JP2003155502A - Method for manufacturing sintered compact - Google Patents

Method for manufacturing sintered compact

Info

Publication number
JP2003155502A
JP2003155502A JP2001354531A JP2001354531A JP2003155502A JP 2003155502 A JP2003155502 A JP 2003155502A JP 2001354531 A JP2001354531 A JP 2001354531A JP 2001354531 A JP2001354531 A JP 2001354531A JP 2003155502 A JP2003155502 A JP 2003155502A
Authority
JP
Japan
Prior art keywords
sintered body
temperature
sintering
green compact
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001354531A
Other languages
Japanese (ja)
Inventor
Masao Maruyama
正男 丸山
Akihiko Shibata
彰彦 柴田
Yoshinori Matsumoto
義範 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001354531A priority Critical patent/JP2003155502A/en
Publication of JP2003155502A publication Critical patent/JP2003155502A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing sintered compacts by which high-quality sintered compacts can be obtained in a short period of time. SOLUTION: This method comprises steps of compacting raw-material powder containing organic binders into green compacts and heating the green compacts while controlling total pressure to <=60 Pa at temperatures ranging from room temperature to <=600 deg.C. By this method, cracking and also the remaining of free-carbon can be suppressed even if the temperature-rise rate at >600 deg.C, not to speak of the temperature-rise rate at <=600 deg.C, is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超硬合金やサーメ
ットなどの焼結体の製造方法に関するものである。特
に、短時間で高品質の焼結体を得ることができる焼結体
の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a sintered body such as cemented carbide or cermet. In particular, the present invention relates to a method for producing a sintered body, which enables a high quality sintered body to be obtained in a short time.

【0002】[0002]

【従来の技術】一般に、超硬合金やサーメットの焼結
は、所定の原料粉末を十分に混合し、圧粉体に成形した
後、圧粉体を焼結炉に導入して加熱することで行われて
いる。さらに、圧粉体成形と本焼結との間に予備焼結を
行って予備焼結体を成形する場合もある。
2. Description of the Related Art Generally, sintering of cemented carbide or cermet is carried out by sufficiently mixing predetermined raw material powders to form a green compact and then introducing the green compact into a sintering furnace and heating it. Has been done. Further, pre-sintering may be performed between the green compact and the main sintering to form the pre-sintered body.

【0003】ここで、原料粉末には、潤滑性を付与して
粉末間および粉末と金型間の摩擦を減少して寸法精度の
向上を図るため、有機物系バインダーが含有されてい
る。例えば、パラフィン系炭化水素がバインダーに用い
られている。このようなバインダーは、圧粉体の加熱
時、適切な加熱が行われると熱分解して圧粉体から蒸発
する。
Here, the raw material powder contains an organic binder in order to impart lubricity and reduce friction between the powder and between the powder and the mold to improve dimensional accuracy. For example, paraffinic hydrocarbon is used as a binder. Such a binder is thermally decomposed and evaporated from the green compact when the green compact is heated appropriately when the green compact is heated.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の焼結方
法ではバインダーを適切に蒸発させる熱処理条件が明確
にわかっておらず、次のような問題があった。
However, in the conventional sintering method, the heat treatment conditions for appropriately evaporating the binder are not clearly known, and there are the following problems.

【0005】圧粉体内のバインダが急激に熱分解し、
得られた焼結体に割れや歪が生じることがある。これ
は、製品の品質に影響を与える化学反応が焼結サイクル
のどのステージでどのように起こるかが明確にわかって
いないからである。そのため、1)昇温速度が過大にな
ったり、2)圧粉体、圧粉体を載せるトレー、炉内断熱
材などから生じるガス成分により炉内真空度が悪化し
て、焼結体の不良品を生じさせる原因になっていた。
The binder in the green compact is rapidly pyrolyzed,
The obtained sintered body may be cracked or distorted. This is because it is not clear at what stage and how the chemical reactions that affect product quality occur. Therefore, 1) the temperature rise rate becomes too high, and 2) the vacuum degree in the furnace deteriorates due to the gas components generated from the green compact, the tray on which the green compact is placed, the thermal insulator in the furnace, etc. It was a cause of producing non-defective products.

