JP2003158842A - Rotary machine - Google Patents

Rotary machine

Info

Publication number
JP2003158842A
JP2003158842A JP2001353941A JP2001353941A JP2003158842A JP 2003158842 A JP2003158842 A JP 2003158842A JP 2001353941 A JP2001353941 A JP 2001353941A JP 2001353941 A JP2001353941 A JP 2001353941A JP 2003158842 A JP2003158842 A JP 2003158842A
Authority
JP
Japan
Prior art keywords
resin
coil
thermal conductivity
rotating machine
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001353941A
Other languages
Japanese (ja)
Inventor
Kazuaki Sanada
和昭 真田
Shigeo Amagi
滋夫 天城
Yoshitaka Takezawa
由高 竹澤
Masaki Akatsuka
正樹 赤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001353941A priority Critical patent/JP2003158842A/en
Publication of JP2003158842A publication Critical patent/JP2003158842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary machine wherein heat generated in coils is likely conducted to a stator and radiativity is enhanced. SOLUTION: The rotary machine includes a stator core formed by laminating a plurality of electromagnetic steel plates. Conductors are wound around slots of the stator core to form coils. A thermosetting resin containing inorganic ceramic filler is impregnated and set up between the conductors of the coils, between the conductors and the slots, and at coil ends. A thermosetting resin whose coefficient of thermal conductivity is not less than 0.6 W/m.K is used for the thermosetting resin. Filler powder whose coefficient of thermal conductivity is not less than 5 W/m.K is used for the filler.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、放熱性の良い絶縁
材を用いた回転機に関する。 【0002】 【従来の技術】固定子コイルの発熱を効率よく放熱する
ことで、発熱による寿命の低下が少なく、長寿命で、高
効率な回転機を実現することができる。従来は、固定子
外周部のフレームに放熱フィンにて表面積を大きくする
ことや、ファンなどによる強制空冷や、フレームに設け
た冷却液路を利用し液冷を行っているものが一般的であ
る。また、回転機内部のコアコイルを直接油冷するもの
や、ヒートパイプにより内部の発熱を外部に逃がすよう
にしたものも存在するが、回転機内部を直接冷却するた
めに部品点数の増加をもたらし、構造が複雑になり、信
頼性の確保など、新たな課題も発生する。 【0003】発熱源となるコイルには電流を流すため
に、コイル表面を電気絶縁しているが、コイルが巻かれ
ている電磁鋼板等で構成された固定子鉄心との間も電気
絶縁する必要がある。このため、導体の周囲へ絶縁被膜
を付けた導線を固定子へ組み込んだ後、熱伝導性を高め
電磁振動を抑えるために、樹脂または無機セラミックス
のフィラ入り樹脂を注入している。特開平10−283
45号公報では、高圧回転機固定子コイルにおいて、無
機セラミックスのフィラを含有した含浸樹脂を未含浸の
コイルに真空加圧含浸して固定子コイルを構成するよう
にしている。また、特開2000−139046号公報
では、回転子が永久磁石で構成された回転子をもつ回転
機において、無機セラミックスのフィラを混合した含浸
樹脂を固定子と導線間、固定子とハウジング間に含浸し
て放熱性を良くし、回転子を構成する永久磁石がコイル
から発生する熱によって減磁することを防止している。
さらに、特開2000−297204号公報では、保存
安定性、高温電気特性の改善されたエポキシ樹脂組成物
に無機セラミックスのフィラを混合したものをコイルの
絶縁材として用いている。 【0004】 【発明が解決しようとする課題】回転機の高出力化に伴
い、固定子のコイルの電流が増加し、銅損や鉄損が増加
し、発熱量が大きくなり、そのため、固定子の温度上昇
が著しくなる。従って、固定子鉄心とコイル間は、コイ
ルから発生する熱を固定子鉄心に伝えるため、無機セラ
ミックスのフィラを充填して、熱伝導性を向上させた樹
脂で電気絶縁をしている。しかし、コイルを構成する導
線間の空隙に樹脂とともに無機セラミックスのフィラを
浸入させることは難しい。導線間が樹脂のみで絶縁層を
形成すると、一般的な樹脂の熱伝導率は0.2W/m・
K程度なので、導線間の絶縁層により熱伝導性が阻害さ
れ、コイルで発生した熱が放散されにくくなるという問
題がある。また、含浸樹脂の熱伝導率を高めるために、
多量の無機セラミックスのフィラを樹脂に混合させる
と、含浸樹脂の粘度が大きくなるため、含浸樹脂がスロ
ット内部に均一に浸入しにくくなり、ボイドが形成さ
れ、電気絶縁と熱伝導性に悪影響を与えるという問題も
ある。本発明は、コイルで発生した熱が固定子へ伝わり
やすくし、放熱性のよい回転機を提供することを目的と
する。 【0005】 【課題を解決するための手段】上記目的を達成するため
の本発明の要旨は次の通りである。 【0006】複数の電磁鋼板を積層した固定子鉄心を備
え、前記固定子鉄心のスロットに導体を巻きまわしてコ
イルを形成し、前記コイルの導線間、導線とスロット間
およびコイルエンドに無機セラミックスのフィラを含有
する熱硬化性樹脂を含浸して固化されている回転機にお
いて、前記熱硬化性樹脂として樹脂自体の熱伝導率が
0.6W/m・K以上の熱硬化性樹脂を用い、前記フィ
ラとして熱伝導率が5W/m・K以上のフィラ粉末を用
いることを特徴とする回転機。 【0007】 【発明の実施の形態】以下、本発明による回転機につい
て詳細に説明する。 【0008】この発明による回転機は、例えば、高速回
転軸を有する工作機械等の高速電動機、コージェネレー
ションシステムのエンジンに組み込まれた発電・電動
機、ハイブリット自動車のエンジン等の出力軸に取り付
けられた発電・電動機、排気ガスエネルギを回収するタ
ーボチャージャーに組み込まれた発電機、あるいはエネ
ルギ回収装置に設けた発電機に組み込んで適用される。 【0009】本発明における熱硬化性樹脂とは、その中
の樹脂成分が加熱により架橋構造体を形成した樹脂硬化
物を示す。具体的な樹脂成分としては、不飽和ポリエス
テル樹脂、エポキシ樹脂、アクリル樹脂、フェノール樹
脂、メラミン樹脂、ユリア樹脂、ウレタン樹脂等の硬化
物が挙げられる。特に、絶縁性、耐熱性が優れているエ
ポキシ樹脂が挙げられる。これらの樹脂成分はモノマ、
架橋剤、可とう化剤、希釈剤、改質剤等を含むことがで
きる。 【0010】本発明における熱硬化性樹脂は、樹脂自体
の熱伝導率が0.6W/m・K以上であることが重要で
ある。樹脂自体の0.6W/m・K未満であると、その
樹脂成分の熱抵抗が大きく影響し、後述する無機セラミ
ックスのフィラ粉末を添加しても熱伝導率の向上効果が
小さい。従って、回転機の放熱性はそれほど向上しな
い。 【0011】樹脂自体の熱伝導率が0.6W/m・K以
上である熱硬化性樹脂としては、例えば次のような熱硬
化性樹脂が挙げられる。すなわち、熱硬化性樹脂に含ま
れる樹脂成分中に異方性構造が存在することを特徴とす
る熱硬化性樹脂である。特に好ましくは、該異方性構造
を構成する異方性構造単位が共有結合部を有しており、
該異方性構造単位の径の最大値が400nm以上で、樹
脂成分中に含まれる異方性構造の割合が25vol%以
上であることを特徴とする熱硬化性樹脂である。異方性
構造とはミクロな配列を起こしている構造体のことであ
る。例えば、結晶相や液晶相などが相当する。このよう
な構造体が樹脂中に存在するか否かは、偏光顕微鏡によ
る観察によって容易に判別することができる。すなわ
ち、直交ニコル状態での観察において、偏光解消現象に
よる干渉縞が見られることで判別可能である。 【0012】異方性構造を形成する一つの手段として、
モノマ構造中にメソゲンを導入することである。メソゲ
ンとは、液晶性を発現する可能性のある官能基のことで
あり、具体的には、ビフェニル、フェニルベンゾエー
ト、アゾベンゼン、スチルベン等やその誘導体が挙げら
れる。 【0013】このような樹脂の一例として、エポキシ樹
脂モノマとして4−(オキシラニルメトキシ)ベンゾイ
ックアシッド−4、4’−[1、8−オクタンジイルビ
ス(オキシ)]ビスフェノールエステル(以下、Tw
8)を、エポキシ樹脂用硬化剤として4、4’−ジアミ
ノジフェニルメタン(以下、DDM)を用いた樹脂板の
特性について示す。 【0014】Tw8とDDMをあらかじめ160℃で溶
融して混合し、離型処理済の金型に流し込み加熱硬化す
ることで厚さ5mmの熱硬化性樹脂の樹脂板(Tw8/
DDM)を合成した。なお、エポキシ樹脂モノマと硬化
剤の配合比は化学量論比とし、硬化温度は160℃、硬
化時間は10時間とした。 【0015】この樹脂板を直交ニコル状態になっている
2枚の偏光板の間に挿入し、顕微鏡にて観察したとこ
ろ、偏光解消による干渉縞が見られた。したがって、こ
の樹脂板は異方性構造を有していることが分かる。 【0016】この樹脂板の異方性構造単位をTEMによ
り観察した。なお、観察時はRuO4を染色剤として用
い、倍率30000倍で観察した。異方性構造単位の径
の最大値は1600nmであり、異方性構造の割合は4
0vol%であった。なお、異方性構造の部分の境界
は、撮影した写真をコントラスト調整による画像処理に
より決定した。 【0017】図1に撮影した写真から異方性構造の部分
を決定した模式図を示す。異方性構造は深さ方向にも同
様に分布していることから、異方性構造の割合は、写真
全体の面積に対する異方性構造部の面積の割合として算
出した。異方性構造単位の径の最大値は、それぞれの異
方性構造単位の最も長い部分の測定値とした。 【0018】この樹脂板の熱伝導率を測定したところ、
0.83W/m・Kと高い熱伝導率を示した。なお、こ
の熱伝導率は平板比較法による試料の厚さ方向の値であ
り、測定時の試料の平均温度は約80℃とし、標準試料
としてホウケイ酸ガラスを用いた。 【0019】本発明における熱硬化性樹脂は、前記のよ
