JP2003156201A - Boiler device - Google Patents

Boiler device

Info

Publication number
JP2003156201A
JP2003156201A JP2001351721A JP2001351721A JP2003156201A JP 2003156201 A JP2003156201 A JP 2003156201A JP 2001351721 A JP2001351721 A JP 2001351721A JP 2001351721 A JP2001351721 A JP 2001351721A JP 2003156201 A JP2003156201 A JP 2003156201A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
heat transfer
duct
fluid
tube
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001351721A
Other languages
Japanese (ja)
Inventor
Jinsai Cho
Kanichi Kadotani
Toshinobu Tanimura
仁才 儲
利伸 谷村
▲皖▼一 門谷
Original Assignee
Komatsu Ltd
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • Y02P80/154On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply for steam generation or distribution

Abstract

PROBLEM TO BE SOLVED: To provide a boiler device capable of downsizing an appearance shape as small as possible. SOLUTION: The boiler device 1 has many heat transfer pipes 4 extending across the flow of high temperature gas, in the flow direction of the high temperature gas inside a duct 3 passing the high temperature gas (high temperature fluid). The boiler device 1 heats heated fluid W introduced into the heat transfer pipes 4 with the high temperature gas via the heat transfer pipes 4 and generates steam of the heated fluid W. The diameter of the heat transfer pipes 4 is set small when they are disposed on the downstream side of the high temperature gas in the duct 3 in response to a condition where heat flux does not exceed a critical heat flux.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ボイラー装置に関するものであり、詳しくは高温流体が流通するダクトの内部に、高温流体の流れを横切って延びる伝熱管を、高温流体の流れ方向に沿って多数並設し、伝熱管の内部に導入した被加熱流体を、高温流体により伝熱管を介して加熱し、被加熱流体の蒸気を生成するボイラー装置に関する。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention relates to boiler systems, and more particularly the interior of the duct the hot fluid flows, heat transfer tube extending across the flow of the hot fluid the large number and arranged along the flow direction of the high temperature fluid, the heated fluid introduced into the interior of the heat transfer tube, and heated through the heat transfer tube by a hot fluid, to boiler systems for generating steam of the heated fluid. 【0002】 【従来の技術】図9〜図11は、水やフロリナート(登録商標)等の被加熱流体Wを加熱し、該被加熱流体Wの蒸気を生成するボイラー装置を示しており、このボイラー装置Aは、被加熱流体Wを貯留するチャンバCと、該チャンバCを貫通するダクトDとを備えている。 [0002] 9-11, water or Fluorinert heated heated fluid W (registered trademark) or the like, shows a boiler apparatus that generates steam the heated fluid W, the boiler device a includes a chamber C which stores the heated fluid is W, the duct D that passes through the chamber C. 【0003】上記ダクトDには、排ガス等の熱源としての高温ガス(高温流体)が、矢印Iの如く導入ダクトDi [0003] the duct D, the hot gas as a heat source such as the exhaust gas (high temperature fluid), the inlet duct Di as arrow I
を介して導入され、上記ダクトDを通過した高温ガスは、矢印Oの如く排出ダクトDoを介して排出される。 Is introduced through the hot gas that has passed through the duct D is discharged through a discharge duct Do as indicated by arrow O. 【0004】また、上記ダクトDには、被加熱流体Wの導入される多数の伝熱管P、P…が設けられており、これら伝熱管P、P…は、高温ガスの流れを横切って上下方向に延び、かつ高温ガスの流れ方向に沿って並設してレイアウトされている。 [0004] The aforementioned duct D, a number of heat transfer tube P to be introduced in the heated fluid W, and P ... are provided, these heat transfer tubes P, P ... are vertically across the flow of hot gases extending in the direction, and are juxtaposed in the flow direction of the hot gas being laid. 【0005】上記ボイラー装置Aは、いわゆる管内沸騰型(水管型)ボイラーであって、ダクトDを流れる高温ガスによって各伝熱管P、P…を炙り、これら各伝熱管P、P…に導入された被加熱流体Wを加熱することによって、該被加熱流体Wの蒸気が生成されることとなる。 [0005] The boiler system A is a so-called tube boiling type (water tube type) boilers, broiled each heat transfer tube P, and P ... by the hot gas flowing through the duct D, each of these heat transfer tubes P, is introduced into the P ... by heating the heated fluid W was, so that the vapor of the heated fluid W is generated. 【0006】 【発明が解決しようとする課題】ところで、上述した従来のボイラー装置Aの如く、互いに等しい管径の伝熱管P、P…を、高温ガスの流れ方向に沿って並設した構造では、図12から明らかなように、各伝熱管P、P…における熱流束(単位時間あたりに単位面積の面を横切って移動する熱量)は、ダクトDを流通する高温ガスの下流側に行くに従って減少するため、熱源である高温ガスからの熱の利用効率は小さいものとなっていた。 [0006] [SUMMARY OF THE INVENTION Incidentally, as in the conventional boiler system A described above, heat transfer tube P equal pipe diameter to each other, the P ..., a structure has been arranged along the flow direction of the hot gases as is clear from FIG. 12, each heat transfer tube P, P - heat flux in ... (amount of heat transferred across the face of the unit area per unit time), toward the downstream side of the hot gas flowing through the duct D for decreasing the thermal efficiency of the hot gas as a heat source had become small. 因みに、図12中のhは伝熱管Pの高さ、dは伝熱管Pの管径、XはダクトDの全長である。 Incidentally, the height of h is the heat transfer tube P in FIG. 12, d is the tube diameter of the heat transfer tube P, X is the total length of the duct D. 【0007】一方、上述した従来のボイラー装置Aにおいて、その外観形状をコンパクト化しようとした場合、 On the other hand, in the conventional boiler system A described above, when attempting to compact the external shape,
