JP2003157809A - Rectangular lithium ion secondary battery - Google Patents

Rectangular lithium ion secondary battery

Info

Publication number
JP2003157809A
JP2003157809A JP2001358791A JP2001358791A JP2003157809A JP 2003157809 A JP2003157809 A JP 2003157809A JP 2001358791 A JP2001358791 A JP 2001358791A JP 2001358791 A JP2001358791 A JP 2001358791A JP 2003157809 A JP2003157809 A JP 2003157809A
Authority
JP
Japan
Prior art keywords
plate thickness
long side
less
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001358791A
Other languages
Japanese (ja)
Other versions
JP3702840B2 (en
Inventor
Shinji Murashige
伸治 村重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001358791A priority Critical patent/JP3702840B2/en
Publication of JP2003157809A publication Critical patent/JP2003157809A/en
Application granted granted Critical
Publication of JP3702840B2 publication Critical patent/JP3702840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery causing little battery swelling in cycle use or at high-temperature storage while using a lightweight armoring can of thin wall. SOLUTION: In the armoring can used for this rectangular lithium ion secondary battery, the plate thickness and the drawing rate of the long side surface are 0.14-0.18 mm and 0.5 or more, respectively, the plate thickness of the short side surface is larger than that of the long side surface and smaller than that of the bottom surface, and the numbers of impurity particles having a particle diameter of 2 μm or less on the respective center cross sections of the long side surface, the short side surface and the bottom surface are 160-280, 50-120, and 20 or less per unit area (0.0163 mm<2> ), respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、角型外装缶を使用
した角型リチウムイオン二次電池に関し、特に角型外装
缶が薄型であるものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prismatic lithium ion secondary battery using a prismatic outer can, and more particularly to a prismatic outer can having a thin shape.

【0002】[0002]

【従来の技術】従来、リチウムイオン二次電池の外装缶
は、ニッケル水素蓄電池などと同様に鉄ケースがよく使
われていた。最近では、角型電池などで軽量化のためア
ルミケースが使われており、さらなる軽量化と高容量化
のために、アルミケースの板厚を薄くする検討が行なわ
れている。
2. Description of the Related Art Conventionally, an iron case is often used for an outer case of a lithium ion secondary battery, as in a nickel hydrogen storage battery. Recently, aluminum cases have been used to reduce the weight of prismatic batteries and the like, and studies are underway to reduce the thickness of the aluminum cases in order to further reduce the weight and increase the capacity.

【0003】また、その外装缶は通常、数回の絞り加工
工程としごき加工工程を経て製造される。特殊な工法と
しては、特公平7−99686号公報に記載されている
ように、絞り加工としごき加工を併用したDrawin
g and Ironing(DI)工法や、特開平1
0−5906号公報に記載されているように衝撃押し出
し加工工程を数回の絞り加工工程としごき加工工程の中
に含ませる工法などがある。
Further, the outer can is usually manufactured through several drawing processes and ironing processes. As a special construction method, as described in Japanese Examined Patent Publication No. 7-99686, Drawin using both drawing and ironing
g and Ironing (DI) method, and
As described in Japanese Patent Application Laid-Open No. 0-5906, there is a method in which the impact extrusion process is performed several times as a drawing process and included in the ironing process.

【0004】リチウムイオン二次電池においては、サイ
クル使用時や高温保存時に、極板の膨潤やガス発生によ
り、外装缶に内部からの圧力がかかる。その際、外装缶
の強度が弱いと電池が大きく膨れて、電池特性が劣化し
たり、リチウムイオン二次電池を収めている電池パック
が壊れたりするため、外装缶にはある程度の強度が必要
であった。外装缶をアルミケースにしたり、箔肉化を進
めると当然強度が弱くなるため、従来からさまざまな構
成が提案されていた。
In a lithium-ion secondary battery, pressure is applied from the inside to the outer can due to swelling of the electrode plate and generation of gas during cycle use or high temperature storage. At that time, if the strength of the outer can is weak, the battery will swell greatly, and the battery characteristics will deteriorate, or the battery pack containing the lithium-ion secondary battery will break, so the outer can requires some strength. there were. Since the strength will naturally weaken when the outer can is made into an aluminum case or the thickness of the foil is advanced, various structures have been proposed in the past.

【0005】例えば、特許第3096615号公報に記
載されているようにアルミケースの材料にマンガン(M
n)を含むアルミニウム合金を使う等、材質を検討する
ことが行なわれていた。また、特許第3114768号
公報や、特許3015667号公報に記載されているよ
うに、外装缶の形状を最適化することも検討されてい
た。
For example, as described in Japanese Patent No. 3096615, manganese (M
Materials have been studied, such as using an aluminum alloy containing n). Also, as described in Japanese Patent No. 3114768 and Japanese Patent No. 3015667, optimization of the shape of the outer can has been studied.

【0006】[0006]

【発明が解決しようとする課題】しかし、以上のような
構成では、外装缶の板厚が0.2mm以下になった場
合、外装缶の実用上必要な強度が取れないので、サイク
ル使用時や高温保存時に電池が膨れてしまうという課題
があった。本発明は、この課題を解決し、軽量薄肉化さ
れた外装缶を使用しつつ、サイクル使用時や高温保存時
の電池膨れの少ないリチウムイオン二次電池を提供する
ことを目的とする。
However, with the above-mentioned structure, when the thickness of the outer can is 0.2 mm or less, the strength of the outer can that is practically required cannot be obtained. There is a problem that the battery swells when stored at high temperature. An object of the present invention is to solve this problem and to provide a lithium-ion secondary battery that uses a light-weight and thin-walled outer can and has less battery swelling during cycle use or high-temperature storage.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の電池は、角型外装缶の長側面の板厚が、
0.14mm以上0.18mm以下であり、底側面に対
する長側面の絞り率(ただし、絞り率=(底面板厚―側
面板厚)÷底面板厚 )が、0.5以上あり、短側面の
板厚は、長側面の板厚より厚くて底面の板厚より薄いも
のであり、さらに、前記長側面、前記短側面および前記
底面の各中心断面での2μm以下の粒径の不純物粒子
が、単位面積(0.0163mm2)あたりそれぞれ1
60個以上280個以下、50個以上120個以下およ
び20個以下であることを特徴とするものである。この
電池は、長側面の板厚が0.18mm以下と薄いのにも
関わらず、剛性が向上しており、サイクル使用時や高温
保存時の電池膨れが少ない。
In order to solve the above problems, in the battery of the present invention, the plate thickness of the long side surface of the rectangular outer can is
0.14 mm or more and 0.18 mm or less, and the drawing ratio of the long side surface to the bottom side surface (however, the drawing ratio = (bottom plate thickness-side plate thickness) / bottom plate thickness) is 0.5 or more, and The plate thickness is thicker than the plate thickness of the long side surface and thinner than the plate thickness of the bottom surface, and further, the impurity particles having a particle size of 2 μm or less in each central cross section of the long side surface, the short side surface and the bottom surface, 1 per unit area (0.0163 mm 2 )
The number is 60 or more and 280 or less, 50 or more and 120 or less, and 20 or less. Although this battery has a thin plate of 0.18 mm or less on the long side surface, it has improved rigidity and little battery swelling during cycle use or storage at high temperature.

