JP2003148904A - Eddy current type displacement sensor - Google Patents

Eddy current type displacement sensor

Info

Publication number
JP2003148904A
JP2003148904A JP2001351513A JP2001351513A JP2003148904A JP 2003148904 A JP2003148904 A JP 2003148904A JP 2001351513 A JP2001351513 A JP 2001351513A JP 2001351513 A JP2001351513 A JP 2001351513A JP 2003148904 A JP2003148904 A JP 2003148904A
Authority
JP
Japan
Prior art keywords
displacement sensor
eddy current
winding
magnetic
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001351513A
Other languages
Japanese (ja)
Inventor
Susumu Osawa
将 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001351513A priority Critical patent/JP2003148904A/en
Publication of JP2003148904A publication Critical patent/JP2003148904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eddy current type displacement sensor for magnetic bearing suitable as a displacement sensor for detecting the displacement of an object to be supported by a magnetic levitation device used under an extremely low temperature. SOLUTION: This displacement sensor is provided with a displacement sensor winding 3 and a sensor target 2 opposed to the displacement sensor winding 3, and detects the displacement of an object to be supported by the magnetic levitation support device for magnetically levitating and supporting the object to be supported under an extremely low temperature. The displacement sensor winding 3 is wound on and fixed to a magnetic pole 4 consisting of a laminated type magnetic material or a magnetic material hardly generating an eddy current. The sensor target 2 opposed to the displacement sensor winding 3 is the object to be supported (rotating shaft 8) or a sleeve fixed to the object to be supported, and the frequency of a carrying signal to be supplied to the displacement sensor winding 3 is set to several tens KHz or more and MHz order or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は液体水素、液体ヘリ
ウムなどの極超低温液化ガスを移送するポンプ等の極超
低温下で使用する機械の回転軸等の支持対象物を磁気浮
上支持する磁気軸受等の磁気浮上支持装置に用いる支持
対象物の変位を検出する渦電流型変位センサに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing or the like for magnetically levitating and supporting a support object such as a rotating shaft of a machine used at ultra-low temperature such as a pump for transferring ultra-low-temperature liquefied gas such as liquid hydrogen and liquid helium. The present invention relates to an eddy current displacement sensor for detecting a displacement of a support target used in the magnetic levitation support device.

【0002】[0002]

【従来の技術】液体水素、液体ヘリウムなどの極超低温
液化ガスを移送するポンプ等では、その液質が希薄とい
うことで高速回転が必要となる場合がある。このような
極超低温下で使用する回転機械の軸受には凍結固化する
油軸受は使用できない。そこで使用可能な軸受として
は、玉軸受、静圧軸受、磁気軸受がある。それぞれの軸
受には利点、欠点があり、玉軸受は比較的入手可能であ
るが潤滑の面で連続高速回転に信頼性がなく、静圧軸受
は液が希薄なために支持剛性に不安があり、低速では作
動しないので摩耗などの心配がある。
2. Description of the Related Art In a pump or the like for transferring an extremely low temperature liquefied gas such as liquid hydrogen or liquid helium, high speed rotation may be required because the liquid quality is low. Oil bearings that freeze and solidify cannot be used as bearings for rotary machines that are used under such extremely low temperatures. Ball bearings, hydrostatic bearings, and magnetic bearings are available as bearings. Each bearing has advantages and disadvantages, ball bearings are relatively available, but continuous high-speed rotation is not reliable in terms of lubrication, and hydrostatic bearings have a concern about support rigidity because the liquid is diluted. Since it does not work at low speed, there is concern about wear.

