JP2003156035A - Dynamic pressure fluid bearing device, and spindle motor using it - Google Patents
Dynamic pressure fluid bearing device, and spindle motor using itInfo
- Publication number
- JP2003156035A JP2003156035A JP2001354478A JP2001354478A JP2003156035A JP 2003156035 A JP2003156035 A JP 2003156035A JP 2001354478 A JP2001354478 A JP 2001354478A JP 2001354478 A JP2001354478 A JP 2001354478A JP 2003156035 A JP2003156035 A JP 2003156035A
- Authority
- JP
- Japan
- Prior art keywords
- bearing surface
- groove
- side path
- dynamic pressure
- bearing device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 54
- 230000001050 lubricating effect Effects 0.000 claims abstract description 47
- 230000000717 retained effect Effects 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000005086 pumping Methods 0.000 abstract description 22
- 230000000694 effects Effects 0.000 abstract 1
- 230000009471 action Effects 0.000 description 17
- 239000007788 liquid Substances 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004323 axial length Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/107—Grooves for generating pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/10—Sliding-contact bearings for exclusively rotary movement for both radial and axial load
- F16C17/102—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
- F16C17/107—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Sliding-Contact Bearings (AREA)
- Motor Or Generator Frames (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、動圧流体軸受装
置及びこれを用いたスピンドルモーターに属し、特に記
録ディスク駆動用モーターのように高速回転が要求され
る機構に好適に利用されうる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrodynamic bearing device and a spindle motor using the same, and can be suitably used for a mechanism such as a recording disk driving motor, which requires high speed rotation.
【0002】[0002]
【従来の技術】記録ディスク駆動用モーターのように高
速回転が要求される機構において、軸受面及び/又はこ
れと対向する回転部材の表面にV字状、U字状、ヘリン
グボーン形状などの溝を形成するとともに、回転部材と
軸受面との間に潤滑流体を保持し、回転時の溝のポンプ
作用により発生する圧力すなわち動圧で回転部材と軸受
面とを非接触状態に保ち、高速回転を可能にする動圧流
体軸受装置が用いられている。2. Description of the Related Art In a mechanism such as a motor for driving a recording disk, which requires high-speed rotation, grooves such as V-shape, U-shape, and herringbone shape are formed on a bearing surface and / or the surface of a rotating member facing the bearing surface. In addition, the lubricating fluid is retained between the rotating member and the bearing surface, and the rotating member and the bearing surface are kept in non-contact with each other by the pressure generated by the pumping action of the groove during rotation, that is, the dynamic pressure. A hydrodynamic bearing device that enables the above is used.
【0003】このような動圧流体軸受装置のうち、ラジ
アル方向の荷重を受けるラジアル軸受面とスラスト方向
の荷重を受けるスラスト軸受面が各々静止部材に設けら
れて回転部材を支持しているものにおいては、ラジアル
軸受面とスラスト軸受面との境界付近に気泡が滞留する
ことがある。滞留した気泡は、モーターの高温時に熱膨
張することによって潤滑流体を軸受装置外に押し出し、
記録ディスクへの書き込み/再生に支障を伴うことか
ら、好ましくない存在である。Among such hydrodynamic bearing devices, in a hydrodynamic bearing device in which a radial bearing surface for receiving a load in the radial direction and a thrust bearing surface for receiving a load in the thrust direction are respectively provided on a stationary member to support a rotating member. In some cases, air bubbles may stay near the boundary between the radial bearing surface and the thrust bearing surface. The accumulated bubbles cause the lubricating fluid to be pushed out of the bearing device by thermal expansion at high temperature of the motor,
This is an unfavorable existence because it hinders writing / reproducing on a recording disk.
【0004】そこで、気泡が滞留することがないよう
に、ラジアル軸受面の動圧発生用溝を軸方向に非対称な
ヘリングボーン形状すなわちヘリングボーンの折り返し
点を境としてスラスト軸受面から遠い側の経路が長くて
近い側の経路が短くなるアンバランスヘリングボーン形
状とし、スラスト軸受面の動圧発生用溝をスパイラル形
状とし、これらのラジアル軸受け部とスラスト軸受け部
とを直結し、回転部材の浮上力をラジアル軸受け部の動
圧で与える構成が提案されている(特開2000−21
5589)。この構成により、ラジアル軸受面に保持さ
れている潤滑流体もスラスト軸受面に保持されている潤
滑流体も共に上記境界付近に向かって移動するような動
圧が発生するので、気泡の滞留が防止される。Therefore, in order to prevent air bubbles from accumulating, the dynamic pressure generating groove of the radial bearing surface has a herringbone shape which is asymmetric in the axial direction, that is, a path far from the thrust bearing surface with the folding point of the herringbone as a boundary. Has a long and short path on the near side, and has an unbalanced herringbone shape.The grooves for generating dynamic pressure on the thrust bearing surface have a spiral shape.The radial bearing part and thrust bearing part are directly connected to each other, and the floating force of the rotating member is increased. Has been proposed (Japanese Patent Laid-open No. 2000-21).
5589). With this configuration, dynamic pressure is generated so that both the lubricating fluid held on the radial bearing surface and the lubricating fluid held on the thrust bearing surface move toward the vicinity of the boundary, so that the retention of bubbles is prevented. It
【0005】[0005]
【発明が解決しようとする課題】従来の軸受装置の動圧
発生用溝は、V字状、U字状、ヘリングボーン形状、ス
パイラル形状などの曲がっている点は別として、ラジア
ル軸受面においては潤滑流体の移動元側(スラスト軸受
面から遠い側)から移動先側(スラスト軸受面に近い
側)に至るまで一定の勾配及び深さを有する1本の溝、
スラスト軸受面においては連続した勾配及び一定の深さ
を有する1本の溝が回転方向に繰り返して形成されてい
るだけであった。それでも従来はモーターのサイズが大
きかったので、特開2000−215589に記載の構
成で動圧発生用溝を大きくすることにより、十分なポン
プ力が得られ、支障は生じなかった。DISCLOSURE OF INVENTION Problems to be Solved by the Invention Aside from the fact that the dynamic pressure generating groove of the conventional bearing device is bent in a V shape, a U shape, a herringbone shape, a spiral shape, etc. One groove having a constant gradient and depth from the movement source side (the side far from the thrust bearing surface) of the lubricating fluid to the movement destination side (the side close to the thrust bearing surface),
On the thrust bearing surface, only one groove having a continuous gradient and a constant depth was repeatedly formed in the rotational direction. However, since the size of the motor has been large in the related art, a sufficient pumping force can be obtained by enlarging the dynamic pressure generating groove in the configuration described in JP-A-2000-215589, and no trouble occurs.
【0006】しかし、モーターのサイズの小型化要請に
伴って限られた軸受面積で大きいポンプ力を生じる動圧
発生用溝を設計しなければならなくなっている。However, with the demand for downsizing of the motor size, it has become necessary to design a dynamic pressure generating groove which produces a large pumping force in a limited bearing area.
【0007】それ故、この発明の課題は、上記特開20
00−215589に記載の構成よりもポンプ作用を向
上させた動圧流体軸受装置を提供することにある。Therefore, the object of the present invention is to solve the above-mentioned problems in Japanese Patent Laid-Open No.
It is another object of the present invention to provide a hydrodynamic bearing device having an improved pumping action as compared with the configuration described in 00-215589.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
に、この発明の動圧流体軸受装置は、ラジアル軸受面及
びスラスト軸受面を有する静止部材と、これらの軸受面
で支持され静止部材に対して相対的に軸回りに回転自在
な回転部材と、回転部材と軸受面との間に保持される潤
滑流体とを備え、ラジアル軸受面及び/もしくはこれと
対向する回転部材の表面には潤滑流体をスラスト軸受面
に向けて移動させる動圧が発生するように、回転方向に
規則的に繰り返す複数の動圧発生用の溝が形成され、並
びにスラスト軸受面及び/もしくはこれと対向する回転
部材の表面には潤滑流体を回転軸芯に向けて移動させる
動圧が発生するように、回転方向に規則的に繰り返す複
数の動圧発生用の溝が形成されている動圧流体軸受装置
において、前記溝が、潤滑流体の移動先側経路における
よりも移動元側経路における方が密に形成されているこ
とを特徴とする。In order to solve the above-mentioned problems, a hydrodynamic bearing device of the present invention has a stationary member having a radial bearing surface and a thrust bearing surface, and a stationary member supported by these bearing surfaces. On the other hand, a rotary member that is relatively rotatable about the axis and a lubricating fluid that is retained between the rotary member and the bearing surface are provided, and the radial bearing surface and / or the surface of the rotary member that faces the radial bearing surface is lubricated. A plurality of grooves for dynamic pressure generation that are regularly repeated in the rotational direction are formed so that a dynamic pressure that moves the fluid toward the thrust bearing surface is generated, and a thrust bearing surface and / or a rotating member that faces the thrust bearing surface. In the hydrodynamic bearing device, a plurality of grooves for dynamic pressure generation that are regularly repeated in the rotational direction are formed on the surface of so as to generate dynamic pressure that moves the lubricating fluid toward the rotation axis core, The groove Characterized in that the better the migration source side path are densely formed than in the target-side path of the lubricating fluid.
【0009】この発明の軸受装置では、従来の固定観念
から脱却し、潤滑流体の移動先側経路と移動元側経路と
で溝の密度を異ならせ、移動元側において溝を密に形成
した。これにより、動圧発生用溝が潤滑流体を移動させ
ようとする方向に非対称となり、ポンプ作用が生じて潤
滑流体が所定方向に移動する。しかも折り返し点を境に
密度を異ならせるだけでよいので、限られた軸受面積で
も所望のポンプ力を得ることができる。In the bearing device of the present invention, the conventional fixed idea is removed, and the groove density is made different between the moving destination side path and the moving source side path of the lubricating fluid, and the grooves are densely formed on the moving source side. As a result, the dynamic pressure generating groove becomes asymmetric in the direction in which the lubricating fluid is moved, and the pumping action occurs so that the lubricating fluid moves in the predetermined direction. Moreover, since it is only necessary to change the density at the turning point, the desired pumping force can be obtained even with a limited bearing area.
【0010】移動元側経路を相対的に密にする第一の手
段は、前記ラジアル軸受面の溝を移動先側経路よりも移
動元側経路の方が所定長さ長く延びたヘリングボーン形
状とし、その延長部分の隣り合う溝間に第二の溝を形成
することである。延長部分の溝間に第二の溝を1本形成
することにより延長部分の溝の密度は2倍になり、2本
形成すれば3倍になり、ポンプ力が向上する。The first means for making the movement-source-side path relatively dense is a herringbone shape in which the groove on the radial bearing surface extends a predetermined length longer in the movement-source-side path than in the movement-destination-side path. The second groove is formed between the adjacent grooves of the extended portion. By forming one second groove between the grooves of the extended portion, the density of the grooves of the extended portion is doubled, and when two grooves are formed, the density is tripled, and the pumping power is improved.
【0011】移動元側経路を相対的に密にする第二の手
段は、前記ラジアル軸受面の溝をヘリングボーン形状と
し、その移動元側経路の隣り合う溝間に第二の溝を形成
することである。この場合は第二の溝を形成する以前の
ヘリングボーン形状は軸方向に対称であってもよいし、
移動元側経路の方を所定長さ長く延ばした非対称であっ
てもよい。いずれにしても第二の溝を1本形成すること
により移動元側経路全体の溝の密度は2倍になり、2本
形成すれば3倍になり、ポンプ力が向上する。A second means for making the movement-source-side path relatively dense is to form a groove on the radial bearing surface into a herringbone shape, and form a second groove between adjacent grooves in the movement-source-side path. That is. In this case, the herringbone shape before forming the second groove may be axially symmetrical,
It may be asymmetric in which the movement source side route is extended by a predetermined length. In any case, by forming one second groove, the density of the grooves in the entire movement source side path is doubled, and when two grooves are formed, the density is tripled and the pumping power is improved.
【0012】移動元側経路を相対的に密にする第三の手
段は、前記ラジアル軸受面の溝を移動先側経路よりも移
動元側経路の方が所定長さ長く延びたヘリングボーン形
状とし、その延長部分の円周線に対する角度を非延長部
分のそれよりも小さくすることである。これにより、同
じ勾配で移動元側経路を延長させる場合と比べて延長部
分の軸方向長さが同じであっても溝と溝との間隔が狭ま
り、溝の密度を高めることができる。A third means for making the movement-source-side path relatively dense is a herringbone shape in which the groove on the radial bearing surface extends a predetermined length longer in the movement-source-side path than in the movement-destination-side path. , The angle of the extension with respect to the circumference is smaller than that of the non-extension. As a result, compared with the case where the movement source side path is extended with the same gradient, the interval between the grooves is narrowed even if the axial length of the extended portion is the same, and the density of the grooves can be increased.
【0013】移動元側経路を相対的に密にする第四の手
段は、前記ラジアル軸受面の溝を移動先側経路よりも移
動元側経路の方が所定長さ長く延びたヘリングボーン形
状とし、その延長部分の深さを非延長部分よりも深くす
ることである。溝の平面積は変わらないが、深さを2倍
にすることで同じ深さの第二の溝を1本形成する場合に
近似したポンプ力向上を期待できる。A fourth means for making the movement-source side path relatively dense is a herringbone shape in which the groove on the radial bearing surface extends a predetermined length longer in the movement-source-side path than in the movement-destination-side path. , The depth of the extension is deeper than that of the non-extension. Although the plane area of the groove does not change, doubling the depth can be expected to improve the pumping force similar to the case where one second groove having the same depth is formed.
【0014】一方、前記スラスト軸受面で移動元側経路
を相対的に密にする一つの手段は、スラスト軸受面の溝
をスパイラル形状とし、その移動元側経路の隣り合う溝
間に第二の溝を形成することである。スパイラルの曲率
や第二の溝の長さなどにも依存するが、第二の溝の本数
に応じて溝の密度が高まることは確かである。On the other hand, one means for making the moving-source-side path relatively dense on the thrust bearing surface is to make the groove on the thrust-bearing surface spiral, and to provide a second groove between adjacent grooves of the moving-source side path. Forming a groove. Although it depends on the curvature of the spiral and the length of the second groove, it is certain that the density of the grooves increases with the number of the second grooves.
【0015】同じくもう一つの手段は、前記スラスト軸
受面の溝をヘリングボーン形状とし、その移動元側経路
の隣り合う溝間に第二の溝を形成することである。スパ
イラル同様にヘリングボーンの曲率や第二の溝の長さな
どにも依存するが、第二の溝の本数に応じて溝の密度が
高まることは確かである。Similarly, another means is to make the groove of the thrust bearing surface into a herringbone shape, and to form a second groove between the adjacent grooves of the movement source side path. Like the spiral, it depends on the curvature of the herringbone and the length of the second groove, but it is certain that the density of the grooves increases with the number of the second grooves.
【0016】そして、上記の動圧流体軸受装置と、その
回転部材に固着されたマグネットと、マグネットと共同
して回転力を生じるために通電可能に静止部材に設けら
れたステータを備えるスピンドルモーターは、潤滑流体
を漏出することのない高速回転の駆動源となる。A spindle motor having the above-mentioned hydrodynamic bearing device, a magnet fixed to its rotating member, and a stator provided on a stationary member so as to be energized so as to generate a rotational force in cooperation with the magnet, It becomes a driving source of high-speed rotation that does not leak the lubricating fluid.
【0017】[0017]
【発明の実施の形態】−実施形態1−
この発明の実施形態について図1〜図4を参照して説明
する。図1はこの発明の動圧流体軸受装置を適用する記
録ディスク駆動用スピンドルモーターを示す軸方向断面
図、図2は図1のモーターのラジアル軸受面の要部を示
す正面図、図3はこの実施形態のラジアル軸受面の溝を
示す正面図である。尚、図3において塗りつぶし領域が
溝、白抜き領域が溝間の丘である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an axial sectional view showing a spindle motor for driving a recording disk to which a hydrodynamic bearing device of the present invention is applied, FIG. 2 is a front view showing a main part of a radial bearing surface of the motor of FIG. 1, and FIG. It is a front view which shows the groove | channel of the radial bearing surface of embodiment. In FIG. 3, the filled area is a groove and the white area is a hill between the grooves.
【0018】モーター1は、記録ディスクDを回転させ
る回転部材としてのローター2及び静止部材としてのブ
ラケット3を備えている。ローター2は、回転軸4及び
その一方の端に固定された円盤状のハブ5からなり、ハ
ブ5の周縁には回転軸4と同方向すなわち図面の下方に
延びる壁が形成され、その壁の内側にマグネット6が取
り付けられている。The motor 1 has a rotor 2 as a rotating member for rotating the recording disk D and a bracket 3 as a stationary member. The rotor 2 is composed of a rotating shaft 4 and a disk-shaped hub 5 fixed to one end of the rotating shaft 4. A wall extending in the same direction as the rotating shaft 4, that is, downward in the drawing is formed on the peripheral edge of the hub 5. The magnet 6 is attached inside.
【0019】ブラケット3は、回転軸4と同心円状の貫
通孔が形成されたブラケット本体31と、そのブラケッ
ト本体31と回転軸4との間に嵌合された円筒状の支持
部材32と、支持部材32の開口端面に固定されて回転
軸4のハブ5側と反対側の端面と対向する円盤状のカバ
ー33とからなる。ブラケット本体31には貫通孔の周
縁にハブ5に向かって延びる円筒状の壁が形成され、そ
の壁の外周面にステータ7が固定されている。ステータ
7は図略のリードと結線されていて外部より通電可能で
ある。The bracket 3 includes a bracket main body 31 having a through hole concentric with the rotary shaft 4, a cylindrical support member 32 fitted between the bracket main body 31 and the rotary shaft 4, and a support. The disk-shaped cover 33 is fixed to the open end surface of the member 32 and faces the end surface of the rotary shaft 4 opposite to the hub 5 side. A cylindrical wall extending toward the hub 5 is formed on the periphery of the through hole in the bracket body 31, and the stator 7 is fixed to the outer peripheral surface of the wall. The stator 7 is connected to unillustrated leads and can be energized from the outside.
【0020】回転軸4の自由端には環状の切り欠きが形
成され、この切り欠きに回転軸4の外周面よりも径方向
外方に突出するリング41が固定されるとともに、この
リング41に対向する支持部材32の内周面には環状の
凹部42が形成されており、リング41と凹部42とが
嵌合することで回転軸4の抜け止めがなされている。An annular notch is formed at the free end of the rotary shaft 4, and a ring 41 protruding radially outward from the outer peripheral surface of the rotary shaft 4 is fixed to the notch, and the ring 41 is fixed to the ring 41. An annular recess 42 is formed on the inner peripheral surface of the opposing support member 32, and the ring 41 and the recess 42 are fitted together to prevent the rotary shaft 4 from coming off.
【0021】そして、支持部材32の内周面はラジアル
軸受面34となり、このラジアル軸受面34とこれに対
向する回転軸4の外周面との間に潤滑流体8が保持され
る。また、支持部材32のハブ5側端面はスラスト軸受
面35となり、このスラスト軸受面35とこれに対向す
る支持部材32の上面との間に潤滑流体8が保持され
る。そして、ラジアル軸受面34側の潤滑流体とスラス
ト軸受面35側の潤滑流体とは連続している。これらの
軸受面34,35又はこれらと対向する回転部材側の面
には後述所定の動圧発生用溝9,10が各々形成されて
いる。これらの動圧発生用溝によって回転時にはラジア
ル軸受面34と回転軸4の外周面との間に保持された潤
滑流体にラジアル荷重支持圧が発生し、これによりラジ
アル動圧軸受部が構成され、またスラスト軸受面35と
ハブ5の下面との間に保持された潤滑流体にスラスト荷
重支持圧が発生し、これによりスラスト動圧軸受部が構
成され、回転部材が静止部材に対して非接触状態を保っ
ている。The inner peripheral surface of the support member 32 serves as a radial bearing surface 34, and the lubricating fluid 8 is retained between the radial bearing surface 34 and the outer peripheral surface of the rotary shaft 4 facing the radial bearing surface 34. The end surface of the support member 32 on the hub 5 side becomes a thrust bearing surface 35, and the lubricating fluid 8 is held between the thrust bearing surface 35 and the upper surface of the support member 32 facing the thrust bearing surface 35. The lubricating fluid on the radial bearing surface 34 side and the lubricating fluid on the thrust bearing surface 35 side are continuous. Predetermined dynamic pressure generating grooves 9 and 10 are formed on the bearing surfaces 34 and 35, or on the surface facing the rotating member, which faces the bearing surfaces 34 and 35, respectively. Due to these dynamic pressure generating grooves, a radial load supporting pressure is generated in the lubricating fluid held between the radial bearing surface 34 and the outer peripheral surface of the rotary shaft 4 during rotation, whereby a radial dynamic pressure bearing portion is constituted, Further, a thrust load supporting pressure is generated in the lubricating fluid held between the thrust bearing surface 35 and the lower surface of the hub 5, whereby a thrust dynamic pressure bearing portion is constituted, and the rotating member is in a non-contact state with the stationary member. Is kept.
【0022】ラジアル軸受面34に形成されている動圧
発生用溝9は、図2に示すように軸方向に非対称なヘリ
ングボーン形状をなし、円周方向に繰り返して形成され
ている(尚、本実施形態のポンプ作用をわかりやすく説
明するために図2ではヘリングボーン状溝のみを示して
いるが、実際には図3とともに後述するように第二の溝
が形成されている)。ラジアル軸受面34に面する潤滑
流体は溝9のポンプ作用によって上下両端部より中央部
の折り返し点に向かおうとするが、この実施形態では折
り返し点9aを境に上側の経路9bよりも下側の経路9
cの方が所定長さだけ長く延ばされた非対称形状である
から、下側のポンプ作用が勝って潤滑流体は図面の上向
き即ちスラスト軸受面35に向かって移動しようとす
る。従って、この実施形態では下側経路9cが移動元
側、上側経路9bが移動先側となる。一方、ハブ5の下
面(スラスト軸受面35と対向する面)には、径方向外
方から軸芯に向かって潤滑流体の移動圧力を発生するス
パイラル状の動圧発生用溝(図1では破線)10が形成
されている。これによりローター2の回転時には潤滑流
体8を径方向内方すなわちラジアル軸受部に向かわせる
動圧が発生する。そして、ラジアル動圧軸受部の潤滑流
体とスラスト動圧軸受部の潤滑流体とは連続し、両軸受
部が直結されていることにより、動圧発生用溝9による
ポンプ作用と動圧発生用溝10によるポンプ作用とによ
り両軸受部に跨って充填された潤滑流体の圧力が高めら
れ、ラジアル荷重支持圧及びスラスト荷重支持圧が発生
する。ここで、アンバランスヘリングボーン状動圧発生
用溝9により発生するスラスト動圧軸受部へのポンプ圧
は、回転の初期にはスパイラル状動圧発生用溝10によ
り発生するラジアル動圧軸受部へのポンプ圧より大に設
定されている。このためローター2回転時にはラジアル
動圧軸受部の潤滑流体をスラスト側に圧送する力がスラ
スト動圧軸受部の潤滑流体をラジアル側に圧送する力に
勝り、両軸受部に連続して充填された潤滑流体にスラス
ト側への移動圧力が生じる。この潤滑流体の移動に伴っ
て、ラジアル動圧軸受部の移動元側の気液界面8a(図
1)が動圧発生用溝9において移動するに従って当該動
圧発生用溝9によるスラスト側への移動圧力が低下して
いくため、スラスト側からのポンプ圧とラジアル側から
のポンプ圧とが次第に釣り合うようになり、やがて潤滑
流体の移動が止まり、この状態が維持されるようにな
る。気液界面8aの釣り合いの位置は、温度、負荷、モ
ーターの姿勢等によって自動的に調整される。The dynamic pressure generating groove 9 formed on the radial bearing surface 34 has a herringbone shape which is asymmetric in the axial direction as shown in FIG. Although only the herringbone-shaped groove is shown in FIG. 2 in order to explain the pumping action of the present embodiment in an easy-to-understand manner, the second groove is actually formed as will be described later with FIG. 3). The lubricating fluid facing the radial bearing surface 34 tends to go from the upper and lower end portions toward the turning point at the central portion by the pumping action of the groove 9, but in this embodiment, the turning point 9a serves as a boundary and is lower than the upper path 9b. Route 9
Since c has an asymmetrical shape elongated by a predetermined length, the lower pumping action prevails and the lubricating fluid tends to move upward in the drawing, that is, toward the thrust bearing surface 35. Therefore, in this embodiment, the lower route 9c is the source side and the upper route 9b is the destination side. On the other hand, on the lower surface of the hub 5 (the surface facing the thrust bearing surface 35), a spiral dynamic pressure generating groove (broken line in FIG. 1) that generates a moving pressure of the lubricating fluid from the outside in the radial direction toward the shaft core. ) 10 is formed. As a result, when the rotor 2 rotates, a dynamic pressure is generated that directs the lubricating fluid 8 radially inward, that is, toward the radial bearing portion. The lubricating fluid of the radial dynamic pressure bearing portion and the lubricating fluid of the thrust dynamic pressure bearing portion are continuous, and both bearing portions are directly connected, so that the pump action and the dynamic pressure generating groove by the dynamic pressure generating groove 9 are formed. Due to the pumping action of 10, the pressure of the lubricating fluid filled over both bearing portions is increased, and a radial load supporting pressure and a thrust load supporting pressure are generated. Here, the pump pressure to the thrust dynamic pressure bearing portion generated by the unbalanced herringbone dynamic pressure generating groove 9 is applied to the radial dynamic pressure bearing portion generated by the spiral dynamic pressure generating groove 10 at the initial stage of rotation. It is set higher than the pump pressure of. Therefore, when the rotor rotates twice, the force for pumping the lubricating fluid in the radial dynamic pressure bearing portion to the thrust side exceeds the force for pumping the lubricating fluid in the thrust dynamic pressure bearing portion to the radial side, and both bearing portions are continuously filled. A moving pressure to the thrust side is generated in the lubricating fluid. With the movement of the lubricating fluid, as the gas-liquid interface 8a (FIG. 1) on the moving side of the radial dynamic pressure bearing portion moves in the dynamic pressure generating groove 9, the dynamic pressure generating groove 9 moves to the thrust side. Since the moving pressure decreases, the pump pressure from the thrust side and the pump pressure from the radial side gradually balance, and eventually the movement of the lubricating fluid stops and this state is maintained. The equilibrium position of the gas-liquid interface 8a is automatically adjusted depending on the temperature, the load, the attitude of the motor, and the like.
【0023】更にこの実施形態では、図3に示すように
折り返し点9a同士を結ぶ円周線Pを中心とするとき、
対称領域Cを除く下側経路9cの延長領域Eに下側経路
9cと平行に第二の溝9dが下側経路9c1本に対して
2本等間隔に形成されている。その結果、移動元側経路
全体としてのポンプ作用が更に向上する。この点、従来
から知られている動圧発生用溝が対称領域Cだけしか形
成されていなかったり、延長領域Eが形成されているに
しても第二の溝までは形成されていないのと著しく相違
する。Further, in this embodiment, as shown in FIG. 3, when the circumference P connecting the turning points 9a is centered,
In the extension area E of the lower path 9c excluding the symmetrical area C, second grooves 9d are formed in parallel with the lower path 9c at equal intervals with respect to one lower path 9c. As a result, the pumping action of the entire movement source side path is further improved. In this respect, it is remarkable that the conventionally known dynamic pressure generating groove is formed only in the symmetrical area C, or even if the extended area E is formed, the second groove is not formed. Be different.
【0024】上述のように、ラジアル動圧軸受部におけ
る潤滑流体の移動元側の気液界面は、ローター2の回転
時には動圧発生用溝9の下側経路9cの位置で落ち着
く。そして、ローター2が回転することにより、この気
液界面では動圧発生用溝9の丘と溝が連続的に繰り返さ
れ、ラジアル軸受面34と回転軸4の外周面との間隙の
狭い広いを繰り返すことになる。従って、気液界面は脈
動するように波打ちをする。そして、気液界面における
動圧発生用溝の数が少ない場合は波の数は少なく振幅は
大きくなり、気液界面の波動が気泡を巻き込みやすくな
る。本実施形態では、図3とともに説明したように、動
圧発生用溝9のうち気液界面が位置する延長領域に第二
の溝9dを形成して、この部分の溝数を増しているの
で、気液界面における波動の振幅が小さくなって気泡の
巻き込みを生じにくい構造となっている。As described above, the gas-liquid interface on the moving source side of the lubricating fluid in the radial dynamic pressure bearing portion is settled at the position of the lower path 9c of the dynamic pressure generating groove 9 when the rotor 2 rotates. Then, as the rotor 2 rotates, the hills and grooves of the dynamic pressure generating groove 9 are continuously repeated at this gas-liquid interface, and a narrow and wide gap between the radial bearing surface 34 and the outer peripheral surface of the rotary shaft 4 is created. I will repeat. Therefore, the gas-liquid interface undulates so as to pulsate. When the number of dynamic pressure generating grooves at the gas-liquid interface is small, the number of waves is small and the amplitude is large, and the waves at the gas-liquid interface are likely to entrain bubbles. In the present embodiment, as described with reference to FIG. 3, the second groove 9d is formed in the extension region of the dynamic pressure generating groove 9 where the gas-liquid interface is located, and the number of grooves in this portion is increased. The structure has a structure in which the wave amplitude at the gas-liquid interface is reduced and air bubbles are less likely to be involved.
【0025】尚、第二の溝9dの深さは、下側経路9c
の深さと同じである必要はなく、下側経路9cよりも深
く形成してポンプ作用の一層の向上を図っても良い。ま
た、動圧発生用の溝はラジアル軸受面34と対向する回
転軸4の外周面に形成しても良い。スラスト軸受面35
側の動圧発生用溝については実施形態4及び実施形態5
で詳述する。The depth of the second groove 9d is determined by the lower path 9c.
Does not have to be the same as the depth of the above, and may be formed deeper than the lower passage 9c to further improve the pumping action. Further, the groove for generating dynamic pressure may be formed on the outer peripheral surface of the rotary shaft 4 facing the radial bearing surface 34. Thrust bearing surface 35
The dynamic pressure generating grooves on the side are the fourth and fifth embodiments.
See in detail.
【0026】−実施形態2−
この発明の第二の実施形態を図4を参照して説明する。
図4はラジアル軸受面の溝を示す正面図である。この実
施形態でも溝19はヘリングボーン形状をなすが、実施
形態1と異なり延長領域Eは無い。代わって下側経路1
9c間に下側経路19cと平行に第二の溝19dが形成
されている。この場合も溝19dの深さは溝19と同じ
でもよいし、溝19より深くても良い。その他の構成は
実施形態1と同じである。-Second Embodiment- A second embodiment of the present invention will be described with reference to FIG.
FIG. 4 is a front view showing a groove on the radial bearing surface. In this embodiment as well, the groove 19 has a herringbone shape, but unlike the first embodiment, there is no extension region E. Lower path 1 instead
A second groove 19d is formed between 9c and parallel to the lower path 19c. Also in this case, the depth of the groove 19d may be the same as that of the groove 19 or may be deeper than the groove 19. Other configurations are the same as those in the first embodiment.
【0027】その結果、溝19dの分だけ下側のポンプ
作用が勝って潤滑流体は図面の上向き即ちスラスト軸受
面に向かって移動しようとする。延長領域Eを確保しな
くてもラジアル軸受部における潤滑流体にスラスト側へ
のポンプ圧を確保することができるので、軸長の短い超
薄型モーターに有用である。そして、この実施形態の場
合も気液界面での気泡の巻き込みを低減できる。As a result, the pumping action on the lower side is predominant due to the groove 19d, and the lubricating fluid tends to move upward in the drawing, that is, toward the thrust bearing surface. Since the pump pressure to the thrust side can be secured to the lubricating fluid in the radial bearing portion without securing the extension region E, it is useful for an ultra-thin motor with a short axial length. Further, also in the case of this embodiment, it is possible to reduce the inclusion of bubbles at the gas-liquid interface.
【0028】−実施形態3−
この発明の第三の実施形態を図5を参照して説明する。
図5はラジアル軸受面の溝を示す正面図である。この実
施形態でも溝29はヘリングボーン形状をなし、また実
施形態1と同じく延長領域Eが存在する。但し、下側経
路29c間に第二の溝は形成されておらず、代わって下
側経路29cの円周線との角度が延長領域Eにおいて対
称領域Cにおけるよりも小さくなっている。従って、延
長領域Eの面積が対称領域Cの面積の1/2としても、
下側経路29cの延長領域Eにおける長さL1はL2よ
りも長い。この点、下側経路の勾配が一様でL1とL2
が等しい従来の非対称ヘリングボーン形状と異なる。そ
の他の構成は実施形態1と同じである。-Embodiment 3-A third embodiment of the present invention will be described with reference to FIG.
FIG. 5 is a front view showing a groove on the radial bearing surface. Also in this embodiment, the groove 29 has a herringbone shape, and the extension region E exists as in the first embodiment. However, the second groove is not formed between the lower path 29c, and instead, the angle with the circumferential line of the lower path 29c is smaller in the extension area E than in the symmetrical area C. Therefore, even if the area of the extension area E is 1/2 of the area of the symmetrical area C,
The length L1 in the extension region E of the lower path 29c is longer than L2. At this point, the gradient of the lower path is uniform and L1 and L2
Are different from the conventional asymmetric herringbone shape. Other configurations are the same as those in the first embodiment.
【0029】その結果、下側のポンプ作用が勝って潤滑
流体は図面の上向き即ちスラスト軸受面に向かって移動
しようとし、しかもそのポンプ作用はL1=L2の従来
構成のものよりも大きい。As a result, the lower pumping action prevails, and the lubricating fluid tends to move upward in the drawing, that is, toward the thrust bearing surface, and the pumping action is greater than that of the conventional configuration of L1 = L2.
【0030】−実施形態4−
この発明の第四の実施形態を図1及び図6を参照して説
明する。以上の実施形態はすべてラジアル荷重支持圧を
発生させる溝の改良に関する。それに対して、この実施
形態はスラスト荷重支持圧を発生させる溝の例である。
図6は、図1のハブ5の底面図である。Fourth Embodiment A fourth embodiment of the present invention will be described with reference to FIGS. 1 and 6. All of the above embodiments relate to improvements in grooves that generate radial load bearing pressure. On the other hand, this embodiment is an example of the groove for generating the thrust load supporting pressure.
FIG. 6 is a bottom view of the hub 5 of FIG.
【0031】ハブ5の底面(スラスト軸受面35と対向
する面)には、径方向外方から軸芯に向かって集中する
スパイラル状の動圧発生用溝10(図1では破線)が形
成されている。これによりローターの回転時には潤滑流
体8を径方向内方に向かわせる動圧が発生する。従っ
て、この実施形態では溝10の全長のうち軸芯側半分が
移動先側経路、外側半分が移動元側経路となる。そし
て、隣り合う移動元側経路の中間に第二の溝10dが形
成されている。このため潤滑流体8を径方向内方に向か
わせるポンプ作用が溝10dの形成されていない構成に
比べて向上する。尚、この実施形態は実施形態1〜3と
併用しても良いし、単独でモーターに適用しても良い。A spiral dynamic pressure generating groove 10 (broken line in FIG. 1) is formed on the bottom surface of the hub 5 (the surface facing the thrust bearing surface 35), which concentrates from the outside in the radial direction toward the axis. ing. As a result, when the rotor rotates, a dynamic pressure is generated that directs the lubricating fluid 8 inward in the radial direction. Therefore, in this embodiment, the half of the entire length of the groove 10 on the axial center side is the destination side path and the outer half is the source side path. The second groove 10d is formed in the middle of the adjacent movement source side paths. Therefore, the pump action for directing the lubricating fluid 8 inward in the radial direction is improved as compared with the configuration in which the groove 10d is not formed. It should be noted that this embodiment may be used in combination with the first to third embodiments, or may be applied alone to a motor.
【0032】−実施形態5−
この発明の第五の実施形態を図7を参照して説明する。
図7は図1のモーターに適用されるもう一つのハブ15
の底面図である。ハブ15の底面には、ヘリングボーン
形状の動圧発生用溝20が円周方向に繰り返して形成さ
れている。ヘリングボーンの折り返し点の両側は互いに
対称であっても非対称であっても良い。但し、折り返し
点の外側の隣り合う溝20間に第二の溝20dが形成さ
れている。これにより潤滑流体を軸芯に向かわせるポン
プ作用が増加する。しかもハブ15の底面積を増やなく
ても第二の溝20dの本数を増やすことでポンプ作用の
さらなる増加を図ることができる。-Embodiment 5-A fifth embodiment of the present invention will be described with reference to FIG.
FIG. 7 shows another hub 15 applied to the motor of FIG.
FIG. Herringbone-shaped dynamic pressure generating grooves 20 are repeatedly formed in the bottom surface of the hub 15 in the circumferential direction. Both sides of the turning point of the herringbone may be symmetrical or asymmetrical to each other. However, the second groove 20d is formed between the adjacent grooves 20 on the outside of the turning point. This increases the pumping action of the lubricating fluid towards the shaft core. Moreover, the pump action can be further increased by increasing the number of the second grooves 20d without increasing the bottom area of the hub 15.
【0033】[0033]
【発明の効果】以上のように、この発明の軸受装置によ
れば、潤滑流体に回転時の荷重支持圧を発生させるため
に折り返し点を有する動圧発生用の溝が、折り返し点を
境に一方の側を密に形成するだけで、潤滑流体を所定方
向に移動させるポンプ作用が向上する。このため潤滑流
体を漏出させることなく安定して軸受面に保持すること
ができるうえ、軸受面積が狭くても足りる。As described above, according to the bearing device of the present invention, the dynamic pressure generating groove having the turning point for generating the load supporting pressure in the lubricating fluid at the time of rotation has the turning point as a boundary. By simply forming one side densely, the pump action for moving the lubricating fluid in the predetermined direction is improved. Therefore, the lubricating fluid can be stably held on the bearing surface without leaking, and a small bearing area is sufficient.
【図1】 この発明の動圧流体軸受装置が適用されるス
ピンドルモーターを示す軸方向断面図である。FIG. 1 is an axial sectional view showing a spindle motor to which a hydrodynamic bearing device of the present invention is applied.
【図2】 図1のラジアル軸受面の要部を示す正面図で
ある。FIG. 2 is a front view showing a main part of the radial bearing surface of FIG.
【図3】 実施形態1のラジアル軸受面の溝を示す正面
図である。FIG. 3 is a front view showing a groove on the radial bearing surface of the first embodiment.
【図4】 実施形態2のラジアル軸受面の溝を示す正面
図である。FIG. 4 is a front view showing a groove on a radial bearing surface according to a second embodiment.
【図5】 実施形態3のラジアル軸受面の溝を示す正面
図である。FIG. 5 is a front view showing a groove on a radial bearing surface according to a third embodiment.
【図6】 実施形態4のスラスト軸受面に対向するハブ
の底面図である。FIG. 6 is a bottom view of the hub facing the thrust bearing surface of the fourth embodiment.
【図7】 実施形態5のスラスト軸受面に対向するハブ
の底面図である。FIG. 7 is a bottom view of the hub facing the thrust bearing surface of the fifth embodiment.
1 モーター 2 ローター 3 ブラケット 4、14 回転軸 5、15 ハブ 6 マグネット 7 ステータ 8 潤滑流体 32 支持部材 34 ラジアル軸受面 35 スラスト軸受面 9、19、29、10、20 溝(動圧発生用) 9a、19a、29a 折り返し点 9b、19b、29b 経路(移動先側) 9c、19c。29c 経路(移動元側) 9d、19d、10d、20d 第二の溝 1 motor 2 rotors 3 brackets 4,14 rotation axis 5, 15 hubs 6 magnets 7 Stator 8 Lubricating fluid 32 Support member 34 Radial bearing surface 35 Thrust bearing surface 9, 19, 29, 10, 20 groove (for dynamic pressure generation) 9a, 19a, 29a Turning point 9b, 19b, 29b Route (destination side) 9c, 19c. 29c route (source side) 9d, 19d, 10d, 20d Second groove
【手続補正書】[Procedure amendment]
【提出日】平成14年4月1日(2002.4.1)[Submission date] April 1, 2002 (2002.4.1)
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図1[Name of item to be corrected] Figure 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 [Figure 1]
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J011 AA07 BA02 BA08 CA03 JA02 KA02 KA03 5H605 BB05 BB10 BB14 BB19 EB02 EB06 5H607 BB01 BB07 BB09 BB14 BB17 BB25 GG01 GG02 GG09 GG12 GG15 5H621 GA01 HH01 JK19 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 3J011 AA07 BA02 BA08 CA03 JA02 KA02 KA03 5H605 BB05 BB10 BB14 BB19 EB02 EB06 5H607 BB01 BB07 BB09 BB14 BB17 BB25 GG01 GG02 GG09 GG12 GG15 5H621 GA01 HH01 JK19
Claims (8)
る静止部材と、これらの軸受面で支持され静止部材に対
して相対的に軸回りに回転自在な回転部材と、回転部材
と軸受面との間に保持される潤滑流体とを備え、 ラジアル軸受面及び/もしくはこれと対向する回転部材
の表面には潤滑流体をスラスト軸受面に向けて移動させ
る動圧が発生するように、回転方向に規則的に繰り返す
複数の動圧発生用の溝が形成され、並びにスラスト軸受
面及び/もしくはこれと対向する回転部材の表面には潤
滑流体をラジアル軸受け面に向けて移動させる動圧が発
生するように、回転方向に規則的に繰り返す複数の動圧
発生用の溝が形成されている動圧流体軸受装置におい
て、前記溝が、潤滑流体の移動先側経路におけるよりも
移動元側経路における方が密に形成されていることを特
徴とする動圧流体軸受装置。1. A stationary member having a radial bearing surface and a thrust bearing surface, a rotating member supported by these bearing surfaces and rotatable about an axis relative to the stationary member, and the rotating member and the bearing surface. And a lubricating fluid retained between them. The radial bearing surface and / or the surface of the rotary member facing the radial bearing surface is regularly arranged in the rotating direction so that a dynamic pressure for moving the lubricating fluid toward the thrust bearing surface is generated. A plurality of grooves for dynamic pressure generation are repeatedly formed, and dynamic pressure for moving the lubricating fluid toward the radial bearing surface is generated on the surface of the thrust bearing surface and / or the rotating member facing the thrust bearing surface. In a hydrodynamic bearing device in which a plurality of grooves for generating a dynamic pressure are regularly formed in the rotation direction, the groove is formed in the movement source side path more than in the movement destination side path of the lubricating fluid. A hydrodynamic bearing device, which is densely formed.
りも移動元側経路の方が所定長さ長く延びたヘリングボ
ーン形状をなし、その延長部分の隣り合う溝間に第二の
溝が形成されていることによって移動元側経路で密にな
っている請求項1に記載の動圧流体軸受装置。2. A groove on the radial bearing surface has a herringbone shape in which the movement source side path extends a predetermined length longer than the movement destination side path, and a second groove is formed between adjacent grooves of the extended portion. The hydrodynamic bearing device according to claim 1, wherein the fluid pressure bearing device is dense in the movement source side path due to the formation of the.
形状をなし、その移動元側経路の隣り合う溝間に第二の
溝が形成されていることによって移動元側経路で密にな
っている請求項1に記載の動圧流体軸受装置。3. A groove on the radial bearing surface has a herringbone shape, and a second groove is formed between adjacent grooves on the movement source side path, whereby the movement source side path is dense. The hydrodynamic bearing device according to claim 1.
りも移動元側経路の方が所定長さ長く延びたヘリングボ
ーン形状をなし、その延長部分の円周線に対する角度を
非延長部分のそれよりも小さくすることによって移動元
側経路で密になっている請求項1に記載の動圧流体軸受
装置。4. The groove of the radial bearing surface has a herringbone shape in which the movement-source-side path extends a predetermined length longer than the movement-destination-side path, and the angle of the extended portion with respect to the circumferential line is not extended. 2. The hydrodynamic bearing device according to claim 1, wherein the fluid pressure bearing device is made denser by making the size smaller than that.
りも移動元側経路の方が所定長さ長く延びたヘリングボ
ーン形状をなし、その延長部分の深さを非延長部分より
も深くすることによって移動元側経路で密になっている
請求項1に記載の動圧流体軸受装置。5. The groove of the radial bearing surface has a herringbone shape in which the movement source side path extends a predetermined length longer than the movement destination side path, and the depth of the extended portion is deeper than that of the non-extended portion. 2. The hydrodynamic bearing device according to claim 1, wherein the fluid pressure bearing device is dense in the movement source side path.
をなし、その移動元側経路の隣り合う溝間に第二の溝が
形成されていることによって移動元側経路で密になって
いる請求項1に記載の動圧流体軸受装置。6. A groove on the thrust bearing surface is formed in a spiral shape, and a second groove is formed between adjacent grooves on the movement source side path, whereby the movement source side path is dense. Item 2. A hydrodynamic bearing device according to item 1.
形状をなし、その移動元側経路の隣り合う溝間に第二の
溝が形成されていることによって移動元側経路で密にな
っている請求項1に記載の動圧流体軸受装置。7. A groove on the thrust bearing surface has a herringbone shape, and a second groove is formed between adjacent grooves on the movement source side path, whereby the movement source side path is dense. The hydrodynamic bearing device according to claim 1.
軸受装置と、 その回転部材に固着されたマグネットと、 マグネットと共同して回転力を生じるために通電可能に
静止部材に設けられたステータを備えることを特徴とす
るスピンドルモーター。8. A hydrodynamic bearing device according to any one of claims 1 to 7, a magnet fixed to a rotating member of the hydrodynamic bearing device, and a stationary member that can be energized to generate a rotating force in cooperation with the magnet. A spindle motor comprising a stator provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001354478A JP2003156035A (en) | 2001-11-20 | 2001-11-20 | Dynamic pressure fluid bearing device, and spindle motor using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001354478A JP2003156035A (en) | 2001-11-20 | 2001-11-20 | Dynamic pressure fluid bearing device, and spindle motor using it |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007077922A Division JP2007183000A (en) | 2007-03-23 | 2007-03-23 | Hydrodynamic fluid bearing device and spindle motor therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003156035A true JP2003156035A (en) | 2003-05-30 |
Family
ID=19166331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001354478A Pending JP2003156035A (en) | 2001-11-20 | 2001-11-20 | Dynamic pressure fluid bearing device, and spindle motor using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003156035A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005046027A1 (en) * | 2003-11-05 | 2005-05-19 | G & W Technologies, Inc. | Fluid dynamic bearing motor |
JP2006207708A (en) * | 2005-01-28 | 2006-08-10 | Victor Co Of Japan Ltd | Motor |
CN100370158C (en) * | 2004-08-17 | 2008-02-20 | 鸿富锦精密工业(深圳)有限公司 | Fluid dynamic pressure bearing |
JP2011038564A (en) * | 2009-08-07 | 2011-02-24 | Alphana Technology Co Ltd | Disk driving device |
US8300355B2 (en) | 2009-08-26 | 2012-10-30 | Minebea Co., Ltd. | Fluid dynamic bearing, spindle motor having the fluid dynamic bearing, and storage apparatus having the spindle motor |
US9030069B2 (en) | 2012-07-04 | 2015-05-12 | Samsung Electro-Mechanics Co., Ltd. | Hydrodynamic bearing assembly and spindle motor having the same |
DE102014010440A1 (en) * | 2014-07-16 | 2016-01-21 | Minebea Co., Ltd. | Bearing structures for a fluid dynamic bearing |
CN112516455A (en) * | 2020-11-18 | 2021-03-19 | 深圳核心医疗科技有限公司 | Pump body and ventricular assist system |
-
2001
- 2001-11-20 JP JP2001354478A patent/JP2003156035A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005046027A1 (en) * | 2003-11-05 | 2005-05-19 | G & W Technologies, Inc. | Fluid dynamic bearing motor |
CN100370158C (en) * | 2004-08-17 | 2008-02-20 | 鸿富锦精密工业(深圳)有限公司 | Fluid dynamic pressure bearing |
JP2006207708A (en) * | 2005-01-28 | 2006-08-10 | Victor Co Of Japan Ltd | Motor |
JP4567476B2 (en) * | 2005-01-28 | 2010-10-20 | アルファナテクノロジー株式会社 | motor |
JP2011038564A (en) * | 2009-08-07 | 2011-02-24 | Alphana Technology Co Ltd | Disk driving device |
US8300355B2 (en) | 2009-08-26 | 2012-10-30 | Minebea Co., Ltd. | Fluid dynamic bearing, spindle motor having the fluid dynamic bearing, and storage apparatus having the spindle motor |
US9030069B2 (en) | 2012-07-04 | 2015-05-12 | Samsung Electro-Mechanics Co., Ltd. | Hydrodynamic bearing assembly and spindle motor having the same |
DE102014010440A1 (en) * | 2014-07-16 | 2016-01-21 | Minebea Co., Ltd. | Bearing structures for a fluid dynamic bearing |
CN112516455A (en) * | 2020-11-18 | 2021-03-19 | 深圳核心医疗科技有限公司 | Pump body and ventricular assist system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6672767B2 (en) | Dynamic bearing device and motor having the same | |
JP2000186717A (en) | Fluid dynamic pressure bearing, spindle motor, and rotor device | |
JP2003156035A (en) | Dynamic pressure fluid bearing device, and spindle motor using it | |
JP3514958B2 (en) | Fluid bearing device | |
JP2007024267A (en) | Fluid bearing device and motor equipped with the same | |
JP2006090524A (en) | Dynamic pressure fluid bearing | |
JP2015143576A (en) | Hydrodynamic bearing apparatus and spindle motor having same | |
WO2005046029A1 (en) | Motor | |
JP2004190855A (en) | Spindle motor | |
JP3955946B2 (en) | Hydrodynamic bearing, spindle motor, and recording disk drive | |
JP3984449B2 (en) | Fluid dynamic bearing, spindle motor using the same, and disk drive using the spindle motor | |
JP2007183000A (en) | Hydrodynamic fluid bearing device and spindle motor therewith | |
JP2005204497A (en) | Spindle motor for disk drive | |
JP3745675B2 (en) | DYNAMIC PRESSURE BEARING DEVICE, MOTOR HAVING THE DEVICE, AND DISC DEVICE USING THE MOTOR | |
US8727623B2 (en) | Spindle motor | |
JP4202080B2 (en) | Hydrodynamic bearing device and spindle motor using the same | |
KR100281933B1 (en) | motor | |
JP4284055B2 (en) | DYNAMIC PRESSURE BEARING, SPINDLE MOTOR HAVING THE DYNAMIC PRESSURE BEARING, AND DISK DRIVE DEVICE USING THE SPINDLE MOTOR | |
JP3927392B2 (en) | Fluid dynamic bearing, spindle motor using the same, and disk drive using the spindle motor | |
KR100453332B1 (en) | Fluid dynamic bearing spindle motor | |
JP2003239950A (en) | Dynamic pressure bearing and motor | |
JPH1169716A (en) | Brushless dc motor | |
US20050094907A1 (en) | Fluid dynamic bearing motor | |
JPH1031188A (en) | Polygon scanner | |
JP2004183766A (en) | Dynamic pressure bearing, spindle motor with the dynamic pressure bearing, and disc driving device using the spindle motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060627 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060825 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070606 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070618 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081211 |