【0008】さらに、外装缶は、Mnを0.5重量%以
上2.5重量%以下含有し、マグネシウム(Mg)を
0.2重量%以上1.3%以下含有するアルミニウム合
金からなることが特に好ましい。
Further, the outer can is made of an aluminum alloy containing 0.5 wt% to 2.5 wt% of Mn and 0.2 wt% to 1.3% of magnesium (Mg). Particularly preferred.

【0009】以上のような構成にすることで、外装缶を
薄肉化してもサイクル使用時や高温保存時の電池膨れの
少ないリチウムイオン二次電池を提供することができ
る。
With the above-mentioned structure, it is possible to provide a lithium ion secondary battery which has less battery swelling during cycle use or high temperature storage even if the outer can is made thin.

【0010】[0010]

【発明の実施の形態】本発明の請求項1に記載の発明
は、長側面、短側面および底面とからなる角型外装缶に
電極群と非水電解液を収納し、封口板にて封口してなる
角型リチウムイオン二次電池において、前記長側面の板
厚が、0.14mm以上0.18mm以下であり、前記
底側面に対する前記長側面の絞り率(ただし、絞り率=
(底面板厚―側面板厚)÷底面板厚 )が、0.5以上
あり、前記短側面の板厚は、前記長側面の板厚より厚く
て前記底面の板厚より薄いものであり、さらに、前記長
側面、前記短側面および前記底面の各中心断面での2μ
m以下の粒径の不純物粒子が、単位面積(0.0163
mm2)あたりそれぞれ160個以上280個以下、5
0個以上120個以下および20個以下であることを特
徴としたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is such that an electrode group and a non-aqueous electrolytic solution are contained in a rectangular outer can having a long side surface, a short side surface and a bottom surface, and a sealing plate is used for sealing. In the prismatic lithium-ion secondary battery formed as described above, the plate thickness of the long side surface is 0.14 mm or more and 0.18 mm or less, and the drawing rate of the long side surface with respect to the bottom side surface (however, the drawing rate =
(Bottom plate thickness-side plate thickness) / bottom plate thickness) is 0.5 or more, the short side plate thickness is thicker than the long side plate thickness and thinner than the bottom plate thickness, Furthermore, 2 μ at each central cross section of the long side surface, the short side surface, and the bottom surface.
Impurity particles having a particle size of m or less have a unit area (0.0163).
per mm 2 ) 160 or more and 280 or less, 5 respectively
It is characterized by being 0 or more and 120 or less and 20 or less.

【0011】本発明の電池においては、電池内空間の体
積に最も寄与し、外装缶における割合の大きな長側面の
板厚が、0.18mm以下となっているため、電池内空
間の増大による電池の高容量化と外装缶構成金属量の減
少による軽量化が行なわれている。この作用効果は、板
厚が薄くなればなるほど増すが、0.14mm未満にな
ると強度の低下により外装缶の形成自体が難しくなる。
底面の板厚は、外装缶全体の強度を上げるためにある程
度の厚さが必要であり、絞り率は0.5以上あることが
好ましい。同様に、短側面は、長側面を脇から支える役
割を持つため、長側面の板厚より厚くて底面の板厚より
薄いことが好ましい。
In the battery of the present invention, the plate thickness of the long side, which contributes most to the volume of the battery internal space and has a large proportion in the outer can, is 0.18 mm or less. The weight is being reduced by increasing the capacity and reducing the amount of metal used in the outer can. This function and effect increase as the plate thickness decreases, but if it is less than 0.14 mm, the strength of the plate decreases and it becomes difficult to form the outer can.
The bottom plate needs to have a certain thickness to increase the strength of the entire outer can, and the drawing ratio is preferably 0.5 or more. Similarly, since the short side surface has a role of supporting the long side surface from the side, it is preferable that the short side surface is thicker than the long side surface and thinner than the bottom surface.

【0012】さらに、外装缶の構成材の塑性加工強度が
強すぎると、硬度が強くなるが靭性がなくなり、圧力に
対する膨れは大きくなる。逆に、塑性加工強度が低すぎ
ると、靭性は強くなるが硬度がなくなり、やはり圧力に
対する膨れが大きくなる。本発明者は、この塑性加工強
度は、外装缶内に含まれる不純物粒子の粒径と粒子数に
強い相関があり、塑性加工を行なうと不純物の粒子は細
かく多くなっていくため、塑性加工強度が大きいほど、
小さな粒径の粒子が多くなることを見出した。さらに、
本発明者は鋭意検討の結果、長側面、短側面および底面
の各中心断面での2μm以下の粒径の不純物粒子が、単
位面積(0.0163mm2)あたりそれぞれ160個
以上280個以下、50個以上120個以下および20
個以下であることが、好ましいことを見出した。
Further, if the plastic working strength of the constituent material of the outer can is too high, the hardness is increased but the toughness is lost, and the swelling against pressure is increased. On the other hand, if the plastic working strength is too low, the toughness is increased but the hardness is lost, and the swelling against pressure is also increased. The inventors of the present invention have found that this plastic working strength has a strong correlation with the particle diameter and the number of particles of the impurity particles contained in the outer can. Is larger,
It was found that the number of particles having a small particle size increases. further,
As a result of intensive studies, the present inventor has found that the number of impurity particles having a particle size of 2 μm or less in each central cross section of the long side surface, the short side surface and the bottom surface is 160 or more and 280 or less per unit area (0.0163 mm 2 ), 50 20 or more and 120 or less
It has been found that the number is preferably less than or equal to the number.