全ての伝熱管P、P…における管径を小さく設定する構成が考えられる。 All heat transfer tube P, configuration is conceivable to set a small pipe diameter in P .... 【0008】しかし、管内沸騰型ボイラーの場合、限界熱流束、すなわち伝熱管Pのバーンアウトを抑え得る限界の熱流束が存在し、この限界熱流束は図13に示す如く管径dが小さいほど小さな値となる。 However, if the tube boiling type boilers, critical heat flux, i.e. heat flux limitations exist which can suppress the burnout of the heat transfer tube P, the more the critical heat flux is smaller tube diameter d as shown in FIG. 13 It becomes a small value. 因みに、図13 By the way, as shown in FIG. 13
中のhは伝熱管Pの高さ、dは伝熱管Pの管径である。 h is the heat transfer tube P height in, d is the pipe diameter of the heat transfer tube P. 【0009】このように、管内沸騰型ボイラーにおいては、限界熱流束が存在するために、全ての伝熱管P、P [0009] Thus, in the tube boiling type boilers, due to the presence of critical heat flux, all of the heat transfer tube P, P
…の管径を徒らに小さく設定することはできず、もって外観形状を大幅にコンパクト化することは極めて困難であった。 ... pipe diameter and can not be set small tiger, it is very difficult to significantly compact appearance shape with. 【0010】本発明は上記実状に鑑みて、外観形状の可及的なコンパクト化を達成し得るボイラー装置の提供を目的とするものである。 [0010] The present invention is in view of the above circumstances, it is an object to provide a boiler apparatus that can achieve as much as possible a compact external shape. 【0011】 【課題を解決するための手段および効果】本発明に関わるボイラー装置は、高温流体が流通するダクトの内部に高温流体の流れを横切って延びる伝熱管を高温流体の流れ方向に沿って多数並設し、伝熱管の内部に導入した被加熱流体を高温流体により伝熱管を介して加熱し被加熱流体の蒸気を生成するボイラー装置であって、伝熱管における管径を、限界熱流束を越えない条件に則って、ダクトにおける高温流体の下流側に位置する程、小さく設定している。 [0011] Boiler device according to the challenge means and the effect of the Invention The present invention, along a heat transfer tube extending across the flow of the hot fluid inside the duct the hot fluid flows in the direction of flow of hot fluid many juxtaposed, a boiler apparatus that generates steam heated heated fluid through the heat transfer tube by the heated fluid high temperature fluid which is introduced into the heat transfer tube, the tube diameter in heat transfer tube, critical heat flux the in accordance with the condition of not exceeding, as located downstream of the high-temperature fluid in the duct is set to be smaller. 【0012】上記構成によれば、全ての伝熱管が同一の管径であった従来のボイラー装置に比較して、バーンアウト等の発生を招くことなく、高温流体の流れ方向におけるダクトの寸法を短縮することができる。 With the above arrangement, as compared to all conventional boiler systems heat transfer tube were identical tube diameters, without causing occurrence of burnout, the dimensions of the duct in the flow direction of the hot fluid it can be shortened. 【0013】もって、本発明に関わるボイラー装置によれば、ダクトの全長を短縮させることにより、外観形状の可及的なコンパクト化を達成することが可能となる。 [0013] with, according to the boiler system according to the present invention, by shortening the overall length of the duct, it is possible to achieve as much as possible a compact external shape. 【0014】 【発明の実施の形態】以下、本発明の一実施例を、図面を参照しながら詳細に説明する。 DETAILED DESCRIPTION OF THE INVENTION Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. 図1〜図3は、フロリナート(登録商標)等の被加熱流体を加熱して、該被加熱流体の蒸気を生成するためのボイラー装置に、本発明を適用した実施例を示すものであり、このボイラー装置1 1 to 3, by heating the heating fluid such as Fluorinert (TM), a boiler device for producing steam of the heated fluid, which show an embodiment of applying the present invention, the boiler apparatus 1
は、被加熱流体Wを貯留するチャンバ2と、該チャンバ2を貫通するダクト3とを備えている。 Comprises a chamber 2 for storing a heated fluid is W, the duct 3 through the chamber 2. 【0015】上記ダクト3は、四角断面の筒形状を呈しており、熱源としての高温ガス(高温流体)が、矢印I [0015] the duct 3 has the shape of a square cross-section of the tubular, hot gas as a heat source (hot fluid), arrow I
の如く導入ダクト10iを介して導入され、上記ダクト3を通過した高温ガスは、矢印Oの如く排出ダクト10 Is introduced through the introduction duct 10i as, hot gas passing through the duct 3, the exhaust duct 10 as indicated by arrow O