うな樹脂を含み、さらに、熱伝導率が5W/m・K以上
の無機セラミックのフィラ粉末を含むことで、極めて高
い熱伝導率を達成できる。5W/m・K未満のフィラ粉
末では、樹脂の熱伝導率を向上させる効果が極めて小さ
い。 【0020】使用する無機セラミックとしては、結晶質
シリカ、アルミナ、酸化マグネシウム、酸化ベリリウ
ム、酸化スズ、窒化ホウ素、窒化アルミニウム、窒化ケ
イ素、炭化ケイ素、フッ化アルミニウム、フッ化カルシ
ウム等が挙げられる。中でも、アルミナ、酸化スズ、窒
化ホウ素、窒化アルミニウム、窒化ケイ素を主成分とし
たフィラ粉末を用いることで、高い熱伝導性と高い絶縁
性を兼ね備えた樹脂となる。熱硬化性樹脂中の無機セラ
ミックスの含有量は20体積%以上であることが好まし
い。 【0021】このような熱硬化性樹脂を、複数の電磁鋼
板を積層した固定子鉄心を備え、前記固定子鉄心のスロ
ットに導体を巻きまわしてコイルを形成し、前記コイル
の導線間、導線とスロット間およびコイルエンドに無機
セラミックスのフィラを含有する熱硬化性樹脂を含浸し
て固化されている回転機の熱硬化性樹脂として使用する
ことで、コイルからの放熱性が向上する。なお、この固
定子の中に入る回転子は、永久磁石を備える回転子で
も、永久磁石を用いないリラクタンスモータ用の回転子
や、誘導機用のかご形回転子であってもよい。 【0022】以下、本発明の回転機の実施例を示し、本
発明について具体的に説明する。 (実施例1)図2に回転機の固定子の断面を示す。固定
子1は複数のスロット4を備える固定子鉄心3と、この
固定子鉄心3のスロット4に挿入した複数のコイル2
と、その空隙に含浸した含浸樹脂5から成る。 【0023】固定子鉄心3は、薄いリング状の珪素鋼板
を積層し形成される円筒形状のものである。固定子鉄心
3の内周面側には軸方向に連続したスロット4を周方向
に12スロット設けている。スロット4の各々には導体
の周囲へ絶縁被膜を付けた導線束で構成されるコイル2
が挿入されている。そして、前記したようにスロット4
に挿入されたコイル2を、固定子鉄心3とともに樹脂含
浸槽内に設置して、含浸樹脂5を真空、加圧含浸して、
その後硬化炉に設置して加熱硬化される。なお、含浸樹
脂5としては、前記のTw8/DDMに結晶質シリカ
(平均粒子径1μm、熱伝導率5.4W/m・K)を4
0体積%添加した熱硬化性樹脂を用いた。また、図1に
記載していないが、固定子鉄心3の内周側には空隙、い
わゆるエアギャップを介して回転子を回転可能なように
設けている。本実施例では、永久磁石を備える回転子を
固定子の中に設置して回転機を作製した。 【0024】この回転機の固定子コイル損失が約1kW
となる運転条件でコイル温度を測定したところ、133
℃と小さく放熱性に優れているといえる。コイル温度の
測定は、導線の抵抗率変化からコイル温度を推定する方
法で行った。なお、本実施例の条件、結果を表1にまと
めて示す。 【0025】 【表1】 【0026】(比較例1)含浸樹脂としてBisA/D
DMに結晶質シリカ(平均粒子径1μm、熱伝導率5.
4W/m・K)を40体積%添加した熱硬化性樹脂を用
いる以外は実施例1と同じ材料を用い、実施例1と同様
の回転機を作製した。なお、本含浸樹脂の樹脂成分の熱
伝導率は0.2W/m・Kである。 【0027】この回転機のコイル温度を実施例1と同様
の手法により測定した。その温度は153℃であり、B
isA/DDMを含浸樹脂として用いると温度は高く、
放熱性が悪かった。なお、本比較例の条件、結果を表2
にまとめて示す。 【0028】 【表2】 【0029】(実施例2)含浸樹脂として、Tw8とB
isAを重量比で70:30に混合したエポキシ樹脂モ
ノマとDDMを組み合わせ、結晶質シリカ(平均粒子径
1μm、熱伝導率5.4W/m・K)を40体積%添加
した熱硬化性樹脂を用いる以外は実施例1と同じ材料を
用い、実施例1と同様の回転機を作製した。なお、本含
浸樹脂の樹脂成分の熱伝導率は0.65W/m・Kであ
る。 【0030】この回転機のコイル温度を実施例1と同様
の手法により測定した。その温度は135Kと低く、放
熱性に優れていた。なお、本実施例の条件、結果を表1
にまとめて示す。 (比較例2)含浸樹脂として、Tw8とBisAを重量
比で50:50に混合したエポキシ樹脂モノマとDDM
を組み合わせ、結晶質シリカ(平均粒子径1μm、熱伝
導率5.4W/m・K)を40体積%添加した熱硬化性
樹脂を用いる以外は実施例1と同じ材料を用い、実施例
1と同様の回転機を作製した。なお、本含浸樹脂の樹脂
成分の熱伝導率は0.51W/m・Kである。 【0031】この回転機のコイル温度を実施例1と同様
の手法により測定した。その温度は152Kと高く、放
熱性が悪いことが分かる。なお、本比較例の条件、結果
を表2にまとめて示す。 【0032】以上の実施例1、2、比較例1、2によっ
て得られた各回転機のコイル温度と含浸樹脂の樹脂成分
の熱伝導率との関係を図3に示す。図3から読み取れる
ように、含浸樹脂の樹脂成分の熱伝導率が0.6W/m
・K以上となることで回転機のコイル温度は急激に低下
することが分かった。 (実施例3)添加するフィラ粉末としてアルミナ(平均
粒子径3μm、熱伝導率30W/m・K)を用いること
以外は比較例1と同じ材料を用い、実施例1と同様の回
転機を作製した。 【0033】この回転機のコイル温度を実施例1と同様
の手法により測定した。その温度は149Kと低く、放
熱性に優れていた。なお、本実施例の条件、結果を表1
にまとめて示す。 (比較例3)添加するフィラ粉末を溶融シリカ(平均粒
子径3μm、熱伝導率1.4W/m・K)を用いること
以外は実施例1と同じ材料を用い、実施例1と同様の回
転機を作製した。 【0034】この回転機のコイル温度を実施例1と同様
の手法により測定した。その温度は167Kと高く、放
熱性が悪いことが分かる。なお、本比較例の条件、結果
を表2にまとめて示す。 【0035】以上の比較例1、3、実施例3によって得
られた各回転機のコイル温度とフィラの熱伝導率との関
係を図4に示す。図4から読み取れるように、フィラ粉
末の熱伝導率が5W/m・K以上となることで回転機の
コイル温度は急激に低下することが分かった。 【0036】 【発明の効果】本発明によれば、放熱性の極めて優れた
回転機を得ることができる。これにより、従来の絶縁方
式に比して、冷却効率が改善されることにより回転機の
小型化、容量の増大を達成することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotating machine using an insulating material having good heat radiation. 2. Description of the Related Art By efficiently radiating heat generated by a stator coil, it is possible to realize a long-life, high-efficiency rotating machine with little reduction in life due to heat generation. Conventionally, it is common to increase the surface area of the frame around the stator using radiation fins, to perform forced air cooling using a fan or the like, or to perform liquid cooling using a cooling liquid passage provided in the frame. . There are also those that directly cool the core coil inside the rotating machine with oil, and those that let the internal heat be released to the outside with a heat pipe, but the number of parts increases because the inside of the rotating machine is directly cooled, The structure becomes complicated, and new issues such as securing reliability also arise. [0003] The surface of the coil is electrically insulated in order to allow a current to flow through the coil as a heat source. However, it is also necessary to electrically insulate the coil from a stator core made of an electromagnetic steel sheet or the like around which the coil is wound. There is. For this reason, after a conductor having an insulating coating provided around a conductor is incorporated into a stator, a resin or a resin containing a filler of inorganic ceramics is injected to increase thermal conductivity and suppress electromagnetic vibration. JP-A-10-283
In Japanese Patent No. 45, in a stator coil of a high-pressure rotating machine, an impregnated resin containing a filler of inorganic ceramics is impregnated in a non-impregnated coil under vacuum pressure to constitute a stator coil. Further, in Japanese Patent Application Laid-Open No. 2000-139046, in a rotating machine having a rotor in which a rotor is formed of a permanent magnet, an impregnated resin mixed with a filler of inorganic ceramics is used between a stator and a conductor, and between a stator and a housing. Impregnation improves heat dissipation, and prevents permanent magnets constituting the rotor from being demagnetized by heat generated from the coils.