【0013】以上のような構成にすることにより、従来
の実用上の限界であった長側面が0.2mmの外装缶と
同程度の耐膨れ性を持つ薄型外装缶を提供できる。
With the above-mentioned structure, it is possible to provide a thin outer can having the same swelling resistance as that of an outer can having a long side of 0.2 mm, which has been a practical limit.

【0014】本発明の請求項2に記載の発明は、請求項
1記載のリチウムイオン二次電池において、前記外装缶
は、Mnを0.5重量%以上2.5重量%以下含有し、
Mgを0.2重量%以上1.3%以下含有するアルミニ
ウム合金からなるとしたものである。
According to a second aspect of the present invention, in the lithium ion secondary battery according to the first aspect, the outer can contains 0.5 wt% or more and 2.5 wt% or less of Mn,
It is made of an aluminum alloy containing 0.2% by weight or more and 1.3% or less of Mg.

【0015】アルミニウム合金は、それに含まれる不純
物により加工のしやすさや、塑性加工強度による硬度や
靭性の変化が変わる。そのため、MnおよびMgを適当
量含むことにより、原料のアルミ板から深絞り加工によ
り請求項1に記載されている外装缶を製造することが容
易に出来るようになる。このMnおよびMgの適当量
は、本発明者の鋭意検討の結果、Mnを0.5重量%以
上2.5重量%以下含有し、Mgを0.2重量%以上
1.3%以下含有することが好ましいことを見出した。
The aluminum alloy changes in easiness of processing and changes in hardness and toughness due to plastic working strength due to impurities contained therein. Therefore, by including Mn and Mg in appropriate amounts, the outer can according to claim 1 can be easily manufactured from the aluminum plate as a raw material by deep drawing. As a result of intensive studies by the present inventors, the appropriate amount of Mn and Mg is 0.5% by weight or more and 2.5% by weight or less and 0.2% by weight or more and 1.3% or less by weight of Mg. It has been found that is preferable.

【0016】以上述べたきたように、本発明の角型外装
缶は主たる構成材料はMnを0.5重量%以上2.5重
量%以下含有し、Mgを0.2重量%以上1.3%以下
含有するアルミニウム合金であることが好ましい。この
ようなアルミ系材料には、日本工業規格(JIS H4
000(1988)、JIS H4160(1994)
等)に規定されているように、A3004、A300
5、A3104及びA3105などの強度を強化したア
ルミニウム合金などがある。
As described above, the rectangular outer can of the present invention is mainly composed of 0.5% by weight to 2.5% by weight of Mn and 0.2% by weight to 1.3% of Mg. It is preferable that the aluminum alloy contains not more than%. For such aluminum-based materials, Japanese Industrial Standards (JIS H4
000 (1988), JIS H4160 (1994)
Etc.) as specified in A3004, A300
5, aluminum alloys with enhanced strength such as A3104 and A3105.

【0017】[0017]

【実施例】次に、実施例を用いて、本発明の具体例につ
いて説明する。
EXAMPLES Next, specific examples of the present invention will be described using examples.

【0018】図1は、本実施例において作成した外装缶
の斜視図である。
FIG. 1 is a perspective view of an outer can made in this embodiment.

【0019】図1において外装缶のサイズは幅34m
m、高さ49mmおよび厚み6.3mmであり、本実施
例において作成した外装缶はすべて外形がこのサイズの
ものを作成した。
In FIG. 1, the size of the outer can is 34 m in width.
m, the height was 49 mm, and the thickness was 6.3 mm, and all the outer cans made in this example had outer shapes of this size.

【0020】ここで、1は長側面であり、外装缶におけ
る割合がもっとも大きい。長側面1を短側面2と底面3
が支えることで、外装缶全体の強度を保っている。電池
を作成する際には、外装缶内に電極群と非水電解液を収
納した後、開口部4に封口板がレーザ溶接される。
Here, 1 is the long side, and the ratio in the outer can is the largest. Long side 1 to short side 2 and bottom 3
By supporting the, the strength of the entire outer can is maintained. When producing a battery, after the electrode group and the non-aqueous electrolyte are stored in the outer can, the sealing plate is laser-welded to the opening 4.

【0021】本実施例においては、以下に詳細に述べる
各種の方法で、(表1)にまとめた板厚と単位面積あた
りの2μm以下の粒子数をもつ外装缶を作成した。板厚
に関しては、外装缶の各面の中心部付近を平板として切
りだし、マイクロメータで測定した。
In this example, an outer can having the plate thickness and the number of particles of 2 μm or less per unit area summarized in (Table 1) was prepared by various methods described in detail below. Regarding the plate thickness, a plate near the center of each surface of the outer can was cut out and measured with a micrometer.

【0022】粒子数に関しては、まず、外装缶の各面の
中心部付近の断面を鏡面研磨し、走査型電子顕微鏡で観
察した。その電子像を、縦102μm、横160μmの
範囲(0.0163mm)で画像データとしてコンピュ
ーターに取りこみ画像処理をすることで、この面積当た
りの2μm以下の粒子数を測定した。
Regarding the number of particles, first, the cross section near the center of each surface of the outer can was mirror-polished and observed with a scanning electron microscope. The electronic image was taken into a computer as image data in a range of 102 μm in length and 160 μm in width (0.0163 mm), and image processing was performed to measure the number of particles of 2 μm or less per area.

【0023】同じ方法及び同じ金型(パンチおよびダイ
ス)で作成した外装缶は、同じ板厚およびほぼ同じ粒子
数を持つことを確認した。 <外装缶の作成> (缶の製造法1)従来公知の方法である深しぼり工法を
用い、現在、実用に供されている外装缶の中では一番の
薄型であり、長側面の板厚が0.2mmの比較例の外装
缶(缶1)を作成した。図2に示すとおり、以下に述べ
る合計10工程での深絞り工法を行なった。
It was confirmed that the outer cans made by the same method and the same mold (punch and die) have the same plate thickness and almost the same number of particles. <Preparation of outer can> (Can manufacturing method 1) Using the conventionally well-known deep squeezing method, it is the thinnest of the outer cans currently in practical use and has a long side plate thickness. An outer can (Can 1) of Comparative Example having a thickness of 0.2 mm was prepared. As shown in FIG. 2, the deep drawing method was performed in a total of 10 steps described below.

【0024】(a)まず、厚さ0.6mmのMnを1.
0から1.5重量%含むアルミニウム合金(A300
3)の平板を円形に切り出した。
(A) First, 1.
Aluminum alloy containing 0 to 1.5% by weight (A300
The flat plate of 3) was cut into a circle.

【0025】(b)長円形のパンチとダイスにより絞り
加工を行なった。この工程では、板厚は変化しない。
(B) Drawing was performed with an oval punch and a die. In this process, the plate thickness does not change.

【0026】(c)工程(b)で得られた中間成形体に
さらに絞り加工を行ない長円性を増す再絞り工程を行な
った。
(C) The intermediate compact obtained in step (b) was subjected to a drawing process and a redrawing process for increasing the ellipticity.

【0027】(d)さらに絞り加工を行なうと同時に略
矩形状に形成した。矩形体の高さhは、この工程で約1
5mmになった。
(D) Further drawing was performed, and at the same time, a substantially rectangular shape was formed. The height h of the rectangular body is about 1 in this process.
It became 5 mm.

【0028】(e)さらに絞り加工と板厚を薄くするし
ごき加工を同時に行なった。この工程では深絞りになっ
てきたので上部はみみ5となった。矩形体の高さhは、
この工程で約25mmになった。長側面の板厚は約0.
3mmぐらいになった。
(E) Further, the drawing process and the ironing process for reducing the plate thickness were simultaneously performed. In this process, since deep drawing has been performed, the upper part has a depth of 5. The height h of the rectangle is
In this process, it became about 25 mm. The plate thickness on the long side is about 0.
It became about 3 mm.

【0029】(f)もう一度、絞り加工と板厚を薄くす
るしごき加工を同時に行なった。矩形体の高さhは、こ
の工程で約35mmになった。長側面の板厚も約0.2
4mmぐらいになった。
(F) Again, the drawing process and the ironing process for thinning the plate thickness were simultaneously performed. The height h of the rectangular body was about 35 mm in this step. The thickness of the long side is also about 0.2
It became about 4 mm.

【0030】(g)以上の工程では、絞り加工を行なっ
てきたため、底面に丸みがあった。この工程では、底面
をダイスにより平らにする底つぶし工程を行なった。矩
形体の高さhは、この工程で約40mmになった。
(G) Since the drawing process has been performed in the above steps, the bottom surface is rounded. In this step, a bottom crushing step of flattening the bottom surface with a die was performed. The height h of the rectangular body was about 40 mm in this step.

【0031】(h)さらに底面のコーナー部の曲率
(R)を少なくし、矩形性を高めるために矩形状の凹部
を持つダイスを用いて角出し工程を行った。矩形体の高
さhは、この工程で約45mmになった。長側面の板厚
も約0.22mmぐらいになる。
(H) Further, in order to reduce the curvature (R) of the corner portion of the bottom surface and to enhance the rectangularity, the corner forming process was performed using a die having a rectangular concave portion. The height h of the rectangular body was about 45 mm in this step. The plate thickness on the long side is also about 0.22 mm.

【0032】(i)矩形体の高さが約43mmのところ
でみみ5を切り離す仮トリミング工程を行なった。
(I) A tentative trimming process for cutting off the dent 5 was performed at a height of the rectangular body of about 43 mm.

【0033】(j)最後に、絞り加工で最終成形を行な
った。矩形高さhは約53mmになっているので、クロ
スカットで所定の高さ(49mm)にした。
(J) Finally, final forming was performed by drawing. Since the height h of the rectangle is about 53 mm, a predetermined height (49 mm) was obtained by cross cutting.

【0034】板厚は、前述の測定方法で測定して、長側
面が0.20mm、短側面が0.30mmおよび底面が
0.40mmであり、したがって絞り率は0.50であ
った。2μm以下の粒子数は、長側面が46、短側面が
99および底面が31であった。 (缶の製造法2)缶1と同じ材質(A3003)および
板厚(0.6mm)の平板を用い、缶1と同じ合計10
工程の深絞り工法により、金型の短側面のクリアランス
を調節して、缶1より短側面の板厚が厚く、底形成工程
(gおよびh)のパンチ圧も調整して底面の板厚も厚い
比較例の外装缶(缶2)を作成した。
The plate thickness was 0.20 mm on the long side surface, 0.30 mm on the short side surface and 0.40 mm on the bottom surface as measured by the above-described measuring method, and thus the drawing ratio was 0.50. The number of particles of 2 μm or less was 46 on the long side surface, 99 on the short side surface and 31 on the bottom surface. (Can manufacturing method 2) A flat plate having the same material (A3003) and plate thickness (0.6 mm) as the can 1 is used, and the same total as the can 1 10
By the deep drawing method of the process, the clearance of the short side surface of the mold is adjusted, the plate thickness of the short side surface is thicker than that of the can 1, and the punch pressure of the bottom forming process (g and h) is also adjusted to adjust the plate thickness of the bottom surface. A thick exterior canister (can 2) was prepared.

【0035】板厚は、長側面が0.20mm、短側面が
0.35mmおよび底面が0.43mmであり、したが
って絞り率は0.53であった。2μm以下の粒子数
は、長側面が42、短側面が81および底面が27であ
った。
The plate thickness was such that the long side surface was 0.20 mm, the short side surface was 0.35 mm and the bottom surface was 0.43 mm, and thus the drawing ratio was 0.53. The number of particles of 2 μm or less was 42 on the long side surface, 81 on the short side surface, and 27 on the bottom surface.