oを介して排出される。 It is discharged through the o. 【0016】また、上記ダクト3には、被加熱流体Wの導入される多数の伝熱管4、4…が設けられており、各々の伝熱管4、4…は、ダクト3の内部を流通する高温ガスの流れを横切って上下方向に延び、かつ高温ガスの流れ方向に沿って並設されている。 Further, in the duct 3 is introduced a large number of heat transfer tubes 4, 4 to be is provided a heated fluid W, each heat transfer tube 4, 4 ... are the, flowing in the duct 3 extending vertically across the flow of hot gas, and in the flow direction of the hot gas are arranged in parallel. 【0017】上記ボイラー装置1は、いわゆる管内沸騰型(水管型)ボイラーであって、ダクト2を流れる高温ガスによって各伝熱管4、4…を炙り、これら各伝熱管4、4…に導入された被加熱流体Wを加熱することによって、該被加熱流体Wの蒸気が生成されることとなる。 [0017] The boiler apparatus 1 is a so-called tube boiling type (water-tube) a boiler, broiled each heat transfer tubes 4, 4 by the hot gas flowing through the duct 2 is introduced into the respective heat transfer tubes 4, 4 ... by heating the heated fluid W was, so that the vapor of the heated fluid W is generated. 【0018】なお、各々の伝熱管4、4…は、ダクト3 [0018] In addition, each heat transfer tube 4, 4 ... is of, duct 3
の上下に貫通してチャンバ2の内部に臨んでおり、下端側の開口から被加熱流体Wが導入される一方、上端側の開口から被加熱流体Wの蒸気が放出される。 Of which faces to the interior of the chamber 2 through the top and bottom, while the heated fluid W is introduced from the lower end side of the opening, the steam of the heated fluid W is discharged from the upper end side of the opening. 【0019】ここで、図3から明らかなように、ダクト3に設けられた各々の伝熱管4、4…は、後に詳述する如く、限界熱流束を越えない条件に則って、ダクト3を流れる高温ガスの下流側に位置するに従って管径を小さく設定されている。 [0019] Here, as apparent from FIG. 3, provided with respective heat transfer tubes 4, 4 ... are the the duct 3, as will be described later in detail, in accordance with the condition not exceeding the critical heat flux, the duct 3 is set smaller the pipe diameter in accordance located downstream of the hot gas flowing. 【0020】すなわち、実施例のボイラー装置1においては、ダクト3の入口3iに臨んだ領域Aに設置された伝熱管4(A)の管径dAが9mm、上記領域Aに対する下流側の領域Bに設置された伝熱管4(B)の管径dBが5 [0020] That is, in the boiler apparatus 1 embodiment, region tube diameter dA is 9 mm, the downstream side with respect to the region A of the heat transfer tube is installed in facing it the region A to the inlet 3i of the duct 3 4 (A) B pipe diameter dB of the heat transfer tube 4 (B) installed in the 5
mm、上記領域Bに対する下流側であってダクト3の出口3oに臨んだ領域Cに設置された伝熱管4(C)の管径d mm, tube diameter d of the heat transfer tubes 4 (C) placed facing it in the region C the outlet 3o of the duct 3 a downstream side with respect to the region B
Cが3mmに設定されている。 C is set to 3mm. 【0021】ここで、図4から明らかなように、伝熱管における限界熱流束は、伝熱管の管径(d)に依存しており、伝熱管の高さ(h)が 270mmの場合、管径が9mmで限界熱流束は58(KW/m )、管径が7mmで限界熱流束は12(KW/m )、管径が5mmで限界熱流束は10(KW/ [0021] Here, as apparent from FIG. 4, the critical heat flux in the heat transfer tube is dependent on tube diameter (d) of the heat transfer tube, when the heat transfer tube height (h) of 270 mm, the tube diameter critical heat flux 58 at 9mm (KW / m 2), the critical heat flux in tube diameter 7mm 12 (KW / m 2) , the critical heat flux in tube diameter 5mm is 10 (KW /
)、管径が3mmで限界熱流束は6(KW/m )となる。 m 2), the critical heat flux in tube diameter 3mm becomes 6 (KW / m 2). 【0022】また、図5から明らかなように、高温ガスの流れ方向における熱流束の分布も伝熱管4の管径(d) Further, as apparent from FIG. 5, the pipe diameter of even distribution heat flux in the flow direction of the hot gas heat transfer tubes 4 (d)
に依存し、管径の小さい伝熱管ではダクト長の短い範囲で極めて大きい熱流束がダクト長とともに急激に減少し、管径の大きな伝熱管ではダクト長とともに熱流束が緩やかに減少する傾向が認められる。 Depending on, the small heat transfer tubes of the tube diameter decreases rapidly very large heat flux with duct length in a short range of the duct length, it tended to heat flux decreases gradually with duct length is greater heat transfer tube of the tube diameter It is. 【0023】そこで、実施例のボイラー装置1を設計する際には、図6に示す如く、使用される伝熱管4(A)、 [0023] Therefore, when designing the boiler apparatus 1 embodiment, as shown in FIG. 6, the heat transfer tubes 4 (A) to be used,
伝熱管4(B)および伝熱管4(C)のうち、管径が5mmの伝熱管4(B)における限界熱流束(10KW/m )よりも、安全を見込んで僅かに小さい値、例えば熱流束8KW The heat transfer tubes 4 (B) and the heat transfer tubes 4 of (C), slightly smaller pipe diameter than the critical heat flux (10KW / m 2) is in heat transfer tubes 4 of 5 mm (B), in anticipation of safety, for example, heat flux 8KW
/m における伝熱管4(A)のライン上の点j、および伝熱管4(B)のライン上の点kを求め、上記伝熱管4 / J point on the line of the heat transfer tubes 4 (A) in m 2, and the heat transfer tube 4 sought k point on the line (B), the heat transfer tubes 4
(A)のライン上の点j、言い換えればダクト3の入口3 point j on the line (A), the inlet 3 of the duct 3 in other words