Further, in Japanese Patent Application Laid-Open No. 2000-297204, a mixture of an epoxy resin composition having improved storage stability and high-temperature electrical characteristics and a filler of inorganic ceramics is used as a coil insulating material. [0004] With the increase in the output of the rotating machine, the current of the coil of the stator increases, the copper loss and the iron loss increase, and the calorific value increases. Temperature rise becomes remarkable. Therefore, between the stator core and the coil, in order to transfer heat generated from the coil to the stator core, a filler made of inorganic ceramics is filled, and the resin having improved thermal conductivity is electrically insulated. However, it is difficult to infiltrate the filler of the inorganic ceramics together with the resin into the gap between the conductive wires constituting the coil. If the insulating layer is formed only of resin between the conductors, the general thermal conductivity of the resin is 0.2 W / m ·
Since it is about K, there is a problem that thermal conductivity is hindered by the insulating layer between the conductive wires, and the heat generated in the coil is hardly dissipated. Also, to increase the thermal conductivity of the impregnated resin,
When a large amount of filler of inorganic ceramics is mixed with the resin, the viscosity of the impregnated resin increases, so that it becomes difficult for the impregnated resin to uniformly enter the inside of the slot, voids are formed, and electric insulation and thermal conductivity are adversely affected. There is also a problem. An object of the present invention is to provide a rotating machine that facilitates transmission of heat generated in a coil to a stator and has good heat radiation. [0005] The gist of the present invention to achieve the above object is as follows. [0006] A stator core in which a plurality of electromagnetic steel sheets are laminated is provided. A coil is formed by winding a conductor around slots of the stator core, and an inorganic ceramic material is provided between conductors of the coil, between conductors and slots, and at a coil end. In a rotating machine which is solidified by impregnating a thermosetting resin containing a filler, a thermosetting resin having a thermal conductivity of 0.6 W / m · K or more is used as the thermosetting resin, A rotating machine characterized by using filler powder having a thermal conductivity of 5 W / m · K or more as a filler. Hereinafter, a rotating machine according to the present invention will be described in detail. The rotating machine according to the present invention is, for example, a high-speed motor such as a machine tool having a high-speed rotating shaft, a generator / motor incorporated in an engine of a cogeneration system, or a generator mounted on an output shaft of an engine of a hybrid vehicle. The present invention is applied to a motor, a generator incorporated in a turbocharger for recovering exhaust gas energy, or a generator provided in an energy recovery device. The thermosetting resin in the present invention refers to a cured resin in which a resin component therein forms a crosslinked structure by heating. Specific examples of the resin component include cured products such as an unsaturated polyester resin, an epoxy resin, an acrylic resin, a phenol resin, a melamine resin, a urea resin, and a urethane resin. In particular, an epoxy resin having excellent insulation and heat resistance can be used. These resin components are monomers,
Crosslinking agents, flexibilizers, diluents, modifiers and the like can be included. It is important that the thermosetting resin of the present invention has a thermal conductivity of 0.6 W / m · K or more. If it is less than 0.6 W / m · K of the resin itself, the thermal resistance of the resin component has a great effect, and even if an inorganic ceramic filler powder described later is added, the effect of improving the thermal conductivity is small. Therefore, the heat radiation of the rotating machine is not so improved. Examples of the thermosetting resin having a thermal conductivity of 0.6 W / m · K or more include the following thermosetting resins. That is, the thermosetting resin is characterized by having an anisotropic structure in the resin component contained in the thermosetting resin. Particularly preferably, the anisotropic structural unit constituting the anisotropic structure has a covalent bond,
A thermosetting resin characterized in that the maximum value of the diameter of the anisotropic structural unit is 400 nm or more, and the proportion of the anisotropic structure contained in the resin component is 25 vol% or more. The anisotropic structure is a structure having a microscopic arrangement. For example, a crystal phase, a liquid crystal phase, and the like correspond. Whether such a structure exists in the resin or not can be easily determined by observation with a polarizing microscope. That is, in the observation in the crossed Nicols state, it is possible to determine by observing interference fringes due to the depolarization phenomenon. As one means for forming an anisotropic structure,