【0036】(缶の製造法3)缶1と同じ材質(A30
03)および板厚(0.6mm)の平板を用い、缶1と
同じ合計10工程の深絞り工法により、金型の短側面の
クリアランスを調節して、缶1より長側面の板厚が薄
く、そのかわり、底形成工程(gおよびh)のパンチ圧
も調整して底面の板厚が厚い比較例の外装缶(缶3)を
作成した。
(Manufacturing method 3 of can) Same material as can 1 (A30
03) and a plate having a plate thickness (0.6 mm) are used to adjust the clearance on the short side of the mold by the deep drawing method of the same 10 steps as the can 1, so that the plate on the long side is thinner than the can 1. Instead, the punch pressure in the bottom forming steps (g and h) was also adjusted to prepare an outer can (can 3) of a comparative example having a thick bottom plate.

【0037】板厚は、長側面が0.18mm、短側面が
0.30mmおよび底面が0.50mmであり、したが
って絞り率は0.64であった。2μm以下の粒子数
は、長側面が140、短側面が104および底面が22
であった。
The plate thickness was such that the long side surface was 0.18 mm, the short side surface was 0.30 mm, and the bottom surface was 0.50 mm. Therefore, the drawing ratio was 0.64. The number of particles of 2 μm or less is 140 on the long side, 104 on the short side and 22 on the bottom.
Met.

【0038】(缶の製造法4)缶1と同じ深絞り工法で
あるが、工程を11回に多段化して、本発明の実施例と
なる長側面の板厚が0.18mmの外装缶(缶4)を作
成した。
(Manufacturing Method 4 of Cans) The same deep drawing method as can 1 is used, but the number of steps is increased to 11 times to form an outer can having a long side plate thickness of 0.18 mm, which is an embodiment of the present invention ( Can 4) was created.

【0039】缶1と同じ材質(A3003)および板厚
(0.6mm)の平板を用い、最初の5工程(aからe
まで)は、缶1とまったく同じ工程で行なった。
Using the flat plate of the same material (A3003) and plate thickness (0.6 mm) as the can 1, the first 5 steps (a to e)
Up to) was performed in exactly the same process as in can 1.

【0040】(f)金型のクリアランスを調節して、缶
1よりやや強く絞った。長側面の板厚も約0.22mm
ぐらいになった。
(F) The clearance of the mold was adjusted to squeeze the can 1 slightly more strongly. The thickness of the long side is also about 0.22 mm
It's about now.

【0041】(g)缶1と同様に底つぶし工程を行なっ
た。
(G) The bottom crushing step was performed in the same manner as the can 1.

【0042】(h)缶1と同様に角出し工程を行なっ
た。長側面の板厚も約0.20mmぐらいになった。
(H) The squeezing process was performed in the same manner as in the can 1. The plate thickness on the long side also became about 0.20 mm.

【0043】(h’)仮トリミング工程(i)を行なう
前に、絞り加工を行なった。長側面の板厚も約0.19
mmぐらいになった。
(H ') Before performing the temporary trimming step (i), drawing processing was performed. The thickness of the long side is also about 0.19
It became about mm.

【0044】これ以後の、後工程は(iおよびj)は、
缶1と同様に行った。
The subsequent steps (i and j) are as follows.
It carried out like the can 1.

【0045】板厚は、長側面が0.18mm、短側面が
0.30mmおよび底面が0.50mmであり、したが
って絞り率は0.64であった。2μm以下の粒子数
は、長側面が161、短側面が108および底面が19
であった。
The plate thickness was such that the long side surface was 0.18 mm, the short side surface was 0.30 mm and the bottom surface was 0.50 mm, and thus the drawing ratio was 0.64. The number of particles of 2 μm or less is 161, the long side, 108 the short side and 19 the bottom.
Met.

【0046】(缶の製造法5)厚さ0.6mmのMgを
0.20から0.6重量%、Mnを1.0から1.5重
量%含むアルミニウム合金(A3005)の平板に対
し、缶4と同じ合計11工程の深絞り工法により、缶4
と同じ金型を用いて缶4と同じ外形を持つ実施例の外装
缶(缶2)を作成した。
(Manufacturing Method 5 of Can) For a flat plate of an aluminum alloy (A3005) having a thickness of 0.6 mm and containing 0.20 to 0.6% by weight of Mg and 1.0 to 1.5% by weight of Mn, Can 4 by the same deep drawing method of 11 processes as can 4.
An outer can (can 2) of the example having the same outer shape as that of the can 4 was prepared using the same mold.

【0047】したがって板厚は、缶4と同じ長側面が
0.18mm、短側面が0.30mmおよび底面が0.
50mmであり、絞り率は0.64であった。2μm以
下の粒子数は、材質が違うため、長側面が175、短側
面が109および底面が19であった。
Therefore, as for the plate thickness, the same long side surface as the can 4 is 0.18 mm, the short side surface is 0.30 mm, and the bottom surface is 0.
It was 50 mm and the drawing rate was 0.64. The number of particles of 2 μm or less was 175 on the long side surface, 109 on the short side surface, and 19 on the bottom surface because the materials were different.

【0048】(缶の製造法6)缶1および缶4と同じ深
絞り工法であるが、工程を12回とさらに多段化して、
本発明の実施例となる長側面の板厚が0.15mmの外
装缶(缶6)を作成した。
(Manufacturing method 6 of cans) The same deep drawing method as cans 1 and 4 was used, but the number of steps was further increased to 12 and
An outer can (can 6) having a long side plate thickness of 0.15 mm was prepared as an example of the present invention.

【0049】まず、缶5と同じ材質(A3005)およ
び板厚(0.6mm)の平板を用い、最初の5工程(a
からeまで)は、缶1とまったく同じ工程で行なった。
First, using a flat plate of the same material (A3005) and plate thickness (0.6 mm) as the can 5, the first five steps (a)
(E to e) were performed in exactly the same process as in can 1.

【0050】(f)金型のクリアランスを調節して、缶
1や缶4よりやや強く絞った。長側面の板厚も約0.2
0mmぐらいになった。
(F) The clearance of the mold was adjusted so that it was squeezed slightly more strongly than cans 1 and 4. The thickness of the long side is also about 0.2
It became about 0 mm.

【0051】(f’)底つぶし工程(g)を行なう前
に、さらに絞り加工を行なった。長側面の板厚も約0.
18mmぐらいになった。
(F ') Before the bottom crushing step (g), further drawing was performed. The plate thickness on the long side is about 0.
It became about 18 mm.