iから距離Laに亘る範囲、すなわち図3に示した領域Aに管径dAが9mmの伝熱管4(A)を配設する。 Range ranging from i to the distance La, i.e. the tube diameter dA in the region A is disposed heat transfer tubes 4 (A) of 9mm shown in FIG. 【0024】また、図6に示す如く、管径が3mmの伝熱管4(C)における限界熱流束(6KW/m )よりも、安全を見込んで僅かに小さい値、例えば熱流束4.8KW/m Further, as shown in FIG. 6, the pipe diameter than the limit heat flux (6KW / m 2) is in 3mm heat transfer tubes 4 (C), slightly smaller value in anticipation of safety, for example, heat flux 4.8KW / m
における伝熱管4(B)のライン上の点l、および伝熱管4(C)のライン上の点mを求め、上記伝熱管4(B)のライン上における点kと点lとの間の距離Lbに亘る範囲、すなわち図3に示した領域Aの下流側における領域Bに、管径dBが5mmの伝熱管4(B)を配設する。 L point on the line of the heat transfer tubes in 2 4 (B), and the heat transfer tube 4 sought m point on the line (C), between the point k and the point l on the line of the heat transfer tubes 4 (B) range over the distance Lb, namely in the area B on the downstream side of the region a shown in FIG. 3, tube diameter dB is provided a heat exchanger tube 4 of 5 mm (B). 【0025】さらに、図6に示す如く、管径が3mmの伝熱管4(C)において吸熱しようとする最小の熱流束、例えば熱流束2KW/m における伝熱管4(C)のライン上の点nを求め、上記伝熱管4(C)のライン上における点mと点nとの間の距離Lcに亘る範囲、すなわち図3に示した領域Bの下流側における領域Cに、管径dCが3 Furthermore, as shown in FIG. 6, tube diameter of 3mm minimum heat flux to be endotherm heat transfer tubes 4 (C), for example, heat flux 2KW / m 2 heat transfer tubes 4 in the on line (C) seeking a point n, the range over the distance Lc between the point m and the point n on the line of the heat transfer tubes 4 (C), i.e. in the region C on the downstream side of the region B shown in FIG. 3, tube diameter dC There 3
mmの伝熱管4(C)を配設する。 Disposing mm heat transfer tubes 4 (C). 【0026】上記構成によれば、ボイラー装置1におけるダクト3の全長Lは、図3に示す如く、上述した距離Laと距離Lbと距離Lcとを加算したものとなり、図7において比較するように、同じ吸熱量を達成している従来のボイラー装置A(図9、10参照)におけるダクトDの全長Ldと比べて大幅に短縮され、もってボイラー装置1における外観形状の可及的なコンパクト化が達成される。 According to the above construction, the overall length L of the duct 3 in the boiler apparatus 1, as shown in FIG. 3, it is assumed that the sum of the distance La and the distance Lb and the distance Lc as described above, to compare 7 , is significantly reduced in comparison with the total length Ld of the duct D in the conventional boiler system a that achieve the same amount of heat absorption (see FIGS. 9 and 10), it has been as much as possible compactness of the external configuration of the boiler apparatus 1 is It is achieved. 【0027】また、上述した如く、従来のボイラー装置と同等の吸熱量を獲得しながら、ダクト3の全長を大幅に短縮することの可能な本実施例の構成では、ダクト3 Further, as described above, while acquiring the amount of heat absorbed equivalent to that of the conventional boiler systems, the total length of the duct 3 in the configuration of the possible embodiment of be greatly shortened, the duct 3
の全長を従来のボイラー装置AにおけるダクトDと同じに設定した場合、ダクト3を流れる高温ガスからより多くの熱を吸熱することが可能となり、熱源である高温ガスからの熱の利用効率が格段に向上することとなる。 If the total length of the set to be the same as the duct D in the conventional boiler system A, it is possible to absorbs more heat from the hot gas flowing in the duct 3, much heat utilization efficiency from the hot gas as a heat source and thus to improve on. 【0028】なお、上記ダクト3の各領域(A、B、C) [0028] Note that each region of the duct 3 (A, B, C)
における、伝熱管4(A)、伝熱管4(B)および伝熱管4 In heat transfer tubes 4 (A), the heat transfer tubes 4 (B) and the heat transfer tubes 4
(C)の設置本数は、上記ダクト3を流れる高温ガスの流動抵抗を考慮した上で、できるだけ多くの本数を設置することが、高温ガスの熱を効率よく利用する上において望ましい。 Installation number of (C) is in consideration of the flow resistance of the hot gas flowing in the duct 3, it is placed as much as possible the number desirable in order to efficiently utilize the heat of the hot gas. 【0029】また、上述したボイラー装置1においては、ダクト3の3つの領域(A、B、C)に、管径9mm Further, in the boiler apparatus 1 described above, three areas of the duct 3 (A, B, C), the tube diameter 9mm
の伝熱管4(A)と、管径5mmの伝熱管4(B)と、管径3 And heat transfer tubes 4 (A), the heat transfer tube of the tube diameter 5 mm 4 (B), and pipe diameter 3
mmの伝熱管4(C)とを設けているが、ダクト3に設定される領域の数や、各領域に設置される伝熱管の管径が、 Are provided and mm heat transfer tubes 4 (C) but, the number of areas set in the duct 3, the tube diameter of the heat transfer tube is installed in each region,
実施例に限定されるものでないことは勿論である。 It is not limited to Examples. 【0030】すなわち、ダクトに2つの領域あるいは4 [0030] That is, or the two regions in the duct 4
