JP2003157890A - Sodium secondary battery - Google Patents

Sodium secondary battery

Info

Publication number
JP2003157890A
JP2003157890A JP2001355477A JP2001355477A JP2003157890A JP 2003157890 A JP2003157890 A JP 2003157890A JP 2001355477 A JP2001355477 A JP 2001355477A JP 2001355477 A JP2001355477 A JP 2001355477A JP 2003157890 A JP2003157890 A JP 2003157890A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
container
metal plate
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001355477A
Other languages
Japanese (ja)
Inventor
Tadahiko Mitsuyoshi
忠彦 三吉
Hisamitsu Hato
久光 波東
Shigeru Sakaguchi
繁 坂口
Tetsuya Sado
哲也 佐渡
Satoshi Hirano
平野  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001355477A priority Critical patent/JP2003157890A/en
Publication of JP2003157890A publication Critical patent/JP2003157890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sodium secondary battery suitably used for an electric power storage device and an electric automobile. SOLUTION: This sodium secondary battery is constituted by frictionally agitating and joining a plurality of aluminum metallic plates or aluminum alloy metallic plates to form a negative electrode vessel and/or a positive electrode vessel, and is characterized in that the plate thickness of the mutually joined metallic plates is different from each other, and a rotary tool used for frictional agitating-joining is drawn out of the inside of the metallic plate thicker in the plate thickness positional far from the frictional agitating-joining part. Thus, the negative electrode vessel and the positive electrode vessel of the sodium secondary battery can be airtightly easily joined and sealed, and reliability of the joining part and a sealing part and a manufacturing yield can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力貯蔵装置や電
気自動車などに用いるに好適なナトリウム二次電池の構
造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a sodium secondary battery suitable for use in a power storage device, an electric vehicle and the like.

【0002】[0002]

【従来の技術】負極容器内に液体ナトリウム、正極容器
内に正極活物質として硫黄,セレン,テルルの元素やこ
れらの塩化物,多硫化ナトリウムや金属塩化物(金属は
Al,Ni,Feなど)などを充填し、負極室/正極室
間をβ型やβ″型のベータアルミナセラミックス製の固
体電解質で分離した構造のナトリウム二次電池は、長寿
命でエネルギー密度が大きいことから注目され、電力貯
蔵装置やハイブリッド自動車を含めた電気自動車などへ
の利用が期待されている。この電池の実用化のために
は、電池の信頼性確保と共に低コスト化が不可欠であ
り、このためには、電池が高出力運転できるように内部
抵抗を低減して電池効率を向上したり、単電池を大型化
してkWやkWh当たりの電池数を低減することが望ま
しい。
2. Description of the Related Art Liquid sodium in a negative electrode container, elements of sulfur, selenium and tellurium as positive electrode active materials in a positive electrode container and chlorides thereof, sodium polysulfide and metal chlorides (metals are Al, Ni, Fe, etc.) A sodium secondary battery with a structure in which the negative electrode chamber and the positive electrode chamber are separated by a β-type or β ″ -type solid electrolyte made of beta-alumina ceramics has attracted attention because of its long life and large energy density. It is expected to be applied to electric vehicles including storage devices and hybrid vehicles, etc. In order to put this battery to practical use, it is essential to ensure the reliability of the battery and to reduce the cost. It is desirable to reduce the internal resistance to improve the battery efficiency so as to operate at high output, or to increase the size of the single cell to reduce the number of batteries per kW or kWh.

【0003】従来の電池ではそのための対策として、例
えば特開平7−302612号公報などに見られるよう
に、電極を共用する負極容器や正極容器をアルミニウム
合金製として、電池抵抗を下げ、電池効率を向上する方
法が採用されている。また、一般に、この負極容器や正
極容器は複数の金属板を接合する方法で構成され、接合
方法としては特開平7−176329号公報に述べられ
ているレーザ溶接やアーク溶接、又は、電子ビーム溶接
が用いられている。
In a conventional battery, as a countermeasure for that, as shown in, for example, Japanese Patent Application Laid-Open No. 7-302612, a negative electrode container and a positive electrode container that share electrodes are made of aluminum alloy to reduce battery resistance and improve battery efficiency. Methods to improve have been adopted. Further, generally, the negative electrode container and the positive electrode container are configured by a method of joining a plurality of metal plates, and the joining method is laser welding, arc welding, or electron beam welding described in JP-A-7-176329. Is used.

【0004】しかしながら、レーザ溶接やアーク溶接で
は溶接温度が高いために溶接部にボイドが発生したり、
溶接部周囲まで昇温されて金属板が変形すること、電子
ビーム溶接では真空中で溶接する必要があるために、溶
接工程が複雑になることなどの問題が発生しやすく、ナ
トリウム二次電池の製造が困難で、低コスト化が達成で
きないという欠点があった。特に負極容器や正極容器を
構成する金属板としてアルミニウムやアルミニウム合金
を用いる場合には、金属板が溶接時に変形したり、ボイ
ドが発生し易く、電池の製造歩留まりが向上しないとい
う問題があった。
However, since the welding temperature is high in laser welding and arc welding, voids may be generated in the welded portion,
Problems such as the metal plate being deformed due to the temperature being raised to the periphery of the weld and the welding process becoming complicated because electron beam welding requires welding in a vacuum are common. It has a drawback that it is difficult to manufacture and cost reduction cannot be achieved. In particular, when aluminum or an aluminum alloy is used as a metal plate forming the negative electrode container or the positive electrode container, there is a problem that the metal plate is easily deformed during welding or a void is generated, and the battery production yield is not improved.

【0005】アルミニウムやアルミニウム合金の接合法
としては、例えば特開平11−090655号公報,特
開2000−061660号公報,特開2000−06
1662号公報などに見られるように、摩擦攪拌接合法
での接合が優れており、こうすることによって、接合部
周囲の温度上昇を抑え、上記ボイド発生や変形の防止が
可能である。しかしながら、摩擦攪拌接合法では回転ツ
ールを金属内に押し込んで接合するため、接合完了後に
はツールを金属内から引き抜く必要がある。このため、
ナトリウム二次電池の負極容器や正極容器の接合工程や
貫通穴の封止工程においては、ツールを引き抜いた後に
残る穴の除去に手間が掛かり、特に容器の径方向に回転
ツールを動かして気密接合する場合には穴の除去が極め
て困難であり、一方、穴が残された場合には容器の気密
封止や強度保持の妨げになりやすいという問題があり、
これらの問題に対する対策が実用化のためには不可欠で
ある。
As a method of joining aluminum and aluminum alloys, for example, JP-A-11-090655, JP-A-2000-061660, and JP-A-2000-06.
As can be seen in Japanese Patent No. 1662, the joining by the friction stir welding method is excellent, and by doing so, it is possible to suppress the temperature rise around the joined portion and prevent the occurrence of voids and deformation. However, in the friction stir welding method, since the rotary tool is pushed into the metal for welding, the tool needs to be pulled out from the metal after the welding is completed. For this reason,
In the process of joining the negative electrode container and positive electrode container of sodium secondary batteries and the process of sealing the through holes, it takes time to remove the holes that remain after the tool is pulled out, especially by rotating the rotating tool in the radial direction of the container to perform airtight bonding. If it is, it is extremely difficult to remove the hole, while if the hole is left, there is a problem that it tends to hinder the airtight sealing and strength retention of the container,
Measures against these problems are indispensable for practical use.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、上記
従来技術の欠点を除き、負極容器や正極容器の気密接合
や気密封止を容易に行うことができ、且つ、接合部や封
止部の信頼性や製造歩留まりの高いナトリウム二次電池
を提供するにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to easily perform airtight bonding or hermetic sealing of a negative electrode container or a positive electrode container, and to provide a joint or sealing. To provide a sodium secondary battery with high reliability and high manufacturing yield.

【0007】[0007]

【課題を解決するための手段】本発明の第一のナトリウ
ム二次電池は、負極容器又は/及び正極容器が複数個の
アルミニウム製金属板又はアルミニウム合金製金属板を
摩擦攪拌接合することによって構成され、接合された前
記金属板同士の板厚が互いに異なっていて、前記摩擦攪
拌接合部から離れた位置の前記板厚が厚い方の金属板内
から、前記摩擦攪拌接合に用いた回転ツールが引き抜か
れていることを特徴としている。
The first sodium secondary battery of the present invention is constructed by friction stir welding a plurality of aluminum metal plates or aluminum alloy metal plates for the negative electrode container and / or the positive electrode container. The thickness of the joined metal plates is different from each other, and the rotating tool used for the friction stir welding is selected from the metal plate having the thicker thickness at a position distant from the friction stir welding part. Characterized by being pulled out.

【0008】こうすることにより、ツールを引き抜いた
後に残る穴の除去が不要となって、負極容器や正極容器
の気密接合を容易に行うことができ、且つ、接合部の信
頼性や製造歩留まりの高いナトリウム二次電池が実現さ
れる。
[0008] By doing so, it is not necessary to remove the hole left after the tool is pulled out, the airtight bonding of the negative electrode container and the positive electrode container can be easily performed, and the reliability of the bonding portion and the manufacturing yield can be improved. A high sodium secondary battery is realized.