【0052】(g)缶1と同様に底つぶし工程を行なっ
た。
(G) The bottom crushing step was performed in the same manner as the can 1.

【0053】(h)缶1と同様に角出し工程を行なっ
た。長側面の板厚も約0.17mmぐらいになった。
(H) The squeezing process was performed in the same manner as in the can 1. The plate thickness on the long side also became about 0.17 mm.

【0054】(h’)缶4と同様に仮トリミング工程
(i)を行なう前に、絞り加工を行なった。長側面の板
厚も約0.16mmぐらいになった。
(H ') As in the case of the can 4, the drawing process was performed before the temporary trimming step (i). The plate thickness on the long side also became about 0.16 mm.

【0055】これ以後の、後工程は(iおよびj)は、
缶1と同様に行った。
In the subsequent steps (i and j),
It carried out like the can 1.

【0056】板厚は、長側面が0.15mm、短側面が
0.28mmおよび底面が0.40mmであり、したが
って絞り率は0.63であった。2μm以下の粒子数
は、長側面が201、短側面が80および底面が8であ
った。
The plate thickness was such that the long side surface was 0.15 mm, the short side surface was 0.28 mm and the bottom surface was 0.40 mm, and thus the drawing ratio was 0.63. The number of particles of 2 μm or less was 201 on the long side surface, 80 on the short side surface, and 8 on the bottom surface.

【0057】(缶の製造法7)厚さ0.6mmのMgを
0.8から1.3重量%、Mnを1.0から1.5重量
%含むアルミニウム合金(A3004)の平板に対し、
缶6と同じ合計12工程の深絞り工法により、缶6と同
じ金型を用いて缶6と同じ外形を持つ実施例の外装缶
(缶7)を作成した。
(Manufacturing method 7 of can) For a flat plate of an aluminum alloy (A3004) having a thickness of 0.6 mm and containing 0.8 to 1.3% by weight of Mg and 1.0 to 1.5% by weight of Mn,
An outer can (can 7) of the example having the same outer shape as that of the can 6 was formed by using the same die as that of the can 6 by the same deep drawing method of 12 steps as the can 6.

【0058】したがって板厚は、缶6と同じ長側面が
0.15mm、短側面が0.28mmおよび底面が0.
40mmであり、絞り率は0.63であった。2μm以
下の粒子数は、材質が違うため、長側面が276、短側
面が114および底面が14であった。
Therefore, as for the plate thickness, the same long side as the can 6 is 0.15 mm, the short side is 0.28 mm, and the bottom is 0.
It was 40 mm and the drawing rate was 0.63. The number of particles of 2 μm or less was 276 on the long side surface, 114 on the short side surface, and 14 on the bottom surface because the materials were different.

【0059】(缶の製造法8)缶6と同じ材質(A30
05)および板厚(0.6mm)の平板を用い、缶6と
同じ合計12工程の深絞り工法により、金型の長側面の
クリアランスを調節して、缶1より長側面の板厚が薄い
実施例の外装缶(缶8)を作成した。
(Can manufacturing method 8) The same material as the can 6 (A30
05) and a plate having a plate thickness (0.6 mm), the clearance of the long side of the mold is adjusted by the same deep drawing method of 12 steps as the can 6, so that the plate on the long side is thinner than the can 1. The exterior canister (can 8) of the example was created.

【0060】板厚は、長側面が0.14mm、短側面が
0.28mmおよび底面が0.40mmであり、したが
って絞り率は0.65であった。2μm以下の粒子数
は、長側面が228、短側面が83および底面が9であ
った。
The plate thickness was such that the long side surface was 0.14 mm, the short side surface was 0.28 mm, and the bottom surface was 0.40 mm. Therefore, the drawing ratio was 0.65. The number of particles of 2 μm or less was 228 on the long side surface, 83 on the short side surface, and 9 on the bottom surface.

【0061】(缶の製造法9)缶6と同じ材質(A30
05)および板厚(0.6mm)の平板を用い、衝撃押
し出し加工ととDI工法を併用して比較例の外装缶(缶
10)を作成した。
(Manufacturing method 9 of can) The same material as the can 6 (A30
05) and a flat plate having a plate thickness (0.6 mm) were combined with the impact extrusion process and the DI method to prepare an outer can (can 10) of a comparative example.

【0062】まず、A3005のペレットを用いて衝撃
押し出し加工を行なった。この中間成形体に一つのパン
チで三つのダイスを連続的に通すDI加工を行ないほぼ
最終の形状である角型にした後、缶1と同様に底面のコ
ーナー部の曲率(R)を少なくし、矩形性を高めるため
に矩形状の凹部を持つダイスを用いて、底形成工程を行
なった。
First, impact extrusion processing was performed using the A3005 pellets. After performing DI processing in which three dies are continuously passed through this intermediate compact by one punch to form a square shape which is almost the final shape, the curvature (R) of the corner portion of the bottom surface is reduced like the can 1. The bottom forming step was performed using a die having a rectangular recess to improve rectangularity.

【0063】板厚は、長側面が0.15mm、短側面が
0.28mmおよび底面が0.35mmであり、したが
って絞り率は0.57であった。2μm以下の粒子数
は、長側面が75、短側面が191および底面が190
であった。 <外装缶の評価>以上述べた缶の製造法1から9で製造
した缶1から9を外装缶が空の状態で開口部4を、封口
板の代わりとして厚さ0.6mmの外装缶と同じ材質の
アルミニウム合金の平板でレーザ溶接封口した。そし
て、底面3に穴をあけて金属管を溶接し、その金属管か
ら圧縮空気を送り込み、その膨れをレーザ変位測定器で
測定した。缶内の圧縮空気が、0.1および0.5kg
f/cm2の時の片側膨れ量を(表1)にまとめて示
す。
The plate thickness was such that the long side surface was 0.15 mm, the short side surface was 0.28 mm and the bottom surface was 0.35 mm, and thus the drawing ratio was 0.57. The number of particles of 2 μm or less is 75 on the long side, 191 on the short side, and 190 on the bottom.
Met. <Evaluation of the outer can> The cans 1 to 9 manufactured by the above can manufacturing methods 1 to 9 were used as the outer can with an opening 4 and an outer can having a thickness of 0.6 mm instead of the sealing plate. Laser welding was performed using a flat plate of aluminum alloy of the same material. Then, a hole was made in the bottom surface 3 to weld a metal pipe, compressed air was sent from the metal pipe, and the swelling thereof was measured by a laser displacement measuring device. Compressed air in the can is 0.1 and 0.5 kg
The blisters on one side at f / cm 2 are summarized in (Table 1).