【0006】焼結体内に遊離炭素が残留する。昇温速
度が過大になったり炉内真空度が悪化すると、バインダ
が熱分解して炭素が遊離し、これが遊離炭素として焼結
体内に残留する。遊離炭素はそれ自体弱く、破壊の起点
になり得る。
Free carbon remains in the sintered body. If the rate of temperature rise becomes too high or the degree of vacuum inside the furnace deteriorates, the binder is thermally decomposed and carbon is liberated, which remains as free carbon in the sintered body. Free carbon is weak in itself and can be the starting point of destruction.

【0007】圧粉体から焼結体を得るのに長時間を要
する。適切な加熱条件がわかっていないため、焼結体の
割れや歪を回避しようとして昇温速度が遅くなりすぎる
と、焼結全体のサイクルタイムが必要以上に長くなって
しまう。
It takes a long time to obtain a sintered body from a green compact. Since appropriate heating conditions are not known, if the temperature rising rate is too slow in order to avoid cracking or distortion of the sintered body, the cycle time of the entire sintering becomes longer than necessary.

【0008】従って、本発明の主目的は、より短時間に
て高品質の焼結体を得ることができる焼結体の製造方法
を提供することにある。
Therefore, a main object of the present invention is to provide a method for producing a sintered body which can obtain a high quality sintered body in a shorter time.

【0009】[0009]

【課題を解決するための手段】本発明は、常温から所定
温度までの加熱工程において、雰囲気圧力を限定するこ
とで上記の目的を達成する。
The present invention achieves the above object by limiting the atmospheric pressure in the heating process from room temperature to a predetermined temperature.

【0010】すなわち、本発明焼結体の製造方法は、有
機物系バインダーを含有する原料粉末を圧粉体に成型す
る工程と、常温から600℃以下の範囲において全圧を60P
a以下に制御して前記圧粉体を加熱する工程とを含むこ
とを特徴とする。
That is, the method for producing a sintered body of the present invention comprises a step of molding a raw material powder containing an organic binder into a green compact, and a total pressure of 60 P in the range of room temperature to 600 ° C. or less.
a Controlling the temperature to a or less and heating the green compact.

【0011】既に述べたように、有機系バインダーを加
熱により除去することが従来から行われている。この除
去における好適な条件を種々検討した結果、常温から60
0℃以下の昇温過程において雰囲気の全圧を60Pa以下に
制御すれば、600℃以下の昇温速度はもちろん、600℃超
の昇温速度を上昇しても割れや遊離炭素の残留を抑えら
れるとの知見を得た。そのため、従来よりも短時間で高
品質の焼結体を得ることができる。雰囲気全圧のより好
ましい値は50Pa以下である。
As described above, it has been conventionally practiced to remove the organic binder by heating. As a result of various examinations of suitable conditions for this removal, the temperature was 60
If the total pressure of the atmosphere is controlled to 60 Pa or less during the temperature raising process of 0 ° C or less, cracks and residual free carbon are suppressed not only when the heating rate is 600 ° C or less, but also when the heating rate is more than 600 ° C. I got the knowledge that it can be done. Therefore, it is possible to obtain a high-quality sintered body in a shorter time than ever before. A more preferable total atmospheric pressure is 50 Pa or less.

【0012】常温から600℃以下における昇温速度は0.1
〜5.0℃/分であることが好ましい。この下限を下回る
と、焼結時間短縮効果が小さく、上限を超えると焼結体
の割れや歪の発生あるいは遊離炭素の残留が問題となり
やすい。より好ましい昇温速度は0.2〜3.0℃/分であ
る。
The temperature rising rate from room temperature to 600 ° C. or lower is 0.1
It is preferably ˜5.0 ° C./min. If it is less than this lower limit, the effect of shortening the sintering time is small, and if it exceeds the upper limit, cracking or strain of the sintered body or residual free carbon tends to be a problem. A more preferable temperature rising rate is 0.2 to 3.0 ° C./minute.

【0013】また、600℃超から焼結温度までの昇温速
度は3.0〜10.0℃/分であることが好適である。この下
限を下回ると、焼結時間短縮効果が小さく、上限を超え
ると焼結体の割れや歪の発生あるいは遊離炭素の残留が
問題となりやすい。より好ましい昇温速度は4.0〜8.0℃
/分である。
Further, it is preferable that the temperature rising rate from above 600 ° C. to the sintering temperature is 3.0 to 10.0 ° C./min. If it is less than this lower limit, the effect of shortening the sintering time is small, and if it exceeds the upper limit, cracking or strain of the sintered body or residual free carbon tends to be a problem. A more preferable temperature rising rate is 4.0 to 8.0 ° C.
/ Min.