Introducing a mesogen into the monomer structure. The mesogen is a functional group that may exhibit liquid crystallinity, and specific examples include biphenyl, phenylbenzoate, azobenzene, stilbene, and derivatives thereof. An example of such a resin is 4- (oxiranylmethoxy) benzoic acid-4,4 '-[1,8-octanediylbis (oxy)] bisphenol ester (hereinafter Tw) as an epoxy resin monomer.
8) shows the properties of a resin plate using 4,4′-diaminodiphenylmethane (hereinafter, DDM) as a curing agent for an epoxy resin. Tw8 and DDM are melted at 160 ° C. in advance, mixed, poured into a mold that has been subjected to a mold release treatment, and heated and cured to form a 5 mm thick thermosetting resin resin plate (Tw8 / D8).
DDM) was synthesized. The mixing ratio of the epoxy resin monomer and the curing agent was stoichiometric, the curing temperature was 160 ° C., and the curing time was 10 hours. When this resin plate was inserted between two polarizing plates in a crossed Nicols state and observed with a microscope, interference fringes due to depolarization were observed. Therefore, it is understood that this resin plate has an anisotropic structure. The anisotropic structural unit of this resin plate was observed by TEM. At the time of observation, RuO4 was used as a staining agent, and observation was performed at a magnification of 30,000 times. The maximum value of the diameter of the anisotropic structure unit is 1600 nm, and the ratio of the anisotropic structure is 4
It was 0 vol%. In addition, the boundary of the portion of the anisotropic structure was determined by performing image processing on a photographed image by adjusting contrast. FIG. 1 is a schematic diagram in which a portion having an anisotropic structure is determined from a photograph taken. Since the anisotropic structure is also distributed in the depth direction, the ratio of the anisotropic structure was calculated as the ratio of the area of the anisotropic structure to the area of the entire photograph. The maximum value of the diameter of the anisotropic structural unit was a measured value of the longest part of each anisotropic structural unit. When the thermal conductivity of this resin plate was measured,
It exhibited a high thermal conductivity of 0.83 W / m · K. The thermal conductivity is a value in the thickness direction of the sample according to the flat plate comparison method. The average temperature of the sample at the time of measurement was about 80 ° C., and borosilicate glass was used as a standard sample. The thermosetting resin according to the present invention achieves an extremely high thermal conductivity by containing the resin as described above and further including an inorganic ceramic filler powder having a thermal conductivity of 5 W / m · K or more. it can. With a filler powder of less than 5 W / m · K, the effect of improving the thermal conductivity of the resin is extremely small. Examples of the inorganic ceramic used include crystalline silica, alumina, magnesium oxide, beryllium oxide, tin oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, aluminum fluoride, calcium fluoride and the like. Above all, by using a filler powder containing alumina, tin oxide, boron nitride, aluminum nitride, and silicon nitride as main components, a resin having both high thermal conductivity and high insulating properties can be obtained. The content of the inorganic ceramics in the thermosetting resin is preferably 20% by volume or more. The thermosetting resin is provided with a stator core in which a plurality of electromagnetic steel sheets are laminated, and a conductor is wound around a slot of the stator core to form a coil. By using as a thermosetting resin of a rotating machine solidified by impregnating a thermosetting resin containing a filler of inorganic ceramics between the slots and the coil end, the heat radiation from the coil is improved. The rotor that enters the stator may be a rotor having a permanent magnet, a rotor for a reluctance motor that does not use a permanent magnet, or a cage rotor for an induction machine. Hereinafter, embodiments of the rotating machine according to the present invention will be described, and the present invention will be specifically described. (Embodiment 1) FIG. 2 shows a cross section of a stator of a rotating machine. The stator 1 includes a stator core 3 having a plurality of slots 4 and a plurality of coils 2 inserted into the slots 4 of the stator core 3.
And the impregnated resin 5 impregnated in the voids. The stator core 3 has a cylindrical shape formed by laminating thin ring-shaped silicon steel sheets. On the inner peripheral surface side of the stator core 3, twelve axially continuous slots 4 are provided in the circumferential direction. Each of the slots 4 has a coil 2 composed of a bundle of conductors provided with an insulating coating around the conductor.
Is inserted. And, as mentioned above, slot 4
The coil 2 inserted into the resin impregnation tank together with the stator core 3 is impregnated with the impregnated resin 5 under vacuum and pressure.
Then, it is set in a curing furnace and cured by heating. As the impregnated resin 5, crystalline silica (average particle diameter: 1 μm, thermal conductivity: 5.4 W / m · K) was added to Tw8 / DDM.