【0009】ここで、前記摩擦攪拌接合された一方の金
属板の板厚が他方の金属板の板厚の2倍以上であるこ
と、前記負極容器の一部である負極蓋を構成する金属板
の板厚が前記負極容器の一部である負極胴部や負極フラ
ンジを構成する金属板の板厚よりも大きいこと、又は/
及び、前記正極容器の一部である正極蓋を構成する金属
板の板厚が前記正極容器の一部である正極胴部や正極フ
ランジを構成する金属板の板厚よりも大きいことが特に
望ましい。
Here, the plate thickness of one of the friction stir welded metal plates is at least twice the plate thickness of the other metal plate, and the metal plate forming the negative electrode lid which is a part of the negative electrode container. Is greater than the thickness of the metal plate that constitutes the negative electrode body or negative electrode flange that is a part of the negative electrode container, or
And, it is particularly preferable that the plate thickness of the metal plate forming the positive electrode lid which is a part of the positive electrode container is larger than the plate thickness of the metal plate forming the positive electrode body and the positive electrode flange which are a part of the positive electrode container. .

【0010】また、本発明の第二のナトリウム二次電池
は、負極容器の一部である負極蓋,負極胴部又は負極フ
ランジを構成する金属板に設けられた真空引き用又はガ
ス圧制御用の貫通孔、又は/及び、前記正極容器の一部
である正極蓋,正極胴部又は正極フランジを構成する金
属板に設けられた真空引き用又はガス圧制御用の貫通孔
が摩擦攪拌接合によって封止され、前記金属板の板厚が
前記貫通孔の内径よりも大きくて、前記貫通孔から離れ
た位置の前記金属板内から、前記摩擦攪拌接合に用いた
回転ツールが引き抜かれていることを特徴としている。
The second sodium secondary battery of the present invention is for vacuuming or controlling gas pressure provided on a metal plate constituting a negative electrode lid, a negative electrode body or a negative electrode flange which is a part of the negative electrode container. Of the positive electrode cover, which is a part of the positive electrode container, the positive electrode body, or the metal plate that constitutes the positive electrode flange, which is a part of the positive electrode container, for vacuuming or for controlling gas pressure by friction stir welding. The rotary tool used for the friction stir welding is pulled out from the inside of the metal plate that is sealed and has a plate thickness larger than the inner diameter of the through hole and is located away from the through hole. Is characterized by.

【0011】こうすることにより、貫通孔の気密封止を
容易に行うことができ、且つ、封止部の信頼性や製造歩
留まりの高いナトリウム二次電池が実現される。
By doing so, it is possible to realize a sodium secondary battery in which the through hole can be easily hermetically sealed and the sealing portion has high reliability and a high production yield.

【0012】さらに、前記第一,第二のナトリウム二次
電池において、前記正極容器内の前記固体電解質に沿っ
てアルミニウム製又はアルミニウム合金製の集電体が設
けられており、前記集電体が前記正極容器を構成する正
極蓋又は/及び正極胴部と接合されていること、前記固
体電解質が固体電解質袋管であり、該固体電解質袋管が
水平方向または斜め方向に寝かせて配置されていること
が望ましい。
Further, in the first and second sodium secondary batteries, a current collector made of aluminum or aluminum alloy is provided along the solid electrolyte in the positive electrode container, and the current collector is It is joined to the positive electrode lid and / or the positive electrode body forming the positive electrode container, the solid electrolyte is a solid electrolyte bag tube, and the solid electrolyte bag tube is laid in a horizontal or diagonal direction. Is desirable.

【0013】[0013]

【発明の実施の形態】以下、本発明を図面を用いて説明
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below with reference to the drawings.

【0014】図1は本発明の第一の実施形態によるナト
リウム二次電池の構造を示す断面図である。図におい
て、ナトリウムイオン導電性の固体電解質1には、普通
β型やβ″型のベータアルミナセラミックスから成る固
体電解質袋管が用いられる。なお、固体電解質袋管の代
りに平板状の固体電解質を用いることもできる。また、
負極容器2,正極容器3は固体電解質1と共にそれぞれ
負極室4,正極室5を構成しており、その材料としては
AlやAl合金、または、これらの表面にCrやMo,
Ti,C,Siなどを主体とする耐食層を設けたものや
Al合金とSUS等とのクラッド材が普通に用いられ
る。
FIG. 1 is a sectional view showing the structure of a sodium secondary battery according to the first embodiment of the present invention. In the figure, a solid electrolyte bag tube made of β-type or β ″ -type beta-alumina ceramics is usually used as the sodium ion conductive solid electrolyte 1. Note that a flat solid electrolyte is used instead of the solid electrolyte bag tube. Can also be used.
The negative electrode container 2 and the positive electrode container 3 constitute the negative electrode chamber 4 and the positive electrode chamber 5 together with the solid electrolyte 1, and the material thereof is Al or Al alloy, or Cr or Mo on the surface thereof,
A material provided with a corrosion-resistant layer mainly composed of Ti, C, Si or the like, or a clad material of Al alloy and SUS or the like is usually used.

【0015】絶縁部材6は負極容器2と正極容器3とを
絶縁分離し、且つ、これらと接合されており、普通αア
ルミナセラミックスを用いて、図示されていないが固体
電解質1の開口部付近にガラス接合されたり、αアルミ
ナやマグネシウムアルミニウムスピネルなどのセラミッ
クスを用いて、固体電解質1の開口部と一体焼結されて
いる。また、負極容器2や正極容器3と絶縁部材6との
接合には、図示されていないが、AlやAl合金を接合
材として用いて、接合材の液相線温度以下や固相線温度
以下に加熱して、加圧接合する熱圧接法が一般に行われ
ている。
The insulating member 6 insulates and separates the negative electrode container 2 and the positive electrode container 3 from each other, and is joined to them, and is usually made of α-alumina ceramics and is provided in the vicinity of the opening of the solid electrolyte 1 although not shown. It is glass-bonded or is integrally sintered with the opening of the solid electrolyte 1 using ceramics such as α-alumina and magnesium aluminum spinel. For joining the negative electrode container 2 and the positive electrode container 3 to the insulating member 6, although not shown, using Al or Al alloy as a joining material, the liquidus temperature of the joining material or less or the solidus temperature or less A heat-pressure welding method in which the material is heated and pressure-bonded is generally performed.

【0016】さらに、負極室4内には液体ナトリウム7
を収納するSUSなどの鉄合金やAl合金などの金属製
ナトリウム容器8が設けられており、ナトリウム7は放
電時には重力やナトリウム容器8内に充填された窒素ガ
スやArガスなどの不活性ガス9の圧力で押され、一方
充電時には固体電解質1を通して侵入するナトリウムの
圧力で押されて、ナトリウム容器8に設けた貫通孔10
を出入りする。このようにナトリウム容器8を設けるこ
とにより、固体電解質1とナトリウム容器8との間隙1
1に存在するナトリウムの量が少なくできて、固体電解
質1が破損した際の電池の安全性が向上する。
Further, liquid sodium 7 is placed in the negative electrode chamber 4.
A metallic sodium container 8 such as an iron alloy such as SUS or an Al alloy is provided to store sodium, and sodium 7 is gravity or an inert gas 9 such as nitrogen gas or Ar gas filled in the sodium container 8 during discharge. Of the through hole 10 provided in the sodium container 8 while being charged by the pressure of sodium which penetrates through the solid electrolyte 1 during charging.
Go in and out. By providing the sodium container 8 in this way, a gap 1 between the solid electrolyte 1 and the sodium container 8 is formed.
The amount of sodium present in 1 can be reduced, and the safety of the battery when the solid electrolyte 1 is damaged is improved.

【0017】なお、この図においては、電池組立中の構
造が示されているために、間隙11にナトリウムが存在
していないが、電池運転時にはナトリウム容器8中のナ
トリウム7が貫通孔10を通って間隙11に供給され
る。さらに、ナトリウム容器8は負極容器2と分離され
ているが、ナトリウム容器8と負極容器2とを一体化し
た構造も可能である。
In this figure, since the structure during battery assembly is shown, sodium does not exist in the gap 11, but sodium 7 in the sodium container 8 passes through the through hole 10 during battery operation. Is supplied to the gap 11. Further, although the sodium container 8 is separated from the negative electrode container 2, a structure in which the sodium container 8 and the negative electrode container 2 are integrated is also possible.

【0018】また、正極室5内の固体電解質1の側面と
正極容器3の一部である正極胴部31との間、あるい
は、図2のように集電体15の胴部との間に、多孔質導
電材12や多孔質材13が設置される。ここでナトリウ
ム硫黄電池の場合には、硫黄又は/及び多硫化ナトリウ
ムから成る正極活物質14が正極室5内に充填されてお
り、この正極活物質14が多孔質導電材12や多孔質材
13に含浸されて、電池反応を促進している。一方、ナ
トリウム硫黄電池以外のナトリウム二次電池において
は、正極活物質14としては硫黄,セレン,テルルの元
素やこれらの塩化物,金属塩化物(金属はAl,Ni,
Feなど)が用いられる。
Further, between the side surface of the solid electrolyte 1 in the positive electrode chamber 5 and the positive electrode body portion 31 which is a part of the positive electrode container 3, or between the body portion of the current collector 15 as shown in FIG. The porous conductive material 12 and the porous material 13 are installed. Here, in the case of a sodium-sulfur battery, the positive electrode active material 14 made of sulfur or / and sodium polysulfide is filled in the positive electrode chamber 5, and the positive electrode active material 14 is the porous conductive material 12 or the porous material 13. It is impregnated in and promotes the battery reaction. On the other hand, in sodium secondary batteries other than sodium-sulfur batteries, the positive electrode active material 14 includes elements of sulfur, selenium, tellurium, chlorides thereof, and metal chlorides (metals are Al, Ni,
Fe or the like) is used.

