcacatac aagaatacgc taggattcca cgcttgatcc 120 aaatataaaa tggccaccta caaacacatg agcaaatatc cttttcagca tgtcccacaa 180 tttgagtgga ggatctactg ctggacagca ctggcgccct tgcagctggc ccaataattg 240 ctctcaaaga caagtgtttg caacgtaaat gattttttat atttgaacgg ctatgtttat 300 taccaaagaa ctaaccgata ttgagaaggc acagcttatt gacttgatgc acgagtcttt 360 gcgaatccgc tcgcacttcg agttcttcct ttggatgcaa ggcaagcttc agcagttttt 420 accgcatgaa atcatgatca ccgcctgggg cgatttctcc atgggcgtca tctatttcaa 480 tattgtgtcg ccgctccccg gagtacgtac cgagaagata tcaagtggcg atctgaatcc 540 attgctcaaa cggcttttca attactggct tagtcatacc aaagccccgt ttaccttatc 600 ggcggagaat ggcgtattcc aggactgcga tgtactgcca gcggaagtga acagccatct 660 gaaaaacatg aagtcagcgc tggtgcacgg catcaaggat ttccgtgggc gccatgactg 720 cctttacata ttgctgaatt caacccccac catgccgaat acctcacggt acatgctgga 780 gtcattgcta ccttacattg acagcgcgct caggcaactg gagcatttgc ctgtgcagca 840 cccggcagat aaagaagcca gtgaagatct gcacgaagaa gaaaacgaag cgctggagca 900 gctttcttcc cgtgagatcg aaatcatgga atgggtgcgc aacggcaaaa ccaatcagga 960 aatcggcatg atcctggaca ttagttcatt taccgtcaaa aaccatttgc aacgcatatt 1020 taaaaagctt gatgttctga atagagcgca agccgtttcc aaattcaagc agactccacg 1080 ggcctcatga aaccaatatt agccgccacc aagccgactt cacgaaaaac cttcgctggc 1140 attacctttg cacgtgacaa tattttgcac ggtgttgaag ccctgcttga tccgcttgtc 1200 gtcgtcattt cactgtggat cgtggcgttt tgtttatgaa aacgatctgc cacctcacta 1260 cctgatcatg tcgctgattc tgttttcgct gatgttcccc agcaccacca aaatcagcca 1320 gcccatcagt tcagttattc aaaacacgtt gctggcatgg tttgttctgg ccgggctatt 1380 gatggcgttt ggatatgctt ctgaatacat ctatatcttc cccaaagcct cgattacatt 1440 atggctctgg ctgaccccta ccctgcttat cgcagcaacc ctcggtttac gcatggcggc 1500 gccgctactc atcaagatgc aagggcctat gcgacgggcg gtgattgcgg gcatgaacga 1560 acagggcctg gccctggcag aacgcttgca gcgtagccac taccatccaa cagagttgca 1620 gggcttcttt gaggatcgca gtgtggaccg actcaattca gaattgcatt accccattct 1680 tggccgcatc gacagcatgg cggagtatgt gaaagagcat cacatcaaca ccatctacct 1740 ttcactgccc atggcgagcc aaccacgcat catgaagttg ttagatgatt tgaaagacac 1800 cacggcgtcc atttactttg tcccggatat tttcatgaca gatctgatac aagggcgtgt 1860 cgatcaggta gaaaacatcc cggtggtcag cgtatgtgaa accccattta ccggctttga 1920 cggtctgttg aaacgctcag ctgatatcgc tttctcgttg ctgatcctga tccttatctc 1980 gccggtatta ttggcgatcg cgattggcgt gaagatgagt tcaccaggcc cagtcatttt 2040 caaacagcgc cgttatgggc ttgatggcga agagatcctt gtctacaaat tccgctccat 2100 