【0014】本発明の製造方法は、原料粉末を圧粉体に
成型して本焼結を行う方法はもちろん、原料粉末を圧粉
体に成型して予備焼結し、この予備焼結体を成形加工し
てから本焼結を行う方法のいずれの場合にも適用でき
る。原料粉末から圧粉体への成形はプレスや押出しが利
用できる。
In the manufacturing method of the present invention, not only a method of forming the raw material powder into a green compact and then performing main sintering, but also forming the raw material powder into a green compact and pre-sintering this pre-sintered body It can be applied to any of the methods in which the main sintering is performed after the forming process. Pressing or extrusion can be used for forming the raw material powder into a green compact.

【0015】この製造方法により得られる焼結体として
は、WCを硬質相とする超硬合金や、TiC、TiNあるいはTi
CNを硬質相とするサーメット、あるいはアルミナを主成
分とするセラミックスなどが挙げられる。
The sintered body obtained by this manufacturing method includes cemented carbide containing WC as a hard phase, TiC, TiN or Ti.
Examples include cermet having CN as a hard phase, and ceramics containing alumina as a main component.

【0016】超硬合金及びサーメットを得る場合、原料
粉末には、周期率表4a、5a、6a族元素の炭化物、窒化
物、炭窒化物および硼化物よりなる群から選択された少
なくとも1種の硬質相粉末と、鉄族金属からなる結合相
粉末とが含まれる。
When obtaining a cemented carbide and a cermet, the raw material powder is at least one selected from the group consisting of carbides, nitrides, carbonitrides and borides of the periodic table 4a, 5a and 6a elements. A hard phase powder and a binder phase powder made of an iron group metal are included.

【0017】例えば、特殊な耐摩耗性に優れた超硬合金
を得る場合、原料粉末には、WCからなる硬質相粉末と鉄
族金属からなる結合相粉末とが含まれる。その場合、結
合相粉末の含有量が1重量%以下であることが好まし
い。結合相粉末が実質的に含まれない超硬合金とするこ
とで、非常に硬度に優れた焼結体を得ることができる。
鉄族金属には、Co、Ni、Feなどが挙げられる。
For example, when obtaining a cemented carbide having excellent special wear resistance, the raw material powders include a hard phase powder made of WC and a binder phase powder made of an iron group metal. In that case, the content of the binder phase powder is preferably 1% by weight or less. By using the cemented carbide that does not substantially contain the binder phase powder, it is possible to obtain a sintered body having extremely excellent hardness.
Examples of iron group metals include Co, Ni and Fe.

【0018】有機物系バインダーには、パラフィン系炭
化水素、ワックスなどが利用できる。パラフィン系炭化
水素は、CnH2n+2の一般式を持つ飽和鎖式炭化水素であ
る。通常、焼結体の原料粉末に混合するパラフィン系炭
化水素はn=10〜40の材料が利用される。特に、n=10〜
40の個々の物質単独ではなく、複数種が混合されたもの
が利用される。
Paraffin hydrocarbons, waxes and the like can be used as the organic binder. Paraffinic hydrocarbons are saturated chain hydrocarbon having the general formula C n H 2n + 2. Usually, as the paraffinic hydrocarbon mixed with the raw material powder of the sintered body, a material of n = 10 to 40 is used. Especially, n = 10 ~
A mixture of multiple species is used rather than the 40 individual substances alone.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (予備試験例1)まず、焼結体を得るに先だって、バイ
ンダとして用いられるパラフィンワックス(mp130°
F)、マイクロワックス(mp200°F)、EVA(エチレン酢
酸ビニル共重合体)について昇温速度10℃/hの加熱時に
どの程度減量が生じるかを熱天秤により調べた。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. (Preliminary test example 1) First, before obtaining a sintered body, paraffin wax (mp 130 °) used as a binder was used.
F), microwax (mp200 ° F) and EVA (ethylene vinyl acetate copolymer) were examined by a thermobalance to determine how much weight loss occurs when heated at a heating rate of 10 ° C / h.

【0020】その結果、図1のグラフに示すよう、パラ
フィンワックスでは、200〜300℃程度、マイクロワック
スでは300〜450℃程度、EVAでは400〜450℃程度の範囲
で急激な減量が生じ、この温度域で熱分解が急速に進行
することがわかった。常温から450℃以下程度の加熱に
おいて、圧粉体からバインダの熱分解ガスが発生すると
考えられ、その際の炉内真空度を適切に維持できれば好
適な焼結が行えることが予測される。
As a result, as shown in the graph of FIG. 1, a drastic weight loss occurs in the range of 200 to 300 ° C. for paraffin wax, 300 to 450 ° C. for microwax, and 400 to 450 ° C. for EVA. It was found that thermal decomposition proceeded rapidly in the temperature range. It is considered that the pyrolysis gas of the binder is generated from the green compact during heating from room temperature to 450 ° C. or lower, and it is expected that suitable sintering can be performed if the degree of vacuum in the furnace at that time can be appropriately maintained.

【0021】(試験例1)次に、焼結体を作製して、昇
温−雰囲気条件が製品サイズに及ぼす影響を実験で確認
した。平均粒径2.0μmのWC、平均粒径1.3μmのCo:10重
量%と不可避的不純物からなる原料粉末にパラフィンワ
ックス3重量%を加えて十分に混合する。混合原料を圧
縮プレスして圧粉体に成形する。ここでは、焼結後の製
品寸法が幅10mm、奥行き10mm、高さ2mm、幅10mm、
奥行き10mm、高さ5mm、幅10mm、奥行き10mm、高さ10m
mとなるように3通りの圧粉体を用意した。
(Test Example 1) Next, a sintered body was prepared, and the effect of the temperature rise-atmosphere conditions on the product size was confirmed by experiments. 3% by weight of paraffin wax is added to a raw material powder consisting of WC having an average particle size of 2.0 μm and Co having an average particle size of 1.3 μm: 10% by weight and inevitable impurities, and thoroughly mixed. The mixed raw material is compressed and pressed into a green compact. Here, the product dimensions after sintering are width 10 mm, depth 10 mm, height 2 mm, width 10 mm,
10 mm depth, 5 mm height, 10 mm width, 10 mm depth, 10 m height
Three types of green compacts were prepared so as to have m.

【0022】得られた圧粉体は、特公昭58-9806号公報
に示す焼結炉を用いて焼結する。この焼結炉は、内部を
所定の真空度に保持できる炉本体と、炉本体内に設けら
れた加熱室と、加熱室へ圧粉体を出し入れするコンベア
と、炉本体外に設けられて炉内の冷却を行う冷却手段と
を具える。
The green compact thus obtained is sintered using a sintering furnace described in Japanese Patent Publication No. 58-9806. This sintering furnace is equipped with a furnace body capable of maintaining a predetermined degree of vacuum inside, a heating chamber provided in the furnace body, a conveyor for loading and unloading compacts into and from the heating chamber, and a furnace provided outside the furnace body. Cooling means for cooling the inside.

【0023】炉本体は、内部を10-3Paの真空に到達でき
る排気系を具えている。加熱室は断熱材で囲まれてお
り、開閉式の扉を具える。また、加熱室内にはヒータが
設けられると共に熱電対が設置されて加熱室内を所定の
温度に制御することができる。加熱室の下面は開放して
おり、コンベアの駆動により移動テーブルを加熱室の下
面に嵌め込むことができる。焼結後に焼結体の冷却を行
う冷却手段は、送風機と熱交換器を具えている。
The furnace body has an exhaust system capable of reaching a vacuum of 10 -3 Pa inside. The heating chamber is surrounded by heat insulating material and has an openable door. In addition, a heater is provided in the heating chamber and a thermocouple is installed to control the heating chamber to a predetermined temperature. The lower surface of the heating chamber is open, and the moving table can be fitted into the lower surface of the heating chamber by driving the conveyor. The cooling means for cooling the sintered body after sintering includes a blower and a heat exchanger.

【0024】焼結を行う際、まず炉内における加熱室の
外側に圧粉体をセットする。圧粉体は移動テーブル上に
トレーに載せてセットされる。次に、加熱室の扉を開い
てコンベアで移動テーブルを加熱室下面に移送する。そ
の後、扉を閉じ、炉本体内を真空に保持してヒータで加
熱する。圧粉体が所定温度に昇温されると、内部のパラ
フィンの一部は液状になって流出し、一部は蒸発する。
流出したパラフィンは炉本体に接続されるタンクに回収
される。
When performing the sintering, first, the green compact is set outside the heating chamber in the furnace. The green compact is placed on a moving table on a tray and set. Next, the door of the heating chamber is opened and the moving table is transferred to the lower surface of the heating chamber by the conveyor. After that, the door is closed, the inside of the furnace main body is kept in vacuum, and heated by the heater. When the green compact is heated to a predetermined temperature, a part of the paraffin inside becomes liquid and flows out, and a part of it evaporates.
The paraffin that has flown out is collected in a tank connected to the furnace body.

【0025】パラフィンの除去が完了した後も引き続き
昇温を行い、焼結温度に加熱して焼結体を得る。焼結が
完了すると、加熱室の扉を開けて焼結体を加熱室外に移
送しする。そして、送風機で炉内にガスを循環させて焼
結体の冷却を行う。
After the removal of paraffin is completed, the temperature is continuously raised to the sintering temperature to obtain a sintered body. When the sintering is completed, the door of the heating chamber is opened and the sintered body is transferred to the outside of the heating chamber. Then, a blower circulates the gas in the furnace to cool the sintered body.

【0026】このような焼結炉を用いて、常温から600
℃以下の昇温における炉内全圧を種々の条件に制御して
焼結を行った。焼結条件は次の通りである。
[0026] Using such a sintering furnace, from room temperature to 600
Sintering was performed by controlling the total pressure in the furnace at a temperature rise of ℃ or less to various conditions. The sintering conditions are as follows.

【0027】炉内最高全圧: 条件A:20Pa 条件B:50Pa 条件C:65Pa 600℃までの昇温速度:約2時間で600℃昇温(4.8℃/
分) 600℃から焼結温度(1450℃)までの昇温速度 条件1:約2時間で850℃昇温(7℃/分) 条件2:約2時間30分で850℃昇温(5.7℃/分) 条件3:約4時間で850℃昇温(3.5℃/分) 焼結温度での保持時間:30分 加熱室寸法:300mm×300mm×300mm
Maximum total pressure in the furnace: Condition A: 20 Pa Condition B: 50 Pa Condition C: 65 Pa Heating rate up to 600 ° C: 600 ° C heating in about 2 hours (4.8 ° C /
Min) Temperature rising rate from 600 ° C to sintering temperature (1450 ° C) Condition 1: 850 ° C temperature rise in about 2 hours (7 ° C / min) Condition 2: 850 ° C temperature rise in about 2 hours and 30 minutes (5.7 ° C) / Min) Condition 3: 850 ° C temperature rise in approximately 4 hours (3.5 ° C / min) Holding time at sintering temperature: 30 minutes Heating chamber dimensions: 300 mm x 300 mm x 300 mm

【0028】その結果、条件A、条件Bと条件1〜3の組
合せによる焼結では、いずれの場合でも全サンプルにお
いてサイズは良好であった。一方、条件Cと条件1の組合
せでは厚み10mmのテストピースに微小クラックが発生し
て不良であった。また、条件Cと条件2の組合せでは、
クラックは発生しないものの、100個中3個が浸炭により
不良であった。
As a result, in the sintering under the conditions A and B and the combination of the conditions 1 to 3, the size was good in all the samples in any case. On the other hand, in the combination of condition C and condition 1, microcracks were generated in the test piece having a thickness of 10 mm, which was defective. Also, in the combination of condition C and condition 2,
Although no cracks occurred, 3 out of 100 were defective due to carburization.

【0029】(試験例2)次に、昇温−雰囲気条件が押
出し製品のサイズに及ぼす影響を実験で確認した。平均
粒径0.5μmのWC、平均粒径1.0μmのCo:8重量%、平均
粒径1.2μmのTaC:2重量%と不可避的不純物からなる原
料粉末にパラフィンワックス10重量%を加えて十分に混
合する。この混合原料を押し出し成形して棒状の圧粉体
を得る。ここでは、焼結後の製品寸法が直径4mm、長さ4
00となるように圧粉体を用意した。この圧粉体を試験例
1と同様の焼結炉に導入して焼結した。加熱室の寸法は
500mm×1000mm×500mmである。焼結条件は次の通りとし
た。
(Test Example 2) Next, the effect of the temperature rise-atmosphere conditions on the size of the extruded product was confirmed by experiments. WC with an average particle size of 0.5 μm, Co with an average particle size of 1.0 μm: 8% by weight, TaC with an average particle size of 1.2 μm: 2% by weight, and 10% by weight of paraffin wax are added to the raw material powder consisting of inevitable impurities. Mix. This mixed raw material is extruded to obtain a rod-shaped green compact. Here, the product dimensions after sintering are 4 mm in diameter and 4 mm in length.
The green compact was prepared so that it would be 00. This green compact was introduced into the same sintering furnace as in Test Example 1 and sintered. The dimensions of the heating chamber
It is 500 mm × 1000 mm × 500 mm. The sintering conditions were as follows.

【0030】 炉内最高全圧:試験例1と同じ条件A〜条件C 600℃までの昇温速度:約20時間で600℃昇温(0.48℃/
分) 600℃から焼結温度(1400℃)までの昇温速度 条件4:約2時間で800℃昇温(6.7℃/分) 条件5:約2時間30分で800℃昇温(5.3℃/分) 条件6:約4時間で800℃昇温(3.3℃/分) 焼結温度での保持時間:30分
Maximum total pressure in the furnace: the same condition A to condition C as in Test Example 1 Heating rate up to 600 ° C .: 600 ° C. heating in about 20 hours (0.48 ° C. /
Min) Temperature rising rate from 600 ℃ to sintering temperature (1400 ℃) Condition 4: 800 ℃ increase in about 2 hours (6.7 ℃ / min) Condition 5: 800 ℃ increase in about 2 hours and 30 minutes (5.3 ℃) / Min) Condition 6: 800 ° C temperature rise in approximately 4 hours (3.3 ° C / min) Holding time at sintering temperature: 30 minutes

【0031】その結果、条件A、条件Bと条件4〜6の組合
せによる焼結では、いずれの場合でも全サンプルにおい
てサイズは良好であった。これに対して、条件Cを選択
した加熱条件では、焼結体に浸炭が見られ不良であっ
た。
As a result, in the sintering under the combination of the conditions A and B and the conditions 4 to 6, the size was good in all the samples in any case. On the other hand, under the heating condition in which the condition C was selected, carburization was observed in the sintered body, which was not good.

【0032】(試験例3)さらに、サーメットについて
も昇温−雰囲気条件が製品に及ぼす影響を調べた。平均
粒径1.0μmのTiCN:50重量%、平均粒径1.0μmのWC:20
重量%、平均粒径1.5μmのNi:8重量%、平均粒径1.0μ
mのCo:12重量%、平均粒径1.2μmのMo2C:10重量%と
不可避的不純物からなる原料粉末にパラフィンワックス
4重量%を加えて十分に混合する。得られた混合粉末を1
トン/cm2の圧縮プレスで圧粉体に成形した。この圧粉体
を試験例1と同様の焼結炉及び加熱室に導入して焼結し
た。焼結条件は次の通りとした。
(Test Example 3) Further, regarding the cermet, the influence of the temperature rising-atmosphere conditions on the product was examined. TiCN with an average particle size of 1.0 μm: 50% by weight, WC with an average particle size of 1.0 μm: 20
% By weight, Ni with an average particle size of 1.5 μm: 8% by weight, average particle size 1.0 μ
Paraffin wax as a raw material powder consisting of Co: 12% by weight, Mo 2 C with an average particle size of 1.2 μm: 10% by weight, and inevitable impurities.
Add 4% by weight and mix well. 1 of the obtained mixed powder
It was molded into a green compact with a compression press of ton / cm 2 . This green compact was introduced into the same sintering furnace and heating chamber as in Test Example 1 and sintered. The sintering conditions were as follows.

【0033】 炉内最高全圧:試験例1と同じ条件A〜条件C 600℃までの昇温速度:約2.5時間で600℃昇温(3.8℃/
分) 600℃から焼結温度(1400℃)までの昇温速度 条件7:約2時間強で800℃昇温(6.5℃/分) 条件8:約2時間40分で800℃昇温(5.0℃/分) 条件9:約4時間20分で800℃昇温(3.1℃/分) 焼結温度での保持時間:30分
Maximum total pressure in the furnace: the same condition A to condition C as in Test Example 1 Heating rate up to 600 ° C .: 600 ° C. heating in about 2.5 hours (3.8 ° C. /
Min) Temperature rising rate from 600 ℃ to sintering temperature (1400 ℃) Condition 7: Temperature rise at 800 ℃ for more than 2 hours (6.5 ℃ / min) Condition 8: Temperature rise at 800 ℃ for about 2 hours and 40 minutes (5.0 (° C / min) Condition 9: 800 ° C temperature rise in approximately 4 hours and 20 minutes (3.1 ° C / min) Holding time at sintering temperature: 30 minutes