【0019】また、多孔質導電材12には炭素繊維や炭
素粉末の集合体が用いられ、特に固体電解質1に沿った
径方向の厚さが3〜20mm程度の、1200〜2000
℃で加熱されたPAN(ポリアクリロニトリル)系やピ
ッチ系の炭素繊維マットを用いることが望ましい。さら
に、炭素繊維が面方向に配列したリング形状や短冊状な
どの炭素繊維マットを用いて、炭素繊維マットの面方向
が固体電解質1の側面に垂直になるように設置すること
により、固体電解質1の径方向に沿った炭素繊維マット
の抵抗を低減して、電池効率を向上することができる。
一方、多孔質材13には普通アルミナなどのセラミック
スやガラスの繊維や粒子の集合体が用いられ、固体電解
質1に沿った径方向の厚さを0.1〜0.5mm程度にする
ことが望ましい。
An aggregate of carbon fibers and carbon powder is used as the porous conductive material 12, and in particular, the thickness in the radial direction along the solid electrolyte 1 is about 3 to 20 mm, 1200 to 2000.
It is desirable to use a PAN (polyacrylonitrile) -based or pitch-based carbon fiber mat heated at ° C. Further, a ring-shaped or strip-shaped carbon fiber mat in which carbon fibers are arranged in the plane direction is used, and the carbon fiber mat is installed such that the plane direction of the mat is perpendicular to the side surface of the solid electrolyte 1. It is possible to reduce the resistance of the carbon fiber mat along the radial direction and improve the battery efficiency.
On the other hand, as the porous material 13, an aggregate of fibers or particles of ceramics such as alumina or glass is usually used, and the radial thickness along the solid electrolyte 1 can be set to about 0.1 to 0.5 mm. desirable.

【0020】さらに、図1の構造のナトリウム二次電池
においては、負極容器2の一部である負極胴部21と負
極蓋22、及び、正極容器3の一部である正極胴部31
と正極蓋32とがそれぞれ摩擦攪拌接合部61及び63
で気密接合されると共に、負極蓋22及び正極蓋32に
設けられた貫通孔41と51とがそれぞれ摩擦攪拌接合
部62及び64で気密封止されている。
Further, in the sodium secondary battery having the structure shown in FIG. 1, the negative electrode body portion 21 and the negative electrode lid 22 which are a part of the negative electrode container 2, and the positive electrode body portion 31 which is a part of the positive electrode container 3.
And the positive electrode lid 32 are friction stir welding parts 61 and 63, respectively.
And the through holes 41 and 51 provided in the negative electrode lid 22 and the positive electrode lid 32 are hermetically sealed by the friction stir welding portions 62 and 64, respectively.

【0021】ここで、金属板同士を摩擦攪拌接合する場
合、回転ツールを金属板内に押し込んで摩擦攪拌するこ
とにより金属板同士が接合されるため、接合部周辺の金
属板の温度上昇が押さえられ、金属板の変形やボイド発
生が防止される反面、接合後に回転ツールを引き抜いた
際に穴が残るという問題がある。
Here, in the case of friction stir welding of metal plates, since the metal plates are joined by pushing the rotary tool into the metal plates and friction stirring, the temperature rise of the metal plates around the joint is suppressed. While the deformation and voids of the metal plate are prevented, there is a problem that holes remain when the rotary tool is pulled out after joining.

【0022】この問題に対処するため、本発明の構造に
おいては、図1に見られるように、負極蓋22を構成す
る金属板の厚さを負極胴部21を構成する金属板の厚さ
よりも大きくすると共に、正極蓋32を構成する金属板
の厚さを正極胴部31を構成する金属板の厚さよりも大
きくしている。こうすることにより、回転ツールの押し
込み深さを負極胴部21や正極胴部31を構成する金属
板の厚さとほぼ同程度にして、負極胴部21と負極蓋2
2、及び、正極胴部31と正極蓋32とを摩擦攪拌接合
で円周方向に気密接合した後、回転ツールを接合部から
遠ざけて、金属板の厚い負極蓋22や正極蓋32内に移
動し、回転ツールが引き抜かれる。
To deal with this problem, in the structure of the present invention, as shown in FIG. 1, the thickness of the metal plate forming the negative electrode lid 22 is smaller than that of the metal plate forming the negative electrode body portion 21. In addition to increasing the thickness, the thickness of the metal plate forming the positive electrode lid 32 is made larger than the thickness of the metal plate forming the positive electrode body portion 31. By doing so, the pressing depth of the rotary tool is made approximately the same as the thickness of the metal plate forming the negative electrode body portion 21 and the positive electrode body portion 31, and the negative electrode body portion 21 and the negative electrode lid 2 are
2, and after the positive electrode body 31 and the positive electrode lid 32 are circumferentially airtightly joined by friction stir welding, the rotary tool is moved away from the joining portion and moved into the negative electrode lid 22 or the positive electrode lid 32 having a thick metal plate. Then, the rotary tool is pulled out.

【0023】即ち、図示されていないが、接合後に回転
ツールを負極の場合には図1の上側に、正極の場合には
下側に動かして、負極胴部21や正極胴部31との接合
部から遠ざけた位置で回転ツールを引き抜くことによ
り、穴の深さよりも肉厚の大きい金属板から構成された
負極蓋22内や正極蓋32内に穴が設けられるために、
接合部の気密性が確保される。また、負極蓋22や正極
蓋32を構成する金属板の板厚を大きくすることによ
り、穴が設けられても機械的強度を充分確保できること
が可能である。
That is, although not shown, the rotary tool is moved to the upper side of FIG. 1 in the case of the negative electrode and to the lower side in the case of the positive electrode after joining to join the negative electrode body portion 21 and the positive electrode body portion 31. By pulling out the rotary tool at a position distant from the portion, holes are provided in the negative electrode lid 22 and the positive electrode lid 32 that are made of a metal plate having a larger wall thickness than the depth of the holes.
The airtightness of the joint is secured. Further, by increasing the plate thickness of the metal plate forming the negative electrode lid 22 and the positive electrode lid 32, it is possible to ensure sufficient mechanical strength even if holes are provided.

【0024】このように、本発明のように摩擦攪拌接合
する一方の金属板の厚さを他方の金属板の厚さよりも大
きくして、回転ツールの押し込み深さを薄い方の金属板
の厚さにほぼ一致させると共に、板厚が厚い方の金属板
内の接合部から離れた位置から回転ツールを引き抜くこ
とにより、ナトリウム二次電池の負極容器や正極容器を
接合する際のように、主に容器の径方向に回転ツールを
動かして気密接合する場合にも、回転ツールを引き抜い
た後に残る穴の除去は不要となる。また、残された穴が
容器の気密封止や強度保持の妨げになるのを防止して、
正極容器の気密接合を容易に行うことができ、且つ、接
合部の信頼性や製造歩留まりの高いナトリウム二次電池
が実現される。
As described above, the thickness of one metal plate to be friction stir welded as in the present invention is made larger than the thickness of the other metal plate, and the pushing depth of the rotary tool is the thickness of the thinner metal plate. This is the same as when connecting the negative electrode container and positive electrode container of the sodium secondary battery by pulling out the rotary tool from a position away from the joint in the thicker metal plate. Even when the rotary tool is moved in the radial direction of the container to perform airtight bonding, it is not necessary to remove the hole remaining after the rotary tool is pulled out. Also, prevent the remaining holes from interfering with the airtight sealing and strength retention of the container,
It is possible to realize a sodium secondary battery in which the positive electrode container can be easily airtightly bonded, and the reliability of the bonding portion and the manufacturing yield are high.

【0025】さらに、図1においては、負極蓋22や正
極蓋32に設けた貫通孔41と51がそれぞれ摩擦攪拌
接合部62と64で気密封止されている。なお、ナトリ
ウム二次電池においては、ナトリウム7の酸化を防止す
るために、負極室4内は真空引きされるか、または、所
定圧力の窒素やアルゴンなどの不活性ガスを充填して封
止されるのが一般的であるが、本発明の構造では、貫通
孔41の封止時に封止場所以外では温度上昇がほとんど
起こらないため、封止時にナトリウム7が溶融して負極
室4内を移動する問題が発生せず、気密封止の信頼性や
量産性が高いという利点がある。
Further, in FIG. 1, the through holes 41 and 51 provided in the negative electrode lid 22 and the positive electrode lid 32 are hermetically sealed by friction stir welding portions 62 and 64, respectively. In the sodium secondary battery, in order to prevent the oxidation of sodium 7, the inside of the negative electrode chamber 4 is evacuated or filled with an inert gas such as nitrogen or argon at a predetermined pressure and sealed. Generally, in the structure of the present invention, when the through hole 41 is sealed, the temperature hardly rises except at the sealing place. Therefore, the sodium 7 melts and moves in the negative electrode chamber 4 at the time of sealing. There is no problem that occurs, and there is an advantage that reliability of airtight sealing and mass productivity are high.

【0026】また、正極蓋32の気密封止時にも同様な
問題があり、ナトリウム二次電池としてナトリウム硫黄
電池を用いる場合には、正極室5内に正極活物質14で
ある硫黄が充填されるが、正極室5内を真空引きした
り、所定圧力の窒素やアルゴンなどの不活性ガスを充填
して封止する場合に、本発明の構造では貫通孔51の近
傍以外では温度上昇の問題が無く、硫黄が蒸発して封止
を妨げる問題が起こらないという利点がある。
The same problem occurs when the positive electrode lid 32 is hermetically sealed. When a sodium-sulfur battery is used as the sodium secondary battery, the positive electrode active material 14 is filled with sulfur. However, when the inside of the positive electrode chamber 5 is evacuated or filled with an inert gas such as nitrogen or argon having a predetermined pressure for sealing, the structure of the present invention has a problem of temperature increase except in the vicinity of the through hole 51. There is no advantage that sulfur does not evaporate and the problem of obstructing the sealing does not occur.