gacggtatgc gaagatggcg caaaagtgac gcaagcgacg aaaaatgacc agcgcaccac 2160 caagtttggc gccttcctgc gccgcaactc gctggatgaa ctgccgcagt tcatcaatgt 2220 gctgcaaggg cgtatgagtg tcgtgggtcc ccgccctcac gccgtctccc acaacgagat 2280 gtaccgcaag ctgatcaaag gctacatgat ccggcacaag gtaaaacctg gcattacagg 2340 ctgggcgcaa gtgaatggcc tgcgcgggga aactgaaacc ctggacaaaa tgaaggcacg 2400 catcgactac gacatcgact atttgcgtaa ctggacgccc aaactggaca tgtacatcat 2460 ttataaaaca gtcagcgtag tgtttaccgg tgagaaaaac gcttactaga tagtcttgtg 2520 cattcgtgca tatcagattg agcgagctgg acgccattct agaaccaagg aatgtatcct 2580 cagcagggaa aaaccagcgt ccctcgtcga cggcttcggc cgccgggatg tcatgaacac 2640 caaggaattt tcgacatgaa cttcacttcg gcccatttct gcaatcgagt attaggcaag 2700 gccagcaagc tgattcaacg ttcgttcatc cctgtgggca tccagtctgc tgttcatcgc 2760 gccaggattg gcattgtcca gcattacctc acccaacaat acggctcgct tatcaacgca 2820 taccagcctc tggtgaaaga ccccgcagaa ctaaacctgc ctgctgacaa gatcatctgg 2880 gtatgctggc tacagggcct ggaccacgct ccagagatag tgaaaaaatg cattgccaac 2940 ctccagttgt ttcacggtga ggactgcact attcatctga taacgctgga gaattataaa 3000 aacttcgtga cgctcccaag acatattgag gagaagttcg aaaagaaact catgaagcca 3060 gcgcattttt ccgatgtgct acggctatgt ttattggcaa aacacggcgg tgcgtggata 3120 gactccaccg tactcatcct gaagaaactg cctgatgacg ttttcaatga acaatttttt 3180 acactgaaaa gtcactccta ctcaaccata tcaagcattt ccctgggtaa gtggaccact 3240 ttttttctcc aggccaggcg cgggtacacc cctgttttat tcttgcggga cctccttatt 3300 cagtattggc aaggccatga taaagagttg gattattttc ttttcgacca tgccatcagc 3360 atcgcctatc aacacttccc agagtttaaa taccaggtag atcacctggg ttattttggc 3420 aatcatcgcc acctattaat gccattacta ttgaccgaat atagcgcaga agccgccagc 3480 cccatcaacg aagatccggt gcagatatat aaattgacct acaagatcga ctcaacgcac 3540 actgttccgc agcattcgtt ttatcagcat tacattaagt agctcacttt aatatccgga 3600 atatccgcga caccattttc aaatcactcc gcagaattca aggcgaaaaa aaaccccgca 3660 tttgcggggt tttttattac ttaagcagct 3690 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer <400> 8 aacgaatgct gcggaacagt 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer <400> 9 accttacatt gacagcgcgc 20 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer <400> 10 gcccaataat tgctctcaaa g 21 <210> 11 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer <400> 11 ttggtggcgg ctaatattg 19
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成13年12月10日(2001.12.
10)[Submission date] December 10, 2001 (2001.12.