つ以上の領域を設定し、各領域毎に管径の異なる伝熱管を設置する構成や、高温ガスの流れ方向に隣接する全ての伝熱管の管径を異ならせて構成することも可能である。 Set One or more of the area, a configuration of installing the different heat transfer tubes of the tube diameter for each of the regions, it is possible to configure with different every pipe diameter of the heat transfer tubes that are adjacent to the flow direction of the hot gas . 【0031】また、実施例のボイラー装置1を設計する際の基準とした図5(高温流体の流れ方向における熱流束の分布を管径毎に示すグラフ)等は、例えば高温ガスの温度等、諸条件によって変化することは勿論であり、 Further, FIG. 5 (a graph showing the distribution of the heat flux in the direction of flow of hot fluid to the tube each diameter) or the like on the basis of when designing the boiler apparatus 1 embodiment, for example, temperature of the hot gas, can vary depending on various conditions is of course,
よって本発明に関わるボイラー装置の設計に当たっては、使用する伝熱管の管径やダクトにおける領域の数および長さを、ボイラー装置の稼動条件に基づいて適宜に設定する必要のあることは言うまでもない。 Therefore when designing the boiler apparatus according to the present invention, the area number and length of the tube diameter and the duct of the heat transfer tube to be used, it goes without saying that must be set appropriately based on the operating conditions of the boiler system. 【0032】さらに、ボイラー装置における伝熱管の管径やダクトにおける領域の数および長さは、それらの設定によってダクトの全長が最短となるよう、設計に当たって最善の組合せが採用されることは勿論である。 Furthermore, the number and length of the area in the pipe diameter and the duct of the heat transfer tubes in the boiler system, these settings so that the total length of the duct is the shortest way, it is a matter of course that the best combination is employed in designing is there. 【0033】図8は、本発明を適用したボイラー装置の他の実施例であり、ダクト13には被加熱流体Wの導入される多数の伝熱管14、14…が設けられ、ダクト1 [0033] Figure 8 is another embodiment of the applied Boilers The present invention, a number of heat transfer tubes 14, 14 to be introduced in the heated fluid W ... are provided in the duct 13, the duct 1
3の領域Aと領域Bと領域Cとに設けられた、伝熱管1 It provided third region A and the region B and the region C, the heat transfer tube 1
4(A)と伝熱管14(B)と伝熱管14(C)とは、限界熱流束を越えない条件に則って、ダクト13を流れる高温ガスの下流側に位置するに従って管径を小さく設定されている。 4 (A) and the heat transfer tubes 14 and (B) the heat transfer tubes 14 and (C) is in accordance with the condition not exceeding the critical heat flux, smaller sets the pipe diameter in accordance located downstream of the hot gas flowing through the duct 13 It is. 【0034】さらに、上述した伝熱管14(A)、14 [0034] In addition, the heat transfer tubes 14 described above (A), 14
(B)、14(C)には、それぞれに伝熱を促進するためのフィン14fが設けられている。 (B), the 14 (C), the fins 14f to promote heat transfer are provided respectively. なお、フィン14fの大きさやピッチ等は、ダクト13を流れる高温ガスの圧力損失を考慮して設定されている。 The size and pitch and the like of the fins 14f are set in consideration of the pressure loss of the hot gas flowing through the duct 13. 【0035】ここで、上述したボイラー装置は、各々の伝熱管14、14…にフィン14fが設けられている以外、図1〜3に示したボイラー装置1と基本的に変わるところはなく、上記ボイラー装置1と同様の作用効果を奏することは勿論である。 [0035] Here, the above-described boiler system, except that each of the heat transfer tubes 14, 14 to the fins 14f are provided, rather than where the change in boiler apparatus 1 basically as shown in FIGS. 1-3, the possible to achieve the same effects as the boiler apparatus 1 as a matter of course. 【0036】また、上述したボイラー装置によれば、伝熱管14、14…にフィン14fを設けたことにより、 Further, according to the above-described boiler system, by providing the fins 14f in the heat transfer tubes 14, 14,
ダクト13を流れる高温ガスから多くの熱を吸熱することができ、もって更なる外観形状のコンパクト化を達成することが可能となり、かつ高温ガスからの熱の利用効率を大幅に向上させることができる。 More heat from the hot gas flowing through the duct 13 can be a heat absorbing, it has become possible to achieve a compact further appearance shape, and the thermal efficiency of the hot gas can be greatly improved . 【0037】なお、上述した各実施例においては、被加熱流体であるフロリナートを加熱して蒸気を生成するボイラー装置を示したが、被加熱流体としてはフロリナート以外の水(純水)やフロン等、適宜な液体を採用し得ることは勿論である。 [0037] In each embodiment described above, although the boiler apparatus that generates steam by heating the Fluorinert is a heated fluid, water (pure water) and Freon other than Fluorinert such as heated fluid , it may of course be employed an appropriate liquid. 【0038】また、ボイラー装置のダクトに供給される高温ガス(高温流体)としては、例えばディーゼルエンジンからの排ガスや、各種プラントからの排ガス等、様々な高温流体を適宜に採用することが可能である。 Further, as the hot gas supplied to the duct of the boiler unit (hot fluid), for example, exhaust gas from diesel engines, exhaust gas or the like from various plants, can be properly adopted various hot fluid is there. 【0039】さらに、本発明に関わるボイラー装置は、 [0039] Further, the boiler system according to the present invention,
例えば沸騰凝縮を利用したサーモサイフォン型熱電発電装置における蒸気発生手段としてのボイラー装置等、種々の産業分野において使用されるボイラー装置としても、有効に適用され得るものであることは言うまでもない。 For example Boilers such as steam generating means in the thermo-siphon thermoelectric power generator using boiling condensation, as boiler systems used in the various industrial fields, it goes without saying that can be effectively applied.