【0027】なお、貫通孔41や51を気密封止する場
合には、回転ツールの押し込み深さは貫通孔の内径程度
で良いため、貫通孔41や51とは径方向が異なる位置
の負極蓋22や正極蓋32を構成する金属板220や3
20の板厚を貫通孔の内径よりも大きくして、貫通孔を
封止後に回転ツールを貫通孔から離れた位置に移動させ
て、負極蓋の金属板220や正極蓋の金属板320から
回転ツールを引き抜けば良い。こうすることにより、残
された穴の除去の必要はなく、また、穴が残されても気
密封止や機械的強度に問題は無くて、ナトリウム二次電
池の封止部の信頼性向上や製造歩留まりの向上が可能と
なる。
When the through holes 41 and 51 are hermetically sealed, since the pushing depth of the rotary tool may be about the inner diameter of the through holes, the negative electrode lid at a position different from the through holes 41 and 51 in the radial direction. 22 and the metal plates 220 and 3 forming the positive electrode lid 32
The plate thickness of 20 is made larger than the inner diameter of the through hole, and after the through hole is sealed, the rotary tool is moved to a position away from the through hole and rotated from the metal plate 220 of the negative electrode lid or the metal plate 320 of the positive electrode lid. Just pull out the tool. By doing so, it is not necessary to remove the remaining hole, and even if the hole is left, there is no problem in hermetic sealing and mechanical strength, and the reliability of the sealed portion of the sodium secondary battery is improved and It is possible to improve the manufacturing yield.

【0028】図2は本発明の第二の実施形態のナトリウ
ム二次電池の構造例を示す断面図であり、図1と同じ符
号で記載されたものは同じ部品を示している。図2にお
いては、ナトリウム容器8に設けた貫通孔10が下側に
なるように、袋管状の固体電解質1が水平方向又は斜め
方向に寝かせて配置されると共に、固体電解質1の内側
に負極室4が、外側に正極室5が設けられ、固体電解質
1の外側側面に沿って集電体15が設けられて、固体電
解質1の側面と集電体15との間に多孔質導電材12や
多孔質材13が設置されている。なお、図示されていな
いが、平板状の固体電解質を用いる場合には、平板に沿
って集電体が設けられる。
FIG. 2 is a cross-sectional view showing a structural example of the sodium secondary battery of the second embodiment of the present invention, in which the same reference numerals as those in FIG. 1 indicate the same parts. In FIG. 2, the bag-shaped solid electrolyte 1 is laid horizontally or obliquely so that the through hole 10 provided in the sodium container 8 is on the lower side, and the negative electrode chamber is provided inside the solid electrolyte 1. 4, the positive electrode chamber 5 is provided on the outer side, the current collector 15 is provided along the outer side surface of the solid electrolyte 1, and the porous conductive material 12 and the porous conductive material 12 are provided between the side surface of the solid electrolyte 1 and the current collector 15. A porous material 13 is installed. Although not shown, when a flat solid electrolyte is used, a current collector is provided along the flat plate.

【0029】このように、袋管状の固体電解質1を水平
方向や斜め方向に寝かせた構造となっているために、普
通に用いられる様に長さが直径よりも大きい袋管状の固
体電解質1を用いた場合、袋管状の固体電解質1を直立
させるよりも電池の鉛直方向の高さが小さくなり、正極
室5内の上下方向に重力による正極活物質14の濃度分
布や組成分布が付きにくくなって、電池内に起電力分布
やそれに基づく循環電流が起こりにくくなり、これらの
結果として電池の効率が向上する。
As described above, since the bag-shaped solid electrolyte 1 is laid horizontally or obliquely, the bag-shaped solid electrolyte 1 having a length larger than the diameter is used as usual. When used, the height of the battery in the vertical direction becomes smaller than when the solid electrolyte 1 having a tubular shape is erected, and the concentration distribution and composition distribution of the positive electrode active material 14 due to gravity in the vertical direction in the positive electrode chamber 5 are less likely to be attached. As a result, electromotive force distribution and circulating current based on it are less likely to occur in the battery, and as a result, the efficiency of the battery is improved.

【0030】さらに、正極室5内の固体電解質1に沿っ
て設けた集電体15を用いて集電することにより、固体
電解質1の側面と集電体15との間隔に存在する多孔質
導電材12の厚さを比較的小さくして、その抵抗低減に
より電池効率を向上することができる。また、集電体1
5と正極容器3との間隔を広げて正極室内の容積を大き
くすることにより、電池の大容量化が達成される。すな
わち、これらの結果、電池抵抗を低く保ちながら、構成
部品をあまり増やすこと無く電池の大容量化が可能で、
低コスト化が容易に実現できる実用性の高い大容量電池
が得られる。
Further, by collecting current using the current collector 15 provided along the solid electrolyte 1 in the positive electrode chamber 5, the porous conductive material existing in the space between the side surface of the solid electrolyte 1 and the current collector 15 is collected. The material efficiency can be improved by making the thickness of the material 12 relatively small and reducing the resistance thereof. Also, the current collector 1
The capacity of the battery can be increased by increasing the space between the cathode 5 and the positive electrode container 3 to increase the volume in the positive electrode chamber. That is, as a result of these, it is possible to increase the capacity of the battery without increasing the number of components while keeping the battery resistance low.
It is possible to obtain a highly practical large-capacity battery that can easily realize cost reduction.

【0031】また、袋管状の固体電解質1の長さを直径
よりも大きくすることにより、固体電解質1の内容積と
表面積との比を比較的小さくすることができる。この結
果、直径が長さと同程度又は直径の方が大きい袋管状の
固体電解質1を用いた場合に比べて、所定時間内に運転
する際の固体電解質1の表面積当りの電流密度を小さく
することができ、その結果として電流×内部抵抗で与え
られる放電電圧低下や充電電圧上昇が小さくなって、電
池効率を大きくできるという利点がある。なお、この効
果は単電池を大型化するために袋管状の固体電解質1の
長さを大きくした場合に特に顕著で、本発明の構造によ
り、電池の大型化すなわち大容量化と効率向上との両立
が可能である。
Further, by making the length of the bag-shaped solid electrolyte 1 larger than the diameter, the ratio of the internal volume of the solid electrolyte 1 to the surface area can be made relatively small. As a result, the current density per surface area of the solid electrolyte 1 during operation within a predetermined time should be smaller than that in the case of using the bag-shaped solid electrolyte 1 having a diameter similar to the length or a larger diameter. As a result, there is an advantage that the discharge voltage drop and the charge voltage increase given by current × internal resistance are reduced, and the battery efficiency can be increased. Note that this effect is particularly remarkable when the length of the bag-shaped solid electrolyte 1 is increased in order to increase the size of the unit cell, and the structure of the present invention increases the size of the battery, that is, increases the capacity and improves efficiency. Compatibility is possible.

【0032】さらに、この構造においては、集電体15
によって電池特性が制御できるために、正極容器の形状
を円筒形状,楕円筒形状や直方体形状などのように、目
的に応じた種々の構造にすることも可能である。
Further, in this structure, the current collector 15
Since the battery characteristics can be controlled by the above, the shape of the positive electrode container can be various structures such as a cylindrical shape, an elliptic cylinder shape and a rectangular parallelepiped shape according to the purpose.

【0033】すなわち、正極容器3が円筒形状の場合に
は、正極容器3の昇降温時の熱応力や運転時の外部大気
圧に対する機械的強度が大きく、電池の信頼性が高いと
いう利点がある。特に正極容器3をアルミニウムやアル
ミニウム合金製とした場合には、高温時の応力によって
正極容器3がクリープ変形しやすいという問題がある
が、正極容器3を円筒形状にすることによって正極容器
3に加わる応力が低減して、変形防止が容易となる。ま
た、図示されていないが、正極容器3の断面を楕円形状
にすることも可能であり、こうすることによって、正極
容器3を直方体形状にした場合に比べて機械的信頼性が
向上する。
That is, when the positive electrode container 3 has a cylindrical shape, there is an advantage that the positive electrode container 3 has high mechanical strength against thermal stress when the temperature is raised or lowered and external atmospheric pressure during operation, and the reliability of the battery is high. . In particular, when the positive electrode container 3 is made of aluminum or an aluminum alloy, there is a problem that the positive electrode container 3 is likely to undergo creep deformation due to stress at high temperature. However, by making the positive electrode container 3 into a cylindrical shape, it is added to the positive electrode container 3. The stress is reduced and the deformation is easily prevented. Although not shown, it is also possible to make the cross section of the positive electrode container 3 into an elliptical shape. By doing so, the mechanical reliability is improved as compared with the case where the positive electrode container 3 has a rectangular parallelepiped shape.

