JP2003156093A - Friction applying structure for hydraulic shock absorber - Google Patents

Friction applying structure for hydraulic shock absorber

Info

Publication number
JP2003156093A
JP2003156093A JP2001352200A JP2001352200A JP2003156093A JP 2003156093 A JP2003156093 A JP 2003156093A JP 2001352200 A JP2001352200 A JP 2001352200A JP 2001352200 A JP2001352200 A JP 2001352200A JP 2003156093 A JP2003156093 A JP 2003156093A
Authority
JP
Japan
Prior art keywords
flow path
oil
friction
chamber
piston rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001352200A
Other languages
Japanese (ja)
Inventor
Nobuo Mori
信男 森
Tadashi Emori
正 江森
Noriaki Maneyama
典明 間根山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2001352200A priority Critical patent/JP2003156093A/en
Publication of JP2003156093A publication Critical patent/JP2003156093A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the air venting performance from an oil sump for preventing the loss of an oil film of an oil seal in a hydraulic shock absorber applying friction to a piston rod for generating a stable friction and stable damping force. SOLUTION: In the friction applying structure of this hydraulic shock absorber 10 provided with the oil sump 40 formed between a friction member 20 for applying friction to the piston rod 14 and the oil seal 16, an inflow passage 50 communicating an oil chamber 13 with the oil sump 40, and an outflow passage 60 communicating the oil reservoir chamber 40 with a reservoir 19, the inflow passage 50 comprises a first flow passage 51, a circular flow passage 52 and a second flow passage 53. The first flow passage 51 and the second flow passage 53 are disposed alternately against the circular flow passage 52.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は油圧緩衝器のフリク
ション付与構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a friction imparting structure for a hydraulic shock absorber.

【0002】[0002]

【従来の技術】従来、油圧緩衝器として、実開平1-7874
3号に記載の如く、シリンダに設けた油室に挿入される
ピストンロッドを、シリンダの開口部に設けたロッドガ
イドとオイルシールを介して外部に導出し、サブシール
をロッドガイドとオイルシールの間に配置し、オイルシ
ールとサブシールの間に油溜り室を形成したものがあ
る。
[Prior Art] Conventionally, as a hydraulic shock absorber, actual Kaihei 1-7874
As described in No. 3, the piston rod inserted into the oil chamber provided in the cylinder is led out to the outside via the rod guide and oil seal provided in the opening of the cylinder, and the sub seal is placed between the rod guide and the oil seal. There is an oil reservoir formed between the oil seal and the sub seal.

【0003】サブシールは、オイルシールを保護するも
のであり、ある程度の摩擦抵抗を発生させる構造であ
る。また、油溜り室は、オイルシールのリップ部の油膜
切れを防止する。
The sub-seal protects the oil seal and has a structure that generates a certain amount of frictional resistance. Further, the oil sump chamber prevents the oil film from running off at the lip portion of the oil seal.

【0004】[0004]

【発明が解決しようとする課題】従来技術には以下の問
題点がある。 シリンダの油室を油溜り室に連通する流入路にエアを
抜け易くする工夫がないし、油溜り室をリザーバに連通
する流出路を油溜り室の上部に設けていないので、油溜
り室にエアが残る可能性がある。
The prior art has the following problems. There is no way to let air easily escape to the inflow passage that connects the oil chamber of the cylinder to the oil sump chamber, and there is no outflow passage that connects the oil reservoir chamber to the reservoir at the top of the oil sump chamber. May remain.

【0005】油溜り室にエアが残ると、熱によるエア
の膨張により油溜り室の圧力が変動し易く、サブシール
に作用する背圧が変化することになって、サブシールが
ピストンロッドに与えるフリクションが変動し、減衰力
も変化する。
When air remains in the oil sump chamber, the pressure of the oil sump chamber is likely to change due to the expansion of air due to heat, and the back pressure acting on the sub-seal changes, so that the friction given to the piston rod by the sub-seal is generated. It fluctuates and the damping force also changes.

【0006】油溜り室にエアが残ると、シリンダの油
室が加圧されたときに油溜り室の残留エアがつぶれ、減
衰力発生装置の作動に影響し、安定した減衰力を発生で
きない。
When air remains in the oil sump chamber, the residual air in the oil sump chamber is crushed when the oil chamber of the cylinder is pressurized, which affects the operation of the damping force generator and cannot generate a stable damping force.

【0007】油溜り室にエアが残ると、エアの膨張が
油をリザーバへと押し出し、油溜り室の油を減少させ
て、オイルシールのリップ部に油膜切れを引き起こす虞
もある。
When air remains in the oil sump chamber, the expansion of the air pushes the oil into the reservoir, reducing the amount of oil in the oil sump chamber and causing the oil seal to run out of oil.

【0008】本発明の課題は、ピストンロッドにフリク
ションを付与する油圧緩衝器において、オイルシールの
油膜切れを防止するための油溜り室からのエア抜き性を
向上し、安定したフリクションを発生させ、かつ安定し
た減衰力を発生させることにある。
An object of the present invention is to improve the air bleeding property from an oil sump chamber for preventing oil film breakage of an oil seal in a hydraulic shock absorber for imparting friction to a piston rod, and to generate stable friction. And to generate a stable damping force.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、シリ
ンダに設けた油室に挿入されるピストンロッドを、シリ
ンダの開口部に設けたロッドガイドとオイルシールを介
して外部に導出し、ピストンロッドにフリクションを付
与する摩擦部材を、ロッドガイドとオイルシールの間に
配置し、オイルシールと摩擦部材の間に油溜り室を形成
し、シリンダの油室を油溜り室に連通する流入路と、シ
リンダの油室に付帯的に設けたリザーバに油溜り室を連
通する流出路を設けた油圧緩衝器のフリクション付与構
造において、前記流入路が、油溜り室の下部に設けら
れ、シリンダの油室の側に設けられる第1流路と、油溜
り室の側に設けられる第2流路と、第1流路と第2流路
をつなぐ環状流路とからなり、第1流路と第2流路を環
状流路に対し互い違いに配置し、前記流出路が、油溜り
室の上部に設けられるようにしたものである。
According to a first aspect of the present invention, a piston rod inserted into an oil chamber provided in a cylinder is led out to the outside via a rod guide and an oil seal provided in an opening of the cylinder. A friction member that gives friction to the piston rod is arranged between the rod guide and the oil seal, an oil sump chamber is formed between the oil seal and the friction member, and an inflow passage that connects the oil chamber of the cylinder to the oil sump chamber. In the friction imparting structure of the hydraulic shock absorber in which the reservoir provided additionally to the oil chamber of the cylinder is provided with the outflow passage communicating with the oil reservoir, the inflow passage is provided in the lower portion of the oil reservoir, and A first flow passage provided on the oil chamber side, a second flow passage provided on the oil reservoir chamber side, and an annular flow passage connecting the first flow passage and the second flow passage. The second channel is different from the annular channel Disposed, the outlet channel is obtained by the so provided above the oil reservoir.

【0010】請求項2の発明は、請求項1の発明におい
て更に、前記第1流路が環状流路に沿って180度をなす
2位置に設けられ、前記第2流路も環状流路に沿って18
0度をなす2位置に設けられ、環状流路に沿って相隣る
第1流路と第2流路を環状流路に沿って90度離隔する互
い違いに配置したものである。
According to a second aspect of the present invention, in addition to the first aspect, the first flow path is provided at two positions forming 180 degrees along the annular flow path, and the second flow path is also an annular flow path. Along 18
The first flow path and the second flow path, which are provided at two positions that form 0 degree and are adjacent to each other along the annular flow path, are arranged alternately at 90 degrees apart from each other along the annular flow path.

【0011】請求項3の発明は、請求項1又は2の発明
において更に、前記流入路に流入用逆止手段を設け、前
記流出路に流出用逆止手段を設けたものである。
According to a third aspect of the present invention, in addition to the first or second aspect of the invention, inflow check means is provided in the inflow path, and outflow check means is provided in the outflow path.

【0012】請求項4の発明は、請求項3の発明におい
て更に、前記流入用逆止手段が摩擦部材に一体化したチ
ェックリップからなり、該チェックリップを前記環状流
路に配置したものである。
According to a fourth aspect of the invention, in addition to the third aspect of the invention, the inflow check means comprises a check lip integrated with a friction member, and the check lip is arranged in the annular flow path. .

【0013】請求項5の発明は、請求項1〜4のいずれ
かの発明において更に、前記第1流路と第2流路の少な
くとも一方をオリフィスとし、該オリフィスをロッドガ
イドとピストンロッドの隙間よりも小流路断面積のオリ
フィスとしたものである。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, at least one of the first flow passage and the second flow passage is an orifice, and the orifice is a gap between the rod guide and the piston rod. This is an orifice having a smaller flow passage cross-sectional area.

【0014】[0014]

【作用】請求項1の発明によれば下記〜の作用があ
る。 シリンダの油室を油溜り室に連通する流入路が、油溜
り室の下部に設けられ、シリンダの油室からロッドガイ
ドを抜けてきた油及びエアは、第1流路から環状流路、
第2流路を経て油溜り室に流入する。このとき、第1流
路と第2流路を環状流路に対し互い違いに配置している
から、第1流路から環状流路に入った油は、環状流路の
環状の周方向に沿う両方向に分岐する流れになって第2
流路から油溜り室に抜けるものとなり、環状流路に入っ
たエアを該環状流路の中間に滞溜させることなく該油の
流れによって油溜り室へと押し出す。
According to the invention of claim 1, the following effects are obtained. An inflow passage that connects the oil chamber of the cylinder to the oil reservoir is provided in the lower portion of the oil reservoir, and the oil and air that have passed through the rod guide from the oil chamber of the cylinder flow from the first passage to the annular passage,
It flows into the oil sump chamber via the second flow path. At this time, since the first flow path and the second flow path are alternately arranged with respect to the annular flow path, the oil that has entered the annular flow path from the first flow path is along the annular circumferential direction of the annular flow path. The flow splits in both directions and the second
The air flows out of the flow passage into the oil sump chamber, and the air that has entered the annular flow passage is pushed into the oil sump chamber by the flow of the oil without being accumulated in the middle of the annular flow passage.

【0015】また、油溜り室をリザーバに連通する流出
路を油溜り室の上部に設けたから、油溜り室に入ったエ
アを該油溜り室から流出路を経て、リザーバへ流出する
油の流れに随伴させてリザーバへと排出する。
Further, since the outflow passage that connects the oil sump chamber to the reservoir is provided in the upper part of the oil sump chamber, the air flowing into the reservoir through the outflow passage from the oil sump chamber And discharge it to the reservoir.

【0016】従って、油溜り室からのエア抜き性を向上
し、油溜り室にエアを残すことがなくなる。
Therefore, the air bleeding property from the oil sump chamber is improved, and air is not left in the oil sump chamber.

【0017】油溜り室にエアが残らないから、熱によ
るエアの膨張に起因する油溜り室の圧力変動を抑制し、
摩擦部材に作用する背圧を一定にし、摩擦部材がピスト
ンロッドに与えるフリクションの安定を図ることができ
る。
Since no air remains in the oil sump chamber, pressure fluctuations in the oil sump chamber due to expansion of air due to heat are suppressed,
By making the back pressure acting on the friction member constant, it is possible to stabilize the friction applied to the piston rod by the friction member.

【0018】油溜り室にエアが残らないから、シリンダ
の油室が加圧されたときに油溜り室の残留エアに影響さ
れることなく、減衰力発生装置の作動の安定を図り、安
定した減衰力を発生できる。
Since no air remains in the oil sump chamber, when the oil chamber of the cylinder is pressurized, it is not affected by the residual air in the oil sump chamber, and the operation of the damping force generator is stabilized and stabilized. A damping force can be generated.

【0019】従って、極微低速域ではフリクションによ
り振動を減衰させ、微低速域からは確実に減衰力を発生
させることで、油圧緩衝器の緩衝機能の安定確実を図る
ことができる。
Therefore, the vibration is damped by friction in the extremely low speed range, and the damping force is surely generated from the very low speed range, whereby the shock absorbing function of the hydraulic shock absorber can be stabilized and ensured.

【0020】油溜り室にエアが残らないから、エアの
膨張により油をリザーバへと押し出すことがなく、油溜
り室の油量を維持し、オイルでオイルシールのリップ部
に油膜切れを引き起こすことがない。
Since no air remains in the oil sump chamber, the oil is not pushed out to the reservoir by the expansion of the air, the amount of oil in the oil sump chamber is maintained, and the oil causes the oil film to run out of the lip portion of the oil seal. There is no.

【0021】請求項2の発明によれば下記の作用があ
る。 流入路を構成する第1流路と第2流路を各2個設けた
から、エア抜きの効率を上げることができる。
According to the second aspect of the present invention, there are the following effects. Since each of the first flow path and the second flow path forming the inflow path are provided in twos, the efficiency of air bleeding can be improved.

【0022】請求項3の発明によれば下記の作用があ
る。 ピストンロッドが縮む方向へ移動するときには、シリ
ンダの油室の減圧状態が油溜り室に作用することを流入
用逆止手段によって阻止し、油溜り室の油がシリンダの
油室へ出ていくことを防止することができ、油溜り室の
圧力変動を防止する。
According to the invention of claim 3, there is the following action. When the piston rod moves in the contracting direction, the inflow check means prevents the depressurized state of the oil chamber of the cylinder from acting on the oil reservoir, and the oil in the oil reservoir goes out to the oil chamber of the cylinder. Can be prevented, and pressure fluctuations in the oil sump chamber can be prevented.

【0023】従って、摩擦部材に作用する背圧を一定に
し、摩擦部材がピストンロッドに与えるフリクションの
安定を図ることができる。
Therefore, the back pressure acting on the friction member can be made constant, and the friction applied to the piston rod by the friction member can be stabilized.

【0024】請求項4の発明によれば下記の作用があ
る。 摩擦部材に一体化したチェックリップにより流入用逆
止手段を構成することにより、流入用逆止手段を簡易に
設けることができる。
According to the invention of claim 4, there is the following action. By constructing the inflow check means by the check lip integrated with the friction member, the inflow check means can be easily provided.

【0025】請求項5の発明によれば下記の作用があ
る。 ロッドガイドは例えば燒結材料で成形されるため比較
的精度が高いが製造公差がありガイドブッシュにも公差
があり、ピストンロッドにも公差があるため、ガイドブ
ッシュとピストンロッドの公差が最大となる場合と最小
となる場合が存在し、公差が最大のときと最小のときで
は、シリンダのロッド側油室の圧力上昇に変化を生じ、
特にピストンスピードが遅い場合には減衰力の発生に影
響が出る。このとき、第1流路と第2流路の少なくとも
一方をオリフィスとし、該オリフィスをロッドガイドと
ピストンロッドの隙間よりも小流路断面積のオリフィス
とすることにより、減衰力の発生をこのオリフィスによ
って規定し、ロッドガイドとピストンロッドの製造公差
による減衰力のばらつきを抑えることができる。例え
ば、ロッドガイドとピストンロッドの製造公差が1.4m
〜0.4mm相当の場合、オリフィスを0.4mm
設定することで、製造公差による減衰力のばらつきを抑
えることができる。
According to the invention of claim 5, there is the following action. When the rod guide is molded with a sintered material, for example, it has relatively high accuracy, but there are manufacturing tolerances, guide bushes have tolerances, and piston rods have tolerances, so the maximum tolerance between the guide bush and piston rod is And there is a case where the tolerance becomes maximum, and when the tolerance is maximum and minimum, there is a change in the pressure increase in the oil chamber on the rod side of the cylinder,
Especially when the piston speed is slow, the generation of damping force is affected. At this time, at least one of the first flow path and the second flow path is used as an orifice, and the orifice has a flow path cross-sectional area smaller than the gap between the rod guide and the piston rod. It is possible to suppress the variation of the damping force due to the manufacturing tolerance of the rod guide and the piston rod. For example, manufacturing tolerance of rod guide and piston rod is 1.4m
m 2 0.4 mm 2 when the equivalent, by setting an orifice 0.4 mm 2, it is possible to suppress the variation of damping force due to manufacturing tolerances.

【0026】[0026]

【発明の実施の形態】図1は油圧緩衝器を示す模式図、
図2はフリクション付与構造を示す断面図、図3はロッ
ドガイドを示す平面図、図4は図3のIV−IV線に沿う断
面図、図5はロッドガイドを示す斜視図、図6は摩擦部
材の各種態様を示す模式図である。
1 is a schematic view showing a hydraulic shock absorber,
2 is a sectional view showing the friction imparting structure, FIG. 3 is a plan view showing the rod guide, FIG. 4 is a sectional view taken along line IV-IV of FIG. 3, FIG. 5 is a perspective view showing the rod guide, and FIG. 6 is friction. It is a schematic diagram which shows various aspects of a member.

【0027】図1は、サスペンションを構成する複筒式
油圧緩衝器10であり、アウタチューブ11にシリンダ
12を内挿した二重管構造からなる。
FIG. 1 shows a double-cylinder type hydraulic shock absorber 10 which constitutes a suspension, and has a double pipe structure in which a cylinder 12 is inserted in an outer tube 11.

【0028】油圧緩衝器10は、シリンダ12に設けた
油室13に挿入されるピストンロッド14を、シリンダ
12の開口部に設けたロッドガイド15とオイルシール
16を介して外部へ導出する。
The hydraulic shock absorber 10 guides the piston rod 14 inserted into the oil chamber 13 provided in the cylinder 12 to the outside through a rod guide 15 and an oil seal 16 provided at the opening of the cylinder 12.

【0029】ロッドガイド15は、下端側小外径部をシ
リンダ12の内径に、上端側大外径部をアウタチューブ
11の内径に嵌合し、小外径部の上側段差部をシリンダ
12の上端に乗せ、その上面にオイルシール16を載置
した状態で、このオイルシール16とワッシャ17とと
もにアウタチューブ11の上端部の加締部18により固
定される。ロッドガイド15はガイドブッシュ15Aを
圧入されて備え、ピストンロッド14を摺動自在に支持
する。
The rod guide 15 has a small outer diameter portion on the lower end side fitted to the inner diameter of the cylinder 12, a large outer diameter portion on the upper end side fitted to the inner diameter of the outer tube 11, and an upper stepped portion of the small outer diameter portion of the cylinder 12. With the oil seal 16 placed on the upper end and placed on the upper surface thereof, the oil seal 16 and the washer 17 are fixed together with the caulking portion 18 at the upper end of the outer tube 11. The rod guide 15 is press-fitted with a guide bush 15A, and slidably supports the piston rod 14.

【0030】オイルシール16は、芯金16Aにゴムを
焼付けした成形体からなり、ピストンロッド14に摺接
するオイルシールリップ16B、ロッドガイド15に当
接するチェックリップ16C、アウタチューブ11に当
接する外周リップ16D、ピストンロッド14に摺接す
るダストシールリップ16Eを備え、オイルシールリッ
プ16B、ダストシールリップ16Eの外周にそれらの
リップ16B、16Eをピストンロッド14に向けて押
し付けるように緊迫するリング状スプリング16F、1
6Gを備える。
The oil seal 16 is made of a molded product obtained by baking rubber on a core metal 16A, and has an oil seal lip 16B slidingly contacting the piston rod 14, a check lip 16C contacting the rod guide 15, and an outer peripheral lip contacting the outer tube 11. 16D, a dust seal lip 16E that is in sliding contact with the piston rod 14, and a ring-shaped spring 16F that presses the oil seal lip 16B and the dust seal lip 16E so as to press the lip 16B and 16E toward the piston rod 14.
With 6G.

【0031】油圧緩衝器10は、アウタチューブ11の
下端部をナックルブラケットにより車輪側に連結し、ピ
ストンロッド14の上端部に固定される取付ブラケット
を車体側に連結し、アウタチューブ11の外周に設けた
スプリングシートとピストンロッド14の上端側に設け
たスプリングシートの間に懸架ばねを介装し、懸架ばね
による衝撃力の吸収に伴うピストンロッド14の伸縮振
動をピストンバルブ装置とベースバルブ装置が発生する
減衰力により制振する。ピストンバルブ装置は、ピスト
ンロッド14の油室13への挿入端に固定したピストン
に設けられ、ピストンロッド14の伸縮振動に伴い、ピ
ストンの一方側のピストンロッド側油室13と他方側の
ピストン側油室(不図示)の間で移動する油の流れによ
りたわみ変形せしめられる減衰バルブにより減衰力を発
生する。ベースバルブ装置は、シリンダ12の油室13
に付帯的となるように、アウタチューブ11とシリンダ
12の間の環状空間に設けられるリザーバ19と、油室
13との間に設けられ、ピストンロッド14の伸縮振動
に伴い、ピストンロッド14がシリンダ12に進入、退
出する容積分だけ油室13とリザーバ19の間で移動す
る油の流れによりたわみ変形せしめられる減衰バルブに
より減衰力を発生する。
In the hydraulic shock absorber 10, the lower end of the outer tube 11 is connected to the wheel side by a knuckle bracket, and the mounting bracket fixed to the upper end of the piston rod 14 is connected to the vehicle body side. A suspension spring is interposed between the provided spring seat and the spring seat provided on the upper end side of the piston rod 14, and the piston valve device and the base valve device are provided with the expansion and contraction vibration of the piston rod 14 due to the absorption of the impact force by the suspension spring. Vibration is suppressed by the generated damping force. The piston valve device is provided on the piston fixed to the insertion end of the piston rod 14 into the oil chamber 13, and along with the expansion and contraction vibration of the piston rod 14, the piston rod side oil chamber 13 on one side of the piston and the piston side on the other side. A damping force is generated by a damping valve that is flexibly deformed by the flow of oil moving between oil chambers (not shown). The base valve device is an oil chamber 13 of the cylinder 12.
2 is provided between the oil chamber 13 and a reservoir 19 provided in the annular space between the outer tube 11 and the cylinder 12, and the piston rod 14 is expanded and contracted by the piston rod 14 due to the expansion and contraction vibration of the piston rod 14. A damping force is generated by a damping valve that is flexibly deformed by the flow of oil that moves between the oil chamber 13 and the reservoir 19 by the volume that enters and leaves 12.

【0032】しかるに、油圧緩衝器10にあっては、ピ
ストンバルブ装置やベースバルブ装置の減衰力が発生し
ない、ピストン速度が極微低速域のピストンロッド14
の動きや、悪路走行時の大きな振動の後にピストンロッ
ド14に発生する高周波微振幅の動きを制振し、車両の
安定した乗心地と操縦性を確保するため、ピストンロッ
ド14にフリクション(摩擦抵抗力)を付与する摩擦部
材20を、ロッドガイド15とオイルシール16の間に
配置している。
However, in the hydraulic shock absorber 10, the piston rod 14 in which the piston speed is extremely low and the damping force of the piston valve device and the base valve device is not generated.
Of the piston rod 14 and friction of the piston rod 14 in order to secure the stable riding comfort and maneuverability of the vehicle. A friction member 20 that imparts a resistance force is arranged between the rod guide 15 and the oil seal 16.

【0033】摩擦部材20は、図2、図6に示す如く、
芯金21にゴム22を焼付けした成形体からなり、ピス
トンロッド14に摺接してピストンロッド14にフリク
ションを付与する摩擦付与リップ22A、ロッドガイド
15に当接するチェックリップ22B、摩擦付与リップ
22Aの背面側で芯金21との間に形成される環状空間
23を備える。摩擦部材20は、ロッドガイド15に設
けた凹部30に、芯金21を圧入する嵌合状態で位置決
め、固定される。本実施形態では、摩擦付与リップ22
Aは丸味面にてピストンロッド14に摺接し、ピストン
ロッド14に対するオイルシール機能は期待されず、ピ
ストンロッド14に対するフリクション付与機能を具備
する。
The friction member 20, as shown in FIGS. 2 and 6,
A back surface of a friction-applying lip 22A that is made of a cored bar 21 and a rubber 22 that is baked, and that provides friction to the piston rod 14 by slidingly contacting the piston rod 14, a check lip 22B that abuts on the rod guide 15, and a frictional application lip 22A. On the side, an annular space 23 formed between the core metal 21 and the core metal 21 is provided. The friction member 20 is positioned and fixed in a recess 30 provided in the rod guide 15 in a fitted state in which the cored bar 21 is press-fitted. In the present embodiment, the friction imparting lip 22
A has a rounded surface in sliding contact with the piston rod 14 and is not expected to have an oil seal function for the piston rod 14, but has a friction imparting function for the piston rod 14.

【0034】尚、本実施形態では、摩擦部材20の摩擦
付与リップ22Aをピストンロッド14に向けて緊迫す
るリング状スプリング25を付加した。リング状スプリ
ング25は、環状空間23の内部で、摩擦付与リップ2
2Aの背面側の外周に設けたリング状溝部に緊着され
る。リング状スプリング25により摩擦部材20のヘタ
リを防止し、摩擦部材20の耐久性を向上し、ピストン
ロッド14に及ぼすフリクションの長期に渡る安定を確
保できる。但し、摩擦部材20はリング状スプリング2
5を備えることを必須としない。
Incidentally, in this embodiment, a ring-shaped spring 25 for pressing the friction imparting lip 22A of the friction member 20 toward the piston rod 14 is added. The ring-shaped spring 25 is provided inside the annular space 23 so that the friction imparting lip 2
2A is tightly attached to a ring-shaped groove provided on the outer periphery on the back side. The ring-shaped spring 25 prevents the friction member 20 from being worn out, improves the durability of the friction member 20, and ensures the long-term stability of the friction exerted on the piston rod 14. However, the friction member 20 is the ring-shaped spring 2
It is not essential to have 5.

【0035】油圧緩衝器10は、ピストンロッド14が
挿入されたオイルシール16と摩擦部材20の間に油溜
り室40を形成し、シリンダ12の油室13をロッドガ
イド15(ブッシュ15A)のピストンロッド14が摺
接する内周部を介して油溜り室40に連通する流入路5
0と、リザーバ19に油溜り室40を連通する流出路6
0を設ける。油溜り室40は、ロッドガイド15の凹部
30に圧入された摩擦部材20と、ロッドガイド15の
上面に設けられたオイルシール16の間で、ロッドガイ
ド15の凹部30に連なる上りテーパ状内周面31
(尚、本明細書でテーパ、勾配の上下方向は油の流れる
方向に見た上下をいう)、垂直状内周面32により、ピ
ストンロッド14を囲むように形成される。
The hydraulic shock absorber 10 forms an oil sump chamber 40 between the oil seal 16 in which the piston rod 14 is inserted and the friction member 20, and connects the oil chamber 13 of the cylinder 12 to the piston of the rod guide 15 (bush 15A). The inflow path 5 communicating with the oil sump chamber 40 via the inner peripheral portion with which the rod 14 slides
0 and the outflow passage 6 that connects the oil reservoir chamber 40 to the reservoir 19
0 is set. The oil sump chamber 40 is formed between the friction member 20 press-fitted into the recess 30 of the rod guide 15 and the oil seal 16 provided on the upper surface of the rod guide 15, and has an upward tapered inner circumference that is continuous with the recess 30 of the rod guide 15. Face 31
(In the present specification, the vertical direction of the taper and the gradient refers to the vertical direction as viewed in the oil flow direction), and the vertical inner peripheral surface 32 is formed so as to surround the piston rod 14.

【0036】流入路50は、図3〜図5に示す如く、ロ
ッドガイド15の凹部30内に刻設され、油溜り室40
の下部に設けられる。流出路60は、ロッドガイド15
の上面側に刻設され、油溜り室40の上部に設けられ
る。
The inflow passage 50 is formed in the recess 30 of the rod guide 15 as shown in FIGS.
Is provided at the bottom of the. The outflow passage 60 is connected to the rod guide 15
Is engraved on the upper surface side of the oil reservoir and is provided on the upper portion of the oil sump chamber 40.

【0037】流入路50は、シリンダ12の油室13の
側に設けられ、ロッドガイド15(ブッシュ15A)の
ピストンロッド14が摺接する内周部の上方に開口する
溝状の第1流路51と、油溜り室40の側に設けられ、
油溜り室40に開口する溝状の第2流路53と、第1流
路51と第2流路53をつないでロッドガイド15の周
方向の全周に連続する環状流路52とからなる。第1流
路51と第2流路52はロッドガイド15の凹部30の
底面に刻設され、第2流路53はロッドガイド15の凹
部30の垂直面(摩擦部材20の芯金21が圧入される
垂直面)に刻設される。環状流路52は第1流路51が
連通する内周に下り勾配面52Aを備える。
The inflow passage 50 is provided on the oil chamber 13 side of the cylinder 12, and has a groove-like first flow passage 51 that opens above the inner peripheral portion of the rod guide 15 (bush 15A) with which the piston rod 14 is in sliding contact. And is provided on the oil sump chamber 40 side,
It is composed of a groove-shaped second flow path 53 that opens into the oil sump chamber 40, and an annular flow path 52 that connects the first flow path 51 and the second flow path 53 and that is continuous over the entire circumference of the rod guide 15 in the circumferential direction. . The first flow path 51 and the second flow path 52 are engraved on the bottom surface of the recess 30 of the rod guide 15, and the second flow path 53 is a vertical surface of the recess 30 of the rod guide 15 (the core metal 21 of the friction member 20 is press-fitted). Vertical surface). The annular flow path 52 includes a downward slope surface 52A on the inner circumference where the first flow path 51 communicates.

【0038】流入路50は、第1流路51と第2流路5
3を環状流路52の周方向において互い違いに配置して
いる。本実施形態では、第1流路51は環状流路52の
周方向に沿って180度をなす2位置に設けられ、第2流
路53も環状流路52の周方向に沿って180度をなす2
位置に設けられ、環状流路52の周方向に沿って相隣る
第1流路51と第2流路53を環状流路52の周方向に
沿って90度離隔する互い違いに配置している。
The inflow path 50 includes a first flow path 51 and a second flow path 5.
3 are staggered in the circumferential direction of the annular flow path 52. In the present embodiment, the first flow path 51 is provided at two positions forming 180 degrees along the circumferential direction of the annular flow path 52, and the second flow path 53 is also set at 180 degrees along the circumferential direction of the annular flow path 52. Eggplant 2
The first flow path 51 and the second flow path 53, which are provided at positions and are adjacent to each other along the circumferential direction of the annular flow path 52, are arranged alternately with each other at 90 degrees apart along the circumferential direction of the annular flow path 52. .

【0039】流出路60は、ロッドガイド15の内周側
上面に刻設されて油溜り室40の最上部空間(オイルシ
ール16のオイルシールリップ16Bより上位に位置す
る)に連通する環状流路61と、オイルシール16の芯
金16Aが載置されるロッドガイド15の上端面に刻設
される下り勾配の溝状流路62と、ロッドガイド15の
アウタチューブ11に囲まれる外周側上面に形成される
環状流路63と、ロッドガイド15のアウタチューブ1
1に嵌合される外周面に切欠形成されてリザーバ19に
開口する切欠状流路64とからなり、油溜り室40を環
状流路61、溝状流路62、環状流路63、切欠状流路
64経由でリザーバ19に連通する。環状流路61は油
溜り室40に臨む内周に上り勾配面61Aを備えるとと
もに、溝状流路62がつながる外周に上り勾配面61B
を備える。環状流路63は溝状流路62がつながる内周
に下り勾配面63Aを備える。
The outflow passage 60 is formed in the upper surface on the inner peripheral side of the rod guide 15 and communicates with the uppermost space of the oil sump chamber 40 (located above the oil seal lip 16B of the oil seal 16). 61, a grooved channel 62 having a downward slope formed in the upper end surface of the rod guide 15 on which the core metal 16A of the oil seal 16 is mounted, and an outer peripheral side upper surface of the rod guide 15 surrounded by the outer tube 11. The formed annular flow passage 63 and the outer tube 1 of the rod guide 15
1 and a cutout-shaped flow path 64 that is formed in a cutout on the outer peripheral surface and opens to the reservoir 19. The oil reservoir chamber 40 is formed into an annular flow path 61, a groove-shaped flow path 62, an annular flow path 63, and a cutout shape. It communicates with the reservoir 19 via the flow path 64. The annular flow path 61 has an upslope surface 61A on the inner circumference facing the oil sump chamber 40, and an upslope surface 61B on the outer circumference to which the groove-like flow path 62 is connected.
Equipped with. The annular flow passage 63 is provided with a descending slope surface 63A on the inner circumference to which the groove-like flow passage 62 is connected.

【0040】流出路60は、溝状流路62と切欠状流路
64を環状流路63の周方向において互い違いに配置し
ている。本実施形態では、溝状流路62は環状流路63
の周方向に沿って180度をなす2位置に設けられ、切欠
状流路64も環状流路63の周方向に沿って180度をな
す2位置に設けられ、環状流路63の周方向に沿って相
隣る溝状流路62と切欠状流路64を環状流路63の周
方向に沿って90度離隔する互い違いに配置している。
In the outflow passage 60, the groove-like flow passages 62 and the notch-like flow passages 64 are arranged alternately in the circumferential direction of the annular flow passage 63. In this embodiment, the groove-shaped channel 62 is the annular channel 63.
Are provided at two positions that make 180 degrees along the circumferential direction of the annular flow path 63, and the notched flow channels 64 are also provided at two positions that make 180 degrees along the circumferential direction of the annular flow path 63. The groove-shaped flow passages 62 and the notch-shaped flow passages 64 that are adjacent to each other along the circumferential direction of the annular flow passage 63 are arranged at 90 degrees apart from each other.

【0041】また、本実施形態では、油溜り室40と環
状流路61を挟んで、環状流路61の周方向に沿って相
隣る流入路50の第2流路53と流出路60の溝状流路
62を環状流路61の周方向に沿って90度離隔する互い
違いに配置している。
Further, in this embodiment, the second passage 53 and the outflow passage 60 of the inflow passage 50 which are adjacent to each other along the circumferential direction of the annular flow passage 61 with the oil sump chamber 40 and the annular flow passage 61 sandwiched therebetween. The groove-shaped flow paths 62 are arranged alternately along the circumferential direction of the annular flow path 61 and are spaced apart by 90 degrees.

【0042】更に、油圧緩衝器10は、流入路50に流
入用逆止手段71を設けるとともに、流出路60に流出
用逆止手段72を設ける。本実施形態では、流入用逆止
手段71を摩擦部材20に一体化したチェックリップ2
2Bにより形成し、流出用逆止手段72をオイルシール
16に一体化したチェックリップ16Cにより形成す
る。流入用逆止手段71(チェックリップ22B)は流
入路50の環状流路52の全周に当接するように配置さ
れ、油室13の油が流入路50から油溜り室40へ入る
ことを許容し、ピストンロッド14の縮み時における油
室13の減圧が油溜り室40へ及ぶことを阻止する。流
出用逆止手段72(チェックリップ16C)は流出路6
0の環状流路61の全周に当接するように配置され、油
溜り室40の油の余剰分が流出路60からリザーバ19
へ流出することを許容し、リザーバ19のガス圧が油溜
り室40へ及ぶことを阻止する。
Further, in the hydraulic shock absorber 10, the inflow passage 50 is provided with the inflow check means 71, and the outflow passage 60 is provided with the outflow check means 72. In the present embodiment, the check lip 2 in which the inflow check means 71 is integrated with the friction member 20.
2B, and the outflow check means 72 is formed by the check lip 16C integrated with the oil seal 16. The inflow check means 71 (check lip 22B) is arranged so as to contact the entire circumference of the annular flow path 52 of the inflow passage 50, and allows the oil in the oil chamber 13 to enter the oil reservoir chamber 40 from the inflow passage 50. However, the pressure reduction of the oil chamber 13 when the piston rod 14 is contracted is prevented from reaching the oil sump chamber 40. The outflow check means 72 (check lip 16C) is the outflow passage 6
0 is arranged so as to come into contact with the entire circumference of the annular flow passage 61, and an excess amount of oil in the oil sump chamber 40 is discharged from the outflow passage 60 to the reservoir 19.
To prevent the gas pressure of the reservoir 19 from reaching the oil sump chamber 40.

【0043】従って、シリンダ12の油室13からリザ
ーバ19への油の流れは以下の如くになる。
Therefore, the flow of oil from the oil chamber 13 of the cylinder 12 to the reservoir 19 is as follows.

【0044】(1)油室13の油は、ロッドガイド15の
ブッシュ15Aとピストンロッド14の隙間を抜けて、
摩擦部材20の下側の第1流路51を通り流入用逆止手
段71(チェックリップ22B)を押し開いて環状流路
52を通り、摩擦部材20の外周の第2流路53を通っ
て油溜り室40の下部へ流れ込む。このとき、第1流路
51と第2流路53が環状流路52の周方向に互い違い
に配置されているから、第1流路51から環状流路52
に入った油は、環状流路52の周方向に沿う両方向に分
岐する流れになって第2流路53から油溜り室40に抜
けるものとなる。
(1) The oil in the oil chamber 13 passes through the gap between the bush 15A of the rod guide 15 and the piston rod 14,
Through the first flow path 51 on the lower side of the friction member 20, the inflow check means 71 (check lip 22B) is pushed open to pass through the annular flow path 52, and through the second flow path 53 on the outer circumference of the friction member 20. It flows into the lower part of the oil sump chamber 40. At this time, since the first flow path 51 and the second flow path 53 are alternately arranged in the circumferential direction of the annular flow path 52, the first flow path 51 to the annular flow path 52
The oil that has entered becomes a flow that branches in both directions along the circumferential direction of the annular flow path 52 and escapes from the second flow path 53 to the oil sump chamber 40.

【0045】(2)油溜り室40の余剰油は、油溜り室4
0の最上部で、オイルシール16の下側の環状流路61
を通り、流出用逆止手段72(チェックリップ16C)
を押し開いて溝状流路62から環状流路63へ流出し、
更に環状流路63から切欠状流路64を経てリザーバ1
9に排出される。
(2) Excess oil in the oil sump chamber 40 is stored in the oil sump chamber 4
0 at the top of 0, the annular flow path 61 below the oil seal 16
Checking means 72 (check lip 16C) for outflow
To open from the groove-shaped channel 62 to the annular channel 63,
Further, from the annular flow path 63 through the cutout flow path 64, the reservoir 1
It is discharged to 9.

【0046】これにより、油室13の油が流入路50か
ら油溜り室40に入り、流出路60からリザーバ19へ
と出る一方向の油の流れを形成し、油溜り室40に常に
油を充填してその油圧をオイルシール16と摩擦部材2
0に及ぼす。オイルシール16のオイルシールリップ1
6Bは、油溜り室40に充填される油により常に濡れて
その油膜切れを防止され、リング状スプリング16Fの
緊迫力と、油溜り室40の油圧のバックアップによりピ
ストンロッド14に圧接してオイルシールする。また、
摩擦部材20の摩擦付与リップ22Aは自らの弾性的習
性と、油溜り室40の油圧のバックアップによりピスト
ンロッド14に圧接してピストンロッド14にフリクシ
ョンを付与する。
As a result, the oil in the oil chamber 13 enters the oil sump chamber 40 from the inflow path 50 and forms a one-way oil flow that exits from the outflow path 60 to the reservoir 19, and the oil sump chamber 40 is constantly filled with oil. The oil pressure is filled and the hydraulic pressure is applied to the oil seal 16 and the friction member 2.
Affect 0. Oil seal lip 1 of oil seal 16
6B is constantly wetted by the oil filled in the oil sump chamber 40 to prevent the oil film from being broken, and is pressed against the piston rod 14 by the tightening force of the ring-shaped spring 16F and the hydraulic pressure of the oil sump chamber 40 to make an oil seal. To do. Also,
The friction applying lip 22 </ b> A of the friction member 20 presses against the piston rod 14 due to its own elastic behavior and the backup of the oil pressure in the oil reservoir 40 to apply friction to the piston rod 14.

【0047】また、油圧緩衝器10にあっては、流入路
50の第1流路51と第2流路53の少なくとも一方
(本実施形態では第2流路53)をオリフィス80と
し、オリフィス80をロッドガイド15のブッシュ15
Aとピストンロッド14の隙間よりも小流路断面積(2
個の第2流路53の合計流路断面積)のオリフィスとし
ている。これにより、ピストンロッド14とロッドガイ
ド15(ブッシュ15A)の隙間の製造公差によるばら
つきを抑制し、前述したピストンバルブ装置とベースバ
ルブ装置による減衰力の発生を安定化する。
Further, in the hydraulic shock absorber 10, at least one of the first flow path 51 and the second flow path 53 (the second flow path 53 in the present embodiment) of the inflow path 50 is the orifice 80, and the orifice 80 The bush 15 of the rod guide 15
Smaller flow passage cross-sectional area than the gap between A and piston rod 14 (2
The orifice of the total flow passage cross-sectional area of each second flow passage 53 is used. As a result, variations in the clearance between the piston rod 14 and the rod guide 15 (bush 15A) due to manufacturing tolerances are suppressed, and the generation of damping force by the piston valve device and the base valve device described above is stabilized.

【0048】本実施形態によれば以下の作用がある。 シリンダ12の油室13を油溜り室40に連通する流
入路50が、油溜り室40の下部に設けられ、シリンダ
12の油室13からロッドガイド15を抜けてきた油及
びエアは、第1流路51から環状流路52、第2流路5
3を経て油溜り室40に流入する。このとき、第1流路
51と第2流路53を環状流路52に対し互い違いに配
置しているから、第1流路51から環状流路52に入っ
た油は、環状流路52の環状の周方向に沿う両方向に分
岐する流れになって第2流路53から油溜り室40に抜
けるものとなり、環状流路52に入ったエアを該環状流
路52の中間に滞溜させることなく該油の流れによって
油溜り室40へと押し出す。
According to this embodiment, there are the following effects. An inflow path 50 that connects the oil chamber 13 of the cylinder 12 to the oil sump chamber 40 is provided in the lower portion of the oil sump chamber 40, and the oil and air that have passed through the rod guide 15 from the oil chamber 13 of the cylinder 12 are the first Channel 51 to annular channel 52, second channel 5
After passing through 3, the oil flows into the oil sump chamber 40. At this time, since the first flow channel 51 and the second flow channel 53 are arranged alternately with respect to the annular flow channel 52, the oil that has entered the annular flow channel 52 from the first flow channel 51 is stored in the annular flow channel 52. A flow that branches in both directions along the annular circumferential direction and comes out of the second flow path 53 into the oil sump chamber 40, and retains the air that has entered the annular flow path 52 in the middle of the annular flow path 52. Instead, it is pushed into the oil sump chamber 40 by the flow of the oil.

【0049】また、油溜り室40をリザーバ19に連通
する流出路60を油溜り室40の上部に設けたから、油
溜り室40に入ったエアを該油溜り室40から流出路6
0を経て、リザーバ19へ流出する油の流れに随伴させ
てリザーバ19へと排出する。
Further, since the outflow passage 60 that connects the oil sump chamber 40 to the reservoir 19 is provided above the oil sump chamber 40, the air that has entered the oil sump chamber 40 flows out from the oil sump chamber 40 into the outflow passage 6.
After passing through 0, the oil is discharged to the reservoir 19 along with the flow of oil flowing out to the reservoir 19.

【0050】従って、油溜り室40からのエア抜き性を
向上し、油溜り室40にエアを残すことがなくなる。
Therefore, the air bleeding property from the oil sump chamber 40 is improved, and air is not left in the oil sump chamber 40.

【0051】油溜り室40にエアが残らないから、熱
によるエアの膨張に起因する油溜り室40の圧力変動を
抑制し、摩擦部材20に作用する背圧を一定にし、摩擦
部材20がピストンロッド14に与えるフリクションの
安定を図ることができる。
Since no air remains in the oil sump chamber 40, the pressure fluctuation in the oil sump chamber 40 due to the expansion of the air due to heat is suppressed, the back pressure acting on the friction member 20 is made constant, and the friction member 20 causes the piston to move. It is possible to stabilize the friction applied to the rod 14.

【0052】油溜り室40にエアが残らないから、シリ
ンダ12の油室13が加圧されたときに油溜り室40の
残留エアに影響されることなく、減衰力発生装置(ピス
トンバルブ装置、ベースバルブ装置)の作動の安定を図
り、安定した減衰力を発生できる。
Since no air remains in the oil sump chamber 40, when the oil chamber 13 of the cylinder 12 is pressurized, it is not affected by the residual air in the oil sump chamber 40, and the damping force generator (piston valve device, It is possible to stabilize the operation of the base valve device) and generate a stable damping force.

【0053】従って、極微低速域ではフリクションによ
り振動を減衰させ、微低速域からは確実に減衰力を発生
させることで、油圧緩衝器10の緩衝機能の安定確実を
図ることができる。
Therefore, the vibration is damped by friction in the extremely low speed range, and the damping force is surely generated from the very low speed range, whereby the shock absorbing function of the hydraulic shock absorber 10 can be stabilized and ensured.

【0054】油溜り室40にエアが残らないから、エ
アの膨張により油をリザーバ19へと押し出すことがな
く、油溜り室40の油量を維持し、オイルでオイルシー
ル16のオイルシールリップ16Bに油膜切れを引き起
こすことがない。
Since no air remains in the oil sump chamber 40, the oil is not pushed out to the reservoir 19 by the expansion of the air, the amount of oil in the oil sump chamber 40 is maintained, and the oil seal lip 16B of the oil seal 16 is filled with oil. It does not cause the oil film to run out.

【0055】流入路50を構成する第1流路51と第
2流路53を各2個設けたから、エア抜きの効率を上げ
ることができる。
Since each of the first flow path 51 and the second flow path 53 forming the inflow path 50 is provided, the efficiency of air bleeding can be improved.

【0056】ピストンロッド14が縮む方向へ移動す
るときには、シリンダ12の油室13の減圧状態が油溜
り室40に作用することを流入用逆止手段71によって
阻止し、油溜り室40の油がシリンダ12の油室13へ
出ていくことを防止することができ、油溜り室40の圧
力変動を防止する。
When the piston rod 14 moves in the contracting direction, the depressurized state of the oil chamber 13 of the cylinder 12 is prevented from acting on the oil sump chamber 40 by the inflow check means 71, and the oil in the oil sump chamber 40 is removed. It is possible to prevent the cylinder 12 from going out to the oil chamber 13 and prevent the pressure fluctuation in the oil reservoir chamber 40.

【0057】従って、摩擦部材20に作用する背圧を一
定にし、摩擦部材20がピストンロッド14に与えるフ
リクションの安定を図ることができる。
Therefore, the back pressure acting on the friction member 20 can be made constant, and the friction applied to the piston rod 14 by the friction member 20 can be stabilized.

【0058】摩擦部材20に一体化したチェックリッ
プ22Bにより流入用逆止手段71を構成することによ
り、流入用逆止手段71を簡易に設けることができる。
The check lip 22B integrated with the friction member 20 constitutes the inflow check means 71, so that the inflow check means 71 can be easily provided.

【0059】ロッドガイド15は例えば燒結材料で成
形されるため比較的精度が高いが製造公差がありガイド
ブッシュ15Aにも公差があり、ピストンロッド14に
も公差があるため、ガイドブッシュ15Aとピストンロ
ッド14の公差が最大となる場合と最小となる場合が存
在し、公差が最大のときと最小のときでは、シリンダ1
2のロッド側油室13の圧力上昇に変化を生じ、特にピ
ストンスピードが遅い場合には減衰力の発生に影響が出
る。このとき、第1流路51と第2流路53の少なくと
も一方をオリフィス80とし、該オリフィス80をロッ
ドガイド15とピストンロッド14の隙間よりも小流路
断面積のオリフィス80とすることにより、減衰力の発
生をこのオリフィス80によって規定し、ロッドガイド
15とピストンロッド14の製造公差による減衰力のば
らつきを抑えることができる。例えば、ロッドガイド1
5とピストンロッド14の製造公差が1.4mm〜0.4m
相当の場合、オリフィス80を0.4mmに設定す
ることで、製造公差による減衰力のばらつきを抑えるこ
とができる。
The rod guide 15 is made of, for example, a sintered material.
Since it is shaped, it has relatively high accuracy, but there are manufacturing tolerances
The bush 15A also has a tolerance, and the piston rod 14
Since there is a tolerance, the guide bush 15A and the piston rod
There are cases where the tolerance of the pad 14 is maximum and minimum.
Cylinder 1 is present when the tolerance is maximum and minimum.
Change in the pressure increase in the rod side oil chamber 13
If the stone speed is slow, the damping force will be affected.
It At this time, at least the first flow path 51 and the second flow path 53
One of them is the orifice 80, and the orifice 80 is locked.
Smaller flow path than the gap between guide guide 15 and piston rod 14
By using the orifice 80 with a cross-sectional area, the damping force is generated.
Raw is defined by this orifice 80, rod guide
15 due to manufacturing tolerances of piston rod 14 and piston rod 14
It is possible to suppress wobble. For example, rod guide 1
5 and piston rod 14 manufacturing tolerance is 1.4mmTwo~ 0.4m
m TwoOrifice 80 0.4mm in case of equivalentTwoSet to
By doing so, it is possible to suppress variations in damping force due to manufacturing tolerances.
You can

【0060】本実施形態では、ロッドガイド15の凹部
30に溝を刻設し、凹部30に圧入した摩擦部材20の
芯金21との間で第2流路53(又は第1流路51)を
形成したから、オリフィス80を形成する第2流路53
(又は第1流路51)を容易に高精度に作成できる。
In the present embodiment, a groove is formed in the recess 30 of the rod guide 15, and the second flow path 53 (or the first flow path 51) is formed between the groove and the cored bar 21 of the friction member 20 press-fitted into the recess 30. The second channel 53 that forms the orifice 80
(Or the 1st flow path 51) can be created easily with high precision.

【0061】尚、摩擦部材20は、摩擦付与リップ22
Aが丸味面にてピストンロッド14に摺接するようにし
たから、ピストンロッド14に対するフリクション付与
機能を具備し、かつ耐久性を向上できる。但し、摩擦部
材20は、図6(B)に示す如く、摩擦付与リップ22
AがV突起面にてピストンロッド14に摺接するように
し、ピストンロッド14に対するフリクション付与機能
とオイルシール機能の両方を併せ備えても良い。また、
摩擦部材20は、図6(C)に示す如く、摩擦付与リッ
プ22Aが平坦面にてピストンロッド14に摺接するも
のでも良い。
The friction member 20 includes the friction applying lip 22.
Since A is brought into sliding contact with the piston rod 14 on the rounded surface, it has a friction imparting function to the piston rod 14 and can improve durability. However, the friction member 20 has a friction applying lip 22 as shown in FIG.
A may be brought into sliding contact with the piston rod 14 on the V projection surface, and may have both a friction imparting function for the piston rod 14 and an oil seal function. Also,
As shown in FIG. 6 (C), the friction member 20 may be one in which the friction applying lip 22A is in sliding contact with the piston rod 14 on a flat surface.

【0062】また、摩擦部材20は、摩擦付与リップ2
2Aの背面側に環状空間23を備えたから、ピストンロ
ッド14の揺れに対する摩擦付与リップ22Aの追従性
を向上でき、耐久性を向上し、安定してフリクションを
発生できる。但し、摩擦部材29は、図6(D)に示す
如く、摩擦付与リップ22Aの背面側に環状空間23を
備えなくても良い。
Further, the friction member 20 includes the friction imparting lip 2
Since the annular space 23 is provided on the back side of 2A, the followability of the friction imparting lip 22A with respect to the swing of the piston rod 14 can be improved, the durability can be improved, and friction can be stably generated. However, the friction member 29 may not include the annular space 23 on the back surface side of the friction imparting lip 22A, as shown in FIG. 6 (D).

【0063】以上、本発明の実施の形態を図面により詳
述したが、本発明の具体的な構成はこの実施の形態に限
られるものではなく、本発明の要旨を逸脱しない範囲の
設計の変更等があっても本発明に含まれる。例えば、本
発明の実施において、流入路を形成する第1流路と第2
流路のそれぞれは環状流路に沿う単一位置に設け、環状
流路に沿って相隣る第1流路と第2流路を環状流路に沿
って180度離隔する互い違いに配置しても良い。尚、第
1流路と第2流路のそれぞれは環状流路に沿う周方向の
3位置に設けられるものでも良い。
Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration of the present invention is not limited to this embodiment, and the design can be changed without departing from the gist of the present invention. Etc. are included in the present invention. For example, in the practice of the present invention, the first flow path and the second flow path forming the inflow path
Each of the flow passages is provided at a single position along the annular flow passage, and the first flow passage and the second flow passage which are adjacent to each other along the annular flow passage are alternately arranged 180 degrees apart from each other along the annular flow passage. Is also good. Each of the first flow path and the second flow path may be provided at three circumferential positions along the annular flow path.

【0064】また、本発明の流入路は摩擦部材の側に形
成されても良く、例えば摩擦部材の芯金に設けられる溝
によって形成されても良い。また、本発明の流出路はオ
イルシールの側に形成されても良く、例えば、オイルシ
ールの芯金に設けられる溝によって形成されても良い。
Further, the inflow passage of the present invention may be formed on the friction member side, for example, may be formed by a groove provided on the core metal of the friction member. Further, the outflow passage of the present invention may be formed on the oil seal side, for example, may be formed by a groove provided in the core metal of the oil seal.

【0065】尚、図2において、オイルシール16のオ
イルシールリップ16B、摩擦部材20の摩擦付与リッ
プ22Aは自由状態を示しており、現実にはピストンロ
ッド14の外周に接する弾性変形状態にある。
In FIG. 2, the oil seal lip 16B of the oil seal 16 and the friction imparting lip 22A of the friction member 20 are in a free state, and are actually in an elastically deformed state in contact with the outer circumference of the piston rod 14.

【0066】[0066]

【発明の効果】以上のように本発明によれば、ピストン
ロッドにフリクションを付与する油圧緩衝器において、
オイルシールの油膜切れを防止するための油溜り室から
のエア抜き性を向上し、安定したフリクションを発生さ
せ、かつ安定した減衰力を発生させることができる。
As described above, according to the present invention, in the hydraulic shock absorber for imparting friction to the piston rod,
It is possible to improve the air bleeding property from the oil sump chamber for preventing the oil film of the oil seal from being broken, to generate a stable friction, and to generate a stable damping force.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は油圧緩衝器を示す模式図である。FIG. 1 is a schematic view showing a hydraulic shock absorber.

【図2】図2はフリクション付与構造を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing a friction imparting structure.

【図3】図3はロッドガイドを示す平面図である。FIG. 3 is a plan view showing a rod guide.

【図4】図4は図3のIV−IV線に沿う断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG.

【図5】図5はロッドガイドを示す斜視図である。FIG. 5 is a perspective view showing a rod guide.

【図6】図6は摩擦部材の各種態様を示す模式図であ
る。
FIG. 6 is a schematic view showing various modes of a friction member.

【符号の説明】[Explanation of symbols]

10 油圧緩衝器 12 シリンダ 13 油室 14 ピストンロッド 15 ロッドガイド 16 オイルシール 16C チェックリップ(流出用逆止手段) 19 リザーバ 20 摩擦部材 22A 摩擦付与リップ 22B チェックリップ(流入用逆止手段) 40 油溜り室 50 流入路 51 第1流路 52 環状流路 53 第2流路 60 流出路 71 流入用逆手段 72 流出用逆止手段 80 オリフィス 10 hydraulic shock absorber 12 cylinders 13 oil chamber 14 Piston rod 15 Rod guide 16 oil seal 16C check lip (outflow check means) 19 reservoir 20 Friction member 22A Friction imparting lip 22B check lip (return means for inflow) 40 oil sump chamber 50 inflow path 51 First flow path 52 annular flow path 53 Second channel 60 Outflow 71 Inverse means for inflow 72 Check means for outflow 80 orifice

フロントページの続き (72)発明者 間根山 典明 埼玉県行田市藤原町1丁目14番地1 株式 会社ショーワ埼玉本社工場内 Fターム(参考) 3J069 AA54 CC13 CC15 CC18 CC19 DD33 Continued front page    (72) Inventor Noriaki Maneyama             1-14 Fujiwara-cho, Gyoda-shi, Saitama 1 Stock             Company Showa Saitama Head Office Factory F term (reference) 3J069 AA54 CC13 CC15 CC18 CC19                       DD33

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリンダに設けた油室に挿入されるピス
トンロッドを、シリンダの開口部に設けたロッドガイド
とオイルシールを介して外部に導出し、 ピストンロッドにフリクションを付与する摩擦部材を、
ロッドガイドとオイルシールの間に配置し、 オイルシールと摩擦部材の間に油溜り室を形成し、シリ
ンダの油室を油溜り室に連通する流入路と、シリンダの
油室に付帯的に設けたリザーバに油溜り室を連通する流
出路を設けた油圧緩衝器のフリクション付与構造におい
て、 前記流入路が、油溜り室の下部に設けられ、シリンダの
油室の側に設けられる第1流路と、油溜り室の側に設け
られる第2流路と、第1流路と第2流路をつなぐ環状流
路とからなり、第1流路と第2流路を環状流路に対し互
い違いに配置し、 前記流出路が、油溜り室の上部に設けられることを特徴
とする油圧緩衝器のフリクション付与構造。
1. A friction member for guiding a piston rod inserted into an oil chamber provided in a cylinder to the outside via a rod guide and an oil seal provided in an opening of the cylinder to provide friction to the piston rod,
It is placed between the rod guide and the oil seal to form an oil sump chamber between the oil seal and the friction member, and an inflow path that connects the oil chamber of the cylinder to the oil sump chamber and the oil chamber of the cylinder are additionally provided. In a friction imparting structure of a hydraulic shock absorber having an outflow passage communicating with an oil sump chamber in a reservoir, the inflow passage is provided in a lower portion of the oil sump chamber, and a first flow path is provided on the oil chamber side of the cylinder. And a second flow path provided on the oil reservoir side, and an annular flow path connecting the first flow path and the second flow path, and the first flow path and the second flow path alternate with respect to the annular flow path. And the outflow passage is provided in an upper portion of the oil sump chamber.
【請求項2】 前記第1流路が環状流路に沿って180度
をなす2位置に設けられ、前記第2流路も環状流路に沿
って180度をなす2位置に設けられ、環状流路に沿って
相隣る第1流路と第2流路を環状流路に沿って90度離隔
する互い違いに配置した請求項1に記載の油圧緩衝器の
フリクション付与構造。
2. The first flow path is provided at two positions forming 180 degrees along the annular flow path, and the second flow path is also provided at two positions forming 180 degrees along the annular flow path. The friction imparting structure for a hydraulic shock absorber according to claim 1, wherein the first flow path and the second flow path which are adjacent to each other along the flow path are arranged alternately along the annular flow path with a space of 90 degrees therebetween.
【請求項3】 前記流入路に流入用逆止手段を設け、前
記流出路に流出用逆止手段を設けた請求項1又は2に記
載の油圧緩衝器のフリクション付与構造。
3. The friction imparting structure for a hydraulic shock absorber according to claim 1, wherein the inflow check means is provided in the inflow path, and the outflow check means is provided in the outflow path.
【請求項4】 前記流入用逆止手段が摩擦部材に一体化
したチェックリップからなり、該チェックリップを前記
環状流路に配置した請求項3に記載の油圧緩衝器のフリ
クション付与構造。
4. The friction imparting structure for a hydraulic shock absorber according to claim 3, wherein the inflow check means comprises a check lip integrated with a friction member, and the check lip is arranged in the annular flow path.
【請求項5】 前記第1流路と第2流路の少なくとも一
方をオリフィスとし、該オリフィスをロッドガイドとピ
ストンロッドの隙間よりも小流路断面積のオリフィスと
した請求項1〜4のいずれかに記載の油圧緩衝器のフリ
クション付与構造。
5. The method according to claim 1, wherein at least one of the first flow path and the second flow path is an orifice, and the orifice has a flow path cross-sectional area smaller than a gap between the rod guide and the piston rod. The friction imparting structure for a hydraulic shock absorber according to claim 1.
JP2001352200A 2001-11-16 2001-11-16 Friction applying structure for hydraulic shock absorber Withdrawn JP2003156093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001352200A JP2003156093A (en) 2001-11-16 2001-11-16 Friction applying structure for hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001352200A JP2003156093A (en) 2001-11-16 2001-11-16 Friction applying structure for hydraulic shock absorber

Publications (1)

Publication Number Publication Date
JP2003156093A true JP2003156093A (en) 2003-05-30

Family

ID=19164410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001352200A Withdrawn JP2003156093A (en) 2001-11-16 2001-11-16 Friction applying structure for hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP2003156093A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205435A (en) * 2006-01-31 2007-08-16 Hitachi Ltd Hydraulic shock absorber
JP2009108991A (en) * 2007-11-01 2009-05-21 Kayaba Ind Co Ltd Damper
WO2014017611A1 (en) 2012-07-27 2014-01-30 日立オートモティブシステムズ株式会社 Hydraulic buffer
DE102014203076A1 (en) 2013-02-25 2014-08-28 Hitachi Automotive Systems, Ltd. Shock absorber and vehicle using one
JP2016050612A (en) * 2014-08-29 2016-04-11 日立オートモティブシステムズ株式会社 Damper
DE102014223164A1 (en) * 2014-11-13 2016-05-19 Zf Friedrichshafen Ag Seal guide unit
JP2020034057A (en) * 2018-08-29 2020-03-05 日立オートモティブシステムズ株式会社 Buffer
WO2024201696A1 (en) * 2023-03-28 2024-10-03 日立Astemo株式会社 Shock absorbing device and suspension device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205435A (en) * 2006-01-31 2007-08-16 Hitachi Ltd Hydraulic shock absorber
JP2009108991A (en) * 2007-11-01 2009-05-21 Kayaba Ind Co Ltd Damper
CN104246283A (en) * 2012-07-27 2014-12-24 日立汽车系统株式会社 Hydraulic buffer
WO2014017611A1 (en) 2012-07-27 2014-01-30 日立オートモティブシステムズ株式会社 Hydraulic buffer
US9360078B2 (en) 2012-07-27 2016-06-07 Hitachi Automotive Systems, Ltd. Hydraulic shock absorber
KR20150037728A (en) 2012-07-27 2015-04-08 히다치 오토모티브 시스템즈 가부시키가이샤 Hydraulic buffer
US9062734B2 (en) 2013-02-25 2015-06-23 Hitachi Automotive Systems, Ltd. Shock absorber and vehicle using the same
JP2014163517A (en) * 2013-02-25 2014-09-08 Hitachi Automotive Systems Ltd Buffer and vehicle using the same
KR20140106407A (en) 2013-02-25 2014-09-03 히다치 오토모티브 시스템즈 가부시키가이샤 Damper and vehicle using the same
DE102014203076A1 (en) 2013-02-25 2014-08-28 Hitachi Automotive Systems, Ltd. Shock absorber and vehicle using one
KR102138384B1 (en) * 2013-02-25 2020-07-27 히다치 오토모티브 시스템즈 가부시키가이샤 Damper and vehicle using the same
JP2016050612A (en) * 2014-08-29 2016-04-11 日立オートモティブシステムズ株式会社 Damper
DE102014223164A1 (en) * 2014-11-13 2016-05-19 Zf Friedrichshafen Ag Seal guide unit
US10400845B2 (en) 2014-11-13 2019-09-03 Zf Friedrichshafen Ag Sealing/guiding unit
DE102014223164B4 (en) 2014-11-13 2022-03-17 Zf Friedrichshafen Ag seal guiding unit
JP2020034057A (en) * 2018-08-29 2020-03-05 日立オートモティブシステムズ株式会社 Buffer
JP7058573B2 (en) 2018-08-29 2022-04-22 日立Astemo株式会社 Shock absorber
WO2024201696A1 (en) * 2023-03-28 2024-10-03 日立Astemo株式会社 Shock absorbing device and suspension device

Similar Documents

Publication Publication Date Title
KR101375804B1 (en) Shock absorber with a frequency and pressure unit
CN101657651B (en) Shock absorber having a continuously variable valve with base line valving
JP6076433B2 (en) Shock absorber
CN103291823B (en) Nested check high speed valve
JP5758119B2 (en) Shock absorber
JP2000110881A (en) Two-stage type shock absorber
JP4898613B2 (en) Shock absorber
JP2003156093A (en) Friction applying structure for hydraulic shock absorber
KR20220156354A (en) Shock absorber
JP2004257507A (en) Hydraulic damper
JP2003130119A (en) Friction-applying structure of hydraulic shock absorber
JP4212850B2 (en) Vehicle hydraulic shock absorber
JP2901639B2 (en) Displacement sensitive hydraulic shock absorber
KR101218836B1 (en) Valve structure of a shock absorber
JP2004044670A (en) Hydraulic shock absorber for vehicle
CN116438389A (en) Sealing device and buffer of hydraulic press
JPH07197975A (en) Damping force generation device for vehicular shock absorber
JP6523849B2 (en) Front fork
JP6294678B2 (en) Valves and shock absorbers
JP7522646B2 (en) Shock absorber
JP4584491B2 (en) Hydraulic shock absorber
KR20230064359A (en) Shock absorber
JP2596848Y2 (en) Hydraulic shock absorber
JP2009133412A (en) Hydraulic shock absorber
JP6523850B2 (en) Front fork

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201