【0003】これに対して、磁気軸受は価格が高くなる
が、極超低温下でも常温で使用される磁気軸受と同等な
性能が期待でき、低速から高速回転までの使用が可能で
ある。磁気軸受に使用される軸の変位を検出する変位セ
ンサとしては、隙間を介して磁気回路を積極的に構成
し、その隙間の変化に伴うインダクタンスの変化をコイ
ルで検出する通称誘導型変位センサと、これとは原理が
異なり隙間は同じくあるが磁気回路は積極的に構成せ
ず、隙間の変化に伴い自己誘導作用で発生する渦電流の
強度が変わることによって、コイルのインピーダンス変
化を検出する通称渦電流型変位センサとがある。
On the other hand, although the magnetic bearing is expensive, it can be expected to have the same performance as a magnetic bearing used at room temperature even at an extremely low temperature, and can be used from low speed to high speed rotation. As a displacement sensor that detects the displacement of the shaft used in magnetic bearings, a so-called induction type displacement sensor that positively configures a magnetic circuit through a gap and detects the change in inductance due to the change in the gap with a coil The principle is different from this, but the gap is the same, but the magnetic circuit is not actively constructed, and the change in the gap changes the intensity of the eddy current generated by self-induction action, which is commonly known as detecting the impedance change of the coil. There are eddy current displacement sensors.

【0004】図1は従来の誘導型変位センサの構成を示
す図で、図1(a)は平面構成を、図1(b)は側面構
成を示す。図1において、10は誘導型変位センサのタ
ーゲット側構成を示す。図示するように、ターゲット側
10は、例えば磁性材料からなる回転軸11に非磁性材
料のスリーブ12を介して、磁性材の絶縁皮膜付き鋼板
を積層したセンサターゲット13を固着している。該セ
ンサターゲット13に対向してセンサ巻線14が積層型
磁性材からなる磁極15に取り付けられて配置されてい
る。
FIG. 1 is a diagram showing the structure of a conventional inductive displacement sensor. FIG. 1 (a) shows a plan structure and FIG. 1 (b) shows a side structure. In FIG. 1, reference numeral 10 denotes a target side structure of the inductive displacement sensor. As shown in the figure, the target side 10 has a sensor target 13 in which steel sheets with a magnetic material having an insulating coating are laminated on a rotary shaft 11 made of, for example, a magnetic material via a sleeve 12 made of a non-magnetic material. A sensor winding 14 is attached to a magnetic pole 15 made of a laminated magnetic material so as to face the sensor target 13.

【0005】上記構成の誘導型変位センサにおいて、常
温から液体水素、液体ヘリウムなどの極超低温までの大
きな温度変化に曝されると、磁性材のセンサターゲット
13が磁性材である回転軸11との間に介在する非磁性
材料のスリーブ12の間に熱応力が生じるため、その設
計、製作の際に注意を要する。また、センサターゲット
13は磁性材であるため極超低温下での脆性破壊などを
避けるために、強度も考慮すると使用できる磁性材料に
制約がかなりある。このため、センサターゲット13と
して特別な構成を必要としない変位センサが望まれてい
る。
In the inductive displacement sensor having the above structure, when exposed to a large temperature change from room temperature to extremely low temperature such as liquid hydrogen and liquid helium, the sensor target 13 made of a magnetic material is separated from the rotary shaft 11 made of a magnetic material. Since thermal stress is generated between the non-magnetic material sleeves 12 interposed therebetween, attention must be paid when designing and manufacturing the same. In addition, since the sensor target 13 is a magnetic material, there is a considerable restriction on the magnetic material that can be used in consideration of its strength in order to avoid brittle fracture at extremely low temperatures. Therefore, a displacement sensor that does not require a special configuration as the sensor target 13 is desired.

【0006】図2は従来の渦電流型変位センサの構成例
を示す図で、図2(a)は平面構成を、図2(b)は側
面構成を示す。図2において、センサ巻線16は回転軸
11に対向して配置されている。該センサ巻線16は基
本的には空芯コイルであり、樹脂或いはセラミックの保
護層17で保護されており、該保護層17は金属保護部
18に接合されている。
2A and 2B are views showing a configuration example of a conventional eddy current type displacement sensor. FIG. 2A shows a plan configuration and FIG. 2B shows a side configuration. In FIG. 2, the sensor winding 16 is arranged so as to face the rotating shaft 11. The sensor winding 16 is basically an air-core coil, and is protected by a resin or ceramic protective layer 17, and the protective layer 17 is bonded to a metal protective portion 18.