A thermosetting resin added with 0% by volume was used. Although not shown in FIG. 1, the rotor is provided on the inner peripheral side of the stator core 3 so as to be rotatable through a gap, a so-called air gap. In the present example, a rotor having a permanent magnet was installed in a stator to produce a rotating machine. The stator coil loss of this rotating machine is about 1 kW
When the coil temperature was measured under the following operating conditions, 133
℃ and excellent in heat dissipation. The measurement of the coil temperature was performed by a method of estimating the coil temperature from a change in the resistivity of the conductive wire. Table 1 shows the conditions and results of this example. [Table 1] (Comparative Example 1) BisA / D as impregnated resin
Crystalline silica (average particle diameter 1 μm, thermal conductivity 5.
A rotating machine similar to that of Example 1 was manufactured using the same material as that of Example 1 except that a thermosetting resin to which 4 W / m · K) was added at 40% by volume was used. The thermal conductivity of the resin component of the impregnated resin is 0.2 W / m · K. The coil temperature of this rotating machine was measured in the same manner as in Example 1. Its temperature is 153 ° C. and B
When isA / DDM is used as the impregnating resin, the temperature is high,
Heat dissipation was poor. Table 2 shows the conditions and results of this comparative example.
Are shown together. [Table 2] (Example 2) As impregnating resins, Tw8 and B
An epoxy resin monomer in which isA is mixed at a weight ratio of 70:30 and DDM are combined, and a thermosetting resin to which 40% by volume of crystalline silica (average particle diameter of 1 μm, thermal conductivity of 5.4 W / m · K) is added. A rotating machine similar to that of Example 1 was manufactured using the same materials as in Example 1 except for the use. The thermal conductivity of the resin component of the impregnated resin is 0.65 W / m · K. The coil temperature of the rotating machine was measured in the same manner as in Example 1. The temperature was as low as 135 K, and the heat dissipation was excellent. Table 1 shows the conditions and results of this example.
Are shown together. (Comparative Example 2) As an impregnated resin, an epoxy resin monomer in which Tw8 and BisA were mixed at a weight ratio of 50:50 and DDM
And the same material as in Example 1 except that a thermosetting resin to which 40% by volume of crystalline silica (average particle diameter 1 μm, thermal conductivity 5.4 W / m · K) is added is used. A similar rotating machine was manufactured. The thermal conductivity of the resin component of the impregnated resin is 0.51 W / m · K. The coil temperature of the rotating machine was measured in the same manner as in Example 1. The temperature is as high as 152 K, which indicates that the heat dissipation is poor. Table 2 shows the conditions and results of this comparative example. FIG. 3 shows the relationship between the coil temperature of each rotating machine and the thermal conductivity of the resin component of the impregnated resin obtained in Examples 1 and 2 and Comparative Examples 1 and 2. As can be seen from FIG. 3, the thermal conductivity of the resin component of the impregnated resin is 0.6 W / m.
・ It was found that the coil temperature of the rotating machine suddenly dropped when the temperature became K or more. (Example 3) A rotating machine similar to that of Example 1 was manufactured using the same material as that of Comparative Example 1 except that alumina (average particle diameter 3 μm, thermal conductivity 30 W / m · K) was used as the filler powder to be added. did. The coil temperature of this rotating machine was measured in the same manner as in Example 1. The temperature was as low as 149K, and the heat dissipation was excellent. Table 1 shows the conditions and results of this example.
Are shown together. (Comparative Example 3) The same rotation as in Example 1 was performed using the same material as in Example 1 except that the filler powder to be added was fused silica (average particle diameter 3 μm, thermal conductivity 1.4 W / m · K). Machine was made. The coil temperature of this rotating machine was measured in the same manner as in Example 1. The temperature is as high as 167K, which indicates that the heat dissipation is poor. Table 2 shows the conditions and results of this comparative example. FIG. 4 shows the relationship between the coil temperature of each rotating machine and the thermal conductivity of the filler obtained in Comparative Examples 1, 3, and 3 above. As can be seen from FIG. 4, it was found that when the thermal conductivity of the filler powder was 5 W / m · K or more, the coil temperature of the rotating machine rapidly decreased. According to the present invention, it is possible to obtain a rotating machine having extremely excellent heat dissipation. As a result, the cooling efficiency is improved as compared with the conventional insulation method, so that the rotating machine can be reduced in size and increased in capacity.