【0034】一方、正極容器3を直方体形状にすること
により、電池を複数個収納したモジュールのエネルギー
密度が向上する。即ち、正極容器3の上下面を平行平面
形状にした場合には、横置きして設置した電池が移動し
にくくなって姿勢の安定性が向上すると共に、モジュー
ルを構成する保温容器内へ複数個のナトリウム二次電池
を収納する際に、上下に積層した電池間の間隔や保温容
器と電池との上下方向の間隔が小さくでき、電池の充填
密度が向上して、モジュールのエネルギー密度が増大す
る利点がある。また、正極容器3の側面を平行平面形状
にすることにより、保温容器内に収納した電池間の横方
向の間隔や保温容器と電池との横方向の間隔が小さくで
きて、モジュールのエネルギー密度が向上する。なお、
モジュールのエネルギー密度を特に向上するためには正
極容器3の側面を直方体形状にすることが望ましく、こ
うすることによって、上下方向及び横方向の電池間の間
隔や保温容器との間隔を小さくできる。
On the other hand, by making the positive electrode container 3 into a rectangular parallelepiped shape, the energy density of the module containing a plurality of batteries is improved. That is, in the case where the upper and lower surfaces of the positive electrode container 3 are formed into a parallel plane shape, the battery installed horizontally is hard to move, the stability of the posture is improved, and a plurality of the batteries are placed in the heat insulating container constituting the module. When accommodating the sodium secondary battery of, the space between the batteries stacked vertically and the space between the heat retaining container and the battery in the vertical direction can be reduced, the packing density of the battery is improved, and the energy density of the module is increased. There are advantages. Further, by making the side surface of the positive electrode container 3 into a parallel plane shape, the lateral distance between the batteries housed in the heat retaining container and the lateral distance between the heat retaining container and the battery can be reduced, and the energy density of the module can be reduced. improves. In addition,
In order to particularly improve the energy density of the module, it is desirable that the side surface of the positive electrode container 3 be rectangular parallelepiped, and by doing so, the interval between the cells in the vertical direction and the lateral direction and the interval with the heat retaining container can be reduced.

【0035】さらに、袋管状の固体電解質1を斜めに設
置する場合、固体電解質1の軸方向と水平方向との角度
を±45°以下にして、電池の鉛直方向の高さを低減す
ることが望ましい。また、多孔質導電材12や多孔質材
13の表面張力による正極活物質14の吸い上げ高さを
考慮すると、ナトリウム硫黄電池の場合には、多孔質導
電材12や多孔質材13の鉛直方向の高さが15cm以下
になる角度に固体電解質1を傾けて、硫黄や多硫化ナト
リウムの吸い上げ高さを確保することが望ましい。
Furthermore, when the bag-shaped solid electrolyte 1 is installed obliquely, the vertical height of the battery can be reduced by setting the angle between the axial direction and the horizontal direction of the solid electrolyte 1 to ± 45 ° or less. desirable. Considering the suction height of the positive electrode active material 14 due to the surface tension of the porous conductive material 12 or the porous material 13, the vertical direction of the porous conductive material 12 or the porous material 13 in the case of the sodium-sulfur battery is considered. It is desirable to tilt the solid electrolyte 1 at an angle of 15 cm or less so as to secure the suction height of sulfur and sodium polysulfide.

【0036】ここで、電池効率向上の目的で電池の鉛直
方向の高さを小さくするためには、袋管状の固体電解質
1を水平設置することが特に望ましい。なお、この効果
は単電池を大容量化するために袋管状の固体電解質1の
長さを大きくした場合に特に顕著で、本発明の構造によ
り、電池の大容量化と効率向上との両立が可能である。
Here, in order to reduce the height of the battery in the vertical direction for the purpose of improving the battery efficiency, it is particularly desirable to horizontally install the bag-shaped solid electrolyte 1. This effect is particularly remarkable when the length of the bag-shaped solid electrolyte 1 is increased in order to increase the capacity of the unit cell, and the structure of the present invention makes it possible to increase the capacity of the battery and improve the efficiency at the same time. It is possible.

【0037】また、正極活物質14の体積を多孔質導電
材12や多孔質材13の空隙体積よりも大きくして、多
孔質導電材12や多孔質材13に含浸される以外に、正
極室5内の集電体15の外側に正極活物質14の液相を
形成し、集電体15に貫通部16を設けて多孔質導電材
12の内外に正極活物質14を移動させることにより、
電池容量の拡大を図ることができる。
In addition to making the volume of the positive electrode active material 14 larger than the void volume of the porous conductive material 12 or the porous material 13 so that the porous conductive material 12 or the porous material 13 is impregnated, By forming a liquid phase of the positive electrode active material 14 on the outer side of the current collector 15 in 5 and providing a penetrating portion 16 in the current collector 15 to move the positive electrode active material 14 into and out of the porous conductive material 12,
The battery capacity can be expanded.

【0038】また、集電体15としては厚さ0.3〜5m
m 程度のAl,Al合金やこれらとSUS等とのクラッ
ド材を用い、多孔質導電材12との接触面にCo基合
金,Cr/Fe合金,Al/Si合金,SUS,Cr,
C,MoやCr,Moの炭化物や窒化物などの耐食性導
電層を溶射やメッキなどの方法で設けたり、これら耐食
性の粒子や繊維をAlやAl合金の表面へ接合又は埋め
込んだものが用いられる。さらに、貫通部16としては
直径や幅、長さが1〜10mm程度の円形や直方体の孔、
又はこれらの間に幅1〜10mmのスリットを設けたもの
を用い、面積割合としては集電体15の面積の5〜50
%程度が望ましい。
The current collector 15 has a thickness of 0.3 to 5 m.
Al, Al alloy of about m 2 and a clad material of these and SUS or the like are used, and Co-based alloy, Cr / Fe alloy, Al / Si alloy, SUS, Cr, etc. are used on the contact surface with the porous conductive material 12.
A corrosion resistant conductive layer made of C, Mo, Cr, Mo carbide or nitride is provided by a method such as thermal spraying or plating, or those in which these corrosion resistant particles or fibers are bonded or embedded in the surface of Al or Al alloy are used. . Further, as the penetrating portion 16, a circular or rectangular parallelepiped hole having a diameter, a width and a length of about 1 to 10 mm,
Or, a slit having a width of 1 to 10 mm is provided between them, and the area ratio is 5 to 50 of the area of the current collector 15.
% Is preferable.

【0039】図2においては、図1と同様に負極容器2
や正極容器3を構成する金属板同士が摩擦攪拌接合法で
気密接合されている。すなわち、負極容器2の一部であ
る負極フランジ23と負極胴部を兼ねた負極蓋22とが
摩擦攪拌接合部65で、正極容器3の一部である正極フ
ランジ33と正極胴部31,正極胴部31と正極蓋32
とがそれぞれ摩擦攪拌接合部66と63とで接合されて
いる。
In FIG. 2, as in FIG. 1, the negative electrode container 2
The metal plates forming the positive electrode container 3 are airtightly joined together by the friction stir welding method. That is, the negative electrode flange 23 that is a part of the negative electrode container 2 and the negative electrode lid 22 that also serves as a negative electrode body part are the friction stir welding parts 65, and the positive electrode flange 33, the positive electrode body part 31, and the positive electrode body part that are a part of the positive electrode container 3. Body 31 and positive electrode lid 32
And friction stir welding parts 66 and 63, respectively.

【0040】ここで、先に述べたように接合する金属板
同士の板厚が異なっており、具体的には、金属板の厚さ
として、負極蓋22>負極フランジ23,正極蓋32>
正極胴部31>正極フランジ33となっている。このよ
うにして、摩擦攪拌接合する際に回転ツールの押し込み
深さを板厚の小さい金属板の厚さとほぼ同程度にすると
共に、接合後に回転ツールを接合部から遠ざけて、板厚
の大きい金属板の内部から引き抜くことにより、穴の深
さよりも肉厚の大きい金属板内に穴が残るために、接合
部の気密性が確保されると共に機械的強度を確保できる
ことが可能である。
As described above, the metal plates to be joined have different plate thicknesses. Specifically, the thickness of the metal plates is defined as negative electrode cover 22> negative electrode flange 23, positive electrode cover 32>.
The positive electrode body 31> the positive electrode flange 33. In this way, when performing friction stir welding, the indentation depth of the rotary tool is made approximately the same as the thickness of the metal plate with a small plate thickness, and the rotary tool is moved away from the welded part after the welding, and the metal plate with a large plate thickness is joined. By pulling out from the inside of the plate, the hole remains in the metal plate having a larger thickness than the depth of the hole, so that it is possible to ensure the airtightness of the joint portion and the mechanical strength.

【0041】ここで、図2の摩擦攪拌接合部63の構造
は、図1の摩擦攪拌接合部63とほぼ同等である。一
方、摩擦攪拌接合部65や66の場合には、金属板の厚
さとして、負極蓋22の板厚が負極フランジ23の板厚
の2倍以上、正極胴部31の板厚が正極フランジ33の
板厚の2倍以上であることが望ましい。こうすることに
より、回転ツールの押し込み深さを板厚の小さい金属板
の厚さとほぼ同程度にした際に、回転ツールの引き抜き
によって生成された穴の位置での負極蓋22又は正極胴
部31の板厚が、それぞれ負極フランジ23の板厚又は
正極フランジ33の板厚と同じか、又はそれ以上となる
ために機械的強度が充分確保され、摩擦攪拌接合の回転
ツールによって穴が生成しても、電池の気密性や機械的
強度に対する信頼性が確保できるという利点がある。
The structure of the friction stir welding portion 63 shown in FIG. 2 is almost the same as that of the friction stir welding portion 63 shown in FIG. On the other hand, in the case of the friction stir welding parts 65 and 66, as the thickness of the metal plate, the plate thickness of the negative electrode lid 22 is twice or more the plate thickness of the negative electrode flange 23, and the plate thickness of the positive electrode body part 31 is the positive electrode flange 33. It is desirable that the thickness is at least twice the plate thickness. By doing so, when the pushing depth of the rotary tool is made approximately the same as the thickness of the metal plate having a small thickness, the negative electrode lid 22 or the positive electrode body portion 31 at the position of the hole generated by the pulling out of the rotary tool. Has a thickness equal to or greater than the thickness of the negative electrode flange 23 or the thickness of the positive electrode flange 33, respectively, sufficient mechanical strength is ensured, and holes are generated by the rotary tool for friction stir welding. However, there is an advantage that reliability of the airtightness and mechanical strength of the battery can be secured.

【0042】また、負極蓋22及び正極蓋32に設けら
れた貫通孔41,51はそれぞれ摩擦攪拌接合部62,
64で気密封止されているが、この場合にも、負極蓋2
2や正極蓋32を構成する金属板の板厚を貫通孔の内径
よりも大きくして、図示されていないが、貫通孔を封止
した後に回転ツールを図2の上側又は下側に動かして引
き抜くことにより、穴の深さよりも肉厚の大きい負極蓋
22や正極蓋32内に穴が残って、気密性や機械的強度
などの電池信頼性が確保される。さらに、負極蓋22や
正極蓋32を構成する金属板の板厚を大きくすることに
より、電池を水平方向や斜め方向に寝かした際に正極胴
部31や負極フランジ23に加わる圧力が低減されて、
電池の信頼性が向上するという利点も得られる。
Further, the through holes 41 and 51 provided in the negative electrode lid 22 and the positive electrode lid 32 are respectively friction stir welding parts 62,
Although it is hermetically sealed with 64, in this case also, the negative electrode lid 2
Although the plate thickness of the metal plate constituting 2 or the positive electrode lid 32 is made larger than the inner diameter of the through hole, the rotary tool is moved to the upper side or the lower side in FIG. By pulling out, holes are left in the negative electrode lid 22 and the positive electrode lid 32 having a larger wall thickness than the depth of the holes, and battery reliability such as airtightness and mechanical strength is secured. Further, by increasing the plate thickness of the metal plate forming the negative electrode lid 22 and the positive electrode lid 32, the pressure applied to the positive electrode body portion 31 and the negative electrode flange 23 when the battery is laid horizontally or diagonally is reduced. ,
There is also an advantage that the reliability of the battery is improved.

【0043】さらに、図示されていないが、貫通孔41
を図1に示した負極胴部21又は負極フランジ23に、
貫通孔51を正極胴部31又は正極フランジ33に設け
て、負極胴部21又は負極フランジ23、あるいは、正
極胴部31又は正極フランジ33を構成する金属板の厚
さを貫通孔の内径よりも大きくして、貫通孔を摩擦攪拌
接合で封止後に、貫通孔から離れた位置で回転ツールを
引き抜くことも可能である。
Further, though not shown, the through hole 41
To the negative electrode body portion 21 or the negative electrode flange 23 shown in FIG.
The through hole 51 is provided in the positive electrode body portion 31 or the positive electrode flange 33 so that the thickness of the negative electrode body portion 21 or the negative electrode flange 23 or the metal plate forming the positive electrode body portion 31 or the positive electrode flange 33 is smaller than the inner diameter of the through hole. It is also possible to increase the size and seal the through hole by friction stir welding, and then pull out the rotary tool at a position away from the through hole.

【0044】また、集電体15は正極蓋32の内側と摩
擦攪拌接合部67によって接合されているが、図示され
ていないが、正極胴部31や正極フランジ33の内側と
接合することも可能である。また、この接合は電気伝導
が目的で、気密接合は必要ないため、正極蓋32,正極
胴部31や正極フランジ33を構成する金属板の板厚が
充分大きければ、接合後に回転ツールを引き抜くことに
よって集電体15の一部に穴が残っても電池特性や信頼
性上の問題は起こらない。なお、上述のように、この場
合には気密接合の必要がないために、TIG溶接やレー
ザ溶接などを用いることも可能である。
Further, the current collector 15 is joined to the inside of the positive electrode lid 32 by the friction stir welding part 67, but it is also possible to join to the inside of the positive electrode body part 31 and the positive electrode flange 33 although not shown. Is. Further, since this joining is intended for electric conduction and airtight joining is not necessary, if the thickness of the metal plate forming the positive electrode lid 32, the positive electrode body 31 and the positive electrode flange 33 is sufficiently large, the rotary tool can be pulled out after the joining. Therefore, even if a hole is left in a part of the current collector 15, no problem in battery characteristics or reliability occurs. As described above, since there is no need for airtight joining in this case, it is also possible to use TIG welding or laser welding.

【0045】具体例として、図2に示すように、固体電
解質1としてリチウムドープのβ″アルミナ焼結体から
なる外径約60mm×長さ約600mm×肉厚約1.5mm の
円筒状袋管を用いた。また、負極容器2,正極容器3の
材料にはAl合金、ナトリウム容器8の材料にはSUS
を、集電体15には貫通部16を設けたAl合金の胴部
内面にクロムメッキ、又は、鉄/クロム合金,ステライ
ト−6やステライト−6Bを溶射したものを用いた。一
方、絶縁部材6としてはαアルミナ焼結体リングを用
い、固体電解質1の開口部とガラス接合した後、焼結体
リングの表面に負極フランジ23,正極フランジ33の
端部を配置し、Al−Si系の合金箔を用いて、絶縁部
材6と熱圧接した。
As a concrete example, as shown in FIG. 2, a cylindrical bag having an outer diameter of about 60 mm, a length of about 600 mm, and a wall thickness of about 1.5 mm, which is made of a lithium-doped β ″ alumina sintered body as the solid electrolyte 1. Further, the negative electrode container 2 and the positive electrode container 3 are made of Al alloy, and the sodium container 8 is made of SUS.
For the current collector 15, an inner surface of the body of an Al alloy provided with the penetrating portion 16 was chromium-plated, or an iron / chromium alloy, Stellite-6 or Stellite-6B was sprayed. On the other hand, an α-alumina sintered body ring is used as the insulating member 6, and after glass bonding to the opening of the solid electrolyte 1, the ends of the negative electrode flange 23 and the positive electrode flange 33 are arranged on the surface of the sintered body ring, and Al The insulating member 6 was thermocompression-bonded using a -Si alloy foil.

【0046】次に、ナトリウム容器8内に貫通孔10を
通してナトリウム7と約0.01MPaのArガス9を
充填して、図示されていないが、貫通孔10をSn91Zn,
Sn96.5Ag やSn95Sbなどの錫系ハンダで封
止した後、このナトリウム容器8を固体電解質袋管1内
に設置して、負極フランジ23と負極胴部を兼ねた負極
蓋22,正極フランジ33と正極胴部31とを摩擦攪拌
接合した。ここで、負極フランジ23や正極フランジ3
3を構成するAl合金の板厚は2mm、正極胴部31を構
成するAl合金の板厚は4mm、負極蓋22及び正極蓋3
2を構成するAl合金の板厚は6mmである。
Next, sodium 7 and Ar gas 9 of about 0.01 MPa are filled in the sodium container 8 through the through hole 10 to fill the through hole 10 with Sn91Zn, though not shown.
After sealing with tin-based solder such as Sn96.5Ag or Sn95Sb, the sodium container 8 is installed in the solid electrolyte bag tube 1, and the negative electrode flange 23, the negative electrode lid 22 also serving as the negative electrode body, and the positive electrode flange 33 are provided. The positive electrode body 31 was friction stir welded. Here, the negative electrode flange 23 and the positive electrode flange 3
The plate thickness of the Al alloy forming 3 is 2 mm, the plate thickness of the Al alloy forming the positive electrode body 31 is 4 mm, the negative electrode lid 22 and the positive electrode lid 3
The plate thickness of the Al alloy constituting 2 is 6 mm.

【0047】なお、摩擦攪拌接合の際には、回転ツール
を回転しながら接合部に押し込む必要があり、このため
の荷重を支えるために、図示されていないが、正極胴部
31の内側に鉄合金製の円筒を設置した。一方、負極蓋
22の板厚は充分大きいため、電池を横置きして下部を
固定することにより、この荷重を支えることができる。
In the friction stir welding, it is necessary to push the rotating tool into the joint while rotating it, and in order to support the load for this purpose, although not shown, the inside of the positive electrode body 31 is made of iron. An alloy cylinder was installed. On the other hand, since the plate thickness of the negative electrode cover 22 is sufficiently large, this load can be supported by horizontally placing the battery and fixing the lower part.

【0048】このようにして、電池を横置きして上部か
ら回転ツールを押し込み、電池を回転させて径方向に接
合すると共に、一回りした後に回転ツールを負極フラン
ジ23や正極フランジ33との接合部から離れた位置に
移動させて、負極蓋22や正極胴部31内から回転ツー
ルを引き抜くことにより、負極フランジ23と負極蓋2
2、正極フランジ33と正極胴部31とを、それぞれ摩
擦攪拌接合部65,66で気密接合した。なお、正極胴
部31の内側に設置した鉄合金製の円筒は接合後除去し
た。
In this way, the battery is laid horizontally and the rotary tool is pushed in from the upper part to rotate the battery to join it in the radial direction, and after turning once, the rotary tool is joined to the negative electrode flange 23 and the positive electrode flange 33. The negative electrode flange 23 and the negative electrode lid 2 by pulling the rotary tool out of the negative electrode lid 22 and the positive electrode body 31 by moving the rotary tool to a position away from the negative electrode lid 22 and the positive electrode body 31.
2. The positive electrode flange 33 and the positive electrode body portion 31 were airtightly joined at the friction stir welding portions 65 and 66, respectively. The iron alloy cylinder installed inside the positive electrode body 31 was removed after joining.

