JP2003156201A - Boiler device - Google Patents

Boiler device

Info

Publication number
JP2003156201A
JP2003156201A JP2001351721A JP2001351721A JP2003156201A JP 2003156201 A JP2003156201 A JP 2003156201A JP 2001351721 A JP2001351721 A JP 2001351721A JP 2001351721 A JP2001351721 A JP 2001351721A JP 2003156201 A JP2003156201 A JP 2003156201A
Authority
JP
Japan
Prior art keywords
heat transfer
duct
fluid
boiler device
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001351721A
Other languages
Japanese (ja)
Inventor
Jinsai Cho
仁才 儲
Kanichi Kadotani
▲皖▼一 門谷
Toshinobu Tanimura
利伸 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2001351721A priority Critical patent/JP2003156201A/en
Publication of JP2003156201A publication Critical patent/JP2003156201A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boiler device capable of downsizing an appearance shape as small as possible. SOLUTION: The boiler device 1 has many heat transfer pipes 4 extending across the flow of high temperature gas, in the flow direction of the high temperature gas inside a duct 3 passing the high temperature gas (high temperature fluid). The boiler device 1 heats heated fluid W introduced into the heat transfer pipes 4 with the high temperature gas via the heat transfer pipes 4 and generates steam of the heated fluid W. The diameter of the heat transfer pipes 4 is set small when they are disposed on the downstream side of the high temperature gas in the duct 3 in response to a condition where heat flux does not exceed a critical heat flux.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ボイラー装置に関
するものであり、詳しくは高温流体が流通するダクトの
内部に、高温流体の流れを横切って延びる伝熱管を、高
温流体の流れ方向に沿って多数並設し、伝熱管の内部に
導入した被加熱流体を、高温流体により伝熱管を介して
加熱し、被加熱流体の蒸気を生成するボイラー装置に関
する。 【0002】 【従来の技術】図9〜図11は、水やフロリナート(登
録商標)等の被加熱流体Wを加熱し、該被加熱流体Wの
蒸気を生成するボイラー装置を示しており、このボイラ
ー装置Aは、被加熱流体Wを貯留するチャンバCと、該
チャンバCを貫通するダクトDとを備えている。 【0003】上記ダクトDには、排ガス等の熱源として
の高温ガス(高温流体)が、矢印Iの如く導入ダクトDi
を介して導入され、上記ダクトDを通過した高温ガス
は、矢印Oの如く排出ダクトDoを介して排出される。 【0004】また、上記ダクトDには、被加熱流体Wの
導入される多数の伝熱管P、P…が設けられており、こ
れら伝熱管P、P…は、高温ガスの流れを横切って上下
方向に延び、かつ高温ガスの流れ方向に沿って並設して
レイアウトされている。 【0005】上記ボイラー装置Aは、いわゆる管内沸騰
型(水管型)ボイラーであって、ダクトDを流れる高温ガ
スによって各伝熱管P、P…を炙り、これら各伝熱管
P、P…に導入された被加熱流体Wを加熱することによ
って、該被加熱流体Wの蒸気が生成されることとなる。 【0006】 【発明が解決しようとする課題】ところで、上述した従
来のボイラー装置Aの如く、互いに等しい管径の伝熱管
P、P…を、高温ガスの流れ方向に沿って並設した構造
では、図12から明らかなように、各伝熱管P、P…に
おける熱流束(単位時間あたりに単位面積の面を横切っ
て移動する熱量)は、ダクトDを流通する高温ガスの下
流側に行くに従って減少するため、熱源である高温ガス
からの熱の利用効率は小さいものとなっていた。因み
に、図12中のhは伝熱管Pの高さ、dは伝熱管Pの管
径、XはダクトDの全長である。 【0007】一方、上述した従来のボイラー装置Aにお
いて、その外観形状をコンパクト化しようとした場合、
全ての伝熱管P、P…における管径を小さく設定する構
成が考えられる。 【0008】しかし、管内沸騰型ボイラーの場合、限界
熱流束、すなわち伝熱管Pのバーンアウトを抑え得る限
界の熱流束が存在し、この限界熱流束は図13に示す如
く管径dが小さいほど小さな値となる。因みに、図13
中のhは伝熱管Pの高さ、dは伝熱管Pの管径である。 【0009】このように、管内沸騰型ボイラーにおいて
は、限界熱流束が存在するために、全ての伝熱管P、P
…の管径を徒らに小さく設定することはできず、もって
外観形状を大幅にコンパクト化することは極めて困難で
あった。 【0010】本発明は上記実状に鑑みて、外観形状の可
及的なコンパクト化を達成し得るボイラー装置の提供を
目的とするものである。 【0011】 【課題を解決するための手段および効果】本発明に関わ
るボイラー装置は、高温流体が流通するダクトの内部に
高温流体の流れを横切って延びる伝熱管を高温流体の流
れ方向に沿って多数並設し、伝熱管の内部に導入した被
加熱流体を高温流体により伝熱管を介して加熱し被加熱
流体の蒸気を生成するボイラー装置であって、伝熱管に
おける管径を、限界熱流束を越えない条件に則って、ダ
クトにおける高温流体の下流側に位置する程、小さく設
定している。 【0012】上記構成によれば、全ての伝熱管が同一の
管径であった従来のボイラー装置に比較して、バーンア
ウト等の発生を招くことなく、高温流体の流れ方向にお
けるダクトの寸法を短縮することができる。 【0013】もって、本発明に関わるボイラー装置によ
れば、ダクトの全長を短縮させることにより、外観形状
の可及的なコンパクト化を達成することが可能となる。 【0014】 【発明の実施の形態】以下、本発明の一実施例を、図面
を参照しながら詳細に説明する。図1〜図3は、フロリ
ナート(登録商標)等の被加熱流体を加熱して、該被加熱
流体の蒸気を生成するためのボイラー装置に、本発明を
適用した実施例を示すものであり、このボイラー装置1
は、被加熱流体Wを貯留するチャンバ2と、該チャンバ
2を貫通するダクト3とを備えている。 【0015】上記ダクト3は、四角断面の筒形状を呈し
ており、熱源としての高温ガス(高温流体)が、矢印I
の如く導入ダクト10iを介して導入され、上記ダクト
3を通過した高温ガスは、矢印Oの如く排出ダクト10
oを介して排出される。 【0016】また、上記ダクト3には、被加熱流体Wの
導入される多数の伝熱管4、4…が設けられており、各
々の伝熱管4、4…は、ダクト3の内部を流通する高温
ガスの流れを横切って上下方向に延び、かつ高温ガスの
流れ方向に沿って並設されている。 【0017】上記ボイラー装置1は、いわゆる管内沸騰
型(水管型)ボイラーであって、ダクト2を流れる高温ガ
スによって各伝熱管4、4…を炙り、これら各伝熱管
4、4…に導入された被加熱流体Wを加熱することによ
って、該被加熱流体Wの蒸気が生成されることとなる。 【0018】なお、各々の伝熱管4、4…は、ダクト3
の上下に貫通してチャンバ2の内部に臨んでおり、下端
側の開口から被加熱流体Wが導入される一方、上端側の
開口から被加熱流体Wの蒸気が放出される。 【0019】ここで、図3から明らかなように、ダクト
3に設けられた各々の伝熱管4、4…は、後に詳述する
如く、限界熱流束を越えない条件に則って、ダクト3を
流れる高温ガスの下流側に位置するに従って管径を小さ
く設定されている。 【0020】すなわち、実施例のボイラー装置1におい
ては、ダクト3の入口3iに臨んだ領域Aに設置された
伝熱管4(A)の管径dAが9mm、上記領域Aに対する下
流側の領域Bに設置された伝熱管4(B)の管径dBが5
mm、上記領域Bに対する下流側であってダクト3の出口
3oに臨んだ領域Cに設置された伝熱管4(C)の管径d
Cが3mmに設定されている。 【0021】ここで、図4から明らかなように、伝熱管
における限界熱流束は、伝熱管の管径(d)に依存してお
り、伝熱管の高さ(h)が 270mmの場合、管径が9mmで限
界熱流束は58(KW/m)、管径が7mmで限界熱流束は
12(KW/m)、管径が5mmで限界熱流束は10(KW/
)、管径が3mmで限界熱流束は6(KW/m)とな
る。 【0022】また、図5から明らかなように、高温ガス
の流れ方向における熱流束の分布も伝熱管4の管径(d)
に依存し、管径の小さい伝熱管ではダクト長の短い範囲
で極めて大きい熱流束がダクト長とともに急激に減少
し、管径の大きな伝熱管ではダクト長とともに熱流束が
緩やかに減少する傾向が認められる。 【0023】そこで、実施例のボイラー装置1を設計す
る際には、図6に示す如く、使用される伝熱管4(A)、
伝熱管4(B)および伝熱管4(C)のうち、管径が5mmの
伝熱管4(B)における限界熱流束(10KW/m)より
も、安全を見込んで僅かに小さい値、例えば熱流束8KW
/mにおける伝熱管4(A)のライン上の点j、および
伝熱管4(B)のライン上の点kを求め、上記伝熱管4
(A)のライン上の点j、言い換えればダクト3の入口3
iから距離Laに亘る範囲、すなわち図3に示した領域
Aに管径dAが9mmの伝熱管4(A)を配設する。 【0024】また、図6に示す如く、管径が3mmの伝熱
管4(C)における限界熱流束(6KW/m)よりも、安全
を見込んで僅かに小さい値、例えば熱流束4.8KW/m
における伝熱管4(B)のライン上の点l、および伝熱
管4(C)のライン上の点mを求め、上記伝熱管4(B)の
ライン上における点kと点lとの間の距離Lbに亘る範
囲、すなわち図3に示した領域Aの下流側における領域
Bに、管径dBが5mmの伝熱管4(B)を配設する。 【0025】さらに、図6に示す如く、管径が3mmの伝
熱管4(C)において吸熱しようとする最小の熱流束、例
えば熱流束2KW/mにおける伝熱管4(C)のライン上
の点nを求め、上記伝熱管4(C)のライン上における点
mと点nとの間の距離Lcに亘る範囲、すなわち図3に
示した領域Bの下流側における領域Cに、管径dCが3
mmの伝熱管4(C)を配設する。 【0026】上記構成によれば、ボイラー装置1におけ
るダクト3の全長Lは、図3に示す如く、上述した距離
Laと距離Lbと距離Lcとを加算したものとなり、図
7において比較するように、同じ吸熱量を達成している
従来のボイラー装置A(図9、10参照)におけるダク
トDの全長Ldと比べて大幅に短縮され、もってボイラ
ー装置1における外観形状の可及的なコンパクト化が達
成される。 【0027】また、上述した如く、従来のボイラー装置
と同等の吸熱量を獲得しながら、ダクト3の全長を大幅
に短縮することの可能な本実施例の構成では、ダクト3
の全長を従来のボイラー装置AにおけるダクトDと同じ
に設定した場合、ダクト3を流れる高温ガスからより多
くの熱を吸熱することが可能となり、熱源である高温ガ
スからの熱の利用効率が格段に向上することとなる。 【0028】なお、上記ダクト3の各領域(A、B、C)
における、伝熱管4(A)、伝熱管4(B)および伝熱管4
(C)の設置本数は、上記ダクト3を流れる高温ガスの流
動抵抗を考慮した上で、できるだけ多くの本数を設置す
ることが、高温ガスの熱を効率よく利用する上において
望ましい。 【0029】また、上述したボイラー装置1において
は、ダクト3の3つの領域(A、B、C)に、管径9mm
の伝熱管4(A)と、管径5mmの伝熱管4(B)と、管径3
mmの伝熱管4(C)とを設けているが、ダクト3に設定さ
れる領域の数や、各領域に設置される伝熱管の管径が、
実施例に限定されるものでないことは勿論である。 【0030】すなわち、ダクトに2つの領域あるいは4
つ以上の領域を設定し、各領域毎に管径の異なる伝熱管
を設置する構成や、高温ガスの流れ方向に隣接する全て
の伝熱管の管径を異ならせて構成することも可能であ
る。 【0031】また、実施例のボイラー装置1を設計する
際の基準とした図5(高温流体の流れ方向における熱流
束の分布を管径毎に示すグラフ)等は、例えば高温ガス
の温度等、諸条件によって変化することは勿論であり、
よって本発明に関わるボイラー装置の設計に当たって
は、使用する伝熱管の管径やダクトにおける領域の数お
よび長さを、ボイラー装置の稼動条件に基づいて適宜に
設定する必要のあることは言うまでもない。 【0032】さらに、ボイラー装置における伝熱管の管
径やダクトにおける領域の数および長さは、それらの設
定によってダクトの全長が最短となるよう、設計に当た
って最善の組合せが採用されることは勿論である。 【0033】図8は、本発明を適用したボイラー装置の
他の実施例であり、ダクト13には被加熱流体Wの導入
される多数の伝熱管14、14…が設けられ、ダクト1
3の領域Aと領域Bと領域Cとに設けられた、伝熱管1
4(A)と伝熱管14(B)と伝熱管14(C)とは、限界熱
流束を越えない条件に則って、ダクト13を流れる高温
ガスの下流側に位置するに従って管径を小さく設定され
ている。 【0034】さらに、上述した伝熱管14(A)、14
(B)、14(C)には、それぞれに伝熱を促進するための
フィン14fが設けられている。なお、フィン14fの
大きさやピッチ等は、ダクト13を流れる高温ガスの圧
力損失を考慮して設定されている。 【0035】ここで、上述したボイラー装置は、各々の
伝熱管14、14…にフィン14fが設けられている以
外、図1〜3に示したボイラー装置1と基本的に変わる
ところはなく、上記ボイラー装置1と同様の作用効果を
奏することは勿論である。 【0036】また、上述したボイラー装置によれば、伝
熱管14、14…にフィン14fを設けたことにより、
ダクト13を流れる高温ガスから多くの熱を吸熱するこ
とができ、もって更なる外観形状のコンパクト化を達成
することが可能となり、かつ高温ガスからの熱の利用効
率を大幅に向上させることができる。 【0037】なお、上述した各実施例においては、被加
熱流体であるフロリナートを加熱して蒸気を生成するボ
イラー装置を示したが、被加熱流体としてはフロリナー
ト以外の水(純水)やフロン等、適宜な液体を採用し得る
ことは勿論である。 【0038】また、ボイラー装置のダクトに供給される
高温ガス(高温流体)としては、例えばディーゼルエンジ
ンからの排ガスや、各種プラントからの排ガス等、様々
な高温流体を適宜に採用することが可能である。 【0039】さらに、本発明に関わるボイラー装置は、
例えば沸騰凝縮を利用したサーモサイフォン型熱電発電
装置における蒸気発生手段としてのボイラー装置等、種
々の産業分野において使用されるボイラー装置として
も、有効に適用され得るものであることは言うまでもな
い。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a boiler device, and more particularly, to a heat transfer tube extending in a duct through which a high-temperature fluid flows and extending across the flow of the high-temperature fluid. And a plurality of boilers arranged side by side along the flow direction of the high-temperature fluid, and heats the heated fluid introduced into the heat transfer tube via the heat transfer tube with the high-temperature fluid to generate steam of the heated fluid. 2. Description of the Related Art FIGS. 9 to 11 show a boiler apparatus for heating a fluid W to be heated such as water or Fluorinert (registered trademark) and generating steam of the fluid W to be heated. The boiler device A includes a chamber C that stores the fluid W to be heated, and a duct D that penetrates the chamber C. A high-temperature gas (high-temperature fluid) as a heat source such as exhaust gas is introduced into the duct D as shown by an arrow I in the introduction duct Di.
The hot gas introduced through the duct D and discharged through the duct D is discharged through a discharge duct Do as indicated by an arrow O. The duct D is provided with a large number of heat transfer tubes P, into which the fluid to be heated W is introduced, and these heat transfer tubes P, P,... And are arranged side by side along the flow direction of the hot gas. The boiler apparatus A is a so-called boiler-in-pipe (water tube type) boiler, in which the heat transfer tubes P, P... Are burned by a high-temperature gas flowing through a duct D, and introduced into the heat transfer tubes P, P. By heating the heated fluid W, steam of the heated fluid W is generated. [0006] By the way, as in the above-described conventional boiler apparatus A, a structure in which heat transfer tubes P having the same diameter as each other are arranged side by side along the flow direction of the high-temperature gas is not used. As is clear from FIG. 12, the heat flux (the amount of heat moving across a unit area per unit time per unit time) in each of the heat transfer tubes P, P,. Due to the decrease, the efficiency of using heat from the high-temperature gas as the heat source has been small. Incidentally, h in FIG. 12 is the height of the heat transfer tube P, d is the tube diameter of the heat transfer tube P, and X is the total length of the duct D. On the other hand, in the above-mentioned conventional boiler device A, when the external shape is to be made compact,
A configuration is conceivable in which the tube diameters of all the heat transfer tubes P are set to be small. However, in the case of an in-pipe boiling boiler, there is a critical heat flux, that is, a critical heat flux that can suppress the burnout of the heat transfer tube P. As shown in FIG. It becomes a small value. Incidentally, FIG.
In the above, h is the height of the heat transfer tube P, and d is the tube diameter of the heat transfer tube P. As described above, in the in-pipe boiling boiler, all the heat transfer tubes P, P
.. Could not be set too small, and it was extremely difficult to greatly reduce the external shape. An object of the present invention is to provide a boiler device capable of achieving the most compact external appearance in view of the above situation. [0011] The boiler apparatus according to the present invention includes a heat transfer tube extending across the flow of the high-temperature fluid inside the duct through which the high-temperature fluid flows, along the flow direction of the high-temperature fluid. A boiler device in which a large number of juxtaposed and heated fluids introduced into the heat transfer tubes are heated by a high-temperature fluid through the heat transfer tubes to generate steam of the fluid to be heated. In accordance with the condition that does not exceed the maximum value, it is set to be smaller as it is located downstream of the high-temperature fluid in the duct. According to the above configuration, compared to the conventional boiler device in which all the heat transfer tubes have the same diameter, the size of the duct in the flow direction of the high-temperature fluid can be reduced without causing burnout or the like. Can be shortened. Therefore, according to the boiler apparatus according to the present invention, it is possible to reduce the overall length of the duct so that the appearance can be made as compact as possible. An embodiment of the present invention will be described below in detail with reference to the drawings. FIGS. 1 to 3 show an embodiment in which the present invention is applied to a boiler device for heating a fluid to be heated such as Fluorinert (registered trademark) and generating steam of the fluid to be heated, This boiler device 1
Comprises a chamber 2 for storing a fluid W to be heated, and a duct 3 penetrating the chamber 2. The duct 3 has a cylindrical shape with a square cross section, and a high-temperature gas (high-temperature fluid) as a heat source is
The high-temperature gas introduced through the introduction duct 10i as shown in FIG.
o discharged through. The duct 3 is provided with a large number of heat transfer tubes 4 into which the fluid to be heated W is introduced. Each of the heat transfer tubes 4, 4. It extends vertically across the flow of the hot gas and is juxtaposed along the flow direction of the hot gas. The boiler device 1 is a so-called boiler-in-tube (water tube type) boiler, in which each of the heat transfer tubes 4, 4,... Is burned by a high-temperature gas flowing through a duct 2, and introduced into each of the heat transfer tubes 4, 4,. By heating the heated fluid W, steam of the heated fluid W is generated. Each of the heat transfer tubes 4, 4,...
The heating target fluid W is introduced from the opening at the lower end side, and the vapor of the heating target fluid W is released from the opening at the upper end side. Here, as is apparent from FIG. 3, each of the heat transfer tubes 4, 4,... Provided in the duct 3, as will be described in detail later, connects the duct 3 in accordance with a condition not exceeding the critical heat flux. The pipe diameter is set smaller as it is located downstream of the flowing hot gas. That is, in the boiler apparatus 1 of the embodiment, the diameter dA of the heat transfer tube 4 (A) installed in the area A facing the entrance 3i of the duct 3 is 9 mm, and the area B on the downstream side with respect to the area A is set. The tube diameter dB of the heat transfer tube 4 (B) installed at
mm, the pipe diameter d of the heat transfer tube 4 (C) installed in the area C downstream of the area B and facing the outlet 3o of the duct 3.
C is set to 3 mm. Here, as apparent from FIG. 4, the critical heat flux in the heat transfer tube depends on the tube diameter (d) of the heat transfer tube, and when the height (h) of the heat transfer tube is 270 mm, The critical heat flux is 58 (KW / m 2 ) at a diameter of 9 mm, the critical heat flux is 12 (KW / m 2 ) at a tube diameter of 7 mm, and the critical heat flux is 10 (KW / m 2 ) at a tube diameter of 5 mm.
m 2 ), the tube diameter is 3 mm, and the critical heat flux is 6 (KW / m 2 ). As is clear from FIG. 5, the distribution of the heat flux in the flow direction of the high-temperature gas also depends on the diameter of the heat transfer tube 4 (d).
In heat transfer tubes with a small tube diameter, the extremely large heat flux decreases sharply with the duct length in a short duct length range, and in heat transfer tubes with a large tube diameter, the heat flux tends to decrease gradually with the duct length. Can be Therefore, when designing the boiler apparatus 1 of the embodiment, as shown in FIG. 6, the heat transfer tubes 4 (A),
Of the heat transfer tube 4 (B) and the heat transfer tube 4 (C), a value slightly smaller than the critical heat flux (10 KW / m 2 ) in the heat transfer tube 4 (B) having a tube diameter of 5 mm in consideration of safety, for example, Heat flux 8KW
/ M 2 , a point j on the line of the heat transfer tube 4 (A) and a point k on the line of the heat transfer tube 4 (B) are obtained.
Point j on the line of (A), in other words, the entrance 3 of the duct 3
A heat transfer tube 4 (A) having a tube diameter dA of 9 mm is arranged in a range extending from i to a distance La, that is, in a region A shown in FIG. As shown in FIG. 6, the heat flux 4 (C) having a diameter of 3 mm is slightly smaller than the critical heat flux (6 KW / m 2 ) in consideration of safety, for example, the heat flux 4.8 kW. / m
2 , a point 1 on the line of the heat transfer tube 4 (B) and a point m on the line of the heat transfer tube 4 (C) are obtained, and a point between the point k and the point l on the line of the heat transfer tube 4 (B) is obtained. The heat transfer pipe 4 (B) having a pipe diameter dB of 5 mm is disposed in a range extending over a distance Lb of the above, that is, in a region B on the downstream side of the region A shown in FIG. Further, as shown in FIG. 6, the minimum heat flux to be absorbed by the heat transfer tube 4 (C) having a tube diameter of 3 mm, for example, on the heat transfer tube 4 (C) line at a heat flux of 2 KW / m 2 . A point n is determined, and a pipe diameter dC is set in a range over a distance Lc between the point m and the point n on the line of the heat transfer tube 4 (C), that is, in a region C on the downstream side of the region B shown in FIG. Is 3
A heat transfer tube 4 (C) of mm is provided. According to the above configuration, as shown in FIG. 3, the total length L of the duct 3 in the boiler device 1 is the sum of the above-described distance La, distance Lb, and distance Lc, and as shown in FIG. However, the overall length Ld of the duct D in the conventional boiler device A (see FIGS. 9 and 10) achieving the same heat absorption is greatly reduced, so that the external shape of the boiler device 1 can be made as compact as possible. Achieved. Further, as described above, in the configuration of the present embodiment capable of greatly shortening the entire length of the duct 3 while obtaining the same amount of heat absorption as the conventional boiler device,
Is set to be the same as the length of the duct D in the conventional boiler apparatus A, it is possible to absorb more heat from the high-temperature gas flowing through the duct 3, and the efficiency of using heat from the high-temperature gas as the heat source is significantly improved. Will be improved. Each area (A, B, C) of the duct 3
Heat transfer tube 4 (A), heat transfer tube 4 (B) and heat transfer tube 4
It is desirable to install as many as possible (C) in consideration of the flow resistance of the high-temperature gas flowing through the duct 3 in order to efficiently use the heat of the high-temperature gas. Further, in the boiler apparatus 1 described above, the three diameters (A, B, C) of the duct 3 have a pipe diameter of 9 mm.
Heat transfer tube 4 (A), heat transfer tube 4 (B) having a tube diameter of 5 mm, and tube diameter 3
The heat transfer tubes 4 (C) are provided with the number of regions set in the duct 3 and the diameter of the heat transfer tubes installed in each region is
Of course, the present invention is not limited to the embodiments. That is, the duct has two areas or four areas.
It is also possible to set one or more regions and install heat transfer tubes with different tube diameters for each region, or to make the tube diameters of all the heat transfer tubes adjacent in the flow direction of the hot gas different. . FIG. 5 (a graph showing the distribution of the heat flux in the flow direction of the high-temperature fluid for each pipe diameter) used as a basis for designing the boiler apparatus 1 of the embodiment is, for example, the temperature of the high-temperature gas. Of course, it changes depending on various conditions,
Therefore, when designing the boiler device according to the present invention, it is needless to say that the tube diameter of the heat transfer tube to be used and the number and length of the regions in the duct need to be appropriately set based on the operating conditions of the boiler device. In addition, the tube diameter of the heat transfer tube in the boiler device and the number and length of the regions in the duct are naturally determined by using the best combination in designing such that the overall length of the duct is minimized. is there. FIG. 8 shows another embodiment of the boiler apparatus to which the present invention is applied. A duct 13 is provided with a number of heat transfer tubes 14, 14.
Heat transfer tubes 1 provided in the region A, the region B, and the region C of FIG.
4 (A), the heat transfer tube 14 (B), and the heat transfer tube 14 (C) are set to have smaller tube diameters as they are located on the downstream side of the hot gas flowing through the duct 13 in accordance with the condition that the heat flux does not exceed the critical heat flux. Have been. Further, the heat transfer tubes 14 (A), 14
Each of (B) and 14 (C) is provided with a fin 14f for promoting heat transfer. The size and pitch of the fins 14f are set in consideration of the pressure loss of the high-temperature gas flowing through the duct 13. The boiler described above is basically the same as the boiler 1 shown in FIGS. 1 to 3 except that the heat transfer tubes 14, 14,... Are provided with fins 14f. Needless to say, the same operation and effect as those of the boiler device 1 can be obtained. According to the boiler device described above, the fins 14f are provided on the heat transfer tubes 14, 14,.
A large amount of heat can be absorbed from the high-temperature gas flowing through the duct 13, so that it is possible to further reduce the size of the external appearance, and to greatly improve the efficiency of using heat from the high-temperature gas. . In each of the above-described embodiments, the boiler apparatus which generates the steam by heating the fluid to be heated, Fluorinert, has been described. However, the fluid to be heated may be water (pure water) other than Fluorinert, Freon, or the like. Of course, an appropriate liquid can be adopted. As the high-temperature gas (high-temperature fluid) supplied to the duct of the boiler device, various high-temperature fluids such as exhaust gas from a diesel engine and exhaust gas from various plants can be appropriately used. is there. Further, the boiler device according to the present invention comprises:
It goes without saying that the present invention can be effectively applied to a boiler device used in various industrial fields, such as a boiler device as a steam generating means in a thermosiphon thermoelectric generator using boiling condensation.

【図面の簡単な説明】 【図1】(a)および(b)は、本発明に関わるボイラー装
置の一実施例を示す全体側面図および要部横断面図。 【図2】(a)および(b)は、図1に示したボイラー装置
の全体側面断面図および全体平面断面図。 【図3】図1に示したボイラー装置におけるダクトの平
面断面図。 【図4】臨界熱流束の管径に対する依存性を管長毎に示
すグラフ。 【図5】高温流体の流れ方向における熱流束の分布を管
径毎に示すグラフ。 【図6】臨界熱流束の管径に対する依存性を管長毎に示
すグラフ。 【図7】(a)および(b)は、図1に示したボイラー装置
におけるダクトの平面断面図および従来のボイラー装置
におけるダクトの平面断面図。 【図8】(a)および(b)は、本発明に関わるボイラー装
置の他の実施例を示すダクトの平面断面図および側面断
面図。 【図9】(a)および(b)は、従来のボイラー装置を示す
全体側面図および要部横断面図。 【図10】(a)および(b)は、従来のボイラー装置を示
す全体側面断面図および全体平面断面図。 【図11】従来のボイラー装置におけるダクトの平面断
面図。 【図12】高温流体の流れ方向における熱流束の分布を
示すグラフ。 【図13】臨界熱流束の管径に対する依存性を示すグラ
フ。 【符号の説明】 1…ボイラー装置、 2…チャンバ、 3、13…ダクト、 4、4(A)、4(B)、4(C)…伝熱管、 14、14(A)、14(B)、14(C)…伝熱管、 14f…フィン、 W…被加熱流体。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 (a) and 1 (b) are an overall side view and a main part cross-sectional view showing one embodiment of a boiler device according to the present invention. FIGS. 2A and 2B are an overall side sectional view and an overall plan sectional view of the boiler device shown in FIG. FIG. 3 is a plan sectional view of a duct in the boiler device shown in FIG. 1; FIG. 4 is a graph showing the dependence of the critical heat flux on the pipe diameter for each pipe length. FIG. 5 is a graph showing the distribution of heat flux in the flow direction of a high-temperature fluid for each pipe diameter. FIG. 6 is a graph showing the dependence of the critical heat flux on the pipe diameter for each pipe length. FIGS. 7A and 7B are a plan sectional view of a duct in the boiler device shown in FIG. 1 and a plan sectional view of a duct in a conventional boiler device. 8 (a) and (b) are a plan sectional view and a side sectional view of a duct showing another embodiment of the boiler device according to the present invention. 9 (a) and (b) are an overall side view and a main part cross-sectional view showing a conventional boiler device. FIGS. 10A and 10B are an overall side sectional view and an overall plan sectional view showing a conventional boiler device. FIG. 11 is a plan sectional view of a duct in a conventional boiler device. FIG. 12 is a graph showing a heat flux distribution in a flow direction of a high-temperature fluid. FIG. 13 is a graph showing the dependence of the critical heat flux on the tube diameter. [Explanation of Signs] 1. Boiler device, 2. Chamber, 3, 13 Duct, 4, 4 (A), 4 (B), 4 (C) ... Heat transfer tube, 14, 14 (A), 14 (B) ), 14 (C): heat transfer tube, 14f: fin, W: fluid to be heated.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷村 利伸 神奈川県平塚市万田1200 株式会社小松製 作所研究所内 Fターム(参考) 3L103 AA05 AA35 BB05 CC02 CC27 DD08 DD63 DD68    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Toshinobu Tanimura             1200 Manda, Hiratsuka-shi, Kanagawa             Inside the laboratory F term (reference) 3L103 AA05 AA35 BB05 CC02 CC27                       DD08 DD63 DD68

Claims (1)

【特許請求の範囲】 【請求項1】 高温流体が流通するダクトの内部に、
前記高温流体の流れを横切って延びる伝熱管を、前記高
温流体の流れ方向に沿って多数並設し、前記伝熱管の内
部に導入した被加熱流体を、前記高温流体により前記伝
熱管を介して加熱し、前記被加熱流体の蒸気を生成する
ボイラー装置であって、 前記伝熱管における管径を、限界熱流束を越えない条件
に則って、前記ダクトにおける前記高温流体の下流側に
位置する程、小さく設定して成ることを特徴とするボイ
ラー装置。
Claims: 1. A duct through which a high-temperature fluid flows,
A large number of heat transfer tubes extending across the flow of the high-temperature fluid are arranged in parallel along the flow direction of the high-temperature fluid, and the fluid to be heated introduced inside the heat transfer tubes is passed through the heat transfer tubes by the high-temperature fluid. A boiler device that heats and generates steam of the fluid to be heated, the boiler diameter of the heat transfer tube being set so as to be located downstream of the high-temperature fluid in the duct in accordance with a condition not exceeding a critical heat flux. A boiler device characterized by being set small.
JP2001351721A 2001-11-16 2001-11-16 Boiler device Pending JP2003156201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001351721A JP2003156201A (en) 2001-11-16 2001-11-16 Boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001351721A JP2003156201A (en) 2001-11-16 2001-11-16 Boiler device

Publications (1)

Publication Number Publication Date
JP2003156201A true JP2003156201A (en) 2003-05-30

Family

ID=19163995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351721A Pending JP2003156201A (en) 2001-11-16 2001-11-16 Boiler device

Country Status (1)

Country Link
JP (1) JP2003156201A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116563A1 (en) * 2004-05-31 2005-12-08 Nissan Motor Co., Ltd. Microchannel-type evaporator and system using the same
US20090140066A1 (en) * 2007-12-04 2009-06-04 Hyundai Motor Company Heating device with Cathode Oxygen depletion function for fuel cell vehicle
JP2009150624A (en) * 2007-12-21 2009-07-09 Tokyo Electric Power Co Inc:The Evaporator
CN110608450A (en) * 2019-09-27 2019-12-24 福能(贵州)发电有限公司 Method for reducing W-shaped furnace water-cooled wall pulling crack and pipe explosion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116563A1 (en) * 2004-05-31 2005-12-08 Nissan Motor Co., Ltd. Microchannel-type evaporator and system using the same
US20090140066A1 (en) * 2007-12-04 2009-06-04 Hyundai Motor Company Heating device with Cathode Oxygen depletion function for fuel cell vehicle
US8807446B2 (en) * 2007-12-04 2014-08-19 Hyundai Motor Company Heating device with cathode oxygen depletion function for fuel cell vehicle
JP2009150624A (en) * 2007-12-21 2009-07-09 Tokyo Electric Power Co Inc:The Evaporator
CN110608450A (en) * 2019-09-27 2019-12-24 福能(贵州)发电有限公司 Method for reducing W-shaped furnace water-cooled wall pulling crack and pipe explosion

Similar Documents

Publication Publication Date Title
KR100591469B1 (en) Steam generator
JP5539543B2 (en) High temperature fluid generator including condensing heat exchanger
JP5679968B2 (en) Heat exchanger
US20020195230A1 (en) Heat exchange structure of loop type heat pipe
KR940022025A (en) Waste heat boiler
RU2674850C2 (en) Tube for heat exchanger with at least partially variable cross-section and heat exchanger equipped therewith
RU2123634C1 (en) Method of operation of flow-type steam generator and steam generator used for realization of this method
CN1073228C (en) Heat exchanger unit for heat recovery steam generator
JP2003156201A (en) Boiler device
KR20050086420A (en) Once-through evaporator for a steam generator
US3130780A (en) Live steam reheater
JP4489775B2 (en) Horizontal once-through boiler and its operation method
FI57658B (en) KOKARE MED KONDENSOR
RU2662018C1 (en) Tubular heater
JP2000121267A (en) Heat exchanger with connection piece
RU2222757C2 (en) Heat pipe
JPS5935781A (en) Heat exchanger
RU2383814C1 (en) Steam generator
JP2006153375A (en) Heat exchanging device and combustion device
JP4463825B2 (en) Once-through boiler
KR200228259Y1 (en) Boiler apparatus adopting heat pipes
RU98114337A (en) DIRECT STEAM GENERATOR WITH SPIRAL LOCATED EVAPORATING PIPES
JPS5541363A (en) Heat exchanger
RU2022129C1 (en) Noise silencer - recovery unit
KR200210485Y1 (en) A heating apparatus using waste heat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313