【図面の簡単な説明】 【図1】(a)および(b)は、本発明に関わるボイラー装置の一実施例を示す全体側面図および要部横断面図。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) and (b) are a side view and a main part cross-sectional view whole showing an embodiment of a boiler system according to the present invention. 【図2】(a)および(b)は、図1に示したボイラー装置の全体側面断面図および全体平面断面図。 2 (a) and (b) overall side sectional view and the overall cross-sectional plan view of a boiler apparatus shown in FIG. 【図3】図1に示したボイラー装置におけるダクトの平面断面図。 Figure 3 is a plan sectional view of the duct in the boiler system shown in FIG. 【図4】臨界熱流束の管径に対する依存性を管長毎に示すグラフ。 Figure 4 is a graph showing the dependence of each pipe length for pipe diameter of the critical heat flux. 【図5】高温流体の流れ方向における熱流束の分布を管径毎に示すグラフ。 FIG. 5 is a graph showing the distribution of the heat flux in the direction of flow of hot fluid to the tube each diameter. 【図6】臨界熱流束の管径に対する依存性を管長毎に示すグラフ。 Figure 6 is a graph showing the dependence of each pipe length for pipe diameter of the critical heat flux. 【図7】(a)および(b)は、図1に示したボイラー装置におけるダクトの平面断面図および従来のボイラー装置におけるダクトの平面断面図。 7 (a) and (b) is a plan sectional view of the duct in a plan sectional view of the duct and a conventional boiler systems in boiler apparatus shown in FIG. 【図8】(a)および(b)は、本発明に関わるボイラー装置の他の実施例を示すダクトの平面断面図および側面断面図。 8 (a) and (b) it is a plan sectional view and a side cross-sectional view of the duct showing another embodiment of a boiler system according to the present invention. 【図9】(a)および(b)は、従来のボイラー装置を示す全体側面図および要部横断面図。 9 (a) and (b) are a side view and a main part cross-sectional view whole showing a conventional boiler system. 【図10】(a)および(b)は、従来のボイラー装置を示す全体側面断面図および全体平面断面図。 [10] (a) and (b) overall side sectional view and the overall cross-sectional plan view showing a conventional boiler system. 【図11】従来のボイラー装置におけるダクトの平面断面図。 Figure 11 is a plan sectional view of the duct in a conventional boiler system. 【図12】高温流体の流れ方向における熱流束の分布を示すグラフ。 Figure 12 is a graph showing the distribution of the heat flux in the direction of flow of the hot fluid. 【図13】臨界熱流束の管径に対する依存性を示すグラフ。 Figure 13 is a graph showing the dependency on the tube diameter of the critical heat flux. 【符号の説明】 1…ボイラー装置、 2…チャンバ、 3、13…ダクト、 4、4(A)、4(B)、4(C)…伝熱管、 14、14(A)、14(B)、14(C)…伝熱管、 14f…フィン、 W…被加熱流体。 [Description of Reference Numerals] 1 ... Boilers, 2 ... chamber, 3,13 ... ducts, 4,4 (A), 4 (B), 4 (C) ... heat transfer tubes, 14,14 (A), 14 (B ), 14 (C) ... heat transfer tubes, 14f ... fins, W ... heated fluid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷村 利伸 神奈川県平塚市万田1200 株式会社小松製 作所研究所内Fターム(参考) 3L103 AA05 AA35 BB05 CC02 CC27 DD08 DD63 DD68 ────────────────────────────────────────────────── ─── front page of the continuation (72) inventor Toshinobu Tanimura Hiratsuka, Kanagawa Prefecture Manda 1200 Co., Komatsu made Sakusho Institute in the F-term (reference) 3L103 AA05 AA35 BB05 CC02 CC27 DD08 DD63 DD68