【0034】その結果、条件A、条件Bと条件7〜9の組合
せによる焼結では、いずれの場合でも全サンプルにおい
てサイズは良好であった。一方、条件Cを選択した加熱
条件では浸炭により不良が見られた。
As a result, in the sintering under the combination of the conditions A and B and the conditions 7 to 9, the size was good in all the samples in any case. On the other hand, under the heating condition in which condition C was selected, defects were observed due to carburization.

【0035】(試験例4)試験例1の圧粉体を用い、炉
内真空度を変えて常温から約2時間で400℃、600℃、80
0℃まで昇温し、その後、試験例1の条件2により焼結
を行って、得られた焼結体中の遊離炭素生成量を調べ
た。その結果を図2のグラフに示す。
(Test Example 4) Using the green compact of Test Example 1, the vacuum degree in the furnace was changed to 400 ° C, 600 ° C, 80 ° C for about 2 hours from room temperature.
The temperature was raised to 0 ° C., and thereafter, sintering was performed under the condition 2 of Test Example 1 to examine the amount of free carbon produced in the obtained sintered body. The results are shown in the graph of FIG.

【0036】このグラフから明らかなように、400℃ま
での昇温時に炉内真空度が60Paを超えると遊離炭素量が
顕著に増加することがわかる。
As is clear from this graph, the free carbon amount remarkably increases when the degree of vacuum in the furnace exceeds 60 Pa when the temperature is raised to 400 ° C.

【0037】[0037]

【発明の効果】以上説明したように、本発明方法によれ
ば、常温から600℃以下の昇温過程において雰囲気の全
圧を60Pa以下に制御すれば、特に600℃超の昇温速度を
上昇しても割れや遊離炭素の残留を抑えられる。そのた
め、従来よりも短時間で高品質の焼結体を得ることがで
きる。
As described above, according to the method of the present invention, if the total pressure of the atmosphere is controlled to 60 Pa or less during the temperature rising process from room temperature to 600 ° C. or less, the heating rate particularly above 600 ° C. is increased. Even if this happens, cracking and residual free carbon can be suppressed. Therefore, it is possible to obtain a high-quality sintered body in a shorter time than ever before.

【図面の簡単な説明】[Brief description of drawings]

【図1】有機系バインダの熱減量を示すグラフである。FIG. 1 is a graph showing a thermal loss of an organic binder.

【図2】炉内圧力を変えた場合の遊離炭素の生成量を示
すグラフである。
FIG. 2 is a graph showing the amount of free carbon produced when the furnace pressure is changed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 29/16 C22C 29/16 H (72)発明者 松本 義範 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 4K018 AD03 AD04 AD06 AD07 AD10 AD12 DA03 KA14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 29/16 C22C 29/16 H (72) Inventor Yoshinori Matsumoto 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Issue Sumitomo Electric Industries, Ltd. Itami Factory F-term (reference) 4K018 AD03 AD04 AD06 AD07 AD10 AD12 DA03 KA14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 有機物系バインダーを含有する原料粉末
を圧粉体に成型する工程と、 常温から600℃以下の範囲において全圧を60Pa以下に制
御して前記圧粉体を加熱する工程とを含むことを特徴と
する焼結体の製造方法。
1. A step of molding a raw material powder containing an organic binder into a green compact, and a step of heating the green compact by controlling the total pressure to 60 Pa or less in the range of room temperature to 600 ° C. or less. A method for manufacturing a sintered body, comprising:
【請求項2】 常温から600℃以下における昇温速度が
0.1〜5.0℃/分であることを特徴とする請求項1に記載
の焼結体の製造方法。
2. The temperature rising rate from room temperature to 600 ° C. or lower
The method for producing a sintered body according to claim 1, wherein the temperature is 0.1 to 5.0 ° C / min.
【請求項3】 600℃超から焼結温度までの昇温速度が
3.0〜10.0℃/分であることを特徴とする請求項1に記
載の焼結体の製造方法。
3. The temperature rising rate from above 600 ° C. to the sintering temperature is
The method for producing a sintered body according to claim 1, wherein the temperature is 3.0 to 10.0 ° C / min.
【請求項4】 原料粉末には、WCからなる硬質相粉末と
鉄族金属からなる結合相粉末とが含まれることを特徴と
する請求項1に記載の焼結体の製造方法。
4. The method for producing a sintered body according to claim 1, wherein the raw material powder includes a hard phase powder made of WC and a binder phase powder made of an iron group metal.
【請求項5】 結合相粉末の含有量が1重量%以下であ
ることを特徴とする請求項4に記載の焼結体の製造方
法。
5. The method for producing a sintered body according to claim 4, wherein the content of the binder phase powder is 1% by weight or less.
【請求項6】 原料粉末には、周期率表4a、5a、6a族元
素の炭化物、窒化物、炭窒化物および硼化物よりなる群
から選択された少なくとも1種の硬質相粉末と、鉄族金
属からなる結合相粉末とが含まれることを特徴とする請
求項1に記載の焼結体の製造方法。
6. The raw material powder includes at least one hard phase powder selected from the group consisting of carbides, nitrides, carbonitrides and borides of elements of Groups 4a, 5a and 6a of the periodic table, and an iron group. 2. The method for producing a sintered body according to claim 1, further comprising a binder phase powder made of metal.
【請求項7】 有機物系バインダーがパラフィン系炭化
水素を含むことを特徴とする請求項1に記載の焼結体の
製造方法。
7. The method for producing a sintered body according to claim 1, wherein the organic binder contains paraffin hydrocarbon.
JP2001354531A 2001-11-20 2001-11-20 Method for manufacturing sintered compact Pending JP2003155502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001354531A JP2003155502A (en) 2001-11-20 2001-11-20 Method for manufacturing sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001354531A JP2003155502A (en) 2001-11-20 2001-11-20 Method for manufacturing sintered compact

Publications (1)

Publication Number Publication Date
JP2003155502A true JP2003155502A (en) 2003-05-30

Family

ID=19166378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001354531A Pending JP2003155502A (en) 2001-11-20 2001-11-20 Method for manufacturing sintered compact

Country Status (1)

Country Link
JP (1) JP2003155502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203173A (en) * 2018-05-23 2019-11-28 住友電工焼結合金株式会社 Method for manufacturing test sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203173A (en) * 2018-05-23 2019-11-28 住友電工焼結合金株式会社 Method for manufacturing test sintered body
JP6997934B2 (en) 2018-05-23 2022-02-04 住友電工焼結合金株式会社 Method for manufacturing test sintered body and method for determining molding conditions for powder compact

Similar Documents

Publication Publication Date Title
US5612264A (en) Methods for making WC-containing bodies
US7723247B2 (en) Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities
US20060099103A1 (en) Metal powder injection molding material and metal powder injection molding method
EP0266860B1 (en) Infusible preceramic polymers via plasma treatment
JPS5844630B2 (en) silicone carbide material
JPH05117038A (en) Aluminum nitride sintered compact, its production and jig for burning using the same
JPH0840772A (en) Titanium carbide sinter and its perparation
EP0540683B1 (en) Process for making silicon nitride articles
JP3667121B2 (en) Boron carbide sintered body and manufacturing method thereof
JP2003155502A (en) Method for manufacturing sintered compact
CN108892528B (en) Porous silicon nitride ceramic material and preparation method thereof
KR101659823B1 (en) A HfC Composites and A Manufacturing method of the same
JP3998831B2 (en) Cemented carbide manufacturing method
JPH07116487B2 (en) Method for degreasing metal powder injection molded body
JPH06200303A (en) Control process for amount of carbon contained in injection molded steel in debinding
RU2540674C2 (en) Method of making articles from silicon nitride
JP2017036170A (en) Production method of sintered body of boron carbide
RU2228238C1 (en) Method for making composite products on base of borides and carbides of metals of iv-vi, viii groups
JP3297547B2 (en) Method for producing silicon carbide sintered body
JPS61201673A (en) Method of dewaxing injection formed body of ceramic powder or metal powder
JPH05105525A (en) Production of highly heat conductive aluminum nitride sintered compact
JPS5848503B2 (en) silicon carbide material
RU2252838C2 (en) Powder refractory metal hot pressing method
JPH072572A (en) Prompt preparation of carbon article
JPH07113102A (en) Production of sintered compact