【0007】上記構成の渦電流型変位センサは上記誘導
型変位センサに対して、センサターゲットとして回転軸
11をそのまま用いることができる。更に、センサター
ゲットは磁性材料だけではなく非磁性の導電体でもよ
く、脆性の面からは有利である。しかし、上記のように
通常の渦電流型変位センサのセンサ巻線16は空芯コイ
ルである。これは、センサ巻線16に金属芯があるとこ
の金属芯でも渦電流が発生し、本来センサターゲット材
で生じる渦電流の効果のみ検出できなくなるからであ
る。このため、通常の渦電流型変位センサではセンサ巻
線16は空芯コイルで、該空芯コイルを樹脂材で保護す
るか、セラミック材で保護している。
In the eddy current displacement sensor having the above structure, the rotary shaft 11 can be used as it is as a sensor target for the inductive displacement sensor. Further, the sensor target may be not only a magnetic material but also a non-magnetic conductor, which is advantageous in terms of brittleness. However, as described above, the sensor winding 16 of the usual eddy current displacement sensor is an air core coil. This is because if the sensor winding 16 has a metal core, eddy current is also generated in this metal core, and only the effect of the eddy current originally generated in the sensor target material cannot be detected. Therefore, in the usual eddy current displacement sensor, the sensor winding 16 is an air-core coil, and the air-core coil is protected by a resin material or a ceramic material.

【0008】しかし、液体水素や液体ヘリウムなどの極
超低温下において樹脂材の保護では、該樹脂材のひび割
れによる欠損のため、空芯コイルの固定が危ぶまれる恐
れがある。セラミック保護ではセラミックの焼成という
手間がかかること、また極超低温下で樹脂材と同様に割
れる恐れ、或いは金属保護部18との接合の難しさがあ
り、これらに対応するためには非常に高価なセンサとな
ってしまうという問題がある。
However, when the resin material is protected at extremely low temperatures such as liquid hydrogen and liquid helium, the fixing of the air-core coil may be jeopardized due to the cracking of the resin material. In the case of ceramic protection, it takes a lot of time to fire the ceramic, there is a fear of cracking like a resin material at an extremely low temperature, or it is difficult to join the metal protection part 18, and it is very expensive to cope with these. There is a problem that it becomes a sensor.

【0009】[0009]

【発明が解決しようとする課題】本発明は上述の点に鑑
みて成されたもので、極超低温下で使用されるのに磁気
浮上支持装置用の支持対象物の変位を検出する変位セン
サとして好適な磁気軸受用の渦電流型変位センサを提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and is used as a displacement sensor for detecting the displacement of a supporting object for a magnetic levitation supporting device, which is used at extremely low temperatures. An object of the present invention is to provide a suitable eddy current displacement sensor for a magnetic bearing.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、変位センサ巻線及び該変位セ
ンサ巻線に対向するセンサターゲットを具備し、極超低
温下で支持対象物を磁気浮上支持する磁気浮上支持装置
の該支持対象物の変位を検出する渦電流型変位センサで
あって、変位センサ巻線は積層型磁性材又は渦電流が生
じにくい磁性材に巻付け固定し、変位センサ巻線に対向
するセンサターゲットを支持対象物或いは該支持対象物
に固着されたスリーブとし、変位センサ巻線に供給する
搬送信号の周波数を数十キロHz以上メガHzオーダ以
下としたことを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 comprises a displacement sensor winding and a sensor target facing the displacement sensor winding, and the object to be supported at an extremely low temperature. Is an eddy current type displacement sensor for detecting a displacement of an object to be supported of a magnetic levitation supporting device for magnetically levitation, wherein the displacement sensor winding is wound around a laminated magnetic material or a magnetic material in which eddy current is hard to occur and fixed. , The sensor target facing the displacement sensor winding is a supporting object or a sleeve fixed to the supporting object, and the frequency of the carrier signal supplied to the displacement sensor winding is several tens of kilohertz or more and megahertz or less. Is characterized by.

【0011】渦電流型変位センサにおいて、変位センサ
巻線を上記のように磁性材に巻付け固定すると機械的に
固定する効果が大きいが、そこで発生する渦電流は渦電
流型変位センサにとって好ましいものではない。そのた
めここでは積層型磁性材又は渦電流が生じにくい磁性材
に変位センサ巻線を巻付け固定しているので、渦電流型
変位センサにとって好ましくない渦電流の発生は抑制さ
れる。また、極超低温であるため、センサターゲットと
なる支持対象物或いは該支持対象物に固着されたスリー
ブの電気抵抗は小さくなり渦電流の発生にとって好まし
いものとなる。更に搬送信号の周波数を数十キロHz以
上メガHzオーダ以下としたことにより、変位センサ巻
線の金属芯である積層型磁性材又は渦電流が生じにくい
磁性材に発生した磁束はセンサターゲットを含めて磁気
的閉回路とまではいかないが、磁路を形成することにな
り、渦電流型変位センサに好ましい結果となる。
In the eddy current type displacement sensor, when the displacement sensor winding is wound and fixed on the magnetic material as described above, the effect of mechanically fixing is great, but the eddy current generated there is preferable for the eddy current type displacement sensor. is not. Therefore, since the displacement sensor winding is wound around and fixed to the laminated magnetic material or the magnetic material in which the eddy current does not easily occur, the generation of the eddy current which is not preferable for the eddy current displacement sensor is suppressed. Further, since the temperature is extremely low, the electric resistance of the support target serving as the sensor target or the sleeve fixed to the support target becomes small, which is preferable for generating the eddy current. Further, by setting the frequency of the carrier signal to several tens of kilohertz or more to the megahertz order or less, the magnetic flux generated in the laminated magnetic material that is the metal core of the displacement sensor winding or the magnetic material in which eddy current is hard to occur includes the sensor target. However, a magnetic path is formed, though not a magnetically closed circuit, which is a preferable result for the eddy current displacement sensor.

【0012】請求項2に記載の発明は、請求項1に記載
の渦電流型変位センサにおいて、変位センサ巻線を機械
的保護材で覆い、且つ樹脂を含浸させて固定したことを
特徴とする。
According to a second aspect of the present invention, in the eddy current type displacement sensor according to the first aspect, the displacement sensor winding is covered with a mechanical protective material, and is fixed by impregnating a resin. .

【0013】上記のように、変位センサ巻線を機械的保
護材で覆い、且つ樹脂を含浸させて固定したことによ
り、常温から極超低温までの大きな温度に対しても耐え
得る構成となる。
As described above, by covering the displacement sensor winding with the mechanical protection material and fixing it by impregnating it with a resin, it is possible to withstand a large temperature from normal temperature to extremely low temperature.

【0014】請求項3に記載の発明は、請求項1又は2
に記載の渦電流型変位センサにおいて、機械的保護材と
変位センサ巻線の間に絶縁層を介在させたことを特徴と
する。
The invention according to claim 3 is the invention according to claim 1 or 2.
The eddy current type displacement sensor described in (1) above is characterized in that an insulating layer is interposed between the mechanical protection member and the displacement sensor winding.

【0015】上記のように、機械的保護材と変位センサ
巻線の間に絶縁層を介在させたことにより、機械的保護
材に金属材料を使った場合に、常温から極超低温までの
大きい温度変化による熱応力に耐え絶縁性を向上させる
ことができる。
As described above, since the insulating layer is interposed between the mechanical protective material and the displacement sensor winding, when a metal material is used as the mechanical protective material, a large temperature from normal temperature to ultra-low temperature is obtained. It is possible to withstand the thermal stress due to the change and improve the insulating property.

【0016】請求項4に記載の発明は、請求項1乃至3
に記載の渦電流型変位センサにおいて、磁気浮上支持装
置は、支持対象物である回転軸を浮上支持する磁気軸受
であることを特徴とする。
The invention according to claim 4 is the invention according to claims 1 to 3.
In the eddy current type displacement sensor described in (1), the magnetic levitation support device is a magnetic bearing that levitationally supports a rotation shaft that is an object to be supported.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。図3は本発明に係る磁気軸受用
の渦電流型変位センサの概略構成を示す図で、図3
(a)は平面構成を、図3(b)は側面構成を示す。ま
た、図4は変位センサ側の変位センサブロックの構成例
を示す図である。1は本渦電流型変位センサの変位セン
サコイル側の変位センサブロックを、2はセンサターゲ
ットを示す。変位センサブロック1の変位センサ巻線3
は極超低温液化ガスに曝されても脱落しないように積層
型磁性材或いは渦電流が生じにくくした磁性材からなる
磁極4に巻付けられ、更にガラス布等を折り込んだ絶縁
層5を介して機械的保護材6により固定及び樹脂材7を
含浸させて固定されている。なお、機械的保護材6に
は、例えば金属材料を用い、樹脂材7としてはエポキシ
系の樹脂材を用いる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a diagram showing a schematic configuration of an eddy current displacement sensor for a magnetic bearing according to the present invention.
FIG. 3A shows a plan configuration, and FIG. 3B shows a side configuration. FIG. 4 is a diagram showing a configuration example of the displacement sensor block on the displacement sensor side. Reference numeral 1 denotes a displacement sensor block on the displacement sensor coil side of the eddy current displacement sensor, and 2 denotes a sensor target. Displacement sensor winding 3 of the displacement sensor block 1
Is wound around a magnetic pole 4 made of a laminated magnetic material or a magnetic material in which eddy current is hard to generate so that it does not fall off even when exposed to ultra-low temperature liquefied gas. The protective material 6 is fixed and impregnated with the resin material 7 to be fixed. A metal material is used for the mechanical protection material 6, and an epoxy resin material is used as the resin material 7.

【0018】これら変位センサ巻線3と積層型磁性材か
らなる磁極4により構成される変位センサに対向するセ
ンサターゲット2としては、導電性あるいは磁性を有す
る回転軸8である。センサターゲット2や回転軸8は極
超低温下で電気抵抗が低下し渦電流が流れやすくなるか
ら、渦電流型変位センサとしては好ましい。なお、セン
サターゲット2としては導電性あるいは磁性を有する材
料からなるスリーブを回転軸8に固着したものを用いて
もよい。
The sensor target 2 facing the displacement sensor constituted by the displacement sensor winding 3 and the magnetic pole 4 made of a laminated magnetic material is a rotating shaft 8 having conductivity or magnetism. The sensor target 2 and the rotating shaft 8 are preferable as an eddy current type displacement sensor because their electrical resistance is lowered at an extremely low temperature and an eddy current easily flows. As the sensor target 2, a sleeve made of a material having conductivity or magnetism fixed to the rotating shaft 8 may be used.

【0019】変位センサ巻線3を積層型磁性材あるいは
渦電流が生じにくくした磁性材からなる磁極4に巻付け
ることは、通常誘導型センサで行われているが、ここで
は更にガラス布等を折り込んだ絶縁層5等を介して機械
的保護材(金属材)6により固定及び樹脂材7を含浸さ
せて固定している。なお、変位センサ巻線3の金属芯の
存在は変位センサ巻線3を機械的に固定する効果が大き
いが、そこで発生する渦電流は渦電流型変位センサにと
っては好ましくない。そのためここでは変位センサ巻線
3を巻付ける磁極4に積層型磁性材或いは渦電流が生じ
にくくした磁性材を用いているので、渦電流の発生を抑
制することができる。
The winding of the displacement sensor winding 3 around the magnetic pole 4 made of a laminated magnetic material or a magnetic material in which eddy current is hard to occur is usually performed by an inductive sensor, but here, a glass cloth or the like is used. Fixing is performed by a mechanical protective material (metal material) 6 through the folded insulating layer 5 and the like, and the resin material 7 is impregnated and fixed. The presence of the metal core of the displacement sensor winding 3 has a great effect of mechanically fixing the displacement sensor winding 3, but the eddy current generated there is not preferable for the eddy current displacement sensor. Therefore, here, since the laminated magnetic material or the magnetic material in which the eddy current is hard to occur is used for the magnetic pole 4 around which the displacement sensor winding 3 is wound, the generation of the eddy current can be suppressed.

【0020】変位センサ巻線3に流す搬送信号の周波数
を通常の渦電流型センサのようにメガHzオーダ以上と
すると、変位センサ巻線3の金属芯となる磁極4で発生
する渦電流の影響が大きく、渦電流型センサとしては好
ましくない。そこでここでは上記のように磁極4に積層
型磁性材或いは渦電流が生じにくくした磁性材を用い渦
電流の発生を抑制している。
When the frequency of the carrier signal flowing through the displacement sensor winding 3 is on the order of mega Hz or more as in the case of an ordinary eddy current type sensor, the effect of the eddy current generated in the magnetic pole 4 serving as the metal core of the displacement sensor winding 3 is exerted. Is large, which is not preferable as an eddy current sensor. Therefore, here, the generation of the eddy current is suppressed by using the laminated magnetic material or the magnetic material in which the eddy current is hard to be generated in the magnetic pole 4 as described above.

【0021】また、変位センサ巻線3に供給する搬送信
号の周波数は数十キロHz以上メガHzオーダ以下とし
て相対的に低い周波数領域にシフトしている。これは本
実施形態の渦電流型の変位センサでは、磁気閉回路とま
ではいかないが、積層型磁性材或いは渦電流が生じにく
くした磁性材からなる磁極4に変位センサ巻線3を巻付
け、センサターゲット2に磁束を交差させようとする磁
気回路を形成すること、磁性材の磁気特性の影響も出
て、その周波数特性がメガHzオーダよりも低いことを
考慮したためである。
Further, the frequency of the carrier signal supplied to the displacement sensor winding 3 is shifted to a relatively low frequency range from several tens of kilohertz to less than mega-Hz order. In the eddy current type displacement sensor of this embodiment, this is not a closed magnetic circuit, but the displacement sensor winding 3 is wound around the magnetic pole 4 made of a laminated magnetic material or a magnetic material in which eddy current is hard to occur. This is because it is considered that a magnetic circuit that tries to intersect magnetic flux is formed in the sensor target 2 and that the frequency characteristic is lower than the mega Hz order due to the influence of the magnetic characteristic of the magnetic material.

【0022】本発明は誘導型変位センサのセンサ巻線磁
極と渦電流型変位センサのセンサターゲットという、通
常異なる原理のセンサのものを利用しているが,それを
より合わせるために,変位センサ巻線に供給する搬送信
号の周波数を低めにするという工夫と、極超低温におけ
るセンサターゲット材の低電気抵抗という現象を利用し
ているものである。
The present invention utilizes the sensor winding magnetic pole of the inductive displacement sensor and the sensor target of the eddy current displacement sensor, which usually have different principles, but in order to match them together, the displacement sensor winding is used. It utilizes the idea of lowering the frequency of the carrier signal supplied to the wire and the phenomenon of low electrical resistance of the sensor target material at extremely low temperatures.

【0023】なお、上記実施形態例では、回転軸を磁気
浮上支持する磁気軸受における回転軸の変位を検出する
変位センサを例に説明したが、本発明に係る渦電流型変
位センサの適用分野はこれに限定されるものではなく、
液体水素、液体ヘリウムなどの極超低温下で使用する磁
気浮上支持装置の支持対象物の変位を検出するための渦
電流型変位センサに広く利用することが可能である。
In the above embodiment, the displacement sensor for detecting the displacement of the rotating shaft in the magnetic bearing that magnetically levitates and supports the rotating shaft has been described as an example. However, the application field of the eddy current displacement sensor according to the present invention is not limited to this. It is not limited to this,
It can be widely used for an eddy current type displacement sensor for detecting the displacement of a support target of a magnetic levitation support device used at extremely low temperatures such as liquid hydrogen and liquid helium.

【0024】[0024]

【発明の効果】以上説明したように、各請求項に記載の
発明によれば、変位センサ巻線は積層型磁性材又は渦電
流が生じにくい磁性材に巻付け固定し、変位センサ巻線
に対向するセンサターゲットを支持対象物或いは該支持
対象物に固着されたスリーブとし、変位センサ巻線に供
給する搬送信号の周波数を数十キロHz以上メガHzオ
ーダ以下としたので、下記のような優れた効果が得られ
る。
As described above, according to the invention described in each claim, the displacement sensor winding is wound and fixed on the laminated magnetic material or the magnetic material in which the eddy current is hard to occur, and the displacement sensor winding is Since the opposing sensor target is a supporting object or a sleeve fixed to the supporting object, and the frequency of the carrier signal supplied to the displacement sensor winding is set to several tens of kilohertz to megahertz or less, the following excellent The effect is obtained.

【0025】(1)常温から液体水素、液体ヘリウムな
どの極超低温まで温度が変化する雰囲気に曝されても、
センサターゲットに特別な構成を必要としない。
(1) Even when exposed to an atmosphere whose temperature changes from room temperature to ultra-low temperature such as liquid hydrogen and liquid helium,
No special configuration is required for the sensor target.

【0026】(2)通常の渦電流型変位センサの空芯コ
イルに比べて、積層型磁性材又は渦電流が生じにくい磁
性材に変位センサ巻線を巻いているため、極超低温下で
も該変位センサ巻線の保持が可能となる。また、高価な
セラミックで保護する必要もなく、セラミック或いは樹
脂と金属ケースとの接合の難しさもない。従って、比較
的低コストで渦電流型変位センサを提供できる。
(2) Compared with the air core coil of a normal eddy current type displacement sensor, the displacement sensor winding is wound around a laminated magnetic material or a magnetic material in which an eddy current is less likely to occur, so that the displacement is generated even at an extremely low temperature. It is possible to hold the sensor winding. Further, there is no need to protect with an expensive ceramic, and there is no difficulty in joining the ceramic or resin and the metal case. Therefore, the eddy current displacement sensor can be provided at a relatively low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の誘導型変位センサの構成を示す図で、図
1(a)は平面構成を、図1(b)は側面構成を示す図
である。
FIG. 1 is a diagram showing a configuration of a conventional inductive displacement sensor, FIG. 1 (a) is a plan configuration, and FIG. 1 (b) is a side configuration.

【図2】従来の渦電流型変位センサの構成例を示す図
で、図2(a)は平面構成を、図2(b)は側面構成を
示す図である。
FIG. 2 is a diagram showing a configuration example of a conventional eddy current displacement sensor, FIG. 2 (a) is a plan configuration, and FIG. 2 (b) is a side configuration.

【図3】本発明に係る渦電流型変位センサの概略構成を
示す図で、図3(a)は平面構成を、図3(b)は側面
構成を示す図である。
3A and 3B are diagrams showing a schematic configuration of an eddy current displacement sensor according to the present invention, wherein FIG. 3A is a plan configuration and FIG. 3B is a side configuration.

【図4】本発明に係る渦電流型変位センサの変位センサ
ブロックの構成例を示す図である。
FIG. 4 is a diagram showing a configuration example of a displacement sensor block of an eddy current displacement sensor according to the present invention.

【符号の説明】[Explanation of symbols]

1 変位センサブロック 2 センサターゲット 3 変位センサ巻線 4 磁極 5 絶縁層 6 機械的保護材 7 樹脂材 8 回転軸 1 Displacement sensor block 2 sensor targets 3 Displacement sensor winding 4 magnetic poles 5 insulating layers 6 Mechanical protection material 7 Resin material 8 rotation axes

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 変位センサ巻線及び該変位センサ巻線に
対向するセンサターゲットを具備し、極超低温下で支持
対象物を磁気浮上支持する磁気浮上支持装置の該支持対
象物の変位を検出する渦電流型変位センサであって、 前記変位センサ巻線は積層型磁性材又は渦電流が生じに
くい磁性材に巻付け固定し、 前記変位センサ巻線に対向するセンサターゲットを前記
支持対象物或いは該支持対象物に固着されたスリーブと
し、 前記変位センサ巻線に供給する搬送信号の周波数を数十
キロHz以上メガHzオーダ以下としたことを特徴とす
る渦電流型変位センサ。
1. A displacement detection coil of a magnetic levitation support device, which comprises a displacement sensor winding and a sensor target facing the displacement sensor winding, and magnetically supports a support target under ultra-low temperature, to detect the displacement of the support target. An eddy current type displacement sensor, wherein the displacement sensor winding is wound around and fixed to a laminated magnetic material or a magnetic material in which eddy current is unlikely to occur, and the sensor target facing the displacement sensor winding is the support target or the An eddy current type displacement sensor, characterized in that a sleeve fixed to an object to be supported is used, and a frequency of a carrier signal supplied to the displacement sensor winding is set to several tens of kilohertz to megahertz.
【請求項2】 請求項1に記載の渦電流型変位センサに
おいて、 前記変位センサ巻線を機械的保護材で覆い、且つ樹脂を
含浸させて固定したことを特徴とする渦電流型変位セン
サ。
2. The eddy current displacement sensor according to claim 1, wherein the displacement sensor winding is covered with a mechanical protective material and is fixed by being impregnated with resin.
【請求項3】 請求項1又は2に記載の渦電流型変位セ
ンサにおいて、 前記機械的保護材と前記変位センサ巻線の間に絶縁層を
介在させたことを特徴とする渦電流型変位センサ。
3. The eddy current displacement sensor according to claim 1, wherein an insulating layer is interposed between the mechanical protection member and the displacement sensor winding. .
【請求項4】 請求項1乃至3に記載の渦電流型変位セ
ンサにおいて、 前記磁気浮上支持装置は、前記支持対象物である回転軸
を浮上支持する磁気軸受であることを特徴とする渦電流
型変位センサ。
4. The eddy current displacement sensor according to claim 1, wherein the magnetic levitation support device is a magnetic bearing that levitationally supports a rotation shaft that is the object to be supported. Type displacement sensor.
JP2001351513A 2001-11-16 2001-11-16 Eddy current type displacement sensor Pending JP2003148904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001351513A JP2003148904A (en) 2001-11-16 2001-11-16 Eddy current type displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001351513A JP2003148904A (en) 2001-11-16 2001-11-16 Eddy current type displacement sensor

Publications (1)

Publication Number Publication Date
JP2003148904A true JP2003148904A (en) 2003-05-21

Family

ID=19163818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351513A Pending JP2003148904A (en) 2001-11-16 2001-11-16 Eddy current type displacement sensor

Country Status (1)

Country Link
JP (1) JP2003148904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235923A (en) * 2008-03-26 2009-10-15 Ebara Corp Turbo vacuum pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235923A (en) * 2008-03-26 2009-10-15 Ebara Corp Turbo vacuum pump

Similar Documents

Publication Publication Date Title
JP3121819B2 (en) Magnetic bearing device with permanent magnet that receives radial force applied to the shaft
KR102312084B1 (en) Superconducting current pump
US7635937B2 (en) Device for magnetically suspending a rotor
US8847451B2 (en) Combination radial/axial electromagnetic actuator with an improved axial frequency response
US6751842B2 (en) Method of constructing a rotor for use in a high speed controlled-pole electric machine
JP5331876B2 (en) Magnetic bearing with high temperature superconducting member
Looser et al. An active magnetic damper concept for stabilization of gas bearings in high-speed permanent-magnet machines
US20010051499A1 (en) Substrate rotating apparatus
JP2017106899A (en) Device for detecting position of rotator shaft in axial direction and application of the device to rotary machine
KR20080064964A (en) Synchronous machine
EP3314618B1 (en) A magnetic actuator for a magnetic suspension system
JP6022191B2 (en) Active magnetic bearings with corrosion-resistant coating
US5572079A (en) Magnetic bearing utilizing brushless generator
KR101836550B1 (en) Device and method for the damped, non-contact support of a coolant feed line for superconducting machines
JPS5942165B2 (en) Magnetic non-contact bearing device
JP4768712B2 (en) Active magnetic bearing for automatic position detection
JPS58501800A (en) Synchronous electric machine with superconducting inductor
JP6324878B2 (en) Superconducting rotating electrical machine
JP2003148904A (en) Eddy current type displacement sensor
KR920019044A (en) Earth leakage detection system and method of bearing support and seal insulation for generator
WO2007031758A2 (en) Radial magnetic bearing with coils on the stator and an axial magnetic field provided by magnets on a rotor disc
EP0961044A2 (en) Magnetic bearing
EP2579431B1 (en) A magnetic shield
JPH09137828A (en) Magnetic bearing for ultra-low temperature
US20110127874A1 (en) Rotor having a superconducting rotor winding and an integral sleeve surrounding the rotor winding