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 高温流体が流通するダクトの内部に、 Inside the duct Claims 1. A high-temperature fluid flows,
    前記高温流体の流れを横切って延びる伝熱管を、前記高温流体の流れ方向に沿って多数並設し、前記伝熱管の内部に導入した被加熱流体を、前記高温流体により前記伝熱管を介して加熱し、前記被加熱流体の蒸気を生成するボイラー装置であって、 前記伝熱管における管径を、限界熱流束を越えない条件に則って、前記ダクトにおける前記高温流体の下流側に位置する程、小さく設定して成ることを特徴とするボイラー装置。 The heat transfer tubes extending across the flow of the hot fluid, the number and arranged along the flow direction of the high temperature fluid, the heated fluid introduced into the heat transfer tube, through the heat transfer tube by the hot fluid heating said a boiler apparatus that generates steam of the heated fluid, the pipe diameter in the heat transfer tube, in accordance with the condition not exceeding the critical heat flux, as the located downstream of the hot fluid in the duct , boiler apparatus characterized by comprising set smaller.
JP2001351721A 2001-11-16 2001-11-16 Boiler device Pending JP2003156201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001351721A JP2003156201A (en) 2001-11-16 2001-11-16 Boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001351721A JP2003156201A (en) 2001-11-16 2001-11-16 Boiler device

Publications (1)

Publication Number Publication Date
JP2003156201A true true JP2003156201A (en) 2003-05-30

Family

ID=19163995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351721A Pending JP2003156201A (en) 2001-11-16 2001-11-16 Boiler device

Country Status (1)

Country Link
JP (1) JP2003156201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116563A1 (en) * 2004-05-31 2005-12-08 Nissan Motor Co., Ltd. Microchannel-type evaporator and system using the same
US20090140066A1 (en) * 2007-12-04 2009-06-04 Hyundai Motor Company Heating device with Cathode Oxygen depletion function for fuel cell vehicle
JP2009150624A (en) * 2007-12-21 2009-07-09 Tokyo Electric Power Co Inc:The Evaporator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116563A1 (en) * 2004-05-31 2005-12-08 Nissan Motor Co., Ltd. Microchannel-type evaporator and system using the same
US20090140066A1 (en) * 2007-12-04 2009-06-04 Hyundai Motor Company Heating device with Cathode Oxygen depletion function for fuel cell vehicle
US8807446B2 (en) * 2007-12-04 2014-08-19 Hyundai Motor Company Heating device with cathode oxygen depletion function for fuel cell vehicle
JP2009150624A (en) * 2007-12-21 2009-07-09 Tokyo Electric Power Co Inc:The Evaporator

Similar Documents

Publication Publication Date Title
US20070022754A1 (en) Thermal storage unit and methods for using the same to head a fluid
JP3170866B2 (en) 1 can 2 circuit type instantaneous heating type heat exchanger
US5033264A (en) Compact cogeneration system
US4747447A (en) Heat exchanger
US4499859A (en) Vapor generator
US6006998A (en) Apparatus for heating a building using a heat pipe
DE4409685A1 (en) Heating apparatus, in particular fluid heater
WO2002063231A1 (en) Spiral flow heat exchanger
JP2000111277A (en) Double piping type heat exchanger
JP2004239467A (en) Heat exchanger and water heater
JPH06137501A (en) Supercritical variable pressure operating steam generator
US20120312513A1 (en) Hot fluid production device including a condensing heat exchanger
CN2434613Y (en) Condensation heat exchanger appts.
WO2009078577A1 (en) Boiler for improving heat exchanging property
JP2000161873A (en) Heat exchanger
JP2005331222A (en) One-can type composite heat source machine
KR100391259B1 (en) Uptrend Combustion Condensing Type Heat Exchanger of Gas Boiler
US5915468A (en) High-temperature generator
JP2006314180A (en) Thermal power generator
KR20020067301A (en) Heat exchanger of condensing boiler
JPH06123486A (en) Induction water heater
JP3642415B2 (en) Fluid heating device
CN2482660Y (en) Heat conducting oil furnace
JP2006343090A (en) One-can type composite heat source machine
WO2006050714A2 (en) Device for transforming a working medium from a liquid to a vapor state

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313