【図面の簡単な説明】 【図1】本発明における熱硬化性樹脂のTEMによる観
察結果の一例を示す図である。 【図2】本発明における固定子の断面構造図である。 【図3】本発明における含浸樹脂に用いた樹脂成分の熱
伝導率と、その含浸樹脂を用いた回転機のコイル温度と
の関係図である。 【図4】本発明における含浸樹脂に添加したフィラの熱
伝導率と、その含浸樹脂を用いた回転機のコイル温度と
の関係図である。 【符号の説明】 1…固定子、2…コイル、3…固定子鉄心、4…スロッ
ト、5…含浸樹脂。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing an example of the observation result of a thermosetting resin in the present invention by TEM. FIG. 2 is a sectional structural view of a stator according to the present invention. FIG. 3 is a graph showing the relationship between the thermal conductivity of a resin component used for the impregnated resin and the coil temperature of a rotating machine using the impregnated resin in the present invention. FIG. 4 is a graph showing the relationship between the thermal conductivity of a filler added to the impregnated resin and the coil temperature of a rotating machine using the impregnated resin in the present invention. [Description of Signs] 1 ... stator, 2 ... coil, 3 ... stator core, 4 ... slot, 5 ... impregnated resin.

フロントページの続き (72)発明者 竹澤 由高 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 赤塚 正樹 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H603 AA09 AA11 BB01 BB02 BB05 CA01 CB02 CB03 CC01 CC11 CD02 EE10 EE13 FA08 FA11 FA24 5H604 AA03 AA08 BB01 BB03 BB08 BB14 CC01 CC05 CC11 DA06 DA15 DA23 DB02 PB02 QB14 5H615 AA01 BB01 BB02 BB05 BB14 PP01 PP14 SS05 SS41 SS44 TT23 TT34 Continuation of front page    (72) Inventor Yoshitaka Takezawa             7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture             Hitachi, Ltd., Hitachi Laboratory (72) Inventor Masaki Akatsuka             7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture             Hitachi, Ltd., Hitachi Laboratory F term (reference) 5H603 AA09 AA11 BB01 BB02 BB05                       CA01 CB02 CB03 CC01 CC11                       CD02 EE10 EE13 FA08 FA11                       FA24                 5H604 AA03 AA08 BB01 BB03 BB08                       BB14 CC01 CC05 CC11 DA06                       DA15 DA23 DB02 PB02 QB14                 5H615 AA01 BB01 BB02 BB05 BB14                       PP01 PP14 SS05 SS41 SS44                       TT23 TT34

Claims (1)

【特許請求の範囲】 【請求項1】 複数の電磁鋼板を積層した固定子鉄心を
備え、前記固定子鉄心のスロットに導体を巻きまわして
コイルを形成し、前記コイルの導線間、導線とスロット
間およびコイルエンドに無機セラミックスのフィラを含
有する熱硬化性樹脂を含浸して固化されている回転機に
おいて、前記熱硬化性樹脂として樹脂自体の熱伝導率が
0.6W/m・K以上の熱硬化性樹脂を用い、前記フィ
ラとして熱伝導率が5W/m・K以上のフィラ粉末を用
いることを特徴とする回転機。
Claims: 1. A stator core comprising a plurality of electromagnetic steel sheets laminated, a coil is formed by winding a conductor around a slot of the stator core, and a coil is formed between conductors of the coil, a conductor and a slot. In a rotating machine in which a thermosetting resin containing a filler of inorganic ceramics is impregnated and solidified in a space and a coil end, the heat conductivity of the resin itself is 0.6 W / m · K or more as the thermosetting resin. A rotating machine using a thermosetting resin and using a filler powder having a thermal conductivity of 5 W / m · K or more as the filler.
JP2001353941A 2001-11-20 2001-11-20 Rotary machine Pending JP2003158842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001353941A JP2003158842A (en) 2001-11-20 2001-11-20 Rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001353941A JP2003158842A (en) 2001-11-20 2001-11-20 Rotary machine

Publications (1)

Publication Number Publication Date
JP2003158842A true JP2003158842A (en) 2003-05-30

Family

ID=19165867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001353941A Pending JP2003158842A (en) 2001-11-20 2001-11-20 Rotary machine

Country Status (1)

Country Link
JP (1) JP2003158842A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165346A (en) * 2008-01-08 2009-07-23 General Electric Co <Ge> Stator bar component with high thermal conductivity resin, varnish, and putty
KR101073100B1 (en) * 2009-12-22 2011-10-12 한국전력공사 Rotating device
JP2016025846A (en) * 2014-07-22 2016-02-08 ゼネラル・エレクトリック・カンパニイ System and method for preventing stator permanent magnet demagnetization during vacuum pressure impregnation
JP2016525333A (en) * 2013-07-16 2016-08-22 イクイップメイク・リミテッドEquipmake Ltd Stator and rotor for electric motor
US9819248B2 (en) 2012-12-31 2017-11-14 Teco-Westinghouse Motor Company Assemblies and methods for cooling electric machines
KR101810681B1 (en) 2009-05-14 2017-12-19 신에쓰 가가꾸 고교 가부시끼가이샤 Cooling mechanism for axial gap type rotating machines
CN107979244A (en) * 2016-10-21 2018-05-01 现代自动车株式会社 Stator and its manufacture method for high efficiency motor
WO2019151844A1 (en) * 2018-02-02 2019-08-08 주식회사 엘지화학 Curable composition
US10483817B2 (en) 2013-07-16 2019-11-19 Equipmake Ltd Rotor for an electric motor including a structure for retaining rotor segments and permanent magnets on a hub thereof
WO2021104551A1 (en) * 2019-11-28 2021-06-03 Hans Hermann Rottmerhusen Cooling-optimised laminated core for a stator of an electrical machine
JPWO2022124329A1 (en) * 2020-12-09 2022-06-16
EP4160881A1 (en) 2021-10-01 2023-04-05 Minebea Mitsumi Inc. Motor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165346A (en) * 2008-01-08 2009-07-23 General Electric Co <Ge> Stator bar component with high thermal conductivity resin, varnish, and putty
KR101810681B1 (en) 2009-05-14 2017-12-19 신에쓰 가가꾸 고교 가부시끼가이샤 Cooling mechanism for axial gap type rotating machines
KR101073100B1 (en) * 2009-12-22 2011-10-12 한국전력공사 Rotating device
US9819248B2 (en) 2012-12-31 2017-11-14 Teco-Westinghouse Motor Company Assemblies and methods for cooling electric machines
US10483817B2 (en) 2013-07-16 2019-11-19 Equipmake Ltd Rotor for an electric motor including a structure for retaining rotor segments and permanent magnets on a hub thereof
JP2016525333A (en) * 2013-07-16 2016-08-22 イクイップメイク・リミテッドEquipmake Ltd Stator and rotor for electric motor
US11791694B2 (en) 2013-07-16 2023-10-17 Equipmake Ltd Stator for an electric motor and cooling thereof
JP2016025846A (en) * 2014-07-22 2016-02-08 ゼネラル・エレクトリック・カンパニイ System and method for preventing stator permanent magnet demagnetization during vacuum pressure impregnation
US10547232B2 (en) 2016-10-21 2020-01-28 Hyundai Motor Company Stator for a high efficiency motor and manufacturing methods thereof
CN107979244A (en) * 2016-10-21 2018-05-01 现代自动车株式会社 Stator and its manufacture method for high efficiency motor
US11146156B2 (en) 2016-10-21 2021-10-12 Hyundai Motor Company Stator for a high efficiency motor and manufacturing methods thereof
KR101947872B1 (en) * 2016-10-21 2019-02-13 현대자동차주식회사 Stator for high efficiency motor and manufacturing method thereof
KR20180044115A (en) * 2016-10-21 2018-05-02 현대자동차주식회사 Stator for high efficiency motor and manufacturing method thereof
CN107979244B (en) * 2016-10-21 2021-03-02 现代自动车株式会社 Stator for high-efficiency motor and method of making the same
CN111670212A (en) * 2018-02-02 2020-09-15 株式会社Lg化学 Curable composition
JP2021512980A (en) * 2018-02-02 2021-05-20 エルジー・ケム・リミテッド Curable composition
KR20190094126A (en) * 2018-02-02 2019-08-12 주식회사 엘지화학 Curable Composition
JP7088445B2 (en) 2018-02-02 2022-06-21 エルジー・ケム・リミテッド Curable composition
WO2019151844A1 (en) * 2018-02-02 2019-08-08 주식회사 엘지화학 Curable composition
US11952477B2 (en) 2018-02-02 2024-04-09 Lg Chem, Ltd. Curable composition
KR102741718B1 (en) 2018-02-02 2024-12-12 주식회사 엘지화학 Curable Composition
WO2021104551A1 (en) * 2019-11-28 2021-06-03 Hans Hermann Rottmerhusen Cooling-optimised laminated core for a stator of an electrical machine
JPWO2022124329A1 (en) * 2020-12-09 2022-06-16
JP7594011B2 (en) 2020-12-09 2024-12-03 住友ベークライト株式会社 Stator, rotating electric machine, and method of manufacturing the stator
EP4160881A1 (en) 2021-10-01 2023-04-05 Minebea Mitsumi Inc. Motor

Similar Documents

Publication Publication Date Title
EP1968168B1 (en) Coil insulator, armature coil insulated by the coil insulator and electrical rotating machine having the armature coil
CN1306680C (en) Rotary electric machine and method for making same
CN1238944C (en) Coil for electric rotating machine, and mica tape and mica sheet used for the coil insulation
Damiano et al. Design of a high-speed ferrite-based brushless DC machine for electric vehicles
JP3843967B2 (en) Insulating coil manufacturing method
JP2003158842A (en) Rotary machine
Liu et al. Application of an amorphous core to an ultra-high-speed sleeve-free interior permanent-magnet rotor
JP6203235B2 (en) Electromagnetic coil and manufacturing method thereof
EP2945169B1 (en) Insulation tape, method for producing same and stator coil
JP2004088970A (en) Stacked iron core and rotating electric machine and transformer using the same
US12009732B2 (en) Electrical machine winding having improved cooling
JP2002191149A (en) Rotating electric machine
JP2003306594A (en) Epoxy resin composition and rotating machine using the same
JP2000058314A (en) High temperature conductive coil and insulating sheet and manufacture thereof
Mellor et al. Addressing the challenges of lightweight aircraft electric propulsion through electrical machines with air-gap windings
JP2003009446A (en) High heat conductive insulting coil and rotating electric machine
EP0662746B1 (en) Sheet material for electrical insulation
Geng et al. Design of cooling system for high torque density permanent magnet synchronous motor based on heat pipe
JP3422674B2 (en) Insulated coil and rotating electric machine using the same
JP5159812B2 (en) Rotating electric machine
JP3497719B2 (en) Electric machine insulation coil and rotating electric machine using the same
JP2000297204A (en) Epoxy resin composition, rotating electric machine coil, casting resin composition and rotating electric machine
JP2005065373A (en) Rotating machine
Miersch et al. Ceramic-like composite systems for winding insulation of electrical machines
CN113054802A (en) Electric motor with conformal heat pipe assembly