10)
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】発明の名称[Name of item to be amended] Title of invention
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【発明の名称】新規糖類生成遺伝子群[Title of Invention] Novel saccharide-producing gene group
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) //(C12N 1/20 C12N 15/00 ZNAA C12R 1:01) (72)発明者 安枝 寿 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社発酵技術研究所内 Fターム(参考) 4B024 AA20 BA80 CA04 DA05 DA12 EA04 FA02 GA11 HA01 4B064 AF01 AG01 CA02 CA06 CA19 CC24 4B065 AA01X AA01Y AA72X AB01 AC14 AC20 BA01 BB19 BB29 BD27 CA19 CA24 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // (C12N 1/20 C12N 15/00 ZNAA C12R 1:01) (72) Inventor Hisashi Yasuda Kawasaki, Kanagawa Prefecture 1-1, Suzuki-cho, Kawasaki-ku, Ajinomoto Co., Inc. F-Technology Research Institute F-term (reference) 4B024 AA20 BA80 CA04 DA05 DA12 EA04 FA02 GA11 HA01 4B064 AF01 AG01 CA02 CA06 CA19 CC24 4B065 AA01X AA01Y AA72X AB01 AC14 AC20 BA01 BB19 BB29 BD27 CA19 CA24
Claims (8)
コードするDNA。 (A)配列番号2に記載のアミノ酸配列を有するタンパ
ク質。 (B)配列番号2に記載のアミノ酸配列において、1若
しくは複数のアミノ酸の置換、欠失、挿入又は付加を含
むアミノ酸配列からなるタンパク質。 (C)配列番号4に記載のアミノ酸配列を有するタンパ
ク質。 (D)配列番号4に記載のアミノ酸配列において、1若
しくは複数のアミノ酸の置換、欠失、挿入又は付加を含
むアミノ酸配列からなるタンパク質。 (E)配列番号6に記載のアミノ酸配列を有するタンパ
ク質。 (F)配列番号6に記載のアミノ酸配列において、1若
しくは複数のアミノ酸の置換、欠失、挿入又は付加を含
むアミノ酸配列からなるタンパク質。1. A DNA encoding a protein shown in (A) to (F) below. (A) A protein having the amino acid sequence of SEQ ID NO: 2. (B) A protein consisting of the amino acid sequence of SEQ ID NO: 2, which comprises an amino acid sequence including substitution, deletion, insertion or addition of one or more amino acids. (C) A protein having the amino acid sequence of SEQ ID NO: 4. (D) A protein consisting of the amino acid sequence of SEQ ID NO: 4, which has one or more amino acid substitutions, deletions, insertions or additions. (E) A protein having the amino acid sequence of SEQ ID NO: 6. (F) A protein consisting of the amino acid sequence of SEQ ID NO: 6, which has one or more amino acid substitutions, deletions, insertions or additions.
る請求項1記載のDNA。 (a)配列番号1に記載の塩基配列。 (b)配列番号1に記載の塩基配列または同塩基配列か
ら調整され得るプローブとストリンジェントな条件下で
ハイブリダイズするDNA。 (c)配列番号3に記載の塩基配列。 (d)配列番号3に記載の塩基配列または同塩基配列か
ら調整され得るプローブとストリンジェントな条件下で
ハイブリダイズするDNA。 (e)配列番号5に記載の塩基配列。 (f)配列番号5に記載の塩基配列または同塩基配列か
ら調整され得るプローブとストリンジェントな条件下で
ハイブリダイズするDNA。2. The DNA according to claim 1, which is the DNA shown in the following (a) to (f). (A) The nucleotide sequence set forth in SEQ ID NO: 1. (B) A DNA that hybridizes under stringent conditions with the base sequence shown in SEQ ID NO: 1 or a probe that can be prepared from the base sequence. (C) The nucleotide sequence set forth in SEQ ID NO: 3. (D) A DNA that hybridizes under stringent conditions with the nucleotide sequence set forth in SEQ ID NO: 3 or a probe that can be prepared from the nucleotide sequence. (E) The nucleotide sequence set forth in SEQ ID NO: 5. (F) A DNA that hybridizes under stringent conditions with the nucleotide sequence set forth in SEQ ID NO: 5 or a probe that can be prepared from the nucleotide sequence.
び、あるいはメタノールを資化できる微生物の染色体に
由来する事を特徴とする請求項1記載の遺伝子3. The gene according to claim 1, wherein the gene involved in sugar production is derived from the chromosome of a microorganism capable of assimilating methane and / or methanol.
チラス属細菌である微生物であることを特徴とする請求
項3の遺伝子4. The gene according to claim 3, wherein the microorganism capable of assimilating methanol is a microorganism belonging to the genus Methylobacillus.
ことによる糖類生成能が向上した微生物5. A microorganism having improved saccharide-producing ability by using the gene according to claim 1.
方法6. A method for producing a saccharide using the microorganism according to claim 5.
ことによる糖類生成能が低下した微生物7. A microorganism having a reduced saccharide-producing ability by using the gene according to claim 1.
以外の目的物質の製造方法8. A method for producing a target substance other than saccharides using the microorganism according to claim 7 as a host.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001359154A JP2003159073A (en) | 2001-11-26 | 2001-11-26 | New saccharide-producing gene group |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001359154A JP2003159073A (en) | 2001-11-26 | 2001-11-26 | New saccharide-producing gene group |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003159073A true JP2003159073A (en) | 2003-06-03 |
Family
ID=19170212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001359154A Pending JP2003159073A (en) | 2001-11-26 | 2001-11-26 | New saccharide-producing gene group |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003159073A (en) |
-
2001
- 2001-11-26 JP JP2001359154A patent/JP2003159073A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4561010B2 (en) | DNA encoding D-hydantoin hydrolase, DNA encoding N-carbamyl-D-amino acid hydrolase, recombinant DNA containing the gene, cells transformed with the recombinant DNA, and production of proteins using the transformed cells Method and method for producing D-amino acid | |
EP2356211B1 (en) | Improved production of riboflavin | |
KR20190090657A (en) | A microorganism of the genus Corynebacterium producing purine nucleotide and method for producing purine nucleotide using the same | |
TW200306352A (en) | Method for producing L-amino acid | |
JPWO2005010182A1 (en) | Coryneform bacterium transformant and method for producing dicarboxylic acid using the same | |
JPS6394985A (en) | Production of l-tyrosine | |
JP2001046067A (en) | L-lysine biosynthetic gene derived from thermophilic bacillus bacterium | |
JP2004236637A (en) | Gene associated with polysaccharide production and use of the same | |
CN102171346A (en) | A method for producing purine ribonucleosides and ribonucleotides | |
Kusian et al. | The Calvin cycle enzyme pentose-5-phosphate 3-epimerase is encoded within the cfx operons of the chemoautotroph Alcaligenes eutrophus | |
JPH08501694A (en) | Biotechnology manufacturing method of biotin | |
KR20230004466A (en) | Process for producing sulfated polysaccharide and process for producing PAPS | |
JP3488924B2 (en) | Cells modified with respect to betaine catabolism, their preparation, and in particular their use for the production of metabolites or enzymes | |
DE60118401T2 (en) | GEN FOR THE RUBBER POLYPEPTIDE FROM METHYLOMONAS SP. CODED AND THAT IS INVOLVED IN THE MANUFACTURE OF EXOPOLYSACCHARIDES | |
JP4561009B2 (en) | DNA encoding D-hydantoin hydrolase, DNA encoding N-carbamyl-D-amino acid hydrolase, recombinant DNA containing the gene, cells transformed with the recombinant DNA, and production of proteins using the transformed cells Method and method for producing D-amino acid | |
CN101137743B (en) | Escherichia strain capable of converting xmp to gmp and maintaining the inactivated state of gene(s) associated with gmp degradation and methods of using the same | |
JP2722504B2 (en) | Novel microorganism and method for producing d-biotin using the same | |
KR102303662B1 (en) | A microorganism producing compound and method for producing the compound using the same | |
JPH08168383A (en) | Production of hucleic acid-related substance | |
JP2003159073A (en) | New saccharide-producing gene group | |
JP4326967B2 (en) | Genes involved in acetic acid resistance, acetic acid bacteria bred using the genes, and methods of producing vinegar using the acetic acid bacteria | |
KR20220116504A (en) | Increase in test yield, carbon-conversion-efficiency and carbon substrate adaptability in the manufacture of fine chemicals | |
JP2003533166A (en) | Construction of production strains for the production of substituted phenols by genes specifically inactivating the catabolism of eugenol and ferulic acid | |
JP5737650B2 (en) | Acetoin producing cell and method for producing acetoin using the cell | |
WO1995013366A1 (en) | Ectoine synthetase gene |