【0049】次に、負極室4内を真空引きし、負極蓋2
2の貫通孔41を摩擦攪拌接合部62で気密封止した。
なお、この際には、絶縁部材6に接合した正極フランジ
33の接合面を支えて、負極蓋22の外側から回転ツー
ルを押し付け、直径2mmの貫通孔41を封止した後に、
回転ツールを貫通孔41から離れた位置へ移動させて、
負極蓋22内から回転ツールを引き抜いた。
Next, the inside of the negative electrode chamber 4 is evacuated to a negative electrode lid 2.
The second through hole 41 was hermetically sealed by the friction stir welding part 62.
At this time, after supporting the joint surface of the positive electrode flange 33 joined to the insulating member 6 and pressing the rotary tool from the outside of the negative electrode lid 22 to seal the through hole 41 having a diameter of 2 mm,
Move the rotary tool to a position away from the through hole 41,
The rotary tool was pulled out from the inside of the negative electrode lid 22.

【0050】一方、金属板の板厚が2mmの円筒状集電体
15と板厚6mmの正極蓋32とを、正極蓋32を下側に
置いて円筒状集電体15を鉛直方向に立てた状態で、摩
擦攪拌接合部67によって接合した。
On the other hand, the cylindrical current collector 15 having a metal plate thickness of 2 mm and the positive electrode lid 32 having a plate thickness of 6 mm are placed with the positive electrode lid 32 on the lower side and the cylindrical current collector 15 is erected vertically. In this state, the friction stir welding portion 67 was used for welding.

【0051】また、円筒状集電体15の内面にテフロン
(登録商標)棒を設置し、両者の間に径方向の厚さが約
9mmのリング状のPAN系炭素繊維マットから成る多孔
質導電材12を必要厚さに圧縮し、積層して充填すると
共に、アルミナ繊維集合体から成る厚さ約0.3mm の多
孔質材13を充填した。さらに、多孔質導電材12内に
硫黄を含浸して、多孔質導電材12や多孔質材13を固
めた後、テフロン棒を引き抜いた。
Further, a Teflon (registered trademark) rod is installed on the inner surface of the cylindrical current collector 15, and a porous conductive material made of a ring-shaped PAN-based carbon fiber mat having a radial thickness of about 9 mm is provided between them. The material 12 was compressed to a required thickness, laminated and filled, and at the same time, a porous material 13 made of an alumina fiber aggregate and having a thickness of about 0.3 mm was filled. Further, after the porous conductive material 12 was impregnated with sulfur to solidify the porous conductive material 12 and the porous material 13, the Teflon rod was pulled out.

【0052】次に、正極室内に正極活物質14である必
要量の硫黄を充填すると共に、固体電解質1の外部側面
に多孔質導電材12や多孔質材13を設けた円筒状集電
体15を設置し、正極胴部31と正極蓋32とを摩擦攪
拌接合部63で気密接合した。なお、この場合にも、電
池を横方向に寝かせて、上部から回転ツールを押し込む
と共に、電池を回転させて径方向に接合した後、回転ツ
ールを正極胴部31との接合部から離れた位置に移動し
て、正極蓋32内から引き抜いた。
Next, a cylindrical current collector 15 in which the positive electrode active material 14 is filled with a required amount of sulfur and the porous conductive material 12 and the porous material 13 are provided on the outer side surface of the solid electrolyte 1 is provided. Was installed, and the positive electrode body portion 31 and the positive electrode lid 32 were airtightly joined at the friction stir welding portion 63. Even in this case, the battery is laid sideways, the rotary tool is pushed in from the upper part, and the battery is rotated to bond the battery in the radial direction. Then, the rotary tool is located at a position away from the joint with the positive electrode body 31. And was pulled out from the inside of the positive electrode lid 32.

【0053】最後に、貫通孔51から正極室5内を真空
引きした後に、正極室内に約0.03MPaのアルゴンガス
を充填し、貫通孔51を摩擦攪拌接合部64で気密封止
して、ナトリウム硫黄電池を作成した。なお、この場合
にも、摩擦攪拌接合部62の場合と同様に、正極フラン
ジ33と接合した正極胴部31の端部を支えて、正極蓋
32の外側から回転ツールを押し付け、貫通孔51を封
止した後に、回転ツールを貫通孔51から離れた位置へ
移動して、回転ツールを引き抜いた。
Finally, after the inside of the positive electrode chamber 5 is evacuated from the through hole 51, argon gas of about 0.03 MPa is filled in the positive electrode chamber, and the through hole 51 is hermetically sealed with the friction stir welding part 64, and sodium is A sulfur battery was created. Also in this case, as in the case of the friction stir welding portion 62, the end of the positive electrode body portion 31 joined to the positive electrode flange 33 is supported and the rotary tool is pressed from the outside of the positive electrode lid 32 to form the through hole 51. After sealing, the rotary tool was moved to a position away from the through hole 51, and the rotary tool was pulled out.

【0054】このようにして得られたナトリウム硫黄電
池を、ナトリウム容器8に設けた貫通孔10が下側にな
るように横置きして、温度を330℃まで昇温した。こ
の昇温の途中では、まずナトリウム7が溶融して、アル
ゴンガス9が横置きしたナトリウム容器8の上部に溜ま
った後に貫通孔10を封止した錫系ハンダが溶融した。
この結果、ナトリウム7はアルゴンガス9のガス圧で押
されて、貫通孔10を通って固体電解質1とナトリウム
容器8との隙間11に移動し、ナトリウム7が固体電解
質1の内表面に接触して、電池運転が可能になった。
The sodium-sulfur battery thus obtained was placed horizontally so that the through hole 10 provided in the sodium container 8 was on the lower side, and the temperature was raised to 330.degree. During the course of this temperature rise, first, the sodium 7 melted, and the argon gas 9 accumulated in the upper portion of the sodium container 8 placed horizontally, and then the tin-based solder sealing the through hole 10 melted.
As a result, the sodium 7 is pushed by the gas pressure of the argon gas 9, moves through the through hole 10 to the gap 11 between the solid electrolyte 1 and the sodium container 8, and the sodium 7 comes into contact with the inner surface of the solid electrolyte 1. Then, battery operation became possible.

【0055】このナトリウム硫黄電池を水平に寝かせて
330℃で運転した結果、正極室5内の正極活物質14
の大部分が電池反応に関与するため、電池容量は約16
00Ahと大きく、且つ、内部抵抗は約1.3mΩ と小
さくでき、大容量化と高効率化との両立が可能となっ
た。なお、この電池においては、集電体15を用いて、
固体電解質袋管1を大きくすることなく正極容器3を大
きくすることによって、電池の大容量化が可能なため、
低コスト化に特に適している。
As a result of operating this sodium-sulfur battery horizontally at 330 ° C., the positive electrode active material 14 in the positive electrode chamber 5
Battery capacity is about 16
The internal resistance can be as large as 00 Ah and the internal resistance as small as about 1.3 mΩ, which makes it possible to achieve both large capacity and high efficiency. In addition, in this battery, by using the current collector 15,
Since the battery capacity can be increased by enlarging the positive electrode container 3 without enlarging the solid electrolyte bag tube 1,
Especially suitable for cost reduction.

【0056】[0056]

【発明の効果】以上説明した本発明によれば、負極容器
や正極容器の気密接合や気密封止を容易に行うことがで
き、且つ、接合部や封止部の信頼性や製造歩留まりの高
いナトリウム二次電池が実現される。
According to the present invention described above, airtight bonding and airtight sealing of the negative electrode container and the positive electrode container can be easily performed, and the reliability of the bonding portion and the sealing portion and the manufacturing yield are high. A sodium secondary battery is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態によるナトリウム二次
電池の断面図である。
FIG. 1 is a sectional view of a sodium secondary battery according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態によるナトリウム二次
電池の断面図である。
FIG. 2 is a sectional view of a sodium secondary battery according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…固体電解質、2…負極容器、3…正極容器、4…負
極室、5…正極室、6…絶縁部材、7…ナトリウム、8
…ナトリウム容器、12…多孔質導電材、13…多孔質
材、14…正極活物質、15…集電体、21…負極胴
部、22…負極蓋、23…負極フランジ、31…正極胴
部、32…正極蓋、33…正極フランジ、10,41,
51…貫通孔、61,62,63,64,65,66,
67…摩擦攪拌接合部。
DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte, 2 ... Negative electrode container, 3 ... Positive electrode container, 4 ... Negative electrode chamber, 5 ... Positive electrode chamber, 6 ... Insulating member, 7 ... Sodium, 8
... Sodium container, 12 ... Porous conductive material, 13 ... Porous material, 14 ... Positive electrode active material, 15 ... Current collector, 21 ... Negative electrode body part, 22 ... Negative electrode lid, 23 ... Negative electrode flange, 31 ... Positive electrode body part , 32 ... Positive electrode lid, 33 ... Positive electrode flange 10, 41,
51 ... Through holes, 61, 62, 63, 64, 65, 66,
67 ... Friction stir joint.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 2/04 H01M 2/04 Z (72)発明者 坂口 繁 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 (72)発明者 佐渡 哲也 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 (72)発明者 平野 聡 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4E067 AA05 BG00 DA13 DA17 DC07 EA04 EA07 EB00 5H011 AA01 AA09 BB03 CC06 DD12 5H029 AJ11 AJ14 AK05 AL13 AM15 BJ02 BJ16 CJ05 DJ02 DJ04 DJ07 EJ01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 2/04 H01M 2/04 Z (72) Inventor Shigeru Sakaguchi 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki No. 1 in the Nuclear Power Division of Hitachi, Ltd. (72) Tetsuya Sado 3-1-1, Saiwaicho, Hitachi, Ibaraki Prefecture Sat. F-term in Hitachi Research Laboratory, Hitachi, Ltd. (reference) 4E067 AA05 BG00 DA13 DA17 DC07 EA04 EA07 EB00 5H011 AA01 AA09 BB03 CC06 DD12 5H029 AJ11 AJ14 AK05 AL13 AM15 BJ02 BJ16 CJ05 EJ01 DJ07 DJ07 DJ07 DJ07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ナトリウムを収納した負極室を構成する負
極容器と、硫黄,セレン,テルル,多硫化ナトリウム又
は/及び金属塩化物から成る正極活物質を収納した正極
室を構成する正極容器と、前記負極室/正極室間を分離
した固体電解質とを備えたナトリウム二次電池におい
て、前記負極容器又は/及び前記正極容器は、複数個の
アルミニウム製金属板又はアルミニウム合金製金属板を
摩擦攪拌接合することによって構成され、接合された前
記金属板同士の板厚が互いに異なっていて、前記摩擦攪
拌接合部から離れた位置の前記板厚が厚い方の金属板内
から、前記摩擦攪拌接合に用いた回転ツールが引き抜か
れていることを特徴とするナトリウム二次電池。
1. A negative electrode container constituting a negative electrode chamber containing sodium, and a positive electrode container constituting a positive electrode chamber containing a positive electrode active material composed of sulfur, selenium, tellurium, sodium polysulfide or / and metal chloride, In a sodium secondary battery provided with a solid electrolyte separating the negative electrode chamber / the positive electrode chamber, the negative electrode container and / or the positive electrode container is friction stir welded with a plurality of aluminum metal plates or aluminum alloy metal plates. The metal plates having different thicknesses bonded to each other are used for the friction stir welding from inside the metal plate having the thicker thickness at a position distant from the friction stir welding part. A sodium secondary battery characterized in that the rotating tool that was used is pulled out.
【請求項2】請求項1において、前記摩擦攪拌接合され
た一方の金属板の板厚が他方の金属板の板厚の2倍以上
であることを特徴とするナトリウム二次電池。
2. The sodium secondary battery according to claim 1, wherein the plate thickness of the one metal plate joined by friction stir welding is twice or more the plate thickness of the other metal plate.
【請求項3】請求項1において、前記負極容器の一部で
ある負極蓋を構成する金属板の板厚が前記負極容器の一
部である負極胴部や負極フランジを構成する金属板の板
厚よりも大きいこと、又は/及び、前記正極容器の一部
である正極蓋を構成する金属板の板厚が前記正極容器の
一部である正極胴部や正極フランジを構成する金属板の
板厚よりも大きいことを特徴とするナトリウム二次電
池。
3. The plate according to claim 1, wherein a metal plate forming a negative electrode lid which is a part of the negative electrode container has a plate thickness of a metal plate forming a negative electrode body part and a negative electrode flange which are a part of the negative electrode container. Greater than the thickness, and / or the plate thickness of the metal plate forming the positive electrode lid that is a part of the positive electrode container is a plate of the metal plate forming the positive electrode body or the positive electrode flange that is a part of the positive electrode container. A sodium secondary battery characterized by being larger than the thickness.
【請求項4】ナトリウムを収納した負極室を構成する負
極容器と、硫黄,セレン,テルル,多硫化ナトリウム又
は/及び金属塩化物から成る正極活物質を収納した正極
室を構成する正極容器と、前記負極室/正極室間を分離
した固体電解質とを備えたナトリウム二次電池におい
て、前記負極容器の一部である負極蓋,負極胴部又は負
極フランジを構成する金属板に設けられた真空引き用又
はガス圧制御用の貫通孔、又は/及び、前記正極容器の
一部である正極蓋,正極胴部又は正極フランジを構成す
る金属板に設けられた真空引き用又はガス圧制御用の貫
通孔が摩擦攪拌接合によって封止され、前記金属板の板
厚が前記貫通孔の内径よりも大きくて、前記貫通孔から
離れた位置の前記金属板内から、前記摩擦攪拌接合に用
いた回転ツールが引き抜かれていることを特徴とするナ
トリウム二次電池。
4. A negative electrode container forming a negative electrode chamber containing sodium, and a positive electrode container forming a positive electrode chamber containing a positive electrode active material made of sulfur, selenium, tellurium, sodium polysulfide or / and metal chloride, In a sodium secondary battery provided with a solid electrolyte in which the negative electrode chamber / the positive electrode chamber are separated from each other, a vacuum suction provided on a metal plate forming a negative electrode lid, a negative electrode body or a negative electrode flange which is a part of the negative electrode container. Or gas pressure control through hole, and / or a vacuum plate or gas pressure control through hole provided on a metal plate forming a positive electrode lid, a positive electrode body or a positive electrode flange which is a part of the positive electrode container. The hole is sealed by friction stir welding, the plate thickness of the metal plate is larger than the inner diameter of the through hole, and the rotary tool used for the friction stir welding is performed from inside the metal plate at a position distant from the through hole. Draw Sodium secondary battery, characterized by being unplugged.
【請求項5】請求項1又は4において、前記正極容器内
の前記固体電解質に沿ってアルミニウム製又はアルミニ
ウム合金製の集電体が設けられており、前記集電体が前
記正極容器を構成する正極蓋又は/及び正極胴部と接合
されていることを特徴とするナトリウム二次電池。
5. The collector according to claim 1, wherein an aluminum or aluminum alloy current collector is provided along the solid electrolyte in the positive electrode container, and the current collector constitutes the positive electrode container. A sodium secondary battery, which is joined to a positive electrode lid and / or a positive electrode body.
【請求項6】請求項1又は4において、前記固体電解質
が固体電解質袋管であり、該固体電解質袋管が水平方向
または斜め方向に寝かせて配置されていることを特徴と
するナトリウム二次電池。
6. The sodium secondary battery according to claim 1 or 4, wherein the solid electrolyte is a solid electrolyte bag tube, and the solid electrolyte bag tube is arranged in a horizontal or oblique direction. .
JP2001355477A 2001-11-21 2001-11-21 Sodium secondary battery Pending JP2003157890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355477A JP2003157890A (en) 2001-11-21 2001-11-21 Sodium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355477A JP2003157890A (en) 2001-11-21 2001-11-21 Sodium secondary battery

Publications (1)

Publication Number Publication Date
JP2003157890A true JP2003157890A (en) 2003-05-30

Family

ID=19167171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355477A Pending JP2003157890A (en) 2001-11-21 2001-11-21 Sodium secondary battery

Country Status (1)

Country Link
JP (1) JP2003157890A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099986A (en) * 2004-09-28 2006-04-13 Shin Kobe Electric Mach Co Ltd Secondary battery for high rate discharge
JP2007083267A (en) * 2005-09-21 2007-04-05 Mitsubishi Heavy Ind Ltd Repairing method and repairing device
WO2011129391A1 (en) * 2010-04-16 2011-10-20 住友電気工業 株式会社 Molten salt battery case, and molten salt battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099986A (en) * 2004-09-28 2006-04-13 Shin Kobe Electric Mach Co Ltd Secondary battery for high rate discharge
JP2007083267A (en) * 2005-09-21 2007-04-05 Mitsubishi Heavy Ind Ltd Repairing method and repairing device
WO2011129391A1 (en) * 2010-04-16 2011-10-20 住友電気工業 株式会社 Molten salt battery case, and molten salt battery
JP2011228046A (en) * 2010-04-16 2011-11-10 Sumitomo Electric Ind Ltd Molten salt cell case and molten salt cell
US9276241B2 (en) 2010-04-16 2016-03-01 Sumitomo Electric Industries, Ltd. Molten salt battery case, and molten salt battery

Similar Documents

Publication Publication Date Title
CA2888463C (en) Electrochemical energy storage devices and housings
CN107534196A (en) Battery module
KR101135510B1 (en) Rechargeable battery and battery module
CN102896416A (en) Low pressure electron beam welding of Li-ion battery connections
KR101967443B1 (en) Anode and liquid metal battery comprising the same
JP2003178798A (en) Sodium sulfur battery
CN105679991A (en) Composite pole and battery module with same
JP4671651B2 (en) Battery case and battery, and electric double layer capacitor case and electric double layer capacitor
JP2003157890A (en) Sodium secondary battery
JP2003068356A (en) Secondary sodium battery, aggregate of batteries and its module
JP2005183373A (en) Battery case, manufacturing method thereof and battery, electric double-layer capacitor case and manufacturing method thereof, and electric double-layer capacitor
JPH08339943A (en) Structure and method for sealing electronic element
JP5286628B2 (en) battery
KR101322637B1 (en) Sodium-sulfur rechargeable battery and method for manufacturing the same
US20140295237A1 (en) Electrochemical cells useful for energy storage devices
JP2004265743A (en) Sodium secondary battery module
JP2004253289A (en) Sodium sulfur battery and its operation method
JP2001243977A (en) Sodium sulfur battery, battery assembly and its module
JPS6116601Y2 (en)
JP2005149773A (en) Sodium-sulfur battery
JP2004087273A (en) Sodium sulfur battery
JP2004253288A (en) Sodium-sulfur battery
JP2003068354A (en) Secondary sodium battery
JP2001085054A (en) High-temperature sodium secondary battery
JP2005005007A (en) Sodium sulfur battery