【0064】[0064]

【表1】 [Table 1]

【0065】(表1)からわかるとおり、従来の比較例
の缶1および2では、長側面の板厚が0.2mmあるた
め、片側膨れ量が、出荷時の基準である0.1kgf/
cm 2で0.1から0.2mmの範囲にあり、サイクル
使用時の基準である0.5kgf/cm2で0.5から
0.6mmの範囲にあり、実用上問題のない強度があ
る。しかし、長側面の厚さが0.18mmである缶3に
なると、底面の板厚を厚くしても、つまり絞り率を高く
しても、底面の厚さは缶自体の強度にほとんど影響を与
えないので、膨れ量は大きくなってしまう。
As can be seen from Table 1, the conventional comparative example
In Cans 1 and 2, the plate thickness on the long side was 0.2 mm.
Therefore, the bulge amount on one side is 0.1 kgf /
cm 2In the range of 0.1 to 0.2 mm, cycle
0.5kgf / cm, which is the standard when used2From 0.5
Within the range of 0.6 mm, the strength has no practical problem.
It However, for the can 3 whose long side has a thickness of 0.18 mm,
Then, even if the bottom plate thickness is increased, that is, the drawing rate is increased.
However, the thickness of the bottom surface has almost no effect on the strength of the can itself.
Because it is not possible, the amount of swelling will increase.

【0066】本発明の実施例の缶4と比較例の缶3を比
べてみると、材質および外装缶の寸法が全く同じでも、
2μm以下の不純物粒子数が好適な範囲にあるため、強
度つまり膨れ量が0.1kgf/cm2で10%、0.
5kgf/cm2で40%向上している。
Comparing the can 4 of the embodiment of the present invention with the can 3 of the comparative example, even if the material and the outer can have the same dimensions,
Since the number of impurity particles of 2 μm or less is in a suitable range, the strength, that is, the swollen amount is 10% at 0.1 kgf / cm 2 , and 0.1%.
There is an improvement of 40% at 5 kgf / cm 2 .

【0067】また、外装缶の寸法が同じで材質のみが違
う缶4と缶5を比べてみると、2μm以下の不純物粒子
数も同程度であるが、材質は、マンガンを0.5重量%
以上2.5重量%以下含有し、マグネシウムを0.2重
量%以上1.3%以下含有するアルミニウム合金からな
ることが好ましいことがわかる。
Further, comparing cans 4 and 5 having the same outer can size but different materials, the number of impurity particles of 2 μm or less is about the same, but the material is 0.5% by weight of manganese.
It can be seen that it is preferable to be made of an aluminum alloy containing not less than 2.5% by weight and not less than 0.2% by weight and not more than 1.3% by weight of magnesium.

【0068】缶6、缶7および缶8から本発明の外装缶
では、長側面の板厚が0.14mmでも充分な強度があ
り、0.15mmでは優れた強度を持つことがわかる。
長側面の板厚が0.2mmから0.15mmになると、
例えば本実施例の外装缶のサイズの幅34mm、高さ4
9mmおよび厚み6.3mmで、電池内容積が約7%外
装缶重量で約17%向上する。
It can be seen from Cans 6, 7, and 8 that the outer can of the present invention has sufficient strength even when the long side plate thickness is 0.14 mm, and has excellent strength when it is 0.15 mm.
When the plate thickness on the long side changes from 0.2 mm to 0.15 mm,
For example, the size of the outer can of this embodiment is 34 mm in width and 4 in height.
At 9 mm and a thickness of 6.3 mm, the internal volume of the battery is improved by about 7% and the weight of the outer can is increased by about 17%.

【0069】加工度を大きくすると、比較例の缶9のよ
うに2μm以下の不純物粒子数は、かなり大きくなる
が、このように硬度が大きすぎると、膨れ量、特に初期
の0.1kgf/cm2の膨れ量が大きくなり不適であ
る。したがって、2μm以下の不純物粒子数には、最適
な範囲があり、2μm以下の粒径の不純物粒子が、単位
面積(0.0163mm2)あたりそれぞれ160個以
上280個以下、50個以上120個以下および20個
以下であることが好ましいことがわかる。
When the degree of processing is increased, the number of impurity particles of 2 μm or less as in the can 9 of the comparative example is considerably increased. However, when the hardness is too high, the amount of swelling, especially 0.1 kgf / cm in the initial stage, is increased. 2 is unsuitable because the amount of swelling becomes large. Therefore, there is an optimum range for the number of impurity particles of 2 μm or less, and the number of impurity particles of 2 μm or less is 160 or more and 280 or less, or 50 or more and 120 or less per unit area (0.0163 mm 2 ), respectively. And it is preferable that the number is 20 or less.

【0070】[0070]

【発明の効果】以上述べたとおり、本発明の角型リチウ
ムイオン二次電池を使用すれば、サイクル使用時や高温
保存時の電池膨れなどに強く相関する外装缶の強度は、
従来の角型リチウム二次電池と同等に保ちつつ、外装缶
が薄型であるため、電池内容積が大きく取れるため高容
量化と軽量化が期待できる。
As described above, when the prismatic lithium ion secondary battery of the present invention is used, the strength of the outer can, which strongly correlates with battery swelling during cycle use or during high temperature storage,
While keeping the same size as the conventional rectangular lithium secondary battery, the outer can has a thin shape, so that a large internal volume of the battery can be obtained, so that high capacity and light weight can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例において作成した外装缶の斜視図FIG. 1 is a perspective view of an exterior can made in this example.

【図2】本実施例において作成した外装缶の製造方法を
示す説明図
FIG. 2 is an explanatory view showing a method for manufacturing an outer can made in this example.

【符号の説明】[Explanation of symbols]

1 長側面 2 短側面 3 底面 4 開口部 5 みみ h 矩形部高さ 1 long side 2 short side 3 bottom 4 openings 5 Mimi h Height of rectangular part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 長側面、短側面および底面とからなる角
型外装缶に電極群と非水電解液を収納し、封口版にて封
口してなる角型リチウムイオン二次電池において、前記
長側面の板厚が、0.14mm以上0.18mm以下で
あり、前記底側面に対する前記長側面の絞り率(ただ
し、絞り率=(底面板厚―側面板厚)÷底面板厚 )
が、0.5以上あり、前記短側面の板厚は、前記長側面
の板厚より厚くて前記底面の板厚より薄いものであり、
さらに、前記長側面、前記短側面および前記底面の各中
心断面での2μm以下の粒径の不純物粒子が、単位面積
(0.0163mm2)あたりそれぞれ160個以上2
80個以下、50個以上120個以下および20個以下
であることを特徴とする角型リチウムイオン二次電池。
1. A prismatic lithium-ion secondary battery in which an electrode group and a non-aqueous electrolyte are housed in a prismatic outer can having a long side surface, a short side surface and a bottom surface and which is sealed with a sealing plate. The plate thickness of the side surface is 0.14 mm or more and 0.18 mm or less, and the drawing ratio of the long side surface with respect to the bottom side surface (where, drawing ratio = (bottom plate thickness−side plate thickness) ÷ bottom plate thickness)
Is 0.5 or more, and the plate thickness of the short side surface is larger than the plate thickness of the long side surface and smaller than the plate thickness of the bottom surface,
Further, the number of impurity particles having a particle size of 2 μm or less in each central cross section of the long side surface, the short side surface and the bottom surface is 160 or more per unit area (0.0163 mm 2 ).
A prismatic lithium-ion secondary battery comprising 80 or less, 50 or more and 120 or less, and 20 or less.
【請求項2】 前記外装缶は、マンガンを0.5重量%
以上2.5重量%以下含有し、マグネシウムを0.2重
量%以上1.3%以下含有するアルミニウム合金からな
る請求項1記載の角型リチウムイオン二次電池。
2. The outer can has 0.5% by weight of manganese.
The prismatic lithium-ion secondary battery according to claim 1, which is made of an aluminum alloy containing not less than 2.5% by weight and not less than 0.2% by weight and not more than 1.3% by weight of magnesium.
JP2001358791A 2001-11-26 2001-11-26 Square lithium ion secondary battery Expired - Fee Related JP3702840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001358791A JP3702840B2 (en) 2001-11-26 2001-11-26 Square lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001358791A JP3702840B2 (en) 2001-11-26 2001-11-26 Square lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2003157809A true JP2003157809A (en) 2003-05-30
JP3702840B2 JP3702840B2 (en) 2005-10-05

Family

ID=19169910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358791A Expired - Fee Related JP3702840B2 (en) 2001-11-26 2001-11-26 Square lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3702840B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059804A (en) * 2004-07-23 2006-03-02 Sony Corp Cell battery pack
JP2014077189A (en) * 2012-10-12 2014-05-01 Nippon Light Metal Co Ltd Aluminum alloy sheet for battery case excellent in moldability, heat release property and weldability
JP2019075334A (en) * 2017-10-18 2019-05-16 昭和電工株式会社 Manufacturing method of battery case body
US20190252647A1 (en) * 2016-11-04 2019-08-15 Schuler Pressen Gmbh Method and device for producing a prismatic battery cell container
US20210104795A1 (en) * 2018-12-29 2021-04-08 Contemporary Amperex Technology Co., Limited Secondary battery and battery unit
WO2024060194A1 (en) * 2022-09-23 2024-03-28 宁德时代新能源科技股份有限公司 Battery and electrical apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059804A (en) * 2004-07-23 2006-03-02 Sony Corp Cell battery pack
JP2014077189A (en) * 2012-10-12 2014-05-01 Nippon Light Metal Co Ltd Aluminum alloy sheet for battery case excellent in moldability, heat release property and weldability
US20190252647A1 (en) * 2016-11-04 2019-08-15 Schuler Pressen Gmbh Method and device for producing a prismatic battery cell container
US11908989B2 (en) * 2016-11-04 2024-02-20 Schuler Pressen Gmbh Method and device for producing a prismatic battery cell container
JP2019075334A (en) * 2017-10-18 2019-05-16 昭和電工株式会社 Manufacturing method of battery case body
US20210104795A1 (en) * 2018-12-29 2021-04-08 Contemporary Amperex Technology Co., Limited Secondary battery and battery unit
WO2024060194A1 (en) * 2022-09-23 2024-03-28 宁德时代新能源科技股份有限公司 Battery and electrical apparatus

Also Published As

Publication number Publication date
JP3702840B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
US6333124B1 (en) Metal outer can for a battery and method of manufacturing same
CN1148812C (en) Battery and method of manufacturing the same
KR100662164B1 (en) Square cell container and method of manufacturing the cell container
JP3740048B2 (en) Battery can and battery using the same
TW535310B (en) Square battery container, method of manufacturing the container, and square battery using the container
JP2007027046A (en) Battery can and method of manufacturing same
JP3857818B2 (en) Lithium ion secondary battery
JP2001236929A (en) Battery case made of titanium
JP3702840B2 (en) Square lithium ion secondary battery
JP2003208876A (en) Square battery can and manufacturing method thereof, and square battery using the same
KR100455013B1 (en) Cell tube and method of manufacturing the cell tube
JP4114342B2 (en) Square lithium ion secondary battery
KR101017909B1 (en) Cylindrical Battery Can for Preparation of Battery and Process of Fabricating the Same
JP3630992B2 (en) Battery and method for manufacturing battery can
JPH1083800A (en) Battery can and manufacture of dry battery using this can
EP1265299B1 (en) Secondary battery, anode can thereof, and method of manufacturing the same
JP3846154B2 (en) Battery can, manufacturing method thereof and battery
JPH09316580A (en) Aluminum alloy, case for lithium ion secondary battery using the same, and their production
JP4064642B2 (en) Battery can manufacturing method
US20230411740A1 (en) Battery case and battery
JP2004288523A (en) Rectangular sealed secondary battery and its manufacturing method
JP2005183188A (en) Battery case and manufacturing method of same
JP2000113862A (en) Rectangular alkaline secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees