JP2003155536A - HIGH DUCTILE Cr AND PRODUCTION METHOD THEREFOR - Google Patents

HIGH DUCTILE Cr AND PRODUCTION METHOD THEREFOR

Info

Publication number
JP2003155536A
JP2003155536A JP2001354885A JP2001354885A JP2003155536A JP 2003155536 A JP2003155536 A JP 2003155536A JP 2001354885 A JP2001354885 A JP 2001354885A JP 2001354885 A JP2001354885 A JP 2001354885A JP 2003155536 A JP2003155536 A JP 2003155536A
Authority
JP
Japan
Prior art keywords
temperature
mass
powder
annealing treatment
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001354885A
Other languages
Japanese (ja)
Inventor
Toshiharu Noda
俊治 野田
Masahiko Morinaga
正彦 森永
Suminori Murata
純教 村田
Taisuke Harada
泰典 原田
Michihiko Fujine
道彦 藤根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001354885A priority Critical patent/JP2003155536A/en
Publication of JP2003155536A publication Critical patent/JP2003155536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high ductile Cr which has excellent high temperature strength, oxidation resistance and corrosion resistance and has high cold ductility, and to provide a production method therefor. SOLUTION: The high ductile Cr consists of pure Cr or a Cr alloy and has a cold fracture elongation of <=2.5%. The Cr alloy preferably contains one or more elements selected from, by mass, 0.1 to 1.0% V, 0.5 to 5.0% Mg, 0.1 to 2.0% Al2 O3 and 0.1 to 2.0% Y2 O3 , and the balance Cr with inevitable impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はCr高延性材料とそ
の製造方法に関し、更に詳しくは、常温での延性を発揮
するので機械加工が可能であり、Ni基超合金に比べて
耐熱性および耐高温腐蝕性が優れているCr高延性材料
とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Cr high ductility material and a method for producing the same. More specifically, it exhibits ductility at room temperature and can be machined, and has a higher heat resistance and a higher resistance than Ni-base superalloys. The present invention relates to a highly ductile Cr material having excellent high temperature corrosion resistance and a method for producing the same.

【0002】[0002]

【従来の技術】従来、ジェットエンジン,ガスタービン
および各種化学プラントなどの、高温強度,高温耐酸化
性や高温耐腐蝕性が求められる部材の材料には、Ni基
超合金が用いられている。一般に、Ni基超合金は、N
iを基地とする合金であって、耐酸化性もしくは耐腐蝕
性を有する保護皮膜を生成するためのCrや、強度向上
のためのAl,Ti,Mo,W等を含んでおり、その融
点は1400℃以下である。
2. Description of the Related Art Conventionally, Ni-base superalloys have been used as materials for members such as jet engines, gas turbines and various chemical plants that are required to have high-temperature strength, high-temperature oxidation resistance and high-temperature corrosion resistance. Generally, Ni-based superalloys are
An alloy based on i, which contains Cr for forming a protective film having oxidation resistance or corrosion resistance, and Al, Ti, Mo, W, etc. for improving strength, the melting point of which is It is 1400 ° C or lower.

【0003】[0003]

【発明が解決しようとする課題】最近、上記した部材等
においては、効率向上のために、例えばガスタービンの
場合にはタービン入口温度を上げることが必要とされて
おり、当該箇所に用いられている部材に対しては、従来
のNi基超合金よりも高温特性が優れている材料が要求
されている。
Recently, in the above-mentioned members and the like, in order to improve the efficiency, for example, in the case of a gas turbine, it is necessary to raise the turbine inlet temperature, and it is used in the relevant portion. For the existing members, materials having higher temperature characteristics than conventional Ni-based superalloys are required.

【0004】また、Niは高価であり、省資源の面から
もNi基超合金の代替材料が求められている。このよう
なことから、融点が1875℃を超え、かつ、大気中で
自己修復性を有する安定な保護皮膜(Cr23)を形成
する純CrならびにCr基合金の耐熱・耐高温腐蝕材料
としての利用が検討されている。
Further, Ni is expensive, and there is a demand for a substitute material for the Ni-base superalloy from the viewpoint of resource saving. As a result, as a heat-resistant and high-temperature corrosion-resistant material for pure Cr and Cr-based alloys, which has a melting point above 1875 ° C and forms a stable protective film (Cr 2 O 3 ) that has self-repairing properties in the atmosphere. The use of is being considered.

【0005】しかしながら、純CrおよびCr基合金は
常温において延性を全く示さず脆いため、実質的に機械
加工が不可能であるという問題がある。本発明は、純C
rおよびCr基合金における上記した問題を解決し、高
温における強度,耐酸化性,および耐腐蝕性に優れ、か
つ良好な常温延性を有しているCr高延性材料とその製
造方法の提供を目的とする。
However, since pure Cr and Cr-based alloys are not brittle at room temperature and are brittle, there is a problem that they cannot be machined substantially. The present invention is pure C
An object of the present invention is to solve the above-mentioned problems in r- and Cr-based alloys, to provide a Cr high-ductility material having excellent strength, oxidation resistance, and corrosion resistance at high temperatures and good room-temperature ductility, and a method for producing the same. And

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記した
目的を達成するために、種々検討を重ねる過程におい
て、ある化学成分を有するCr基合金が常温延性を発揮
することを見出し、更にその化学成分について詳細な検
討を加えることにより、本発明のCr高延性材料を開発
するに至った。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have found that, in the course of various studies, a Cr-based alloy having a certain chemical component exhibits room temperature ductility, and further The detailed examination of the chemical components has led to the development of the Cr highly ductile material of the present invention.

【0007】それと同時に、本発明者らは、Cr基合金
の化学組成のみならず、純CrまたはCr基合金の常温
延性に対する加工処理または/および熱処理の与える影
響についても調査し、その結果として、本発明のCr高
延性材料の製造方法を開発するに至った。すなわち、本
発明においては、純CrまたはCr基合金からなり、常
温における破断伸びが2.5%以上であることを特徴と
するCr高延性材料が提供される。
At the same time, the present inventors investigated not only the chemical composition of the Cr-based alloy but also the effect of the working treatment and / or heat treatment on the room temperature ductility of pure Cr or Cr-based alloy, and as a result, The present invention has led to the development of a method for producing a Cr highly ductile material. That is, the present invention provides a Cr high ductility material comprising pure Cr or a Cr-based alloy and having a breaking elongation at room temperature of 2.5% or more.

【0008】その場合、前記Cr基合金は、V:0.1
〜1.0質量%,MgO:0.5〜5.0質量%,Al
23:0.1〜2.0質量%,Y23:0.1〜2.0
質量%のうちいずれか1種または2種以上を含み、かつ
残部がCrと不可避的不純物とからなるのが好ましい。
また、前記Cr基合金は、VおよびTi:両者の合量で
0.1〜1.0質量%,MgO:0.5〜5.0質量
%,Al23:0.1〜2.0質量%,Y23:0.1
〜2.0質量%のうちいずれか1種または2種以上を含
み、かつ残部がCrと不可避的不純物とからなるもので
あってもよい。
In this case, the Cr-based alloy has a V: 0.1
~ 1.0 mass%, MgO: 0.5-5.0 mass%, Al
2 O 3 : 0.1-2.0 mass%, Y 2 O 3 : 0.1-2.0
It is preferable to contain any one kind or two or more kinds in mass% and the balance is Cr and inevitable impurities.
Further, the Cr-based alloy contains V and Ti: 0.1 to 1.0% by mass in total of both, MgO: 0.5 to 5.0% by mass, Al 2 O 3 : 0.1 to 2 . 0 mass%, Y 2 O 3 : 0.1
To 2.0 mass%, any one kind or two or more kinds may be contained, and the balance may be composed of Cr and unavoidable impurities.

【0009】そして、前記純Crまたは前記Cr基合金
におけるN含有率は0.05質量%以下であることが好
ましい。また本発明においては、原料粉末を粉末焼結し
て得られた焼結材料に、加工率50%以上の塑性加工処
理,温度900〜1100℃の中間焼鈍処理,および温
度1150〜1250℃の最終焼鈍処理をこの順序で行
なうことを特徴とする上記Cr高延性材料の製造方法
(以下、製造方法Aという)が提供される。
The N content in the pure Cr or the Cr-based alloy is preferably 0.05 mass% or less. Further, in the present invention, the sintered material obtained by powder-sintering the raw material powder is subjected to plastic working with a working rate of 50% or more, intermediate annealing with a temperature of 900 to 1100 ° C., and final annealing with a temperature of 1150 to 1250 ° C. There is provided a method for producing the above Cr high ductility material (hereinafter referred to as production method A), which is characterized in that the annealing treatment is performed in this order.

【0010】また、原料粉末を粉末焼結法して得られた
焼結材料に、加工率50%以上の塑性加工処理,温度9
00〜1150℃の中間焼鈍処理,温度1150〜12
50℃の最終焼鈍処理,および温度100〜300℃で
の加工率1%以上の塑性加工処理をこの順序で行なうこ
とを特徴とする上記Cr高延性材料の製造方法(以下、
製造方法Bという)が提供される。
Further, a sintering material obtained by subjecting the raw material powder to a powder sintering method is subjected to plastic working at a working rate of 50% or more, at a temperature of 9%.
Intermediate annealing treatment at 00 to 1150 ° C, temperature 1150 to 12
A final annealing treatment at 50 ° C., and a plastic working treatment at a working rate of 1% or more at a temperature of 100 to 300 ° C. are performed in this order, and the method for producing a Cr high ductility material (hereinafter,
Manufacturing method B) is provided.

【0011】[0011]

【発明の実施の形態】本発明のCr高延性材料は、純C
rもしくはCr基合金からなり、常温における破断伸び
が2.5%以上であることを特徴としている。なお、本
発明において、常温における破断伸びとは、10〜35
℃の温度で測定された、JIS−Z2241に規定され
る破断伸びのことをいう。
BEST MODE FOR CARRYING OUT THE INVENTION The Cr high-ductility material of the present invention is pure C
It is characterized by comprising a r- or Cr-based alloy and having a breaking elongation of 2.5% or more at room temperature. In the present invention, the breaking elongation at room temperature is 10 to 35.
The breaking elongation specified in JIS-Z2241 measured at a temperature of ° C.

【0012】まず、本発明に係るCr基合金からなり、
常温における破断伸びが2.5%以上であるCr高延性
材料について説明する。このCr高延性材料は、V,M
gO,Al23およびY23のうちいずれか1種または
2種以上を含み,かつ残部がCrと不可避的不純物とか
らなり、その場合、これらの化学成分の含有率は以下の
ように限定される。
First, the Cr-based alloy according to the present invention is used,
A highly ductile Cr material having a breaking elongation of 2.5% or more at room temperature will be described. This Cr high ductility material is V, M
gO, Al 2 O 3 and Y 2 O 3 are contained alone or in combination, and the balance consists of Cr and inevitable impurities. In that case, the content ratio of these chemical components is as follows. Limited to

【0013】V:0.1〜1.0質量% Vは、材料の常温における延性と引張強さを高めるため
の成分である。含有率が0.1質量%未満では、上記し
た効果が充分に得られず、また1.0質量%より多い場
合は、上記した効果が飽和するのでその上限は1.0質
量%とする。Vの好適な含有率は0.3〜0.7質量%
である。
V: 0.1 to 1.0% by mass V is a component for increasing the ductility and tensile strength of the material at room temperature. If the content is less than 0.1% by mass, the above effects cannot be sufficiently obtained, and if it is more than 1.0% by mass, the above effects are saturated, so the upper limit is made 1.0% by mass. The preferable content rate of V is 0.3 to 0.7 mass%.
Is.

【0014】MgO:0.5〜5.0質量% MgOは、粒界に分散して存在し、材料の常温における
延性を高めるために添加する成分である。MgOの含有
率が0.5質量%未満では、上記した効果を充分に得る
ことができず、また5.0質量%を超えると、上記した
効果が飽和するばかりでなく、かえって常温延性が低下
するので、MgOの含有率は0.5〜5.0質量%とす
る。MgOの好適な含有率は1.5〜3.5質量%であ
る。
MgO: 0.5 to 5.0 mass% MgO is a component which is dispersed in grain boundaries and is added to enhance the ductility of the material at room temperature. If the content of MgO is less than 0.5% by mass, the above effects cannot be sufficiently obtained, and if it exceeds 5.0% by mass, the above effects are not only saturated, but also the room temperature ductility decreases. Therefore, the content of MgO is set to 0.5 to 5.0 mass%. The preferred content of MgO is 1.5 to 3.5 mass%.

【0015】Al23:0.1〜2.0質量% Al23は、粒界に分散して存在し、材料の常温におけ
る延性と引張強さを高めるために添加する成分である。
Al23の含有率が0.1質量%未満であると、上記し
た効果を充分に得ることができず、また2.0質量%を
超えると、上記した効果が飽和するばかりでなく、かえ
って常温における延性と引張強さが低下するので、Al
23の含有率は0.1〜2.0質量%とする。Al23
の好適な含有率は0.5〜1.0質量%である。
Al 2 O 3 : 0.1 to 2.0 mass% Al 2 O 3 is dispersed in grain boundaries and is a component added to enhance ductility and tensile strength of the material at room temperature. .
If the content of Al 2 O 3 is less than 0.1% by mass, the above effects cannot be sufficiently obtained, and if it exceeds 2.0% by mass, not only the above effects are saturated, but also On the contrary, since ductility and tensile strength at room temperature decrease, Al
The content of 2 O 3 is 0.1 to 2.0% by mass. Al 2 O 3
The preferred content of is 0.5 to 1.0% by mass.

【0016】Y23:0.1〜2.0質量% Y23は、粒界に分散して存在し、材料の常温延性を高
めるために添加する成分である。Y23の含有率が0.
1質量%未満であると、上記した効果を充分に得ること
ができず、また2.0質量%を超えると、上記した効果
が飽和するばかりでなく、かえって破断伸びが低下する
ので、Y23の含有率は0.1〜2.0質量%とする。
23の好適な含有率は0.3〜1.0質量%である。
Y 2 O 3 : 0.1 to 2.0 mass% Y 2 O 3 is dispersed in grain boundaries and is a component added to enhance the room temperature ductility of the material. The content of Y 2 O 3 is 0.
If it is less than 1% by mass, the above-mentioned effect cannot be sufficiently obtained, and if it exceeds 2.0% by mass, not only the above-mentioned effect is saturated, but also the elongation at break is rather lowered, so that Y 2 The content of O 3 is 0.1 to 2.0 mass%.
The suitable content of Y 2 O 3 is 0.3 to 1.0% by mass.

【0017】また、本発明に係るCr基合金からなるC
r高延性材料は、上記した化学成分のうち少なくともV
を含んでいる場合には、更にTiを含んでいてもよく、
その含有率は以下のように限定される。 Ti:VとTiの合量で0.1〜1.0質量% Tiは、Vと同じく、材料の常温における延性と引張強
さを向上するための成分である。VとTiの合量が0.
1質量%未満の場合、上記した効果を充分に得ることが
できず、また両者の合量が1.0質量%を超えた場合、
上記した効果が飽和するばかりでなく、かえって常温に
おける延性と引張強さが低下するので、Tiの含有率
は、VとTiの合量で0.1〜1.0質量%となるよう
にする。
Further, C composed of the Cr-based alloy according to the present invention
The high ductility material has at least V among the above chemical components.
When it contains, it may further contain Ti,
Its content is limited as follows. Ti: 0.1 to 1.0% by mass in total of V and Ti Ti, like V, is a component for improving ductility and tensile strength of the material at room temperature. The total amount of V and Ti is 0.
If it is less than 1% by mass, the above effects cannot be sufficiently obtained, and if the total amount of both exceeds 1.0% by mass,
Not only are the above effects saturated, but the ductility and tensile strength at room temperature are rather reduced, so the Ti content should be 0.1-1.0 mass% as the total amount of V and Ti. .

【0018】そして、上記した化学成分を有するCr高
延性材料においては、Nの含有率は以下のように限定さ
れるのが好ましい。 N:0.05質量%以下 Nは、不可避的不純物として材料に含まれるが、材料を
脆くするので、その含有率は0.05質量%以下となる
ように規制される。このNの含有率を規制することは、
材料を電解・精製することにより行うことができる。
In the Cr high ductility material having the above chemical composition, the N content is preferably limited as follows. N: 0.05% by mass or less N is contained in the material as an unavoidable impurity, but it makes the material brittle, so its content is regulated to be 0.05% by mass or less. To control the content rate of N is
It can be performed by electrolyzing and purifying the material.

【0019】次に、本発明の純CrまたはCr基合金か
らなり、常温における破断伸びが2.5%以上であるC
r高延性材料の製造方法A及びBを順に説明する。な
お、本発明の製造方法A及びBのいずれかを、上記した
化学成分となるように各原料粉末が混合された粉末に適
用して本発明のCr高延性材料を製造した場合、同じ混
合粉末を用いて従来の方法で本発明のCr高延性材料を
製造した場合よりも、得られるCr高延性材料の常温延
性を向上させることができる。
Next, C which is made of the pure Cr or Cr-based alloy of the present invention and has a breaking elongation of 2.5% or more at room temperature.
r Manufacturing methods A and B of the high ductility material will be described in order. When any one of the production methods A and B of the present invention is applied to a powder in which each raw material powder is mixed so as to have the above-mentioned chemical components to produce the Cr high ductility material of the present invention, the same mixed powder It is possible to improve the room temperature ductility of the obtained Cr high-ductility material as compared with the case where the Cr high-ductility material of the present invention is produced by using the above method.

【0020】また、本発明の製造方法A及びBのいずれ
かを純Crに適用することにより、本発明のCr高延性
材料を製造することができる。その場合、純Crは不可
避的不純物を含むものであってもよいが、得られるCr
高延性材料におけるNの含有率は、前記したと同じ理由
により0.05質量%以下であるのが好ましい。本発明
のCr高延性材料の製造方法Aを、原料として純Crを
用いた場合で説明する。
Further, by applying either of the production methods A and B of the present invention to pure Cr, the high ductility Cr material of the present invention can be produced. In that case, the pure Cr may contain unavoidable impurities, but the obtained Cr
The N content in the highly ductile material is preferably 0.05% by mass or less for the same reason as described above. The production method A of the Cr highly ductile material of the present invention will be described using pure Cr as a raw material.

【0021】まず、純Crからなる原料粉末を、従来の
粉末焼結法により、例えば原料粉末を軟鋼缶に充填し、
それにHIP(高温静水圧成形)を施して焼結する。こ
の場合、HIPに先立ち、原料粉末をプラスチック袋に
入れ、それに常温でのHP(静水圧成形)を施して予備
成形し、この予備成形体をHIP処理してもよい。そし
て、得られた焼結材料を、例えば600〜800℃の温
度にて、加工率50%以上で塑性加工する(以下、熱間
加工という)。次いで、この加工された焼結材料に90
0〜1100℃の温度で0.5〜3時間の中間焼鈍処理
を施した後に、1150〜1250℃の温度で0.5〜
3時間の最終焼鈍処理を施すことにより、目的とするC
r高延性材料を製造することができる。
First, a raw material powder made of pure Cr is filled in a mild steel can by, for example, a conventional powder sintering method.
It is subjected to HIP (high temperature isostatic pressing) and sintered. In this case, prior to HIP, the raw material powder may be placed in a plastic bag, subjected to HP (hydrostatic pressure molding) at room temperature to be preformed, and the preformed body may be subjected to HIP treatment. Then, the obtained sintered material is plastically worked at a working rate of 50% or more at a temperature of 600 to 800 ° C. (hereinafter, referred to as hot working). Then 90 to this processed sintered material
After carrying out an intermediate annealing treatment at a temperature of 0 to 1100 ° C. for 0.5 to 3 hours, 0.5 to 3 at a temperature of 1150 to 1250 ° C.
By applying the final annealing treatment for 3 hours, the target C
r Highly ductile materials can be manufactured.

【0022】すなわち、上記した製造方法Aにおいて
は、焼結材料に上記した温度範囲において中間焼鈍処理
及び最終焼鈍処理をそれぞれ施し、かつ、熱間加工の加
工率を50%以上とすることにより、焼結材に内在する
微小ボイドを除去し、かつ亜粒界がなく、微量不純物の
粒界偏析の少ない健全なクロム結晶粒を作り出すことが
できるので、材料の常温延性が発現するものと考えられ
る。
That is, in the above-mentioned manufacturing method A, the intermediate material is subjected to the intermediate annealing treatment and the final annealing treatment in the temperature range described above, and the working ratio of the hot working is set to 50% or more. It is considered that the normal temperature ductility of the material is expressed because it is possible to remove the minute voids existing in the sintered material and to create sound chromium crystal grains with no sub-grain boundaries and little grain boundary segregation of trace impurities. .

【0023】なお、焼結材料の熱間加工温度について
は、目的とする材料の形状により適宜選択することがで
きるが、600〜800℃の温度が望ましい。そして、
中間焼鈍処理の温度が900℃未満もしくは1100℃
を超えた場合、または/および最終焼鈍処理の温度が1
150℃未満もしくは1250℃を超えた場合、上記し
た効果を得ることができず、得られる材料の常温におけ
る破断伸びは2.5%未満となる。
The hot working temperature of the sintered material can be appropriately selected depending on the shape of the intended material, but a temperature of 600 to 800 ° C. is desirable. And
Intermediate annealing temperature is less than 900 ℃ or 1100 ℃
Or / and the temperature of the final annealing treatment is 1
If the temperature is lower than 150 ° C. or higher than 1250 ° C., the above-described effects cannot be obtained, and the elongation at break of the obtained material at room temperature is less than 2.5%.

【0024】なお、製造方法Aにおける中間焼鈍処理お
よび最終焼鈍処理の好適な温度範囲は、それぞれ950
〜1050℃と1200〜1250℃である。また、本
発明においては、Crは高融点金属であるため粉末焼結
法により焼結材料を製造するものとしたが、熱エネルギ
ー的に不利ではあるが、焼結材料の代わりに純Crを溶
製したのちインゴットにし、それに上記した条件の処理
を行ってもよい。
The suitable temperature ranges for the intermediate annealing treatment and the final annealing treatment in the manufacturing method A are 950 and 950, respectively.
1050 degreeC and 1200-1250 degreeC. Further, in the present invention, since Cr is a refractory metal, the sintered material is manufactured by the powder sintering method, but it is disadvantageous in terms of thermal energy, but pure Cr is melted in place of the sintered material. After being manufactured, it may be made into an ingot and subjected to the treatment under the above-mentioned conditions.

【0025】次に、製造方法Bについて説明する。この
製造方法Bは、上記した製造方法Aにおいて、中間焼鈍
処理の温度範囲を900〜1150℃とし、かつ最終焼
鈍処理の後に、これらの焼鈍処理を経由した焼結材料
に、100〜300℃の温度範囲で加工率が1%以上の
塑性加工(以下、予歪加工という)を施す製造方法であ
る。
Next, the manufacturing method B will be described. In this manufacturing method B, in the manufacturing method A described above, the temperature range of the intermediate annealing treatment is set to 900 to 1150 ° C., and after the final annealing treatment, the sintered material that has passed through these annealing treatments has a temperature range of 100 to 300 ° C. This is a manufacturing method in which plastic working (hereinafter referred to as prestraining) having a working rate of 1% or more in a temperature range is performed.

【0026】すなわち、この製造方法Bにおいては、焼
結材料にそれぞれ上記した温度範囲において中間焼鈍,
最終焼鈍,および予歪加工を施すことにより、ボイドや
亜粒界がなく、微量不純物の粒界偏析の少ない健全な結
晶粒中に、変形に有利な可動転位を適量導入することに
より、材料の常温延性が発現するものと考えられる。そ
して、中間焼鈍処理の温度が900℃未満もしくは11
50℃を超えた場合,最終焼鈍処理の温度が1150℃
未満もしくは1250℃を超えた場合,予歪加工処理の
温度が100℃未満もしくは300℃を超えた場合,ま
たは/および予歪加工処理の加工率が1%未満の場合、
上記した効果を得ることができず、得られる材料の常温
における破断伸びは2.5%未満となる。
That is, in this manufacturing method B, the intermediate annealing in the above-mentioned temperature range for the sintered material,
By carrying out final annealing and pre-straining, a suitable amount of mobile dislocations advantageous for deformation is introduced into sound crystal grains that are free of voids and sub-grain boundaries and have little grain boundary segregation of trace impurities. It is considered that room temperature ductility is exhibited. Then, the temperature of the intermediate annealing treatment is less than 900 ° C. or 11
If the temperature exceeds 50 ℃, the final annealing temperature will be 1150 ℃.
Less than or more than 1250 ° C, the temperature of the prestraining treatment is less than 100 ° C or more than 300 ° C, and / or the processing rate of the prestraining treatment is less than 1%,
The above effects cannot be obtained, and the breaking elongation of the obtained material at room temperature is less than 2.5%.

【0027】なお製造方法Bの場合、中間焼鈍処理,最
終焼鈍処理,および予歪加工の好適な温度範囲は、それ
ぞれ950〜1050℃,1200〜1250℃および
150〜250℃であり、予歪加工の好適な加工率は1
〜4%である。なお、本発明の製造方法A及びBのいず
れかを採用してCr高延性材料を製造する場合におい
て、原料粉末にMgO,Al23,およびY23のうち
少なくとも1種が含まれるときには、HIP処理に先立
って、原料粉末をアトライタにより混合・撹拌してメカ
ニカルアロイングするのが好ましい。
In the case of the production method B, suitable temperature ranges for the intermediate annealing treatment, the final annealing treatment and the prestraining are 950 to 1050 ° C, 1200 to 1250 ° C and 150 to 250 ° C, respectively. The preferred processing rate for is 1
~ 4%. In addition, in the case of manufacturing the Cr high ductility material by adopting any one of the manufacturing methods A and B of the present invention, the raw material powder contains at least one of MgO, Al 2 O 3 , and Y 2 O 3. At times, it is preferable that the raw material powder is mechanically alloyed by mixing and stirring with an attritor before the HIP treatment.

【0028】[0028]

【実施例】実施例1〜7,比較例1〜5 それぞれ粒径が60メッシュ以下であるCr粉末,なら
びにV粉末,Ti粉末,MgO粉末,Al23粉末,お
よびY23粉末のうちいずれか1種または2種以上と
を、表1に示した化学組成となるように配合・混合して
原料粉末を得た。
EXAMPLES Examples 1 to 7 and Comparative Examples 1 to 5 of Cr powder having a particle size of 60 mesh or less, V powder, Ti powder, MgO powder, Al 2 O 3 powder, and Y 2 O 3 powder, respectively. Any one of them or two or more thereof were mixed and mixed so as to have the chemical composition shown in Table 1 to obtain a raw material powder.

【0029】なお、原料粉末にMgO粉末,Al23
末,およびY23粉末のうち少なくとも1種が含まれる
ものについては、各原料粉末を、HIP処理に先立っ
て、アトライターを用いてAr雰囲気下で撹拌・混合し
てメカニカルアロイングした。そして、原料粉末をφ7
0mm×L150mmの軟鋼缶に封入してから、温度1
300℃,圧力198MPa,Ar雰囲気下で2時間の
HIP処理を施した。このHIP処理により原料粉末か
ら得られた焼結材料を、700℃の温度にて60%の加
工率で鍛造してφ20mmの丸棒としてから、平行部断
面が3mm角で長さ12mmの引張試験片を切り出し、
温度30℃で引張試験を行い、引張強さと破断伸びを求
めた。以上の結果を表1に示す。この表1より、以下の
ことが明らかである。 1)V,MgO,Al23,およびY23のうちの1種
または2種以上を所定量含み、残部がCrと不可避的不
純物とから成る実施例1〜5は、温度30℃における引
張強さと破断伸びが、純Crから成る比較例1および比
較例2〜4よりも優れている。とりわけ、Vを所定量含
み、残部がCrと不可避的不純物とから成る実施例1
は、それらが優れている。 2)VとTiを所定量含み,残部がCrと不可避的不純
物から成る実施例6と、更にAl23を所定量含む実施
例7は、温度30℃における引張強さと破断伸びが、純
Crから成る比較例1および比較例2〜4よりも優れて
いる。 3)実施例1と比較し、窒素濃度が0.05質量%を超
えている以外は実質的に実施例1と類似した化学組成を
有する比較例5は、常温における引張特性が劣ってい
る。
When the raw material powder contains at least one of MgO powder, Al 2 O 3 powder, and Y 2 O 3 powder, each raw material powder is treated with an attritor before HIP treatment. Mechanically alloyed by stirring and mixing under Ar atmosphere. Then, the raw material powder is φ7.
After enclosing it in a 0 mm x L 150 mm mild steel can, temperature 1
HIP treatment was performed at 300 ° C., a pressure of 198 MPa, and an Ar atmosphere for 2 hours. The sintered material obtained from the raw material powder by this HIP treatment was forged at a processing rate of 60% at a temperature of 700 ° C. to form a round bar of φ20 mm, and then a tensile test of a cross section of a parallel part of 3 mm square and a length of 12 mm. Cut out a piece,
A tensile test was performed at a temperature of 30 ° C. to determine tensile strength and elongation at break. The above results are shown in Table 1. From Table 1, the following is clear. 1) V, MgO, Al 2 O 3, and Y 2 O containing a predetermined quantity of one or two or more of the three, Examples 1 to 5 and the balance consisting of Cr and inevitable impurities, temperature 30 ° C. In tensile strength and elongation at break are superior to those of Comparative Example 1 and Comparative Examples 2 to 4 made of pure Cr. In particular, Example 1 containing a predetermined amount of V and the balance Cr and unavoidable impurities
They are better. 2) Example 6 containing V and Ti in a predetermined amount and the balance Cr and inevitable impurities in the balance, and Example 7 further containing a predetermined amount of Al 2 O 3 had a pure tensile strength and elongation at break at a temperature of 30 ° C. It is superior to Comparative Example 1 and Comparative Examples 2 to 4 made of Cr. 3) Compared to Example 1, Comparative Example 5 having a chemical composition substantially similar to that of Example 1 except that the nitrogen concentration exceeds 0.05% by mass is inferior in tensile properties at room temperature.

【0030】[0030]

【表1】 [Table 1]

【0031】実施例8〜14,比較例6〜10 後述する実施例8〜23,および比較例6〜21を製造
するにあたり、これらに共通して用いられる丸棒を、以
下のように製造した。粒径が60メッシュ以下、すなわ
ち最大粒径423μm以下である、純度99.9%のC
r粉末をプラスチック袋に入れ、これに常温のAr雰囲
気下で圧力500MPaのHP処理を施して予備成形体
を作成した。そして、この予備成形体を温度1200
℃,圧力200MPa,Ar雰囲気で2時間HIP処理
し、純Crからなる焼結材料を得た後、この焼結材料を
温度700℃にて55%の加工率で鍛造してφ20mm
の丸棒とした。
Examples 8 to 14 and Comparative Examples 6 to 10 In manufacturing Examples 8 to 23 and Comparative Examples 6 to 21 described later, round bars commonly used for these were manufactured as follows. . C with a particle size of 60 mesh or less, that is, a maximum particle size of 423 μm or less, and a purity of 99.9%
The r powder was put in a plastic bag and subjected to HP treatment at a pressure of 500 MPa in an Ar atmosphere at room temperature to prepare a preform. Then, the preform is heated to a temperature of 1200.
After HIP treatment for 2 hours in Ar atmosphere at 200 ° C. and 200 MPa pressure, a sintered material made of pure Cr was obtained, and this sintered material was then forged at a processing rate of 55% at a temperature of 700 ° C. and a diameter of 20 mm.
It was a round bar.

【0032】12個の丸棒に、それぞれ表2に示した温
度と時間の中間焼鈍処理を施してから空冷した。その
後、やはり表2に示した温度と時間でこれらの丸棒に1
時間最終焼鈍処理を施してから空冷し、これらの焼鈍処
理を経由した各丸棒について、平行部の断面と長さがそ
れぞれ3mm角と12mmである引張試験片を切り出し
て、温度30℃における引張試験を行った。この結果を
表2に示す。
The 12 round bars were subjected to intermediate annealing treatment at the temperature and time shown in Table 2 and then air-cooled. After that, apply 1 to each of these rods at the temperature and time shown in Table 2.
After the final annealing treatment for a period of time, air cooling is performed, and for each round bar that has been subjected to these annealing treatments, a tensile test piece having a cross section of parallel part and a length of 3 mm square and 12 mm is cut out and stretched at a temperature of 30 ° C. The test was conducted. The results are shown in Table 2.

【0033】また、上記した中間焼鈍処理温度がそれぞ
れ1000℃と1100℃である実施例10と14、お
よび中間焼鈍処理を施さなかった比較例6については、
上記したと同じ試験片を更に複数個用意して、温度範囲
30〜400℃にわたって破断伸びを求めた。この結果
を図1に示す。表2と図1より、以下の2点が明らかで
ある。 4)温度範囲980〜1100℃で中間焼鈍処理を施し
た実施例8〜14は、中間焼鈍処理を施さなかった比較
例6,ならびにそれぞれ700℃と1150℃で中間焼
鈍処理を施した比較例7と8比較して、温度30℃にお
ける引張強さと破断伸びが大きい。 5)温度範囲1180〜1220℃で最終焼鈍処理を施
した実施例11〜13は、それぞれ1050℃と130
0℃で最終焼鈍処理を施した比較例9と10と比較し
て、温度30℃における引張強さと破断伸びが大きい。 6)図1に示した温度と破断伸びの関係より、実施例1
0と14のDBTT(延性−脆性遷移温度)はそれぞれ
70℃と80℃であって、比較例6のそれが275℃で
あるのと比較して極端に低い。すなわち、材料に所定温
度で中間焼鈍処理施すことは、材料に常温延性を発現さ
せるばかりでなく、DBTTを低下させるという効果も
奏する。このようにDBTTが低下した材料は、その機
械加工は一層容易なものとなる。
For Examples 10 and 14 in which the intermediate annealing treatment temperatures were 1000 ° C. and 1100 ° C., respectively, and Comparative Example 6 in which the intermediate annealing treatment was not performed,
A plurality of the same test pieces as described above were prepared, and the elongation at break was obtained over the temperature range of 30 to 400 ° C. The result is shown in FIG. From Table 2 and FIG. 1, the following two points are clear. 4) Examples 8 to 14, which were subjected to the intermediate annealing in the temperature range of 980 to 1100 ° C, were Comparative Example 6 in which the intermediate annealing was not performed, and Comparative Example 7 in which the intermediate annealing was performed at 700 ° C and 1150 ° C, respectively. Compared with No. 8, the tensile strength and the elongation at break at a temperature of 30 ° C. are large. 5) Examples 11 to 13 which were subjected to the final annealing treatment in the temperature range of 1180 to 1220 ° C. were 1050 ° C. and 130, respectively.
The tensile strength and the elongation at break at a temperature of 30 ° C. are larger than those of Comparative Examples 9 and 10 which were subjected to the final annealing treatment at 0 ° C. 6) From the relationship between temperature and elongation at break shown in FIG.
The DBTT (ductile-brittle transition temperature) of 0 and 14 is 70 ° C. and 80 ° C., respectively, which is extremely low compared to that of Comparative Example 6 which is 275 ° C. That is, subjecting the material to the intermediate annealing treatment at a predetermined temperature has the effect of not only exhibiting room temperature ductility but also lowering the DBTT. The material with the lowered DBTT becomes easier to machine.

【0034】[0034]

【表2】 [Table 2]

【0035】実施例15〜20,比較例11〜18 14個の上記丸棒に、それぞれ表3に示した温度と時間
の中間焼鈍処理を施してから空冷した。その後、これら
の丸棒にやはり表3に示した温度と時間の最終焼鈍を施
してから空冷し、これらの焼鈍処理を経由した各丸棒
に、同じく表3に示した温度と加工率で圧延加工を施し
てから、平行部の断面と長さがそれぞれ3mm角と12
mmである引張試験片を切り出して、温度30℃におけ
る引張強さと破断伸びを求めた。これらの結果を表3に
示す。
Examples 15 to 20 and Comparative Examples 11 to 18 14 round bars were subjected to intermediate annealing treatment at the temperature and time shown in Table 3 and then air-cooled. After that, these round bars were also subjected to final annealing at the temperature and time shown in Table 3 and then air-cooled, and rolled at the temperature and working rate also shown in Table 3 to each of the round bars that have undergone these annealing treatments. After processing, the parallel section and length are 3mm square and 12mm, respectively.
A tensile test piece having a size of mm was cut out and the tensile strength and the elongation at break at a temperature of 30 ° C. were obtained. The results are shown in Table 3.

【0036】[0036]

【表3】 [Table 3]

【0037】表3より、以下の点が明らかである。 7)900〜1150℃の温度で中間焼鈍処理を施した
実施例15〜20は、700℃と1150℃の温度で中
間焼鈍処理を施した比較例12と13よりも常温におけ
る引張強さと破断伸びが優れている。 8)1150〜1250℃の温度で最終焼鈍処理を施し
た実施例15〜20は、それぞれ1050℃と1300
℃の温度で最終焼鈍処理を施した比較例14と15より
も常温における引張強さと破断伸びが優れている。 9)100〜300℃の温度で圧延加工処理を施した実
施例15〜20は、それぞれ50℃と600℃の温度で
圧延加工処理を施した比較例16と17よりも常温にお
ける引張強さと破断伸びが優れている。 10)1%以上の加工率で圧延加工処理を施した実施例
15〜20は、0.5%の加工率で圧延加工処理を施し
た比較例18よりも常温における引張強さと破断伸びが
優れている。
From Table 3, the following points are clear. 7) Examples 15 to 20, which were subjected to the intermediate annealing treatment at a temperature of 900 to 1150 ° C., had higher tensile strength and elongation at room temperature than Comparative Examples 12 and 13 which were subjected to the intermediate annealing treatment at a temperature of 700 ° C. and 1150 ° C. Is excellent. 8) Examples 15 to 20, which were subjected to the final annealing treatment at a temperature of 1150 to 1250 ° C, had 1050 ° C and 1300, respectively.
The tensile strength and elongation at break at room temperature are superior to those of Comparative Examples 14 and 15 which were subjected to the final annealing treatment at a temperature of ° C. 9) Tensile strength and rupture at room temperature of Examples 15 to 20 subjected to the rolling process at a temperature of 100 to 300 ° C were higher than those of Comparative Examples 16 and 17 subjected to the rolling process at a temperature of 50 ° C and 600 ° C, respectively. Excellent elongation. 10) Tensile strength and break elongation at room temperature of Examples 15 to 20 subjected to the rolling processing at a working rate of 1% or more are superior to those of Comparative Example 18 subjected to the rolling processing at a working rate of 0.5%. ing.

【0038】実施例21,22 実施例21として、それぞれ粒径が60メッシュ以下の
Cr粉末とV粉末とを原料粉末に用いた以外は、製造方
法Aにより実施例8と同じ条件で引張試験片を作成し、
温度30℃における引張強さと破断伸びを求めた。ま
た、実施例22として、それぞれ粒径が60メッシュ以
下のCr粉末とV粉末とを原料粉末に用いた以外は、製
造方法Bにより実施例15と同じ条件で引張試験片を作
成し、温度30℃における引張強さと破断伸びを求め
た。
Examples 21 and 22 As Example 21, tensile test pieces were produced under the same conditions as in Example 8 except that Cr powder and V powder each having a grain size of 60 mesh or less were used as raw material powders. Create
The tensile strength and breaking elongation at a temperature of 30 ° C. were obtained. Further, as Example 22, a tensile test piece was prepared under the same conditions as in Example 15, except that Cr powder and V powder each having a particle size of 60 mesh or less were used as raw material powders, and the temperature was 30 The tensile strength and the elongation at break at ℃ were obtained.

【0039】この結果を前記した実施例1の結果ととも
にまとめて表4に示す。この表4から以下のことが明ら
かである。
The results are shown in Table 4 together with the results of Example 1 described above. From Table 4, the following is clear.

【0040】[0040]

【表4】 [Table 4]

【0041】13)Vを所定量含み、残部がCrと不可
避的不純物からなるCr基合金を、本発明の製造方法A
及びBのいずれかにて製造した場合、同じ組成のCr基
合金を従来の方法で製造した場合よりも、温度30℃に
おける引張強さと破断伸びが向上する。このことから、
本発明の所定の化学成分を有するCr基合金からなるC
r高延性材料を、本発明の製造方法A及びBのいずれか
にて製造した場合、従来の方法で製造した場合よりも一
層常温における引張特性が向上することがわかる。
13) A Cr-based alloy containing a predetermined amount of V and the balance Cr and unavoidable impurities is produced by the production method A of the present invention.
And B, the tensile strength and the breaking elongation at a temperature of 30 ° C. are improved as compared with the case where the Cr-based alloy having the same composition is manufactured by the conventional method. From this,
C consisting of a Cr-based alloy having the predetermined chemical composition of the present invention
It can be seen that, when the r high ductility material is manufactured by any of the manufacturing methods A and B of the present invention, the tensile properties at room temperature are further improved as compared with the case of manufacturing by the conventional method.

【0042】[0042]

【発明の効果】以上の説明で明らかなように、本発明の
Cr高延性材料とその製造方法は、以下の効果を奏す
る。 1)所定の化学組成を有するCr基合金からなる本発明
のCr高延性材料は、従来の製造方法で製造しても常温
引張特性が優れているが、本発明の製造方法で製造した
場合、更に常温引張特性が向上する。 2)純Crに本発明の製造方法を適用することにより、
純Crの常温引張特性を向上させることができる。
As is clear from the above description, the Cr high ductility material of the present invention and the manufacturing method thereof have the following effects. 1) The Cr high ductility material of the present invention composed of a Cr-based alloy having a predetermined chemical composition has excellent room temperature tensile properties even when manufactured by the conventional manufacturing method, but when manufactured by the manufacturing method of the present invention, Further, the room temperature tensile properties are improved. 2) By applying the production method of the present invention to pure Cr,
The normal temperature tensile properties of pure Cr can be improved.

【0043】そして、上記した効果を奏する本発明のC
r高延性材料は、ジェットエンジン,ガスタービン,お
よび各種化学プラント等において使用される耐熱・耐高
温腐蝕材料として実用化できるばかりでなく、所定の形
状へと加工して用いられる、例えば機能性薄膜等の製造
工程において用いられるスパッタターゲット材料として
も有用であり、本発明の産業上の効果は大である。
The C of the present invention that achieves the above-mentioned effects
The high ductility material can be used not only as a heat and high temperature corrosion resistant material used in jet engines, gas turbines, various chemical plants, etc., but also processed into a predetermined shape, for example, a functional thin film. It is also useful as a sputter target material used in the manufacturing process such as, and the industrial effect of the present invention is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例と比較例の温度と破断伸びの関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between temperature and elongation at break in Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630A 630B 640 640A 640B 650 650A 651 651B 682 682 683 683 684 684C 685 685A 687 687 691 691B 694 694A 694B 1/11 1/11 (72)発明者 原田 泰典 愛知県豊橋市西幸町浜池25番地 アプエー ルミユキ302号 (72)発明者 藤根 道彦 愛知県西加茂郡三好町大字打越字北屋敷55 Fターム(参考) 4K018 AA40 AB01 AC01 BA03 BA20 BC16 EA13 FA03 FA09 KA07 KA12 KA58 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/00 630 C22F 1/00 630A 630B 640 640A 640B 650 650A 651 651B 682 682 683 683 684 685A 685C 687 691 691B 694 694A 694B 1/11 1/11 (72) Inventor Yasunori Harada 25 Hamaike, Nishiyuki-cho, Toyohashi-shi, Aichi Apuerumiyuki No. 302 (72) Inventor Michihiko Fujine, Miyoshi-cho, Nishikamo-gun, Aichi Kita Yashiki 55 F term (reference) 4K018 AA40 AB01 AC01 BA03 BA20 BC16 EA13 FA03 FA09 KA07 KA12 KA58

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 純CrまたはCr基合金からなり、常温
における破断伸びが2.5%以上であることを特徴とす
るCr高延性材料。
1. A highly ductile Cr material, which is made of pure Cr or a Cr-based alloy and has a breaking elongation of 2.5% or more at room temperature.
【請求項2】 前記Cr基合金は、V:0.1〜1.0
質量%,MgO:0.5〜5.0質量%,Al23
0.1〜2.0質量%,Y23:0.1〜2.0質量%
のうちいずれか1種または2種以上を含み、かつ残部が
Crと不可避的不純物とからなる請求項1のCr高延性
材料。
2. The Cr-based alloy has V: 0.1 to 1.0.
% By mass, MgO: 0.5 to 5.0% by mass, Al 2 O 3 :
0.1 to 2.0% by mass, Y 2 O 3 : 0.1 to 2.0% by mass
The highly ductile Cr material according to claim 1, comprising any one or more of the above and the balance consisting of Cr and inevitable impurities.
【請求項3】 前記Cr基合金は、VおよびTi:両者
の合量で0.1〜1.0質量%,MgO:0.5〜5.
0質量%,Al23:0.1〜2.0質量%,Y 23
0.1〜2.0質量%のうちいずれか1種または2種以
上を含み、かつ残部がCrと不可避的不純物とからなる
請求項1のCr高延性材料。
3. The Cr-based alloy comprises V and Ti: both
0.1 to 1.0% by mass, MgO: 0.5 to 5.
0 mass%, Al2O3: 0.1 to 2.0 mass%, Y 2O3:
Any one or more of 0.1 to 2.0 mass%
Including the above, the balance consists of Cr and unavoidable impurities
The Cr high ductility material according to claim 1.
【請求項4】 前記純Crまたは前記Cr基合金におけ
るN含有率が0.05質量%以下である請求項1〜3の
いずれかのCr高延性材料。
4. The highly ductile Cr material according to claim 1, wherein the N content in the pure Cr or the Cr-based alloy is 0.05% by mass or less.
【請求項5】 原料粉末を粉末焼結して得られた焼結材
料に、加工率50%以上の塑性加工処理,温度900〜
1100℃の中間焼鈍処理,および温度1150〜12
50℃の最終焼鈍処理をこの順序で施すことを特徴とす
る請求項1〜4のいずれかのCr高延性材料の製造方
法。
5. A sintered material obtained by powder-sintering a raw material powder is subjected to plastic working at a working rate of 50% or more, at a temperature of 900 to 900.
Intermediate annealing treatment at 1100 ° C, and temperature 1150-12
The final annealing treatment at 50 ° C. is performed in this order, and the method for producing a Cr high ductility material according to claim 1.
【請求項6】 原料粉末を粉末焼結して得られた焼結材
料に、加工率50%以上の塑性加工処理,温度900〜
1150℃の中間焼鈍処理,温度1150〜1250℃
の最終焼鈍処理,および温度100〜300℃での加工
率1%以上の塑性加工処理をこの順序で施すことを特徴
とする請求項1〜4のいずれかのCr高延性材料の製造
方法。
6. A sintered material obtained by powder-sintering raw material powder, is subjected to plastic working at a working rate of 50% or more, and a temperature of 900 to 900.
Intermediate annealing treatment at 1150 ° C, temperature 1150 to 1250 ° C
The final annealing treatment and the plastic working treatment at a working rate of 1% or more at a temperature of 100 to 300 ° C. are performed in this order, and the method for producing a Cr high ductility material according to claim 1.
JP2001354885A 2001-11-20 2001-11-20 HIGH DUCTILE Cr AND PRODUCTION METHOD THEREFOR Pending JP2003155536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001354885A JP2003155536A (en) 2001-11-20 2001-11-20 HIGH DUCTILE Cr AND PRODUCTION METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001354885A JP2003155536A (en) 2001-11-20 2001-11-20 HIGH DUCTILE Cr AND PRODUCTION METHOD THEREFOR

Publications (1)

Publication Number Publication Date
JP2003155536A true JP2003155536A (en) 2003-05-30

Family

ID=19166668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001354885A Pending JP2003155536A (en) 2001-11-20 2001-11-20 HIGH DUCTILE Cr AND PRODUCTION METHOD THEREFOR

Country Status (1)

Country Link
JP (1) JP2003155536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303461A (en) * 2007-06-08 2008-12-18 Waertsilae Schweiz Ag Cr-Ni-BASED ALLOY MATERIAL, SEMI-FINISHED PRODUCT, COMPONENT FOR COMBUSTION ENGINE, AND METHOD FOR MANUFACTURING Cr-Ni-BASED ALLOY MATERIAL AND SEMI-FINISHED PRODUCT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303461A (en) * 2007-06-08 2008-12-18 Waertsilae Schweiz Ag Cr-Ni-BASED ALLOY MATERIAL, SEMI-FINISHED PRODUCT, COMPONENT FOR COMBUSTION ENGINE, AND METHOD FOR MANUFACTURING Cr-Ni-BASED ALLOY MATERIAL AND SEMI-FINISHED PRODUCT
JP2014088624A (en) * 2007-06-08 2014-05-15 Waertsilae Schweiz Ag Cr-Ni-BASED ALLOY MATERIAL, SEMIFINISHED PRODUCT, COMPONENT PART FOR COMBUSTION ENGINE, METHOD OF MANUFACTURING Cr-Ni-BASED ALLOY MATERIAL AND SEMIFINISHED PRODUCT
KR101534536B1 (en) * 2007-06-08 2015-07-07 빈터투르 가스 앤 디젤 아게 A MATERIAL ON THE BASIS OF A CrNi ALLOY, A SEMI-FINISHED PRODUCT, COMPONENTS FOR A COMBUSTION ENGINE, AND ALSO A METHOD FOR THE MANUFACTURE OF THE MATERIAL AND OF THE SEMI-FINISHED PRODUCT

Similar Documents

Publication Publication Date Title
JP6576379B2 (en) Manufacturing method and member of member made of titanium-aluminum base alloy
JP4467637B2 (en) Alloy based on titanium aluminum
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
CN107250416B (en) The manufacturing method of Ni base superalloy
EP2610360A1 (en) Co-based alloy
EP3327158B1 (en) Method for producing ni-based superalloy material
EP0687310A1 (en) Titanium matrix composites
JP2001316743A (en) TiAl ALLOY, ITS MANUFACTURING METHOD, AND MOVING BLADE USING IT
EP3327157B1 (en) Method for producing ni-based superalloy material
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
EP3572541B1 (en) Nickel-base superalloy
JP2965841B2 (en) Method of manufacturing forged Ni-base superalloy product
JP2004269994A (en) BIOCOMPATIBLE Co BASED ALLOY, AND PRODUCTION METHOD THEREFOR
JPH0138848B2 (en)
JP2020026568A (en) Titanium alloy, method for producing the same and engine component including the same
WO2020189215A1 (en) Titanium aluminide alloy material for hot forging, forging method for titanium aluminide alloy material, and forged body
CN111961923A (en) High-plasticity easy-processing cobalt-based wrought superalloy and preparation method thereof
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JPH05255827A (en) Production of alloy based on tial intermetallic compound
JP2003155536A (en) HIGH DUCTILE Cr AND PRODUCTION METHOD THEREFOR
JP5929251B2 (en) Iron alloy
JP6185347B2 (en) Intermediate material for splitting Ni-base superheat-resistant alloy and method for producing the same, and method for producing Ni-base superheat-resistant alloy
JP2003306736A (en) Niobium silicide based composite material and production method thereof
JP3489173B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy